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ABSTRACT Accurate carbon price prediction can help save energy and reduce emissions worldwide. Thus,
this paper proposes a model that combines swarm intelligence algorithms with deep learning to predict
carbon prices. In this model, we collect news related to carbon trading, construct a dictionary of carbon
financial sentiment, and determine the emotional value of the carbon news. Secondly, The Harris Hawks
Optimization (HHO) algorithm is improved by updating the escape energy and introducing the inertia
weight. Then, the LSTM is optimized using the improved Harris Hawks Optimization (IHHO) algorithm.
Finally, technical and emotional data on carbon price as multiple source input values are integrated, and
the MS-IHHO-LSTM prediction model is established. The results show that the MAPE of IHHO-LSTM
is 1.89%, 30.48%, and 10.30% better than that of HHO-LSTM in Hubei, Shanghai, and Shenzhen Carbon
Exchanges, respectively. Similarly, MS-IHHO-LSTM showed a lower MAPE than IHHO-LSTM by 27.79%,
29.82%, and 6.33% in the corresponding regions. The results of the experiment indicate that: 1) Using IHHO
to optimize LSTM hyperparameters can avoid falling into local optimal and improve prediction accuracy;
2) Incorporating emotional values can further enhance the model’s performance. The MS-IHHO-LSTM
prediction model facilitates low-carbon investment, technological innovation, and green production, enabling
enterprises to support environmental sustainability.

INDEX TERMS Carbon price forecasting, sentiment analysis, deep learning, multiple source data,
MS-IHHO-LSTM.

I. INTRODUCTION trading markets to reduce carbon emissions and tackle climate

Over the two decades, China’s carbon dioxide emissions
have been increasing at a rate six times higher than that
of other countries and regions. China is accountable for
approximately 70% of the worldwide rise in carbon dioxide
emissions [1]. Since 2020, China has surpassed the European
Union in per capita carbon dioxide emissions. Consequently,
China has launched eight national unified carbon emission
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change. The fluctuation in carbon trading prices results from
market changes, and investors may face increased market risk
due to significant volatility in the price of carbon trading.
Poor liquidity in the carbon trading market can also limit
market development [2]. Accurate carbon pricing forecasts
can encourage companies and individuals to participate in
carbon trading and guide business trading and government
policy-making. Therefore, it is urgent to implement effective
carbon trading schemes, reduce carbon intensity, and develop
sustainable environmental protection methods [3].
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There are three methods for predicting time series prices:
traditional statistics, machine learning, and deep learning.
Previous scholars generally use statistical methods to con-
struct linear models that could match the price trend of
time series data. Conventional statistical methods include
the Autoregressive Moving Average model (ARMA), the
Generalized Autoregressive Conditional Heteroscedasticity
model (GARCH), and the Autoregressive Integrated Moving
Average model (ARIMA) [4], [5], [6]. For example, the
GARCH model is used to predict the volatility of stock
returns in London, New York, and Tokyo, and the prediction
results are satisfactory [7]. Traders can use the fuzzy gray
prediction method to forecast stock prices at specific times
accurately, facilitating their daily transactions effectively [8].
The ARIMA model is another technique that utilizes
the inverse wavelet transform to predict future prices by
analyzing the behavior of the price series [9]. Despite
being user-friendly, these methods may face challenges
in handling nonlinear problems [10]. The application of
machine learning models eliminates the need for many
assumptions inherent in statistical models. Moreover, these
models demonstrate efficient nonlinear learning capabilities,
resulting in superior prediction performance compared to
their traditional statistical counterparts. There are several
standard methods for machine learning, including Structured
Multilayer Perceptrons (SMLP), Support Vector Machines
(SVM), and Random Forests (RF) [11].

With the rapid development of financial technology, high-
frequency trading data has become increasingly prevalent.
Deep learning, recognized as a specialized form of machine
learning, has gained popularity owing to its remarkable
ability to process data and make more accurate predictions
compared to traditional algorithms [12]. Convolutional
Neural Networks (CNN) and Long Short-Term Memory
Networks (LSTM) are the most widely utilized deep learning
methods. LSTM is especially popular because of its effective-
ness and superior forecasting abilities [13], [14], [15], [16].

When the deep learning method is used, it is crucial to
consider the setting of parameters. One effective solution
to this problem is utilizing swarm intelligence optimization
algorithms to optimize the parameters within the prediction
model. Inspired by the catching behavior of Harris Hawks,
Harris Hawks Optimization (HHO) is proposed as a new
swarm intelligence algorithm [17]. The HHO algorithm
offers several benefits, including a wide global search range,
fast convergence speed, straightforward principles, minimal
parameters, effortless implementation, compatibility with
other algorithms, and exceptional performance on high-
dimensional problems. For example, the HHO algorithm
has a particular competitive potential in stock market index
prediction [18]. The HHO-NN model’s results were better
than those of NN, MLP, and PSO-NN in gold price
prediction [19]. When predicting carbon trading prices,
Zhao Feng [20] adopted an extreme learning machine
and various optimization techniques to optimize parameters
for more accurate predictions. The results proved that
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The THHO-ELM model outperformed the PSO-ELM and
GWO-ELM models in predicting the outcomes. However,
the HHO algorithm is prone to falling into local optimal
while attempting to solve complex optimization problems.
Therefore, it is essential to improve the HHO algorithm.

The carbon price prediction methods mentioned above rely
on historical data from a single source. They do not consider
other factors that may affect carbon prices, such as the
emotional value derived from news related to carbon trading.
To improve the precision of carbon price predictions, scholars
should consider various sources of information, including
historical data and emotional insights from news coverage.

Here, the motivations for this paper are as follows.

(1) Integrating multi-source data such as carbon trading
information can improve the accuracy and objectivity of
predicting carbon prices.

(2) Optimizing LSTM parameters with the improved
HHO algorithm can enhance global and local searching
coordination.

This paper constructs the MS-IHHO-LSTM model for
predicting carbon emission trading prices. The following are
the main contributions of this paper.

(1) The paper compiles carbon trading news, analyzes
sentiment, and creates multi-source datasets.

(2) Adjusting the escape energy and adding the weight
inertia factor improves the HHO algorithm, and a novel IHHO
algorithm is obtained.

(3) The paper uses the IHHO algorithm to optimize LSTM
and creates an MS-IHHO-LSTM predictive model for better
accuracy.

II. LITERATURE REVIEW

A. PREDICTION MODEL FOR TIME SERIES DATA
Data-driven predictors are crucial in forecasting time series
prices. They can be categorized as single and hybrid
models.

The single model contains machine learning and deep
learning. Scholars utilize machine learning for time series
prediction due to its high resistance to over-fitting, which
makes it effective even with small data samples [21].
Hansen [22] demonstrated that the Support Vector Machine
(SVM) method was superior to the statistical method when
forecasting the price of time series in nine domains. However,
applying SVM to handle numerous data samples can increase
processing time, which limits its widespread application.
In recent years, significant advancements have been made
in artificial neural networks (ANN), allowing for quick and
precise convergence. In predicting the closing prices of five
companies, the ANN method was more accurate than RF
[23]. While machine learning models are generally faster at
training and forecasting, certain limitations make it difficult
to accurately predict the price of time series. These limitations
include data uncertainty, unreliable historical data, nonlinear
relationships, and unpredictable events. As a result, machine
learning models may need to be improved in accurately and
reliably forecasting time series prices.
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Deep learning is a branch of machine learning that is
highly effective in handling large and complex data sets
to solve intricate problems. It is beneficial in dealing with
time-series data and can accurately capture time-dependent
trends between data points [24]. Therefore, more and more
scholars have attempted to use different deep-learning models
for making predictions [25]. Experiments have demonstrated
that the Back Propagation (BP) network and Recurrent
Neural Network (RNN) are better suited for handling
large-scale data [26]. Cavalli and Amoretti [27] developed
a one-dimensional CNN model to predict Bitcoin trends
and found that it outperformed other models. In addition,
experimental results showed that the LSTM neural network
is more accurate in predicting Chinese stock prices compared
to other methods such as Neural Network (NN), Genetic
Algorithm (GA), and SVM [28]. LSTM neural network
can solve the problem of gradient explosion and vanishing
gradients, which deep learning models commonly face. Deep
learning models have been widely used in various industries,
including crude oil, steel, and carbon price forecasting [29],
[30], [31]. However, deep learning models typically have
numerous hyperparameters to adjust, such as learning rate,
regularization parameters, and network structure. Tuning
these hyperparameters requires extensive experimentation
and experience, which can significantly impact the model’s
performance.

Some studies suggest that a single model’s predictive
effect is not satisfactory. Therefore, hybrid models have been
developed to improve carbon price prediction accuracy [32],
[33]. The existing hybrid prediction model for carbon price
is mainly studied through optimization algorithms and deep
learning models. It is critical to select the appropriate
algorithm for optimizing the parameters of a deep learning
model. Model performance can vary based on training
parameters. GA, Particle Swarm Optimization (PSO), and
Cuckoo Search (CS) are commonly used optimization
algorithms. Most optimization algorithms efficiently handle
parameter optimization problems [34]. For instance, PSO
is used to discover the optimal parameters of SVM, which
proves more effective than other methods [35]. Algorithms
like GA and PSO prioritize local values, potentially leading
to suboptimal results with multiple objective functions [36].
CS and other methods are effective for searching, but the con-
vergence rate is slow [37]. Support vector regression (SVR)
parameters are optimized using PSO and HHO algorithms.
HHO-SVR demonstrates superior predictive performance in
experiments [38]. The HHO algorithm is a modern and
reliable method for price prediction, which is more advanced
than traditional optimization algorithms like particle swarm
and cuckoo optimization. This algorithm can enhance
search efficiency and perform better in high-dimensional
problems by utilizing Gaussian variation and dimension
decision logic. Additionally, it can adapt to various issues
more effectively because it is less sensitive to parameter
selection.
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B. FACTORS AFFECTING CARBON PRICE PREDICTION

As scholars delve into methods for forecasting carbon prices,
they also analyze the various factors that affect them.
Traditionally, prediction models relied solely on technical
data as input features. However, many experts argue that
incorporating factors like market environment conditions, the
Baidu index, and emotional aspects can enhance accuracy.

Several factors in the market environment impact carbon
prices, such as international oil, electricity, and coal [39],
[40], [41]. European Union Allowance (EUA) and Certified
Emission Reductions (CER) serve as significant alternatives
that affect China’s carbon market price [42]. In addi-
tion, national policies and regulations also play a role in
influencing China’s carbon price [43]. Furthermore, the
macroeconomic development of a country can also affect the
cost of the carbon trading market [44].

Some scholars rely on the search platform index to predict
carbon prices. Google processes almost 80% of internet
searches worldwide. In China, Baidu and Sogou serve as the
primary search engines, with Baidu ranking first [45], [46].
When people search online, their behavior can reveal their
interest in particular events. Studies have shown that using
ten Baidu index keywords to predict carbon prices is more
effective than only historical prices [47].

The sentiment of carbon trading news is a complex factor
that can quantitatively affect carbon prices through text
analysis. With the development of text mining technology,
more and more scholars pay attention to quantifying emotion
in unstructured text. They adopt natural language processing
(NLP) to process text and analyze sentiment [48], [49], [50].
For instance, Farimani et al. [51] collected the economic news
of 300 constituent stocks in Shanghai and Shenzhen from
January 1, 2020, to May 31, 2022, and used Bi-LSTM to
identify the emotion of the news. After incorporating the
sentiment of the text, the prediction accuracy improved by
1%. Bai et al. [52] used LDA to mine themes from news
headlines and introduced two indexes of theme emotion
to predict crude oil prices. In the context of stock prices,
Mu et al. [53] analyzed investor comments from a stock forum
and created a sentiment dictionary to calculate the sentiment
index. The experiment results showed that the prediction
accuracy is improved by converting stock bar comments
into emotional values and using technical indicators as
input variables. To sum up, it is necessary to analyze the
sentimental values of authoritative financial news to predict
carbon prices.

lll. METHOD

A. LONG SHORT-TERM MEMORY NETWORK (LSTM)
LSTM comprises multiple isomorphic cells, which can store
information for a long time by updating the internal state.
Each cell comprises three main elements: the forget layer,
the input layer, and the output layer [54]. Fig. 1 displays the
LSTM’s cell structure diagram. The working process is as
follows.
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FIGURE 1. LSTM cell structure diagram.

First, the forget layer filters data and ignores useless
information. The previous output 4;_; and current input x;
are combined, and a threshold value f; is calculated using the
sigmoid function, which ranges from O to 1.

fi =Wy (x¢, ly—1) + by) (1

Second, the input gate updates the status according to input
and memory information. During this process, the function
tanh generates a new alternative vector called ¢;. The input
gate also produces a value, i;, between 0 and 1 for each item
inc I

ir = o(Wr (xr, hy—1) + by) @
¢ = tanh(We (¢, hy—1) + be) 3

The f; of the forget gate and the i, of the input gate control

previous moment forgetting and new information scaling.

Then, the current state c; can be updated based on these two
outputs.

¢ = I +fici—1 @

Third, the output gate outputs the current information. The
sigmoid function compresses the input data x; and the output
h;—1 from the previous time into a value between O and 1.
Then multiply the updated current statec, with the compressed
value o;.

or = o(Wox; + Vohyi—1 + by) ©)
h[ = O¢ * tanh(ct) (6)

In formula (1) — (6), o is the sigmoid activation function,
tanh is the activation function, W and V are the weight
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matrix, b is the bias vector, and x; is the input vector at
time t. ;1 represents LSTM’s vector output before time t,
which contains short-term memory information. ¢; represents
long-term memory information at time t.

B. HARRIS HAWKS OPTIMIZATION (HHO) ALGORITHM
The HHO is a bionic intelligent optimization algorithm
proposed in 2019. The HHO algorithm has several advan-
tages, such as its ability to conduct a comprehensive search,
compatibility with other algorithms, exceptional performance
on high-dimensional problems, and versatility in solving
various optimization problems [55]. The algorithm includes
the seek stage, the transition stage from seek to development,
and the development stage.

1) SEEK STAGE

In the Harris Hawks algorithm, the t-generation population
is denoted as P(t) = (X1 (®),Xo(),...,X, (). In the
seek phase, there are two mechanisms for global search as
follows.

Xi@t+1)
_ Xrana (1) — 11 | Xrana (1) — 2r2X; (1)1, q>05
Xrabbit (1) — Xm (1) — r3(Ib + raub —1b)), ¢ < 0.5
(N

In formula (7), X,4uq (¢) is the randomly obtained eagle,
Xi(r) is the ith eagle, and X,uppi (t) is the global optimal
solution in generation t. g, r, 12, 73, and r4 are random
numbers; 1b and ub are the lower and upper limits, and X, (¢)
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is the average of all eagle positions in generation t.
1 N
X (1) = 5 D7 Xilo) ®)

2) TRANSITION STAGE FROM SEEK TO DEVELOPMENT

At the beginning of the seek phase of the eagle chase, the
prey rabbit has more energy. The energy setting of the target
rabbit can balance the contradiction between the diversity
and convergence of the search path in the search phase. The
symbol E represents the energy of the prey.

E=2&a—%) )

where E is the prey’s energy in the escape process,
Eope [—1, 1] is the initial value of the prey energy generated
randomly, the variable ¢ represents the current iteration
number, while T represents the total number of iterations.

3) DEVELOPMENT STAGE

The search methods in the development stage of the Harris
Eagle are soft encirclement, hard encirclement, fast diving
hard encirclement, and fast diving soft encirclement.

a: SOFT ENCIRCLING

When the prey isin » >0.5 and E >0.5 state, it has the energy
to escape, and the eagle pursues it around and makes it tired.
r is the correlation coefficient between prey and predator.
It measures the degree of correlation between them and the
degree to which they interact and ranges from O to 1. The
formula is as follows:

Xi (t + 1) = Xpapbir (1) — X; (1) — E [IXpapbie (1) — Xi(1)]
(10)

where J = 2(1 — rs) is a random jump in the prey’s escape
and rs is the random number in (0,1).

b: HARD ENCIRCLING

When the prey is in r> 0.5,E < 0.5 state, the prey’s energy
becomes less and can not escape. The formula is as follows:

Xi ¢ + 1) = Xeavbir (1) — E [ Xpappie (1) — Xi()] - (11)

c: FAST DIVING SOFT ENCIRCLING

When the prey is in r < 0.5 and E > 0.5 state, the
prey’s energy becomes less. But the prey can still escape, and
the eagle forms a soft encircling pursuit. The formula is as
follows:

&U+D=[&,¢Fan<n&m) 12
Xz, ifF(X2) < F(X; (1))

where F() is used to calculate fitness, X1 = X,uppir (t) — E -
| X rapvir (1) — Xi ()|, X2 = X1 + 8 x Levy(D). Where, S is a
vector composed of random numbers of D x 1 € (0, 1), D is
the dimension, and Levy() is the Levy-Flight function.
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d: FAST DIVING HARD ENCIRCLING

When the prey is in » < 0.5 and E < 0.5 state, the target has
less energy and is not enough to escape. The eagle uses a hard
encircle to capture. The formula is as follows:

&U+D:[&,ﬁFW0<H&m) 13
Xp, ifF(X2) < F(X; (1))

where X1 = Xyappit (1) — E [JXpapbir (1) — Xm ()|, X2 = X1 +
S x Levy(D).

C. PROPOSED IMPROVED HARRIS HAWKS
OPTIMIZATION (IHHO) ALGORITHM

1) UPDATE THE ESCAPE ENERGYE

In the traditional HHO algorithm, the size of rabbit escape
energy E plays an essential role in regulating and transi-
tioning global search and local mining. The energy factor E
changes linearly during control development and exploration
but nonlinearly during control search. The method of Harris
hawks hunting rabbits in nature needs to be accurately
described. An updated formula of escape energy has been
introduced to enhance the coordination of global exploration
and local mining and improve searchability.

—) (14)
a=T3 (=—-1) (15)

2) INTRODUCE THE INERTIA WEIGHT FACTOR

The algorithm enters the development stage when the escape
energy FE is less than 1. However, it is not guaranteed that all
populations are close to the global optimal at this stage, which
may lead to premature convergence and local optimization.
Therefore, the inertial weight factor is introduced into four
predation strategies to update the rabbit’s position )A(m;,;,i,.

Tt 16

~ @ = cos(r) (16)

Xrabbit = @ * Xrabbpit (I7)

The inertia weight factor is essential for balancing global

exploration and local development. It enables the algorithm

to jump out of local optimization while maintaining accuracy
quickly.

D. MODEL CONSTRUCTION

1) CONSTRUCTION OF MS-IHHO-LSTM CARBON PRICE
PREDICTION MODEL

This paper creates the novel MS-IHHO-LSTM hybrid model
for accurately predicting carbon prices. Fig. 2 displays the
model’s architecture. This model combines the improved
IHHO swarm intelligence optimization algorithm with the
deep learning method LSTM. Technical indicators and
sentiment analysis of relevant carbon market news constitute
multi-source data, which improves the model’s prediction
accuracy. This multi-source data is then utilized as input
values for the model, which performs the following steps.
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FIGURE 2. MS-IHHO-LSTM model framework.
TABLE 1. Basic transaction information of the Hubei carbon market.
D Open High Low Avg PreClose Volume Amount Close
ata . . . . . . .

Price Price Price Price Price amount price Price
2018/10/16 33.38 33.38 29.33 30.90 30.38 25 773.10 32.09
2019/10/16 32.78 33.75 31.81 31.95 32.78 464 14826.10 32.98
2020/10/16 28.51 29.00 28.45 28.58 29.30 22692 648455.00 28.80
2021/10/16 41.45 42.60 40.00 40.40 41.59 41977 1695766.00 41.45
2022/10/17 49.60 50.60 49.00 49.42 49.44 19604 968829.95 49.60

step 1 (Obtain Data): Identify fundamental trading indi-
cators of carbon prices and capture news related to carbon
finance.

step 2 (Calculate Emotional Values): Build a unique
sentimental dictionary in the field of carbon finance and
calculate the emotional weight of news related to carbon
trading through sentiment analysis.

step 3 (Divide the Dataset): The multi-source index matrix
includes both carbon price and emotional value, and the data
is normalized before being divided into proportional train and
test sets.

step 4(Propose the Improved HHO Algorithm): The HHO
algorithm is improved by jumping out of the local optimal,
updating the escape energy E, and introducing the inertia
weight factor w.

step 5 (Optimize LSTM): The LSTM parameters are
optimized using the Improved Harris Hawk Optimization
(IHHO). In the training of LSTM, the error value represents
the population fitness of Harris Hawks, and the goal is to
minimize it.
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step 6 (Create the MS-IHHO-LSTM Model): Use the
dataset acquired from step 3 to train [HHO-LSTM and finally
get the prediction result.

2) MODEL EVALUATION CRITERIA

In this paper, mean absolute percentage error (MAPE), root
mean square error (RMSE), and mean absolute error (MAE)
are used to analyze the validity of the model. The evaluation
criteria are calculated as follows:

A

_ 100% N \yi—Yyi
MAPE = — Zi:l . (18)
RMSE—\/I Y =) 19
=5 2o, i =90 (19)
1 N .
MAE = ¥ Zi:l |9 — il (20)

N is the predicted sample size, y; is the actual price, and
yi is the predicted price. MAPE, RMSE, and MAE are used
to calculate the difference between the actual and predicted
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TABLE 2. Sample news related to carbon trading.

Date News
2017 China's energy trend: A new era of energy storage. Carbon emissions trading in power generation alone
2018/01/02 .
will top the world.
2018/03/07 The carbon market will support the development of green energy in China.
Director of the Department of Climate Change of the Ministry of Ecology and Environment: Coal
2018/11/07 . . .
consumption does not affect China's carbon reduction goal.
The carbon intensity reduction target is achieved three years ahead of schedule. In 2017, it was 46% lower
2018/12/03 :
than in 2005.
2019/01/11 Carbon trading: A double-edged sword for power generators, or worse.
2019/02/19 Truly emission-reducing electric vehicles need to be developed in tandem with renewable energy.
Global investment and financing needs for green development could reach hundreds of trillions of dollars
2019/10/31
over the next decade.
2019/12/20 Shanghai carbon trading has achieved 100% compliance for six consecutive years.
2020/05/19 Will the carbon market play little role in reducing EU emissions?
2020/09/03 Cost reduction is the key to win-win cooperation.
2020/10/21 The 2050 CO; reduction target is a daunting task.
2020/11/16 Promote the establishment of a nationwide carbon market and support the achievement of the carbon peak
target.
2021/01/13 The global carbon market gets off to a good start in 2021.
The first batch of carbon-neutral 10 billion green bonds to land on the SSE National Energy Group accounts
2021/02/25
for about 50%.
2021/03/23 State Grid Jiangsu proposes 19 measures to actively implement the national grid carbon peak carbon neutral
action plan.
Under the double carbon goal, the electricity and carbon market has become the breakthrough point for
2021/04/27 . . . X .
implementing the integrated energy service business model.
2022/09/08 Promote the dual control transition as soon as possible to play the carbon market role better.
2022/10/21 The dual carbon goal creates new opportunities for green jobs.
Ministry of Education supports accelerating the construction of disciplines such as energy storage, hydrogen
2022/11/08 energy, CCUS, and carbon emission trading. Maxson Energy appeared at the 2022 Climate Change and Low-
carbon Development Forum at the CIIE.
2022/12/16

The price of carbon in the world's leading carbon market rose 40% in 2021 but has fallen this year.

values, and the value range is [0, +00). The closer to 0, the
better the prediction ability of the model.

IV. EMPIRICAL AND RESULT

A. DATA COLLECTION

The Chinese government set up eight carbon exchanges
between 2013 and 2014 in the eastern, central, and southern

80760

regions. Based on their start-up times and geographical
locations, this paper selects carbon exchanges in Hubei,
Shenzhen, and Shanghai as representatives.

This paper obtains primary trading data from the CSMAR
database and focuses on the carbon emission exchanges
in Hubei, Shanghai, and Shenzhen from January 2, 2018,
to December 30, 2022. The dataset contains nine technical
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FIGURE 3. Original carbon price series. (a)Hubei; (b)Shanghai; (c) Shenzhen.

Trading Date

indicators: the opening price, highest price, lowest price,
average price, previous closing price, change rate, volume
amount, amount price, and closing price. Table 1 displays the
data collected from the Hubei carbon trading market over five
days.

This paper utilized the Octopus software available on the
carbon trading platform (https://tanguanjia.bjx.com.cn/) to
gather 1164 articles related to carbon trading. After filtering
out irrelevant information, 1094 practical texts are identified.
Table 2 presents four examples of carbon trading financial
news per year.

B. DATA PROCESSING

Fig. 3 shows the non-stationary closing prices of three carbon
exchanges due to different regional economic developments
and closing price methods. The blue line represents the train
set, and the red line represents the test set. Carbon market
train and test sets are separated into groups based on their
sample lengths. This study’s train and test sets are split
proportionally to ensure unbiased predictions. In the datasets
for Hubei, Shanghai, and Shenzhen, the sample lengths are
1097, 707, and 942 trading days, respectively. This paper
uses 75%, 80%, and 70% of data from three exchanges
for training and the remaining 25%, 20%, and 30% for
testing.

First, this research collects the text of news related to
carbon trading and divides each sentence into several words
with the Jieba participle [56]. A new emotion dictionary
is then constructed, including four categories of positive,
negative, denial, and degree, as shown in Table 3. Finally,
the constructed emotion dictionary analyzes the selected text
and emotion words and assigns corresponding weights. The
paper presents a method of weight allocation for positive and
negative emotion words. Positive words are given a weight
of 1, while negative words are given a —1. The emotion value
is assumed to follow the linear superposition principle. The
sentence is then separated into individual words. The forward
weight is added if the word vector contains the corresponding
words. However, negative words and adverbs of degree have
special rules. Negative words will cause the weight to be
negative, with a value of —1. Adverbs of degree, on the other
hand, will double the weight, with a value of 2. The weight
of words indicates their emotional intensity. Formula (21) is
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utilized to calculate the sentimental value of carbon trading

news.
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=

In this formula, w; represents the weight of the corre-
sponding part of speech, and x; represents the number of
occurrences of a particular piece of vocabulary.

This study combines technical data and sentiment values
calculated from carbon market news to form a feature vector
used as input to the predictive model.

2D

C. ANALYSIS OF CARBON PRICE PREDICTION MODEL
This paper uses three class models to forecast and compare
carbon prices: the single, hybrid, and multi-source data hybrid
models. Table 4 shows the models. The LSTM network’s
hyperparameters, such as the number of iterations, learning
rate, and hidden layer neurons, can be optimized using HHO
and IHHO algorithms to improve the model’s prediction
accuracy.

1) COMPARISON EXPERIMENT OF THE SINGLE MODELS

In the single model’s experiment, the performance of several
methods is compared, including the traditional statistical
method ARIMA, machine learning method SVM, and deep
learning methods such as MLP, CNN, BP, and LSTM. The
results of the model’s predictions are presented in Fig. 4
to 6. The graphs depict the number of trading days in the
test set on the X-axis and the carbon market closing price
on the Y-axis. The red line represents the actual closing
price, while the blue line represents the predicted closing
price.

Fig. 4 to 6 illustrate the impact of six different models
in predicting carbon prices in the carbon trading markets
of Hubei, Shanghai, and Shenzhen. Firstly, according to
the experimental results, the ARIMA model showed the
poorest predictive performance among the six single models.
The ARIMA model is a statistical method that can only
make reliable predictions for linear data. However, the
characteristics of carbon price data are non-linear, making
it quite challenging to predict accurately. Secondly, the
prediction outcome of the SVM method is unstable. The
SVM method is sensitive to noise and easily disturbed by
data. Carbon price data usually has significant noise and
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TABLE 3. Sentimental dictionary.

Sentiment Weight

Vocabulary

Positive 1

Negative -1

Denial -1

Degree 2

demonstration, promotion, carbon peak, carbon neutral, key point, reasonable,
positive, encourage, development, new energy, reliable, landing, high quality, zero
carbon, blockbuster, low carbon, development, rise, main, jump, countermeasures,
strive, response, innovation, great, new money scene, accelerate, transformation,
extensive, diversified, help, enhance, hard, first tranche, energy saving, recovery,
support, resilience, wisdom, perfection, flexibility, efficiency, optimization, tackle
key problems, crux, emerging, revolutionary, strive, support, priority, revelation,
potential, accuracy, be pleasant to the eye, giant, first batch, chance, mature, secure,
smooth, comprehensive, rapid, advantageous, sustainable, steady progress,
excellent, main force, scenery, short supply, professional, unprecedented......

fall back, alert, risk, trap, loss, challenge, decline, tension, falsification, blow,
rumor, compensation, fraud, inefficiency, blame, punishment, pressure, in one go,
crisis, danger, lesson, elimination, impact, debt, default, inappropriate, difficult,
negative, controversy, motivation, weakness, neglect, slow, radical, stimulating,
explosive, serious, hindrance, not enough, fall, obstacles, pollution, downturn,
negligible, burden, bumpy, fever, drag hard, loophole, abandonment, dirty, slide,
insufficient, extreme, subversion, unreasonable, backward, worse, end of days,
rejection, anger, reflection......

no, not, impossible, never......

very, super, slightly, a little bit, extreme, more......

TABLE 4. Prediction models.

Model type

Prediction model

Details

ARIMA Input variable: historical transaction data
SVM Input variable: historical transaction data
MLP Input variable: historical transaction data
Single models
CNN Input variable: historical transaction data
BP Input variable: historical transaction data
LSTM Input variable: historical transaction data
HHO-LSTM Input variable: historical transaction data
Hybrid models
IHHO-LSTM Input variable: historical transaction data
MS-LSTM Input variable: historical trading data and sentimental data of carbon trading news
Multi-source data . S . . .
MS-HHO-LSTM Input variable: historical trading data and sentimental data of carbon trading news

hybrid models

MS-IHHO-LSTM

Input variable: historical trading data and sentimental data of carbon trading news
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FIGURE 4. Comparison of single prediction models in Hubei. (aQ)AMIMA; (b)SVM; (c) CNN; (d) MLP; (e) BP; (f) LSTM.
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FIGURE 5. Comparison of single prediction models in Shanghai. (a)AMIMA; (b)SVM; (c) CNN; (d) MLP; (e) BP; (f) LSTM.

fluctuations. Thus, the experimental results are not optimal.
Thirdly, the BP and CNN models for carbon prices do
not accurately predict the Shanghai and Shenzhen carbon
exchanges. The BP and CNN models need a large amount
of data to be trained accurately to make reliable predictions.
However, the quantity of transaction data available for the
Shanghai and Shenzhen Carbon Exchange is lower than that
for Hubei. As a result, the prediction outcomes fail to meet
the desired level of satisfaction. Fourthly, LSTM has the best
prediction effect among the single deep learning methods,
followed by MLP. Furthermore, the ranking of the best to
worst predictions among these three types of single models
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are deep learning methods, machine learning methods, and
statistical methods. Therefore, the LSTM model is chosen,
and improvements are implemented to increase prediction
accuracy.

2) COMPARISON EXPERIMENT OF HYBRID AND
MULTI-SOURCE DATA HYBRID MODELS

Based on the results of the single prediction model mentioned
above, LSTM has a better prediction effect than other models.
Therefore, all the other hybrid models are being evaluated
and compared with the LSTM model. Furthermore, the
following experimental comparisons are divided into hybrid
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and multi-source data hybrid models. The HHO algorithm is
chosen in this paper to optimize the hyperparameter of LSTM
due to its quick convergence speed and strong robustness.
However, the original HHO algorithm tends to get stuck in
local optimization. Therefore, the HHO algorithm has been
improved to optimize the parameters of LSTM. In addition,
the carbon trading news may affect the prices in the carbon
trading market. This paper uses news emotional value to
predict carbon prices based on multi-source rather than
single-source data.

Fig. 7 to 9 display the actual and predicted values of the
carbon trading markets hybrid model and the multi-source
data hybrid model in Hubei, Shanghai, and Shenzhen.
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By comparing the Figures horizontally, it becomes evident
that the HHO-LSTM model combined with swarm intelli-
gence outperforms the single LSTM model. The experiment
results suggest that the predicted model optimized by the
HHO algorithm is better than the non-optimized prediction
model. Moreover, the enhanced IHHO-LSTM algorithm is
superior to the HHO-LSTM model. This result shows that the
improvement process of the HHO algorithm can effectively
improve the model prediction accuracy. After comparing the
figures vertically, it is evident that MS-LSTM outperforms
LSTM, MS-HHO-LSTM outperforms HHO-LSTM, and
MS-IHHO-LSTM outperforms IHHO-LSTM. The results
of the above comparison show that the multi-source data
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combination model is superior to the single-source model.
Additionally, incorporating emotional aspects of news can
enhance the accuracy of the prediction model.

Table 5 displays the evaluation criteria results for each
prediction model. Bold data indicates the best experimental
results.

According to the results of carbon price forecasting by
the carbon exchanges in Hubei, Shanghai, and Shenzhen, the
LSTM model has the highest accuracy among other single
forecasting models. The study shows that the LSTM model
has lower MAPE, RMSE, and MAE values than the other
single models.
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The performance of two hybrid models, HHO-LSTM and
IHHO-LSTM, is compared with that of the LSTM model.
The results show that the MAE of HHO-LSTM decreases
by 10.24%, 46.12%, and 46.31% in the Hubei, Shanghai,
and Shenzhen exchanges, respectively. Similarly, the MAE
of IHHO-LSTM reduces by 12.37%, 62.44%, and 49.91% for
the same trades. This study demonstrates that incorporating a
swarm intelligence algorithm into a deep learning model can
decrease prediction errors.

In addition, the experimental results of multi-source
data models MS-LSTM, MS-HHO-LSTM, and MS-IHHO-
LSTM compare with those of single-source data models
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TABLE 5. Model evaluation index.

Hubei Shanghai Shenzhen
Models

MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE
ARIMA 0.2649 13.78253 12.6116 0.2337 13.9453 13.5510 0.7512 24.9833 223714
SVM 0.2702 9.9786 7.5453  0.1291  8.1707 57689  0.7833 14.4931 12.2371
MLP 0.0445 2.7146 2.0292  0.0320 2.2403 1.8360 0.3144  7.7008 7.6146

Single models
CNN 0.0519 3.5524 24237  0.0358  2.4391 2.0996  0.6665 23.3687 18.6466
BP 0.0415 2.0481 1.9253  0.2039 16.6330 11.6949 0.6452 32.1753 25.3431
LSTM 0.0295 1.7672 1.4223  0.0299  1.8604 1.7299  0.1333  7.6222 4.4424
HHO-LSTM 0.0264 1.7089 1.2766  0.0164 1.2110 0.9320  0.0951  6.1092 2.3852

Hybrid models
IHHO-LSTM 0.0259 1.5544 1.2463  0.0114  1.1390 0.6497  0.0853  5.1408 2.2250
MS-LSTM 0.0276 1.5417 1.2760  0.0158  1.5738 0.9423  0.1292  6.5369 3.6128
Multi-source data hybrid models ~ MS-HHO-LSTM  0.0219 1.2838 1.0577  0.0105  1.2111 0.6053  0.0849  5.0454  2.0964
MS-IHHO-LSTM  0.0187 1.2766 0.8954  0.0080  0.9456 0.4631  0.0799  4.4847 1.9538

LSTM, HHO-LSTM, and IHHO-LSTM. In contrast with the
single-source data model LSTM, the MAE of MS-LSTM
decreased by 10.29%, 45.53%, and 18.67% for the Hubei,
Shanghai, and Shenzhen exchanges, respectively. Similarly,
the MAE of MS-HHO-LSTM decreased by 17.15%, 12.11%,
and 35.03% for the same exchanges as compared to the
hybrid model HHO-LSTM. The MAE of MS-IHHO-LSTM
is 28.16%, 0.1219%, and 0.2872% lower than that of the
hybrid model IHHO-LSTM. These results show that using
multi-source data hybrid models can improve the prediction
accuracy compared to single-source data models.

After comparing the results of the MS-LSTM model and
the MS-HHO-LSTM model, the MAE of the latter decreased
by 17.12%, 35.76%, and 41.97% in the Hubei, Shanghai,
and Shenzhen stock exchanges, respectively. Additionally,
when comparing the MS-HHO-LSTM model with the
MS-IHHO-LSTM model, the MAE of the latter decreased
in Hubei, Shanghai, and Shenzhen exchanges by 15.34%,
23.48%, and 6.79%, respectively. These findings indicate that
when using multi-source data, the model optimized using
a swarm intelligent optimization algorithm outperforms the
model without optimization. Furthermore, implementing a
swarm intelligent optimization algorithm can improve the
prediction accuracy.

The LSTM and MS-LSTM models take roughly
20 seconds to execute, with the latter taking less than a second
longer than the former. After adding the swarm intelligent
optimization algorithm, the model’s average run time is
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about 8 minutes. The improved IHHO-LSTM model takes
about 9.6 minutes to run, while the most time-consuming
MS-IHHO-LSTM model runs at an average of fewer than
11 minutes. By analyzing the average running times of the
different models, it can be seen that this proposed model has
clear advantages in calculation cost and practical feasibility.
Despite the increased running time of the new model, the
overall time cost is still acceptable, given the significant
improvement in prediction accuracy and power.

V. CONCLUSION, SUGGESTIONS, AND FUTURE WORK

A. CONCLUSIONS

This paper employs the improved HHO algorithm to optimize
the LSTM model to enhance the accuracy of predicting
carbon prices. The paper collects technical indicators and
emotional values related to carbon trading and builds the
MS-IHHO-LSTM model. Based on empirical analysis, this
study has drawn the following conclusions.

Firstly, multi-source data improves prediction accuracy.
The paper gathers carbon trading news from financial news
platforms and builds sentimental dictionaries. Then, the
carbon trading news is analyzed, and the emotional value
is calculated. Finally, the input variable now includes the
emotional impact of carbon trading news to reflect better how
public attention affects carbon prices. Six different models
were used to forecast Hubei, Shanghai, and Shenzhen carbon
prices. The results showed that the MS-LSTM model had
the most significant improvement in the MAPE values, with
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reductions of 6.44%, 47.15%, and 3.07% compared to the
LSTM model for Hubei, Shanghai, and Shenzhen, respec-
tively. Similarly, the MS-HHO-LSTM model saw reductions
in MAPE values of 17.04%, 35.97%, and 10.72% compared
to the HHO-LSTM model for the respective regions. Lastly,
the MS-IHHO-LSTM model demonstrated reductions of
27.79%, 29.82%, and 6.33% in MAPE values compared
to the THHO-LSTM model for Hubei, Shanghai, and
Shenzhen, respectively. The study suggests that incorporating
sentimental values from multiple sources increases prediction
accuracy compared to using data from a single source.

Secondly, deep learning performance is superior to
machine learning and statistical models in terms of predic-
tion. In a single model, the average MAPE of deep learning
in these three carbon exchanges is 52.89% and 55.42% lower
than that of machine learning and statistical models. Further-
more, in the deep learning model, it can be observed that the
average MAPE of LSTM is 50.73%, 74.46%, and 78.38%
lower than MLP, CNN, and BP, respectively, in the three car-
bon trading markets. Therefore, LSTM has the best prediction
performance compared with other deep learning methods.

Thirdly, the hybrid model performs more effectively than
the single model. In the three different carbon trading
markets, it is evident that the HHO-LSTM hybrid model has
a more substantial forecasting effect than the single model
LSTM. The average value of MAPE of the former in the three
carbon markets is 28.35% lower than that of the latter.

Fourthly, the hybrid model with an improved swarm
intelligence algorithm has a better prediction effect. The
Harris Hawks algorithm is enhanced by updating the prey’s
escape energy and introducing the inertia weight factor. Sub-
sequently, the modified Harris Hawks algorithm is utilized
to optimize the LSTM, significantly increasing prediction
accuracy. In the Hubei, Shanghai, and Shenzhen carbon
trading markets, the IHHO-LSTM model shows a decrease of
1.89%, 30.48%, and 10.30% in MAPE value compared to the
HHO-LSTM model. Similarly, the MS-IHHO-LSTM model
shows a reduction of 14.61%, 23.87%, and 5.89% in MAPE
value compared to the MS-HHO-LSTM model.

The model proposed in this paper has been successfully
implemented in real time. It can quickly and accurately
predict carbon prices based on the latest data. The model
also has strong adaptability to market dynamics. The
flexible modeling method can capture new trends and
changes in the market and timely adjust the forecast
results to reflect the latest market conditions. The paper
proposes a model that outperforms traditional forecasting
methods and offers dependable market forecasting data
for policymakers, enterprises, and individual investors. The
model implies better planning for company production,
efficient risk management, and informed strategic decisions.
For individual investors, the model can assist in making
better investment choices, minimizing risks, and boosting
investment confidence. In conclusion, the model has broad
application and is significant for market development and
management.
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B. SUGGESTIONS

The Chinese carbon trading market is increasingly important
in reducing carbon emissions, tackling the global climate
crisis, and supporting China’s dual carbon goal. Accurate
prediction of carbon trading prices is essential for govern-
ments, enterprises, and investors to make informed decisions
about the market. To achieve these goals, three suggestions
are proposed.

The government should consider price fluctuations and
market demand when establishing a carbon pricing mech-
anism to ensure that it is stable, adequate, and reasonable.
Governments can formulate policies based on predicted
carbon price trends to encourage low-carbon actions, develop
clean technology, and promote sustainable development.
At the same time, the government should support the
transformation and upgrading of enterprises through tax
incentives, subsidy policies, and other means, accelerate
carbon emission reduction, and create a suitable environment
for the carbon market. In addition, the government should
actively promote international cooperation and attract foreign
investors to participate in China’s carbon trading market
to jointly deal with global climate change and maximize
emission reduction benefits. To ensure a fair and transparent
market, governments must establish a regulatory framework,
strengthen market supervision and enforcement, and combat
manipulation and fraud.

Enterprises can improve their competitiveness and reduce
carbon costs by adjusting production plans, product pricing,
and resource allocation in response to anticipated changes
in carbon prices. To achieve this, they should proactively
pursue innovations in emission reduction technologies and
clean energy while investing in advanced equipment to
optimize carbon efficiency. Moreover, enterprises should
prioritize strengthening their environmental management
practices by implementing robust carbon emissions monitor-
ing and reporting mechanisms to comply with national and
international standards. Establishing comprehensive environ-
mental management systems will enable them to monitor
and regulate carbon emissions effectively. Furthermore,
enterprises can engage in carbon trading markets apart
from actively reducing emissions. Through carbon quota
trading, they can generate economic gains and mitigate the
risks associated with carbon emissions, thereby fostering
sustainable development.

Accurate predictions of carbon prices are crucial for main-
taining stability in the market. When investors accurately
anticipate the changing trends of carbon prices, they should
plan portfolios more effectively, make informed decisions,
and enhances their confidence and stability in the market.
Moreover, investors could diversify their portfolios, reduce
risks, and earn long-term returns by investing in the carbon
trading market. Additionally, investors could achieve the
double carbon reduction benefit by investing in low-carbon
technologies and clean energy-related industries. Therefore,
investors should closely focus on government policies on
carbon emissions and trading markets. Proper investment
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behavior enables investors to adjust their investment strate-
gies quickly, seize opportunities, and reduce potential risks
and losses.

C. FUTURE WORK
This paper aims to forecast China’s carbon prices. Because
the proposed model has high real-time applicability and
strong adaptability to the dynamic carbon market, this model
can also be appropriate to other countries. As carbon finance’s
social media platforms are public, researchers could extract
news related to carbon trading. Then, they can use the news
to calculate a sentiment index predicting carbon prices.
Although the model accurately predicts carbon prices,
future research could improve accuracy by categorizing
related news based on more emotions such as sadness,
fear, anger, and disgust. Different emotions may have
various degrees of impact on the volatility of carbon prices.
In addition, future studies should introduce the self-attention
mechanism and converter model, which can improve the
accuracy and stability of the prediction.
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