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ABSTRACT Energy detection is crucial during initial cell selection as it effectively assists the User
Equipment (UE) in swiftly identifying a suitable Radio Frequency (RF) channel from numerous candidates.
Implementing a Software-DefinedModem (SDM) presents a critical challenge of enabling energy detection,
which traditionally requires high computational complexity in conventional hardware modems. This paper
introduces a software-defined energy detector designed with low complexity, specifically tailored for an
SDM. We design and implement an off-the-shelf energy detector that is fully software-based, with the goal
of significantly reducing the time required for initial cell selection in an SDM. The software-defined energy
detector is specialized for measuring 5G Synchronization Signal Blocks (SSBs). It emphasizes the key
feature of the moving average filter which enables efficient computation of signal energy for an SSB. To
enable real-time operation, the algorithm for the software-defined energy detector is designed to seamlessly
utilize Single Instruction andMultiple Data (SIMD) functions. By implementing the software-defined energy
detector, we optimize the detection parameters, thereby enhancing the practical performance of energy
detection. The experimental results demonstrate that the software-defined energy detector can accurately
evaluate the signal energy of the 5G SSBs with reasonable computational complexity.

INDEX TERMS Energy detector, softwarization, software-defined modem (SDM), 5G synchronization
signal block (SSB).

I. INTRODUCTION
Innovative 5G technologies are being integrated with various
industrial fields, such as railway, public safety, smart
factories, autonomous driving, medical care, and Augmented
Reality (AR)/ Virtual Reality (VR), to cultivate new vertical
markets [1]. Each vertical market is diverse and requires
specific requirements for 5G User Equipments (UEs). A rail-
way locomotive requires a special emergency call feature
that takes priority over emergency calls. A public safety
operator needs to support massive group communication as
well as direct communication between UEs for mission-
critical purposes.

The associate editor coordinating the review of this manuscript and
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While specific features are tailored for vertical markets
and are not essential for the commercial market, conventional
System-on-Chip (SoC) modems require customization for
vertical market needs. This customization is not ideal from
a cost perspective, as developing a specific SoC modem
requires a significant amount of resources, which is not
generally affordable for vertical market sizes. Alternately,
a Software-Defined-Modem (SDM) can be considered due
to its flexible adaptation capabilities to meet the spe-
cific requirements of vertical markets. The SDM is an
implementation technology that processes baseband signals
using general-purpose hardware. The SDM can offer the
benefits of flexible implementation at a low cost, mak-
ing it more suitable for vertical markets than an SoC
modem [2].
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Several Long Term Evolution (LTE) and 5G solutions
based on SDM are readily accessible. The Open Air Interface
(OAI) Project is a representative example of an SDM [3], [4].
This project offers open-source code for LTE and 5G entities,
including base stations, core networks and mobile terminals.
It enables straightforward realization by compiling the source
code in a LINUX environment and connecting a suitable
Radio Frequency (RF) device. Amarisoft has also launched
LTE and 5G solutions for test and measurement purposes [5].
These solutions are in an one-box form, leveraging the
concept of the SDM and enabling easy addition of new
features through software updates.

Despite its benefits, an SDMhas limitations in time-critical
scenarios. SDM processes algorithms on general-purpose
hardware, which typically results in longer processing times
compared to dedicated hardware in an SoC modem. Hence,
SDM faces the challenge of processing the initial cell
selection which is one of time-consuming algorithms. During
initial cell selection, a UE essentially selects a suitable RF
channel from those it supports before cell synchronization
[6]. Due to its wide bandwidth support, a 5G UE requires
more time to select an appropriate RF channel in which a
nearby cell can be detected. Performing this procedure faster
is crucial for ensuring a fast and seamless user experience on
the UE.

The difficulty mentioned earlier requires the UE to attempt
network registration within a certain time limit during the
initial cell selection procedure in many conformance test
cases [7].

To accelerate the initial cell selection, the UE can initially
filter out unsuitable RF channels whose signal energy is
negligible. The UE can estimate the activity of an RF channel
by detecting its signal energy, and selectively search for the
energy-detected RF channels [8], [9]. This allows the UE to
avoid searching inactive RF channels and significantly reduce
the time required for initial cell selection. Hence, energy
detection prior to cell search helps the SDM perform initial
cell selection faster.

Conventional research has addressed the issue of energy
detection from a theoretical perspective [10]. Comprehensive
analysis of the performance is considered in multi-path
channels [11], [12], [13], and enhanced schemes suitable
for these channels are proposed [14], [15], [16]. Energy
detection is also considered for recognizing discontinuous
transmission in mobile communications [17], [18], as well
as for jointly conducting energy detection with resource
allocation [19]. Some research works consider distributed
situations and propose cooperative methods to improve
energy detection [20], [21].

The aforementioned conventional research works aim
at general signals and do not specifically design energy
detection for 5G signals. These approaches generally involve
significant computational complexity, which is not desirable
for SDMs. Furthermore, some research works consider the
waveform of the target signal for energy detection. Energy

detection is further enhanced to consider the correlation of
the target signal [22], and specialized to WiFi and Low
Power Wide Area Network (LPWAN) which co-exist in
an unlicensed band [23], [24]. Energy detection is also
combined with machine learning algorithms for effectively
learning the behavior of energy-observed signals [25], [26].
However, none of them specifically addresses 5G signals
or offer solutions that could alleviate the computational
complexity burden on SDMs.

There are several difficulties associated with implementing
energy detection on an SDM. Unlike the SoC modem where
signal levels are determined by hardware in the analog
domain, the SDM must derive signal energy digitally from
the baseband signal sampled from an RF device. While
hardware in the SoC modem can provide measured energy as
the signal is received in real-time, the SDM fundamentally
has limitations in terms of time consumption and requires
careful consideration to enable energy detection along with
real-time operations. The energy detection in 5G is more
challenging due to the burst characteristics of the signal
waveform over time. This means that signal energy cannot
be observed for most of the time, making accurate energy
detection challenging. Moreover, it is questionable whether
the signal energy derived from digital signal processing is
sufficiently accurate for selecting the RF channels in an initial
cell selection procedure.

There are conventional research works that can be
useful as references in terms of computational complexity.
A low-complexity energy detection algorithm is proposed
for addressing timing misalignment issues in femtocell
environments [27], but this is not applicable to 5G ini-
tial cell selection. A low-power spectrum sensor is also
investigated, utilizing a high-order band-pass filter function
and spectral cooperative sensing with fast spectrum sensing
time [28], which are not directly applicable to a software
environment. Furthermore, a spectrum sensing algorithm
achieves low computational complexity by leveraging Fast
Fourier Transform (FFT) and is successfully implemented
on a software-defined radio platform [29]. However, this
algorithm is not optimal for detecting the energy of 5G burst
signals.

The novelty of this paper lies in the implementation
of a software-defined 5G energy detector that can operate
with low computational complexity. This paper proposes an
efficient algorithm of 5G energy detection that can operate
in a software environment. The proposed algorithm aims to
derive the signal energy of Synchronization Signal Blocks
(SSBs) that can be detected at specific time intervals. This
algorithm is specifically designed for a software-defined
environment to minimize computational complexity. These
characteristics differentiate the algorithm from conventional
ones, which typically detect the energy of general signals
using dedicated hardware.

This paper also demonstrates the performance of 5G
energy detection in practical scenarios. For practical assess-
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ment, the proposed energy detector is implemented with
software and a testbed which operates in real-time. The
proposed algorithm is implemented as real-time software
running on a LINUX machine, which handles received
signals from a Universal Software Radio Peripheral (USRP)
device. The experiment results from the implementation
provide insight into how initial cell selection is practically
conducted in real-world environments.

The further contents in this paper provide the software
design of the proposed energy detection and the experimental
results of the software-defined energy detection. Section II
explains the assumptions and requirements of the system
model for a software-defined energy detector. Section III
presents the algorithmic design of the software-defined
energy detector and outlines the steps required to implement
the energy detection algorithm in software. Section IV shows
experimental results that demonstrate how the proposed
energy detection can accurately work in practical signal
environments.

II. SYSTEM MODEL
The SDM UE is assumed to be in the standalone mode,
exclusively using the 5G network, and performs initial cell
selection for a 5G gNodeB (gNB).1 The UE repeatedly
configures an RF channel and performs cell search, which
is equivalent to the process of detecting Synchronization
Signals (SSs), until it chooses a suitable RF channel in which
the UE succeeds in the cell search. The gNB periodically
sends a Synchronization Signal Block (SSB), and its structure
is illustrated in Fig. 1. The SSB occupies 4 consecutive
Orthogonal Frequency Division Multiplexing (OFDM) sym-
bols. The SSB consists of the Primary Synchronization Signal
(PSS), the Secondary Synchronization Signal (SSS), and the
Physical Broadcasting CHannel (PBCH). PSS and SSS allow
the UE to synchronize with a nearby cell and identify the cell
during initial cell selection. PBCHprovides basic information
about the cell so that the UE can access to it after the initial
cell selection.

As in LTE, the gNB can configure its center frequency
using one of the candidate channel rasters. Moreover, the
gNB can configure the center frequency of the SSBs, denoted
by Global Synchronization Channel Numbers (GSCNs),
to enable faster initial cell selection procedures. The gran-
ularity of GSCNs is wide and it is advantageous for the UE
to search for GSCNs in terms of reducing the overall search
time. We assume that the frequency band of the gNB is above
3GHz, as commonly observed in commercial environments.
In this case, the center frequency of an SSB is 3000MHz +

(NG − 7499) · 1.44MHz, where NG represents the GSCN for
the frequency of the subcarrier located at the center of the
SSB.

During the initial cell selection procedure, the UE selects
a candidate GSCN within the given frequency band and

1In non-standalone mode, a UE in initial cell selection should search for
an LTE cell. Therefore, we assume standalone mode to focus on the problem
of 5G initial cell selection.

FIGURE 1. The structure of an SSB.

configures its center frequency to detect an SSB. The UE
repeats the process until it successfully detects an SSB
and identifies a suitable gNB. To minimize the number of
attempts for SSB detection, the UE can group neighboring
NGSCN GSCNs as a GSCN group. This enables the UE to
detect the signal energy of a GSCN group by measuring the
received signal strength of the frequency band that includes
the GSCNs. The UE then prioritizes cell search for the
GSCNs whose signal energy is above a threshold.

Our design and implementation focus on efficiently
detecting the signal energy of an SSBwithin aGSCNgroup in
an SDM. The algorithm should efficiently measure the signal
energy of SSBs for NG neighboring GSCNs.
In the case of LTE, a base station transmits Cell specific

Reference Signal (CRS) evenly over time, and a UE can
easily detect its signal energy at any moment. On the other
hand, the 5G gNB periodically transmits SSBs for several
milliseconds and does not emit a signal for most of a frame if
there is no downlink traffic. Therefore, a detection algorithm
needs to focus on a specific time interval when SSBs are
transmitted; otherwise, miss-detection occurs. The UE can
prevent miss-detection by exhaustively detecting in time, but
this requires significant computational complexity. However,
the detection algorithm should also be suitable for the SDM
in terms of complexity. The algorithm should be properly
designed to handle received baseband samples in the digital
domain with low computational complexity. Our algorithm
design aims to minimize the computational complexity while
keeping the miss-detection probability under 1%.

III. DESIGN AND IMPLEMENTATION OF THE
SOFTWARE-DEFINED ENERGY DETECTOR
Fig. 2 illustrates the overall design of the proposed energy
detector. The figure presents the role and functionality of
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FIGURE 2. The overall procedure of the proposed energy detection.

the virtual RF(vRF), which serves as hardware abstraction
for an RF device. The vRF manages the configuration
parameters of the RF device including center frequency,
bandwidth, sampling rate and power gain. It also handles the
transmission and reception procedures of the RF device by
commanding through vRF-RF device interface. It commands
for the sampling of received signals or the transmission of
baseband signals at the beginning of a slot.

When energy detection begins, the vRF receives parame-
ters of a GSCN andNfft along with a configuration command,
from the upper layer denoted by L1. Then, the vRF configures
and commands the RF device to sample for the center
frequency that corresponds to the configured GSCN. The
sampling duration is set to the duration of an SSB period,
ensuring that the received samples, denoted by r[n], contain
at least one SSB. The vRF stores r[n] in a sampling buffer
and initiates the signal energy detection process with respect
to the SSB. Considering the time-domain characteristics
of the SSB, the vRF roughly estimates the timing of the
SSB transmission in the sampling buffer, and determines
the timing window for energy calculation. The vRF then
calculates the energy spectral density within the estimated
timing window for Nfft and returns the energy detection
results to the L1.

A. ESTIMATION OF THE SSB TIMING WINDOW
The UE in the initial cell selection assumes that an SSB is
transmitted periodically at a certain interval, typically every
20ms. Hence, the transmission of one SSB only occupies a
short period of time within the SSB period, which is only
0.7%. The UE will likely experience a miss-detection if
it attempts to detect signal energy at a particular moment.
Therefore, the UE needs to configure a suitable timing
window that includes the SSB before performing the cell
search.

The proposed energy detector takes into account the
time-domain characteristics of a signal containing an SSB
to estimate the appropriate timing window. Assuming that
the signal energy of the received samples during the SSB
transmission is relatively high, the proposed energy detector
can identify the timing window by applying a Moving
Average Filter (MAF). The tap size of the MAF is designed
as the sample length of an SSB, denoted by NSSB. NSSB

FIGURE 3. Signal energy estimation in a timing window.

Algorithm 1 Timing Window Estimation
1: for i = 0 to NSSB do
2: MVav[0]+= Erx[i]
3: end for
4: maxMV = MVav[0], n̂SSB = 0
5: for i = 1 to Ns do
6: MVav[i] = MVav[i−1]+Erx[i+NSSB−1]−Erx[i−1]
7: if MVav[i] > maxMV then
8: maxMV = MVav[i]
9: n̂SSB = i
10: end if
11: end for
12: return n̂SSB

corresponds to 4 OFDM symbols and is calculated as follows:

NSSB = 4(
fs
fSCS

+ NCP), (1)

where fs, fSCS and NCP represent sampling rate, subcarrier
spacing and the number of samples for a cyclic prefix,
respectively. In this case, the MAF output will be maximized
at the beginning of the time-domain signal, which includes
the SSB. This MAF process reduces the computational
burden of overall energy detection since the UE only needs to
obtain energy at the timing that maximizes the MAF output.

Fig. 3 and Algorithm. 1 show how the timing window is
estimated. Here, Ns represents the number of samples stored
in the buffer for the energy detection, and MVav[i] denotes
the output of the MAF. After initializing the variables, the
algorithm iterates to calculate MVav[i] using MVav[i − 1].
During the iterations, the algorithm determines the maximal
value ofMVav[i]. The values ofMVav[i] for all i are calculated
using simple summation operations, taking into account
increments and decrements from the previous output denoted
by MVav[n − 1]. It finally determines the boundary of the
timing window as i which maximizes MVav[i].
The algorithm is well-designed for software implemen-

tation in terms of low complexity. The algorithm reduces
the complexity of the MAF process from NSSB × Ns to
NSSB + 2Ns in terms of addition operations. The substantial
reduction in complexity is particularly noteworthy given the
large number of samples required for initial cell selection,
especially considering the high value of Ns. This reduction
translates to a significant decrease in computational resources
or processing time, thereby enhancing the efficiency of
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the energy detection algorithm. Additionally, the algorithm
allows for the utilization of Single Instruction Multiple
Data (SIMD) functions to obtain energy levels for multiple
samples simultaneously. A SIMD function conducts the
multiplication of multiple data with one instruction, thereby
requiring less computation time. The instantaneous energy
level of the i-th received sample, denoted by Erx[i], can
be efficiently calculated by invoking these SIMD functions
repeatedly. The derived Erx[i] is used for calculatingMVav[i].
The above practical designs enable the SDM to estimate
the timing window of the SSB with low computational
complexity, and it is also advantageous in terms of real-time
processing.

B. ENERGY LEVEL CALCULATION
Given the timing window of the SSB estimated from the
MAF’s output, the proposed energy detector calculates signal
energy within the timing window. Denoting n̂SSB as the offset
where the timing window starts, the proposed energy detector
calculates the energy level in an average sense as follows,

Eav =
1

NSSB

∑n̂SSB+NSSB−1
n=n̂SSB

||r[n]||2. (2)

(2) applies to the case that Nfft = 1 and when the L1 requests
a representative level of the signal energy for the configured
bandwidth. If the L1 configures Nfft as two or a higher value,
then the proposed energy detector must calculate multiple
energy levels for Nfft frequency bins in the signal’s spectrum.
This can be achieved by computing the average energy
spectral density of the SSBas follows,

Eav[f ]=
Nfft
NSSB

∑NSSB
Nfft

−1

k=0

∣∣∣∣FFTNfft(r[n̂SSB+Nfft ∗ k], f
)∣∣∣∣2 , (3)

whereFFTNfft (r[n], f ) denotes the f -th output of theNfft point
FFT process whose inputs are r[n], r[n+1], . . . , r[n+Nfft−
1]. The proposed approach allows for detecting the energy
of multiple RF channels from a single sample buffer, thus
reducing the time required to detect energy for different RF
channels.

The proposed scheme leverages SIMD functions to
minimize the computational complexity of the energy
level calculation. The calculation of instantaneous energy
levels of multiple received samples in (2) require repeated
multiplication, which can be efficiently performed by a
single instruction using SIMD functions. The proposed
energy detector utilizes a specific storage scheme in the
sample buffer, as illustrated in Fig. 3, where the real
and imaginary parts of r[n] are stored alternatively. Then,
multiple energy levels are simultaneously calculated by
executing a single instruction that combines multiplication
and addition operations for multiple data, commonly referred
to as a ‘multiple and add’ instruction. Based on actual
measurement with the experimental parameters listed in
Table. 1, the proposed energy detector requires 0.98ms to
complete the energy detection process. On the other hand,
it takes 1.25ms if SIMD functions are not used in the energy
level calculation. Therefore, utilizing SIMD functions in the

FIGURE 4. The software architecture and test environment.

TABLE 1. The test parameters.

FIGURE 5. The ROC curves of the proposed scheme.

energy level calculation can reduce the overall detection time
by 23%.

IV. ASSESSMENT OF THE DETECTION PERFORMANCE
To evaluate the performance of the proposed energy detector
in practical environments, we analyze its detection charac-
teristics. The initial step in evaluating the proposed energy
detector involves determining a suitable threshold for iden-
tifying when energy is detected. This can be accomplished
by constructing a Receiver Operating Characteristics (ROC)
curve. The ROC curve is closely related to the characteristics
of the RF device in the SDM system and can be obtained by
conducting experiments with the specific RF device. Hence,
we implement the proposed energy detector that can run on
the SDM system in real-time. We also assess the ability of
the proposed energy detector to accurately detect energy in a
commercial environment.
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TABLE 2. The false alarm and detection probabilities for various
threshold levels.

FIGURE 6. The failure probability for an emulated gNB.

Fig. 4 and Table. 1 illustrate the overall test environments,
including emulated and commercial gNBs, and the software
architecture of the 5G cell searcher. To obtain the ROC
curves, an RF cable is used to connect the USRPs of the
UE and the emulated gNB, and the UE repeatedly detects
the signal energy of the emulated gNB. The parameters of
the emulated gNB are configured similarly to those of the
commercial LGU+ gNB. To detect the signal energy of a
commercial gNB, the UE collects received samples using a
3.5 GHz antenna from the nearby LGU+ gNB.
The proposed energy detector is implemented as software

in the testbed for experiments in real-world environments.
To facilitate interoperability with cell search procedures,
we implement off-the-shelf software, including the L1.
The core algorithm is implemented as source code in the
vRF, and the L1 triggers energy detection by passing the
center frequency of the RF channels. This implementation
enables the proposed energy detector to scale efficiently with
bandwidth. The result of energy detection is passed to the L1,
allowing it to determine which RF channel to search for cells
and command the virtual SeaRCHer(vSRCH).

A. THRESHOLD LEVEL DECISION FROM THE ROC CURVES
The proposed energy detector requires a predefined threshold
for measured signal energy to determine whether the SSB is
present or not. An appropriate threshold can be configured by
observing the ROC curve of the SDM system. The ROC curve
reveals detection and false alarm probabilities, respectively
denoted by Pd and Pfa. Pd represents the probability that
the proposed energy detector detects an SSB that is actually

FIGURE 7. The failure probability for a commercial gNB.

transmitted. Pfa represents the probability that the proposed
energy detector detects an SSB in a noisy signal when in fact
there is no SSB present.

To obtain anROC curve in a certain signal environment, the
two probabilities with respect to Signal to Noise Ratio (SNR)
are obtained through experiments. Therefore, we measured
energy levels using the proposed energy detector in certain
signal environments. The detection and false alarm proba-
bilities are calculated based on various thresholds, which are
used to generate an ROC curve. The above process is repeated
with varying signal environments to obtain multiple ROC
curves.

Fig. 5 shows the ROC curve of the proposed energy
detector when the SNR ranges from −8.5dB to −1.1dB.
The optimal threshold level of an ROC curve can be derived
from the point on the ROC curve that is closest to (0,1).
Table. 2 provides the exact values of the optimal threshold
levels derived from the ROC curves. The decision of the
threshold level can be made based on Table. 2, depending on
the desired Pd and Pfa requirements for the proposed energy
detector. The decision on the threshold level depends on
our expectations regarding how the proposed energy detector
will be operated. Any of the threshold levels in Table. 2
can be chosen based on the policy of energy detection.
Assuming that the miss-detection probability aims to be
1%, the threshold should be higher than −86.3235 dBm.
The miss-detection probability should be sufficiently small
because the cell search time may be critically increased if
the UE skips searching for the correct GSCN. However,
the proposed energy detector also prefers to have a lower
threshold level for detecting weaker signals, and the threshold
level should be properly set according to the desired Pfa.
In summary, the ROC curves provide guidance for deciding

the appropriate threshold level of the proposed energy
detector. We can determine a threshold level from Table 2 that
satisfies the requirements for miss-detection and false alarm.
This will determine a SNR range within which the proposed
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scheme can accurately detect energy. The next sub-section
presents the experimental results using the threshold level
selected from Table. 2.

B. ENERGY DETECTION PROBABILITY
After configuring the threshold level based on the ROC
curves, we repeatedly conduct experiments in both RF
conduction and air environments to evaluate the overall
detection performance. The proposed energy detector is
configured with the threshold levels shown in Table 2. The
threshold level is configured from −86.247 to −86.445 dBm
to ensure that the proposed energy detector can detect energy
with a certain level of false alarm. For considering the validity
of energy detection results, we also let the SDM decode
PBCH as well as detect energy.

Fig 6 shows the experimental results providing the failure
probability of energy detection and PBCH decoding in a
RF conduction environment. For any range of SNR, the
detection probability clearly tends to vary with changes in
the threshold level. For instance, the SNR at which the
proposed energy detector achieves 10% failure probability is
−3, −4 and −5dB when the threshold is set as −86.1431,
−86.2471 and −86.3235dB, respectively. The results also
indicate that as the threshold level decreases, the proposed
energy detector becomes more successful in detecting signal
energy. It reveals that the proposed energy detector operates
appropriately based on the configuration of target threshold
levels. Additionally, setting the threshold level needs to its
maximum value is necessary to minimize the probability of
false alarms. Conversely, a smaller threshold level can be
chosen if the proposed energy detector needs to detect energy
more aggressively, even at the cost of potential false alarms.
This can be advantageous since in certain scenarios, a miss-
detection can be more critical than a false alarm from the
perspective of cell search time.

Based on the results regarding PBCH decoding, we can
also observe that the proposed energy detector functions
effectively even under sufficiently low SNR conditions.
According to the criterion of 1% failure probability, the
proposed energy detector, utilizing the specific threshold
levels, is capable of detecting signal energy within an SNR
range of −1dB – −8dB. The proposed energy detector
demonstrates its ability to detect sufficiently weak signals for
any threshold level, particularly evident in its performance
in PBCH decoding. This is due to the fact that the PBCH
decoder functions optimally when the SNR exceeds −1dB.
Fig. 7 illustrates the experimental results of the proposed

energy detector in commercial environments. The failure
probability of the energy detection appears to be similar
to that depicted in Fig. 6. It indicates that the proposed
energy detector performs similarly to its performance in lab
environments, even when targeting commercial gNBs via the
air interface. When the threshold level is appropriately set
according to Table 2, the proposed energy detector can meet
the requirements of commercial operators, as demonstrated
by our lab experiments. In conclusion, the experimental

results sufficiently demonstrate that the proposed energy
detector can effectively enhance the efficiency of initial cell
selection for UEs in commercial environments.

V. CONCLUSION
A5GUE supportingwidebandmust conduct initial cell selec-
tion across numerous RF channels. Therefore, performing
energy detection is essential to meet the time requirements for
initial cell selection. This paper introduces a low-complexity
energy detector specifically designed for searching 5G SSBs
in SDMs. The key points of this paper are summarized as
follows:

• The algorithm is effectively designed to ensure low com-
putational complexity, enabling real-time operations.
The algorithm utilizes the SSB timing window and
conducts parallel computation using SIMD functions.

• Its implementation enables the evaluation of its charac-
teristics in terms of the ROC curve. The performance
evaluation with both emulated and commercial gNBs
demonstrates that the software-defined energy detector
can be effectively utilized in practical channel environ-
ments.

The proposed energy detector will contribute to making the
initial cell selection procedure more efficient and reducing
the latency experienced by users during power-on. Further
enhancement in detection accuracy can be achieved by
applying more advanced filtering techniques to determine the
timing window. During this enhancement, it is essential to
consider optimizing the computation flow while maintaining
low complexity. To enhance scalability, future work could
explore detecting larger bandwidth, which would require
more sophisticated and lower-complexity signal processing
in the frequency domain. Continuously enhancing energy
detection will enable the next generation of mobile commu-
nications to utilize wider bandwidths while achieving shorter
cell selection times.
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