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ABSTRACT This paper proposes the optimization algorithm, an adjusted evolution strategy (AES) and
verifies performance of the AES applying the optimal design of the outer-rotor surface mounted permanent
magnet synchronous motor (SPMSM) for unmanned aerial vehicle. The proposed algorithm improved
disadvantage of the conventional evolution strategy, which requires long computation time when solving
the optimization problem, utilizing an exponential function of the annealing factor. In addition, the AES
further enhances the convergence characteristic by combining with the compass segment method which
is deterministic algorithm. This paper shows that the superiority of AES over NGA and ES in three test
functions, with 30% to 70% reduction in the number of function calls, and an improvement of 5%p to 30%p in
the convergence accuracy. Finally, the AES is applied to the optimization design of the outer-rotor SPMSM,
and this paper derived the optimal model of the SPMSM to increase average torque and reduce torque ripple
that causes vibration in unmanned aerial vehicle. As a result, proposed algorithm successfully derived the
optimal model and verified the robustness. Therefore, the results of this study are expected to be widely
applied to the multimodal optimization problem of various electrical machines utilizing FEM.

INDEX TERMS Design optimization, multi-modal optimization, unmanned aerial vehicle, motor design,
surface mounted permanent magnet synchronous motor.

I. INTRODUCTION
Unmanned aerial vehicle (UAV) is in the spotlight around the
world as a mobility option for the future. Various types of
UAVs have been developed to solve complicated and dan-
gerous missions safely and quickly, such as data acquisition,
forest fire detection, and rescue and search missions [1], [2].
IT companies such as Google and Amazon also developed the
first UAVs, starting with microdrones [3]. It is expected that
many companies will be interested in the UAV industry in the
future.

Systems of the UAV generally operate by motors [4].
The motor should have the features of tight structure and
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light weight for saving the space and mass, and it needs
the high output density under high-speed-operation [5], [6],
[7]. Permanent magnet synchronous motor (PMSM) among
several motors is usually utilized for the UAV because it has
high performances such as high efficiency, power density,
ratio of output torque to motor weight, reliability, and high
dynamic response performance [3], [8]. PMSMs are catego-
rized as interior PMSM (IPMSM) or surface mounted PMSM
(SPMSM) according to position of the permanent magnet.
The SPMSM is relatively simple to control compared to the
IPMSM. Which of the SPMSMs, outer-rotor SPMSM has
large inertia than inner-rotor SPMSM [9], [10]. Therefore,
outer-rotor SPMSM usually shows constant speed operation
rather than acceleration operation [3]. Due to these charac-
teristics, the outer-rotor SPMSM is usually used for UAVs
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TABLE 1. Result according to annealing factor.

TABLE 2. Result according to number of elite sets.

FIGURE 1. Problem areas having 8 peaks of the test functions and result
using evolution strategy. (a) test function (b) result.

that require long take-off and stable operation. However,
in the performances of the motor, cogging torque and torque
ripple generate noise, and vibration and reduce efficiency of
the motor. Therefore, reducing these performances through
optimization is essential.

Finite element method (FEM) is used to accurately derive
the performance of the SPMSM. which has non-linear mag-
netic saturation [12].

However, the FEM for the optimal design of the SPMSM
having the nonlinear characteristic requires a lot of time [13],
[14]. To resolve this problem, several algorithms finding the
optimal design such as evolution strategy (ES) and nich-
ing genetic algorithm, which is multi-modal algorithm, have
studied [15], [16], [17], [18], [19], [20], [21].
Multi-modal algorithm can find local peak and global

peak [22], [23], [24], [25], [26], [27], [28]. Local peak refers
to the most optimal solution among the surrounding solutions
at the current location in an optimization problem. In other
words, it is the optimal value in a specific area and the
point where changes in that area do not improve anymore.
Therefore, several local peaks can exist in problem area. And
global peak represents the most optimal solution in problem
area. Multi-modal algorithm in motor design is used a lot
because it can be considered other electromagnetic charac-
teristics such as rated torque and output in addition to the
objective function [29], [30]. Among them, ES and NGA

FIGURE 2. Flow chart of evolution strategy.

have superior detection of local peak capabilities compared
to other multi-modal algorithms. Many studies are being
conducted to improve the ES and NGA [12], [31]. However,
in recent studying, the ES has problems about convergence
characteristic, which is the accuracy with the peak in the
nonlinearity problem area, and NGA also has problem that
some peaks are difficult to find. And it occurs a lot of function
calls, which are the number of times calculated to find a
peak point in an unknown problem area, because elite range
is decided without considering the number of surrounding
samples [32]. Therefore, this study proposes the adjusted
evolution strategy (AES) that applies exponentiation of the
annealing factor that varies depending on the surrounding
sample. And the AES adds some additional method to reduce
function calls and the deterministic method, compass seg-
ment method (CSM), to enhance convergence characteristics.
The proposed algorithm confirms superiority of function
calls and accuracy through comparison of performance, while
using the three mathematical test functions. In addition, the
reliability of the proposed method was verified by success-
fully deriving the optimal design of SPMSM for UAVs.

In this paper, some methods which are applied to the
proposed algorithm is described in section II. Subsequently,
verification and comparison with the AES, the conventional
ES, and NGA which is used a lot [33], are shown in
section III. In section IV, V, this study selected design vari-
ables to optimize the targetmotor and finds the optimal design
for the outer-rotor SPMSM with reduced torque ripple and
increased average torque using the proposed algorithm. And
to verify the stability of the motor, optimal model of the
SPMSM for the UAV is proved stability about irreversible
demagnetization of magnet.

II. PROPOSED ALGORITHM
The ES requires a lot of time to converge on peak points
and has inferior convergence characteristic. Because the
annealing factor which affects for deciding function calls
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FIGURE 3. Groups of sample arrangement generated by the LHS.
(a) group 1. (b) group 2. (c) group 3. (d) group 4.

and accuracy is fixed at 0.85 [34]. Therefore, while adding
some methods which reduce function calls and enhance con-
vergence characteristic, this paper proposes the AES using
exponentializing of the annealing factor, restricted area, and
deterministic method, CSM. As shown as Fig. 2, a description
of the conventional ES, and characteristics of the upgraded ES
are as follows [30].

A. CONVENTIONAL ALGORITHM-ES
ES is one of the basic algorithms, which have developed
such as GA and simulated annealing (SA). The ES basically
performs arithmetic optimization of real number functions
and uses arithmetic operations not centered on the pattern
but on the numbers themselves [35], [36], [37]. To obtain the
optimal value, The elite set is determined by calculating the
fitness of each particle as follow

Fi = (Cw − Ci) +
Cw − Cb
k − 1

(1)

whereCw,Cb, andCi are the minimum, maximum, and the ith
value of the cost functions, respectively. The value k is a num-
ber greater than 1, usually 3 or 4. After fitness determination,
the k value is applied to the evolved solution-selected method
such as roulette wheel or tournament. And then, the annealing
factor is used to find the optimal value in the problem area
while reducing the size of the elite set. The evolution range is
updated by the annealing factor as follow

Ri+1 = Ri × α (2)

where Ri is the evolution range of the elite set, α is the
annealing factor, andRi+1 is the evolved range. The annealing
factor have a significant impact on the calculation time and

accuracy. Therefore, to confirm the function calls and accu-
racy according to the annealing factor, this paper utilizes the
test function. The test function is defined as follow

f (x, y) =

P∑
i=1

mi
1 + [(x − xi)2 + (y− yi)2/ni

(3)

where P is the size of the peak points of each test functions,
and mi and ni determine the magnitude of each peak point.
Table 1 shows the function calls and success rate by annealing
factor in the test function of Fig. 1. (a) having 8 peaks.
Success rate is the average of the absolute error for each peak.
It is used for comparing performance of the convergence in
terms of statistical indicators. The accuracy is calculated as
follow

Success rate[%] =
(1 − |zi − yi|)

n
× 100 (i = 1, 2, · · ·)

(4)

where n is the number of the peak, zi is the ith real peak of
test function and yi is the ith peak found using optimization
algorithm. Results in the Table 1 shows the smaller is the
variable values, the faster the calculation time, but the lower
the accuracy. In the most of algorithms using the ES, the
annealing factor is fixed at 0.85 [34] with appropriate func-
tion calls, and accuracy.

B. PROPOSED ALGORITHM-AES
The conventional ES takes a lot of time to find optimal
values and has bad convergence characteristic, as shown in
Fig. 1. (b). To improve this characteristic, while generat-
ing the restricted area, changing the annealing factor, and
combining the deterministic algorithm, the AES reduces the
function calls and increases accuracy. The characteristics of
the upgraded ES and the flow of the proposed algorithm are
as follows.

1) IMPROVE LATIN HYPERCUBE SAMPLING
Generating initial samples evenly in the problem area is
important because the location of the optimal solution in
the problem area does not know. Nowadays, most of the
algorithms generate initial samples by using Latin hypercube
sampling (LHS) which is known for generating evenly. The
LHS is a method for scattering initial samples evenly by
considering the distance between each sample. And improved
Latin hypercube sampling (ILHS) uses the LHS and is shown
in Fig. 3. Groups of the initial samples are represented as
Fig. 3 while using the LHS. The distleast in Figs. 3 is the
smallest distance of the Euclidean distances between each
sample in each group. And if the distleast is the largest of
all the groups, the group is selected as the initial group [38].
This means that generating the using the ILHS increases the
probability generating initial samples evenly than using the
LHS. Therefore, this paper generates the initial samples using
the ILHS.
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FIGURE 4. Exponentialize the annealing factor utilizing of non-elite
solutions in elite set. (a) part 1. (b) part 2.

2) EXPONENTIALIZE THE ANNEALING FACTOR
The annealing factor is the most important component of
the ES. Annealing is a step which the probability of gen-
erating worse solutions decreases as the search progresses.
Therefore, according to the annealing factor, the number of
function calls and convergence accuracy are determined. The
larger the annealing factor, the larger the rate of change
in the evolution range, the faster the convergence speed,
but the convergence accuracy decreases. On the contrary,
as the annealing factor decreases, the rate of change in
the evolution range decreases, and the convergence accu-
racy increases, but the convergence speed decreases. In the
conventional ES, the annealing factor is fixed at 0.85 [34].
Hence, the function calls and accuracy of convergence are
ambiguous because it does not consider the number of sur-
rounding samples and is fixed value during the algorithm
execution. To solve this problem, this paper proposes an
exponential function of the annealing factor. As shown in
Fig. 4, the annealing factor is exponentialized using surround-
ing samples to change the size of the elite set depending
on the number of surrounding samples. The formula is as
follow

AF = e−0.85f (f = 1, 2, 3 · · · ) (5)

FIGURE 5. Additional methods of the proposed algorithm which are
different from conventional evolution strategy. (a) Restricted Area.
(b) Compass Segment Method (CSM).

where AF is the annealing factor, f is the density factor using
the number of other samples in the elite set and size of the
objective function, and z is the objective function. Therefore,
as repeating until the algorithm stops, the change in the size of
the evolution range becomes more distinct compared to that
of the conventional ES. Therefore, overlap is reduced, and
function calls decrease by reducing unnecessary analysis.

3) RESTRICTED AREA & COMPASS SEGMENT METHOD
The AES utilizes a restricted area to increase the probability
of achieving the superior solution. Restricted area is an area
that excludes the area where the worse solution exists [39].
If the fitness of solutions in the elite range is elite solu-
tion, elite solutions are changed, existing elite solutions are
deleted, and restricted areas are generated in that direction.
Fig. 5. (a) shows the method of the restricted area. Therefore,
setting the restricted area increases the probability of gener-
ating a better solution as the search progresses.

And the compass segment method (CSM) is the determin-
istic algorithm to develop the convergence characteristic of
the AES. This generates solutions at the same length in four
directions. After estimating the fitness of the four solutions,
except for the best, everything else will be deleted. Reducing
the length gradually, this process repeats until it finds the peak
point. Fig. 5. (b) shows an example of the CSM.

4) FLOW CHART
The flow chart of the AES is shown in Fig. 6. First, initializa-
tion is a step which decide component of the AES like elite
set, the number of initial samples, design variables, and so on.
As shown in Table 2, the number of elite sets is fixed at 20 in
considering rate of the increase in the success rate compared
to the increase in the function call. And then, initial samples
are generated evenly over the entire objective function region
using the ILHS, and the fitness of each solution is calculated.
And then, solutions having the high fitness are selected as
the elite set, which is determined based on the following
rules [34]

A. Add a current best solution into the elite set and remove
other solutions inside the evolution range.
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FIGURE 6. Flow chart of adjusted evolution strategy.

B. Find another best solution and repeat the previous step.
a specified number of times.

Next, create new child solutions within the mutation range
of each elite solution (after repeating once, a child solution is
generated in the elite set after exclusion of the restricted area).
If a new child solution is improved compared to its parent,
the existing solution is replaced by the child solution and the
area is restricted further. If each elite solution is located in the
evolution range of another solution, choose a good solution
and remove a worse solution. Repeat this until the initial
number of elite sets is reached. Next, mutated children are
generated using LHS in the whole search space. If a mutation
is better than an elite solution, the elite solution is replaced.
If the mutation is in the evolution range, the range is increased
by dividing by the annealing factor. However, if the elite
solution is not replaced, the evolution range is decreased by
multiplying by the annealing factor. This process is repeated
until the average of respectively elite ranges is under the
initial elite range. And then, to derive the optimal solution,
the AES uses a deterministic method CSM that increases the
convergence characteristic without probabilistic methods to
reduce unnecessary analysis.

III. VERIFICATION OF THE PROPOSED ALGORITHM
To verify the performance of the proposed algorithm, the
AES, the conventional optimization algorithm, ES, and NGA,
are applied to the three mathematical test functions with
6 peaks, 10 peaks and 4 peaks, respectively. The test func-
tion 1 and 2 are defined as (3). And the test function 3 is as
follow, meaning A is the magnitude of the peak.

f (x, y) = 2A+ x2 − A cos(2πx) + y2 − A cos(2πy) (6)

The test was performed 100 times with each algorithm.
As shown in Table 3, the AES shows better performance
than the NGA and the ES. Fig. 7. (a), (c), and (e) show
problem area of the test functions 1, 2 and 3. They have
10 peaks, 6 peaks, and 4 peaks with certain locations and
values. The test was conducted using the functions, was
repeated 100 times, andwas considered successful if the value
of the peak was greater than 95 % of the actual peak value.

FIGURE 7. Problem areas and result of the test. (a) problem area of test
function 1 (10 peaks). (b) result of test function 1 using the AES (10
peaks). (c) problem area of test function 2 (6 peaks). (d) result of test
function 2 using the AES (6 peaks). (e) problem area of test function 3 (4
peaks), (f) result of test function 3 using the AES (4 peaks).

TABLE 3. Comparison of adjusted evolution strategy and niching
algorithm for test functions.

As shown in Fig. 7. (b), (d) and (f), the results are shown
in Table 3 when all peaks are found in each test function.
For the number of function calls and success rate, the first
test function with 10 peaks showed a 99.85 % success rate
in 1,150 function calls with the AES, an 81.43 % success
rate in 2,040 function calls with the NGA, and a 93.70 %
success rate in 2131 function calls with the ES. Likewise,
with the second test function with 6 peaks, the AES showed
a 99.03 % success rate in 735 function calls, while the NGA
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TABLE 4. Specifications of the SPMSM for UAV.

FIGURE 8. The analysis periodic shape and design variables for target
motor.

showed a 73.68 % success rate in 1,040 function calls and
the ES showed a 92.92 % success rate in 2305 function calls.
Lastly, with the third test function with 4 peaks, the AES
showed a 99.26 % success rate in 315 function calls, while
the NGA showed a 69.99 % success rate in 540 function calls
and the ES showed an 86.09 % success rate in 1063 function
calls. Finally, compared to the ES, the proposed algorithm
demonstrates its superiority by respectively reducing the
number of function calls (i.e., convergence speed) by 73.52%,
68.11%, and 70.37%, and respectively improving accuracy
by 5.57%p, 6.11%p, and 13.17%p. And, compared to the
NGA, the proposed algorithm demonstrates its superiority
by respectively reducing the number of function calls by
43.63%, 29.33%, and 41.67%, and respectively improving
accuracy by 18.42%p, 25.35%p, and 29.27%p.

TABLE 5. Design variables and ranges of the objective motor.

TABLE 6. Results of comparison with initial model and optimal models.

FIGURE 9. Waveform comparison between the initial and optimal models
of average torque.

IV. OPTIMAL DESIGN OF THE SPMSM FOR UAV
A. DESIGN OF THE SPMSM FOR UAV
The requirements for SPMSM for UAV driving are shown
in Table 4. It is designed to achieve these specifications and
selected as the initial model. However, looking at the results
in Table 5, the torque achieves the rated torque, but it is
judged that further reduction is still needed in terms of torque
ripple. Therefore, an optimal design is performed based on
the proposed algorithm.

The non-linear properties of the motor result in perfor-
mance changes with even small changes in variable. For these
reasons, it is very important to select the design variables.
The model of the outer-rotor SPMSM is designed for high
efficiency, light weight, and comfortable driving. Design vari-
ables, keeping slot area, are used in this paper, as shown in
Fig. 8. The arc radius is the radius of the alpha arc facing the
magnet and is not the distance from the center to the end of
the motor. The arc radius affects the shape of the steel part
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facing the magnets. When the arc radius is longer, the steel
part is more convex; the shorter is the arc radius, the flatter is
the steel part. At that time, the length of the air gap is fixed to
reduce effects on the motor. Tables 4 shows the specifications
of the SPMSM for UAV. The stacking length is 9.6 mm, and
the dimension of motor is 134.2 mm. Concentrated winding
is used to increase the space factor, and a natural cooling
method is used. Table 5 shows the design variables and their
ranges. The range of the arc radius is from 5 mm to 14 mm.
and that of alpha is from 0.5 mm to 2 mm. J-MAG Designer,
a commercial finite element analysis tool for analyzing the
motor, for optimal design is used.

B. OPTIMAL DESIGN USING THE AES ALGORITHM
This paper verifies the validity of the algorithm by optimiz-
ing the motor for UAV using the proposed algorithm. The
SPMSM for the UAV basically has two driving points at
continuous and maximum. Among them, continuous driving
point is sensitive to the noise and vibrations themost and need
stable operation. Therefore, this paper optimizes in the con-
dition of continuous driving point. While driving the motor,
performance characteristics used as objective functions to
optimally design motors for UAVs. Among them, torque and
torque ripple affecting noise, vibration, and output power
are determined as the objective functions for the character-
istic of the UAV. The objective functions of the proposed
algorithm are minimization of torque ripple to reduce noise
and vibration during operation and maximization of average
torque for high operation performance [8]. normalization to
consider two objective variables. If only the FEA analysis
is performed without normalization, the objective variable
with a larger variation among torque and torque ripple is
advantageous for improvement, but the objective variable
with a smaller variation may not be improved. In order to
prevent the problem caused by the size difference of some
of these objective functions, normalization is performed and
used into the weighted sums. The formula is as follow

min f (xi) = w1
Tavg,0
Tavg(xi)

+ w2
Trip(xi)
Trip,0

(7)

where f (xi) is the objective function, w1, w2 are the weight
coefficients, and Tavg,0, Trip,0 are torque average and torque
ripple of the initial model. In this paper, average torque of the
initial model exceeded the rated torque. Therefore,w1, w2 are
determined as respectively 0.4, 0.6 to have more influence on
the torque ripple.

As a result of performing the proposed algorithm, three of
the best solutions are selected. Using load condition analysis,
the three candidate models and the values of the initial model
were performed and are shown in Table 6. First, in the initial
model, the average torque was 3.28 Nm with a torque ripple
of 5.03 %. The case 1 shows an average torque increase of
30.18 % and 38.77 % decrease in torque ripple.

And the case 2 and 3 show respectively an average torque
increase of 29.27 % and 30.79 % and torque ripple decrease
of 32.41 % and 0.80 %. Among them, the case 1, which is

FIGURE 10. Results of thermal equivalent circuit analysis at the
(a) thermal characteristic curve over time. (b) thermal equivalent circuits.

the best torque ripple improvement rate with similar average
torque, is determined as the optimal model. In Fig. 9, the
waveform of the torque of optimal model is compared with
the initial model and show that optimal model is optimized
from the initial model.

C. RELIABILITY VERIFICATION OF OPTIMAL MODEL
Generally, SPMSMs are more vulnerable to irreversible
demagnetization compared with IPMSMs [40].

When performing the optimal design at high temperatures,
the performance of the magnet may be deteriorated due to
the irreversible demagnetization [41], [42]. Therefore, in this
paper, to verify the stability of the magnet in such condition,
after determining the maximum temperature through thermal
analysis, irreversible demagnetization analysis is performed
at the high temperature.

1) THERMAL EQUIVALENT CIRCUIT ANALYSIS
Setting the appropriate temperature condition is needed to
analyze the irreversible demagnetization analysis. In this
paper, to derive the maximum temperature of the opti-
mal model, thermal equivalent circuit analysis is conducted.
It was performed at the maximum driving point with the
highest current, and the thermal equivalent circuit was con-
structed while generating heat source using the iron loss and
copper loss [43]. The analysis was conducted for 2 hours at
the maximum driving point. These processes are performed
using Ansys Motor CAD. Fig. 11 shows results of thermal
equivalent circuit analysis. As shown in Fig 11. (a), result of
the maximum temperature is about 110 ◦C.
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FIGURE 11. Vulnerable point of the magnet and result of irreversible
demagnetization at vulnerable points at high temperature. (a) vulnerable
point of the SPMSM. (b) result of irreversible demagnetization.

2) IRREVERSIBLE DEMAGNETIZTION ANALYSIS
It is essential to verify the performance of magnets at
high temperatures. In this paper, irreversible demagnetization
analysis of the motor is performed at 120 ◦C with about
10 % margin from 110 ◦C, which is derived by thermal
equivalent circuit analysis, and a current phase angle of 90 ◦.
The analysis of irreversible demagnetization is conducted in
two methods.

The first method is to verify whether the operating point,
which is the intersection of BH curve and load line of the
motor, of the magnet’s vulnerable points such as the center
and edge of magnet [44] is formed above or below the knee
point of the demagnetization curve with irreversible demag-
netization characteristics [45], [46]. The second method is to
compare back electromotive force before and after current of
harsh condition applied and confirm bywhether the reduction
in back electromotive force occurs within 5 %. While consid-
ering the driving temperature and load characteristics of the
motor, Fig. 12. (a) is shown vulnerable point of the SPMSM.
In Fig. 12. (b), the operating points of each vulnerable point
are shown above the knee point. Therefore, it is confirmed
that irreversible demagnetization did not occur. And using
second method on the same conditions, Fig. 11 is shown
rate of reduction in back electromotive force before and after

FIGURE 12. Result of the irreversible demagnetization analysis.
(a) applied current. (b) comparison of no-load back-electromotive force
with before and after current applied.

current applied. The magnitude of the no-load back electro-
motive force before the current is applied is 11.75 Vpk. And,
after current, which has a current phase angle of 90 degrees,
is applied, the magnitude of the no-load back electromotive
force is 11.74 Vpk. Reduction rate of the back electromotive
force is 0.085 %, therefore, it is confirmed that irreversible
demagnetization did not occur. These results are verified the
stability of the permanent magnets.

V. CONCLUSION
This study proposes a new algorithm, AES, that combines
some method reducing the function calls and improving the
convergence characteristic in the conventional ES. Using this
algorithm for three test functions, not only the computa-
tion time was reduced but also the accuracy was increased
than using the conventional ES and NGA. And then, when
the AES was applied to the optimal design of the outer-
rotor SPMSM, the output performance was improved while
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increasing average torque and reducing torque ripple caused
by noise and vibration. And using method to prove the sta-
bility of the motor, validity of proposed model is shown.
The results of this study are expected to be widely applied
to the multimodal optimization problem of various electrical
machines utilizing FEM.
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