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ABSTRACT This paper presents a control strategy for real-time trajectory optimization and robust path
tracking for unmanned off-road vehicles to ensure both stability and performance. The approach takes
advantage of a two-degree-of-freedom control framework that combines predictive driving control through
perceptual information and feedback control for robust stability. Trajectory generation leverages model
predictive control where the particle swarm optimization is used as an optimizer to address problems of
the non-smoothness of the traversability information and nonlinear nature of vehicle dynamics. By using the
exteroceptive perception, the vehicle could estimate traversability and adapt its motion to achieve fast and
smooth driving. For the feedback controller, a system level synthesis is used to faithfully track the planned
path despite uncertainty and unknown disturbance. Specifically, we focus on realizing the proposed method
as a practical means for the real-time control system. The effectiveness of this method is validated through
extensive numerical simulations and experimental tests, demonstrating its practical applicability in uncertain
environments for autonomous vehicle navigation.

INDEX TERMS Autonomous vehicle, linear quadratic regulator, model predictive control, vehicle
dynamics, convex optimization, robust control, system level synthesis.

I. INTRODUCTION
In recent years, the field robotics has seen remarkable
advancements, leading to a shift in the application of robots
towards exploration in hostile, uncooperative, and extreme
environments. A significant body of research in car-like
robots concentrates on operating in complex urban areas,
as evidenced by well-known and successful technologies
[1], [2], [3], [4], [5], [6], [7], [8]. However, the extraor-
dinary progress in autonomous vehicles also presents a
substantial opportunity for deployment in more unstruc-
tured terrains, including subterranean [9], agricultural [10],
planetary exploration [11], transportation [12], search and
rescue operations [13], and military applications [14], [15].
In particular, unmanned vehicles designed for off-road use
face the challenge of navigating safely while adapting to the
unpredictable nature of unstructured environments. Thus, the
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planning and control problems becomemore difficult, and the
failure of these components could have serious consequences,
potentially resulting in the loss of human life.

Contemporary control methodologies for autonomous
vehicles have largely inherited from the foundational work
established during the DARPA Grand and Urban Chal-
lenges [16], [17], [18]. These control methods employ a
strategy composed of two different and separate subprob-
lems: online trajectory planning and trajectory tracking.
First, a local path satisfying driving constraints is generated.
Subsequently, this predetermined path is fed into a low-level
feedback control law, which calculates the necessary steering
and throttle commands to track the path. The planner
generates a feasible trajectory based on the kinematic or
dynamic models. However, the design of the path tracker,
which employs nonlinear or PID control laws, does not take
into account robust stability or the model characteristics
used by the planner. If the path tracking controller results
in a relatively large control error, then the dynamic and
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kinematic models of the planner are no longer valid. These
problems occur more often when driving on an off-road
than on a paved road. Thus, the trajectory planner should be
tightly integrated with the path tracker by sharing the same
characteristics. Advanced path tracking control methods
are proposed, most of the algorithms are working in a
paved road, and the performance verification is conducted
in numerical simulations [19], [20], [21], [22], small-scale
vehicle tests [8], and hardware-in-the-loop simulations [23],
[24], [25]. Because of the complex interactions between
the unpaved road and the vehicle, performance verification
through experiment with the full-scale vehicle is crucial.

FIGURE 1. Unmanned ground vehicle.

Recently, model predictive control (MPC) has been widely
used for controlling general nonlinear dynamical systems
[26], [27] as well as autonomous vehicles [28]. Many
of the autonomous systems employ gradient-based MPC
approaches, where the cost function is usually smooth [7],
[29], [30]. Presently, off-road navigation systems often utilize
LiDAR sensors to acquire a three-dimensional point cloud for
the semantic and geometric analysis of the environment [15],
[31]. Although LiDAR sensors deliver precise spatial data,
the generated point cloud is not dense, and consequently the
resulting traversability map is also sparse and discrete. There-
fore, the gradient-based optimization algorithm becomes
challenging to solve such non-smooth optimization problems
that arise from perception data.

Sampling-based path planning or stochastic optimal con-
trol method [32], [33] can be promising solutions because
it is able to consider the discontinuous cost function and
do not require any smooth linear dynamics and quadratic
approximations of the cost function. However, the perfor-
mance verification of real-time control systems, such as
a full-scale autonomous vehicle, has only recently been
demonstrated [34]. As the control periods of trajectory
planning or MPC are usually long due to the massive
numerical optimization and perception-based control, a path
tracker is needed to mitigate an adversarial effect of a fast
disturbance [35].

Fig. 1 displays the configuration of the unmanned vehicle
to be controlled in this paper, which has three LiDAR
sensors installed at the front. We delves into the complexities
of developing control systems for the full-scale, off-road
autonomous vehicle. To address these challenges, a novel
two-degree-of-freedom (TDF) control strategy is introduced,
which integrates MPC with a robust feedback controller
in a hierarchical and cohesive manner, based on the
shared dynamics [35], [36], [37], [38]. Fig. 2 schematically
illustrates the structure, which embodies a layered control
architecture [39]. This control approach not only accommo-
dates the unpredictable environment of off-road navigation
but also ensures stability against uncertainty and disturbance.
The MPC is responsible for generating optimal trajectories
and feedforward control input that consider the vehicle’s
dynamics and the future traversability on a rough terrain,
while the fast feedback controller guarantees that the vehicle
remains stable and adheres to the planned path.

FIGURE 2. The two-degree-of-freedom control structure. The model
predictive control is used to generate state trajectory S∗, the command
state sd ∈ S∗, and the reference control input ud . The particle swarm
optimization (PSO) is employed as the optimizer of MPC. The path
tracking controller is designed based on the system level synthesis (SLS)
framework to guarantee that the vehicle remains stable and adheres to
the planned path with the control input uf .

In Fig. 2, the ‘‘outer loop’’ feedback path orMPC generates
the optimal state trajectory S∗ = {s∗(0), s∗(1), . . . , s∗(T )},
and control sequence A∗ = {a∗(0), a∗(1), . . . , a∗(T − 1)}
from the current state over a finite time horizon T . The
reference state command, sd ∈ S∗, and a control input, ud :=
a∗(0), are used for a control period of time tout. Then new
sd and ud are recomputed as soon as new information about
the environment and vehicle state is available. To address
problems of the non-smoothness of the traversability map
and nonlinear nature of vehicle dynamics, a particle swarm
optimization (PSO) is employed as the optimizer of MPC.
In order to make the problem more numerically tractable,
a local solution is obtained by parameterizing control
trajectory with trigonometric curves. We acquire the state
trajectory S by integrating the equations of motion from the
initial state s(0) and the control trajectory A. Therefore, the
dynamic or kinematic constraints are unnecessary and state-
control trajectories are always strictly feasible even if the
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optimization is terminated prematurely due to the limited
computation time.

If the controller reduces the tracking error sufficiently,
we can linearize the nonlinear system and then design the
‘‘inner loop,’’ tracking controller. The robust path tracking
controller, depicted in Fig. 2, stabilizes the errors on the
fastest time scales, tin ≤ tout, with a control input uf . Here,
path tracking refers to a vehicle following a locally generated
path by applying appropriate steering motions that guide
the vehicle along the optimal trajectory S∗. We leverage
the system level synthesis (SLS) framework to transform the
controller design process from synthesizing the controller
itself to designing the entire closed-loop system [40], [41].
This framework enables us to exploit convexity for numerical
optimization and provides transparency for robust control by
measuring the degradation in performance of the controller
due to uncertainty [42]. In this study, we summarize the
core principle of the SLS algorithm and then we emphasize
the underlying mathematical implications for a practical
application. Due to the transfer functions of the SLS
framework, the matrix size of the controller is large to
be efficiently implemented on a small ruggedized on-board
computer. Thus, we use an equivalent SLS controller with a
constant gain matrix.

Our main contributions are summarized as follows. First,
for the off-road autonomous vehicle, we take advantage of
the TDF controller based on the shared dynamics. Thus,
we obtain the predictive driving control when perceptual
information is given and simultaneously attains robustness
via the fast feedback controller. The robust performance is
validated for the unmanned vehicle to successfully execute
the navigation missions in highly uncertain environments.
Second, this paper is the first to experimentally verify the
effectiveness of the state-feedback SLS framework for an
autonomous system as far as the authors know. We make use
of two different SLS controller, one of which has the transfer
matrix, while the other has the constant gain matrix for
efficient control input computation. The robust performance
of the SLS is verified compared to that of the LQR controller.
We also investigate the validity of the dynamic and kinematic
models because the performance of the MPC and the path
tracking controller heavily depends on these models. Third,
particular emphasis is placed on the practical application of
the optimization-basedMPC as a viable solution for real-time
control systems. The state-control solution trajectories are
always feasible and smooth by the parameterization of the
control sequence with smooth functions.

The remainder of this article is organized as follows:
In Section II, we present the vehicle models. Section III
and IV design the inner and outer feedback loops of the TDF
controller, respectively. The performance and robustness are
demonstrated through extensive numerical simulations and
experimental tests in Section V. The experimental results are
also presented in the supplementary video. We investigate
the validity of the kinematic and dynamic models. Finally,
Section VI draws conclusions.

II. VEHICLE MODELS FOR STEERING CONTROL
We first present the nonlinear vehicle dynamic and kinematic
models and derive the linearized tracking dynamics, which
will be used for the outer and inner loop controller design,
respectively.

A. BICYCLE MODEL
Consider the unmanned vehicle with a fixed middle and
rear axles and a set of front wheels that can be rotated,
as illustrated in Fig. 3. We denote by subscripts x and y,
the longitudinal and lateral coordinates, respectively, in the
body frame Oxyz. The subscripts f , m, and r denote ‘‘front’’,
‘‘middle’’, and ‘‘rear’’, respectively. Let lf , lm and lr be
the distances from center of mass to each wheels. The
longitudinal, lateral, and rotational dynamic equations are

m(v̇x − vyθ̇ ) = Fxf cos τ − Fyf sin τ + Fxm + Fxr , (1a)

m(v̇y + vx θ̇ ) = Fxf sin τ + Fyf cos τ + Fym + Fyr , (1b)

Izθ̈ = lf (Fxf sin τ + Fyf cos τ )− lmFym − lrFyr , (1c)

where m is the vehicle mass, and F is the tire force. θ is
the vehicle’s yaw angle about Z axis, and Iz is the moment
of inertia [1], [43]. vx and vy are longitudinal and lateral
velocities, respectively. The control variable is the wheel
steering angle τ .

FIGURE 3. Vehicle steering dynamics.

Assume that a constant longitudinal velocity v̇x = 0 and
longitudinal forces Fxf = Fxm = Fxr = 0 in (1). The lateral
force generated by the wheels can be modeled as linearly
proportional to the slip angle α formed between the velocity
vector v and the centerline of the wheel as follows:

Fyf = cf αf , Fym = cmαm, Fyr = crαr , (2)
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where the tire slip angles are

αf = τ − tan−1
(
vy + lf θ̇
vx

)
, (3a)

αm,r = tan−1
(
lm,r θ̇ − vy

vx

)
. (3b)

Substituting (2) into (1) and solving for v̇y and θ̇ gives the
bicycle model. With a constant longitudinal velocity v̇x =
0, a small steering angle τ and slip angle α, we obtain the
linearized dynamic model

v̇y =
−(cf + cm + cr )

mvx
vy

+

[
cmlm + cr lr − cf lf

mvx
− vx

]
θ̇ +

cf
m

τ, (4a)

θ̈ =
cmlm + cr lr − cf lf

Izvx
vy

−
cf l2f + cml

2
m + cr l

2
r

Izvx
θ̇ +

cf lf
Iz

τ. (4b)

The vehicle’s motion in the inertial frame OXYZ is

ṗX = vx cos θ − vy sin θ, (5a)

ṗY = vx sin θ + vy cos θ, (5b)

where ṗX and ṗY denote the east and west velocities of the
vehicle’s center of mass. The positions of pX and pY are
used to evaluate the traversability along the predicted state
trajectories S and to check for collisions to avoid obstacles
when the perception result is given.

We can use the general equations of motion as follows:

ṡ = fc(s, a). (6)

If the state and control input are defined as s =

[pX , pY , vy, θ, θ̇ ]⊤, and a = τ , then the function fc is
composed of (1b)-(1c) and (5) for the nonlinear lateral and
yaw dynamic model. For the linear dynamic model, the
function fc consists of (4) and (5). The nonlinear kinematic
model is

ṗX = v cos(θ + β), (7a)

ṗY = v sin(θ + β), (7b)

θ̇ =
v
lr
sin(β), (7c)

β = arctan
( lr
lf + lr

tan τ
)
, (7d)

where β is the angle of the current velocity of the center of
mass with respect to the longitudinal axis of the car [44]. The
function fc is composed of (7), where s = [pX , pY , θ]⊤ and
a = τ .

B. TRACKING MODEL
Suppose that we are concerned with regulating the lateral
position and orientation deviation of the vehicle from a
reference state trajectory as depicted in Fig. 3. Let the

orientation error be eθ = θ − θd , where θd is a constant
reference heading angle. The lateral velocity error with
respect to the path is ėy = vy cos eθ + vx sin eθ , which
is approximated by ėy ≈ vy + vxeθ for a small angle
error eθ . The assumption of the small angle approximation
is experimentally verified in Section V. The small control
error means that the TDF control works well, and then the
small steering angle and slip angle in (4) can also be valid
assumptions. The lateral acceleration error becomes ëy =
v̇y + vx ėθ , where the longitudinal velocity vx is constant.
The angular velocity and acceleration errors are ėθ = θ̇

and ëθ = θ̈ , respectively. With (4) and the error states,
we obtain the state space model of error dynamics by using
vy = ėy − vxeθ

ẋ = Acx + Bcu (8)

where x =
[
ey ėy eθ ėθ

]⊤, u = τ

Ac =


0 1 0 0
0 − cf+cm+cr

mvx
cf+cm+cr

m
cmlm+cr lr−cf lf

mvx
− vx

0 0 0 1

0 cmlm+cr lr−cf lf
Izvx

cf lf−cmlm−cr lr
Iz

−
cf l2f +cml

2
m+cr l

2
r

Izvx


Bc =

[
0 cf

m 0 cf lf
Iz

]⊤
.

The discrete-time dynamics of continuous one is written as

x(k + 1) = Ax(k)+ Bu(k). (9)

III. TRAJECTORY TRACKING CONTROL
The objective of the path tracking controller is to minimize
the lateral distance error ey between the vehicle position
and the generated trajectory and the angle difference eθ
in the vehicle’s heading and the defined path’s heading
by using the state space equation (9). At the same time,
the controller should minimize steering input for a smooth
motion. Therefore, the linear quadratic regulator (LQR) is
used

minimize
x(k),u(k)

lim
H→∞

E
[ 1
H

H∑
k=0

x(k)⊤Qx(k)+ u(k)⊤Ru(k)
]
(10a)

subject to x(k + 1) = Ax(k)+ Bu(k)+ w(k), (10b)

where x(k) ∈ Rn is the state at time k , u(k) ∈ Rp is the control
input, and w(k) ∈ Rn is an exogenous Gaussian disturbance
with zero-mean and covariance σ . The state-weightingmatrix
Q ∈ Rn×n is positive semi-definite and the control weighting
R ∈ Rp×p is positive definite. The time horizonH approaches
infinity and the mean cost is minimized. For simplicity u(H )
is included in the cost function.

We employ lowercase and uppercase Latin letters such
as x and A to represent vectors and matrices, respectively.
Additionally, lowercase and uppercase boldface letters such
asx and8(z) are used to denote signals and transfer matrices,
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respectively. The transfer function is obtained by taking the
z−transform, i.e.,

8(z) =
∞∑
k=1

φ(k)z−k , (11)

where the function φ(k) is the system response element or
kth spectral component of a transfer function 8. The Hardy
spaces H2 and H∞ represent all proper and real-rational
stable transfer matrices 8(z) with ||8||H2 and ||8||H∞
norms, respectively [45]. The real rational space, 1

zRH∞,
consists of all strictly proper function8(z) and8(z) ∈ RH∞.
In this section, we begin by introducing the system level

synthesis framework and then extend the method to deal with
uncertainty. Finally, we present an SLS controller with a
constant gain matrix for efficient computation.

A. SYSTEM LEVEL SYNTHESIS
From now on, we briefly describe the main ideas of the
state-feedback SLS control. Please refer to [40], [41], [42],
and [46] for a detailed explanation. Consider now the
dynamics in (10b) and state-feedback control policyu =Kx
mapping from the state sequence to the control actions. Then,
we obtain the following:[

x
u

]
:=

[
8x
8u

]
w =

[
(zI − A− BK)−1

K(z− A− BK)−1

]
w, (12)

where 8x , 8u ∈
1
zRH∞ are the strictly proper and closed

loop transfer functions from the exogenous disturbance w to
the state x and control input u, respectively. These maps are
called system response. Note that the controllerK denotes the
transfer function while the control gain matrix is represented
by K . The LQR problem (10) can be written as

minimize
8x ,8u

∥∥∥∥∥
[
Q

1
2 0

0 R
1
2

][
8x
8u

]∥∥∥∥∥
H2

(13a)

subject to
[
zI − A −B

] [8x
8u

]
= I , (13b)

8x , 8u ∈
1
z
RH∞, (13c)

where I is an identity matrix.
Remark 1: The affine subspace described by (13b)

and (13c) parameterizes all system responses from w to
(x, u) as defined in (12) by an internally stabilizing state-
feedback controller

u =Kx. (14)

The affine subspace constraint also enforces the system
responses to satisfy the system dynamics (10b), and thus, it is
referred to as the achievability constraint. For any (8x , 8u)
satisfying the achievability condition, the controller (14) with

K = 8u8
−1
x (15)

is internally stabilizing and ensuring the desired system
response (12). Thus, our objective becomes to optimize

directly over these system responses to find the optimal
controller (15).

For a simple example, suppose that the system
responses from the finite number of disturbance sequence
[w(0)⊤,w(1)⊤, . . . ,w(k − 1)⊤]⊤ to the state x(k) with zero
initial conditions. Consider the system dynamics of (10b) and
a state-feedback control with a constant gain, u(k) = Kx(k)
where K is the matrix. The responses are of the following
form [47]:[

x(k)
u(k)

]
=

k−1∑
j=0

[
(A+ BK )k−(j+1)

K (A+ BK )k−(j+1)

]
w(j) (16a)

=

k−1∑
j=0

[
φx(k − j)
φu(k − j)

]
w(j), ∀k ≥ 1, (16b)

where

φx(m) = (A+ BK )m−1, (17a)

φu(m) = K (A+ BK )m−1. (17b)

The system response elements φx(m) and φu(m) satisfy (13c)
and the constraint in (13b) as follows:

φx(m+ 1) = Aφx(m)+ Bφu(m), φx(1) = I . (18)

The constraint, φx(1) = I , means that the disturbance w(k)
directly affects the state x(k + 1) as presented in (10b). The
finite number of state response can be described as:

x(1)
x(2)

...

x(k)


︸ ︷︷ ︸

x

=


φx(1) 0 · · · 0
φx(2) φx(1) · · · 0

...
. . .

. . . 0
φx(k) φx(k − 1) · · · φx(1)


︸ ︷︷ ︸

8x


w(0)
w(1)

...

w(k − 1)


︸ ︷︷ ︸

w

,

(19)

where 8x can be considered as the matrix representation of
the convolution operator.

B. ROBUST SLS CONTROLLER
Now, we consider that the system consists of an approximated
nominal model and a set of unknown but bounded modeling
errors. The controller is computed to ensure stability and
performance for any such admissible realization. Let the
estimated matrices (̂A, B̂) for the true dynamic system
matrices (A,B) and they satisfy

||δA||2 ≤ ϵA, ||δB||2 ≤ ϵB, (20)

where δA := Â− A and δB := B̂− B. Let

1 :=
[
δA δB

] [8x
8u

]
(21)

be uncertain transfer functions for the given SLS controller.
Here, (8x , 8u) is the corresponding system response (12)

VOLUME 12, 2024 82209



S. Hong, G. Park: Trajectory Optimization and Robust Tracking Control

with the system matrix (̂A, B̂). The robust version of the SLS
problem of (13) is given as follows [40]:

minimize
8x ,8u

sup
||δA||2≤ϵA
||δB||2≤ϵB

∥∥∥∥∥
[
Q

1
2 0

0 R
1
2

][
8x(I +1)−1

8u(I +1)−1

]∥∥∥∥∥
H2

(22a)

subject to
[
zI − Â −B̂

] [8x
8u

]
= I , (22b)

8x , 8u ∈
1
z
RH∞, (22c)

||1||H∞ < 1. (22d)

The stabilizing controllerK = 8u8
−1
x of (15) is designed by

using the estimated matrices Â and B̂ in (22b) instead of the
true dynamics A and B. The cost function (22a) is minimized
under the worst case for the real parametric uncertainty δA
and δB.
Remark 2: From the uncertain transfer function (21) and

the constraint (22b), the following holds[
zI − A −B

] [8x
8u

]
= I +1. (23)

It means that the approximate system responses 8x and 8u,
designed using the estimated system models (̂A, B̂), cannot
exactly satisfy the achievability constraints (13b) for the real
system (A,B) when uncertainty 1 exists.
Remark 3: The constraint (23) is equivalent to[

zI − A −B
] [8x(I +1)−1

8u(I +1)−1

]
= I . (24)

Note that the controller in (15) is rewritten as

K = 8u8
−1
x = 8u(I +1)−1︸ ︷︷ ︸

actual response

(8x(I +1)−1︸ ︷︷ ︸
actual response

)−1. (25)

Thus, the controller K achieves the actual response[
x
u

]
=

[
8x(I +1)−1

8u(I +1)−1

]
w. (26)

Therefore, the actual uncertain system response in (26)
naturally leads to the cost function (22a). The response (26)
becomes equivalent to (12) when 1 = 0.
Remark 4: The stability of the perturbed system (26) is

guaranteed if and only if (I + 1)−1 is stable. Furthermore,
from the small gain theorem [45], [48], sufficient condition
for robust stability is achieved if ||1||H∞ < 1. This condition
is reflected in (22d). Thus, any controller K ensuring the
stability for (̂A, B̂) with (22d) also stabilizes the real system
(A,B).
To address the computationally difficulty in the cost

function (22a) arising from 1, a slightly conservative
approach is employed. For a given γ < 1, the γ -optimal
robust control problem is obtained from (22)

minimize
8x ,8u

∥∥∥∥∥
[
Q

1
2 0

0 R
1
2

][
8x
8u

]∥∥∥∥∥
H2

(27a)

subject to
[
zI − Â −B̂

] [8x
8u

]
= I , (27b)

8x , 8u ∈
1
z
RH∞, (27c)

√
2

∥∥∥∥[ϵA8x
ϵB8u

]∥∥∥∥
H∞
≤ γ, (27d)

where the controller is u = Kx = 8u8
−1
x x. The detailed

derivation is described in APPENDIX A.
We note that (8x , 8u) are infinite dimensional as can

be seen in (11). A finite-dimensional optimization problem
and its solution can be acquired with comparable assurances
regarding robustness and performance [40], [49]. The finite
impulse response (FIR) function with horizon, F , is used

8F (z) =
F∑
k=1

φ(k)z−k . (28)

The FIR function 8F (z) is similar to (19).

C. ROBUST SLS GAIN CONTROLLER
Though the SLS controller has the finite impulse response,
it is more convenient to use an SLS controller with a constant
gain matrix like LQR. This variant is now referred to as the
SLS gain controller. In this section, our goal is to find the
optimal SLS gain controller u(k) = Kx(k) with the optimal
constant gain matrix K instead of the transfer function
K [42]. The optimization problem (27) has the following
additional constraint:

K = 8u8
−1
x . (29)

Note that the constant gain matrix K is employed instead of
the transfer functionK. From the achievability constraints of
(27c) and the constraint in (29), the system responses of (12)
are converted into

8x = (zI − Â− B̂K )−1, (30a)

8u = K (zI − Â− B̂K )−1. (30b)

Then, the optimization problem (27) becomes

minimize
K

∥∥∥∥∥
[
Q

1
2 0

0 R
1
2K

]
(zI − Â− B̂K )−1

∥∥∥∥∥
H2

(31a)

s.t.
√
2

∥∥∥∥[ ϵAI
ϵBK

]
(zI − Â− B̂K )−1

∥∥∥∥
H∞
≤ γ. (31b)

Now, the problem is no longer convex. The conservative
controller can be obtained via upper bound of this problem
and semidefinite program [42], [45], [50], as follows:

minimize
P,L,U ,V ,W

Tr(QU )+ Tr(RW ) (32a)

subject to

 U V P
V⊤ W L
P L⊤ P

 ⪰ 0, (32b)
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P− I ÂP+ B̂L 0 0

PÂ⊤ + L⊤B̂⊤ P ϵAP ϵBL⊤

0 ϵAP 1
2γ

2I 0
0 ϵBL 0 1

2γ
2I

 ⪰ 0, (32c)

where P,U , and W are symmetric matrices. The standard
variable substitution L := KP is used. The detailed derivation
is presented in APPENDIX B.

IV. MODEL PREDICTIVE CONTROL
The MPC problem for the trajectory optimization is

minimize
s(k),a(k)

J =
T∑
k=0

L(s(k), a(k)) (33a)

subject to s(k + 1) = f̂ (s(k), a(k)), (33b)

smin ≤ s(k) ≤ smax, (33c)

amin ≤ a(k) ≤ amax, (33d)

where f̂ is the estimated nonlinear model for real dynamics
fc in (6). A trajectory {S,A} is a sequence of states
S = {s(0), . . . , s(T )} and controls A = {a(0), . . . , a(T )}
satisfying the nonlinear equations of motion (33b). At each
sampling time step, starting at the current state, an open loop
optimal control problem is solved over a finite horizon T .
Then, the command state sd ∈ S∗ and the optimal control
input ud := a∗(0) are given to the real dynamic system only
during the following sampling interval tout as shown in Fig. 2.
At the next time step, a new optimal control problem is solved
over a shifted horizon.

The total cost J is the sum of running costs L until the
horizon T is reached. The running cost is

L(s(k), a(k)) = c1Traversability(s)+ c2||a||22
+ c3||a− apre||22 + c4||θ − θd ||

2
2, (34)

where the ‘‘Traversability’’ cost represents howwell the vehi-
cle is expected to traverse in the location of the traversability
map. The state (pX (k), pY (k)) looks up the values of a
two-dimensional traversability map, which represents the
area of the non-traversable region as 1 and the traversable
area as 0. The example map is presented in Fig. 2. The
‘‘Traversability’’ impose very large penalty to the location
(pX (k), pY (k)) when it is in the non-traversable region. The
second term, c2||a||22, minimizes the magnitude of the control
input. The control input of the previous sampling time step is
denoted by apre, and thus minimizing c3||a−apre||22 means to
generate a smooth control input between current time t and
previous time t− tout. The cost of c4||θ − θd ||

2
2 represents the

vehicle heading error.
Due to the non-smoothness of traversability information

and nonlinear nature and vehicle dynamics, we leverage the
particle swarm optimization. This population-based search
algorithm is based on the social-psychological tendency
of individuals to emulate success of neighbors and their
own successes [51], [52]. To make the problem more
numerically tractable and to reduce computational burden,
we parameterize the control trajectoryA. The state trajectory

Algorithm 1Model Predictive Control Based on PSO

1: Given: Dynamic model, s(k + 1) = f̂ (s(k), a(k));
Number of particles, i = 1, . . . ,N ;
Time steps, k = 0, . . . ,T ;
Number of iterations, j = 1, . . . , J ;

2: while vehicle does not reached the final way point do
3: j← 1 : Initialize the PSO iteration count
4: for each particle i = 1, . . . ,N do
5: Sample pi1 ∼ Uniform[pmin, pmax]
6: end for
7: repeat
8: for each particle i = 1, . . . ,N do
9: sij(0)← Get vehicle’s current state
10: for each time step k = 0, . . . ,T do
11: Control Input: aij(k)← Eq. (35)
12: Running Cost: L(sij(k), a

i
j(k)) with Eq. (34)

13: Total Cost:
J (aij(k))← J (aij(k − 1))+ L(sij(k), a

i
j(k))

14: Next Time State: sij(k + 1) = f̂ (sij(k), a
i
j(k))

15: end for
16: // Set the control sequence
17: A(pij)← {a

i
j(0), a

i
j(1), . . . , a

i
j(T )}

18: // Set the personal best position
19: if J (A(pij)) < J (A(qi)) then
20: qi← pij
21: end if
22: // Set the global best position
23: if J (A(pij)) < J (A(q∗)) then
24: q∗← pij
25: end if
26: end for
27: J∗j ← J (A(q∗)).
28: for each particle i = 1, . . . ,N do
29: Update the velocity r i using Eq. (38)
30: Update the position pi using Eq. (37)
31: end for
32: j← j+ 1
33: until convergence criterion satisfied:
34: ||J ∗j − J

∗

j−1|| ≤ ϵ or j = J
35: for each time step k = 0, . . . ,T do
36: Optimal Control: a∗(k)← a(k, q∗) in Eq. (35)
37: Optimal Control Sequence: A∗← Append(a∗(k))
38: Optimal Control Sequence: S∗← Append(s∗(k))
39: Optimal State: s∗(k + 1) = f̂ (s∗(k), a∗(k))
40: end for
41: Set Reference Input: ud := a∗(0) of A∗
42: Set Command State: sd ∈ S∗
43: end while

S is obtained by integration of (33b) from the initial state
s(0). Thus, the dynamic constraints are unnecessary and
state-control trajectories are always strictly feasible even if
the optimization is terminated prematurely due to the limited
computation time. The state constraint (33c) serves to crop
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the trajectory if it exceeds the size of the traversability
map. If the controls are unconstrained, the optimization
problems become fully unconstrained optimization [53],
[54]. In addition, the stochastic randomness of the sampling
procedure may give rise to considerable chattering in the
resulting control. The rapid changes in control action
commands can burden the actuators and potentially leads
to system instability [33]. However, the chattering can be
completely removed by the parameterization of the control
sequence with smooth functions as follows.

The control trajectory A is parameterized by the sum of
smooth trigonometric curves and varying parameters in the
following manner:

a(k, pij) =
M∑
m=1

Aijm cos(ωi
jmk)+ A

i
jm sin(ωi

jmk), (35)

where k = 0, . . . ,T is time sequences and i = 1, . . . ,N
is number of particles in swarm. m = 1, . . . ,M denotes the
parameters for amplitudes and frequencies. Let pij denote the
position of particle i in the search space at the iteration step
1 ≤ j ≤ J

pij =
[
Aij1,A

i
j2, . . . ,A

i
jM , ωi

j1, ω
i
j2, . . . , ω

i
jM

]⊤
, (36)

where Aijm and ωi
jm are amplitude and frequency parameters

to be found to minimize the cost.
The position of the particle i is changed by adding a

velocity, r ij , to the current position, i.e.

pij+1 = pij + r
i
j+1, j = 1, . . . ,L, (37)

where the initial position pi1 is uniform random sample
generated from [pmin, pmax]. The velocity of particle i is
calculated as

r ij+1 = qi + c1rand1(qi − pij)︸ ︷︷ ︸
cognitive

+ c2rand2(q∗ − pij)︸ ︷︷ ︸
social

, (38)

where c1 and c2 are positive acceleration constants used
to scale the contribution of the ‘‘cognitive’’ and ‘‘social’’
components, respectively. The scalars ‘‘rand1’’ and ‘‘rand2’’
are random values in the range [0, 1], sampled from a uniform
distribution introducing a stochastic element. The personal
best position qi is the best position that the i-th particle has
visited since the first iteration. The global best position, q∗ is
discovered by any of the particles so far.

The iteration is repeated until the convergence criteria
is satisfied ||J ∗j − J

∗

j−1|| ≤ ϵ or the maximum number
of iteration is reached j = J . The proposed method
is summarized in Algorithm 1, where the control input
a(k, pij) is denoted by aij(k). The state-control trajectories are
always strictly feasible even if the optimization is terminated
prematurely due to the limited computation time. The
dynamic or kinematic constraints are automatically satisfied
because the state trajectory S is obtained by integrating
the equations of motion from the initial state s(0) and the
parameterized control trajectory A.

FIGURE 4. Vehicle trace and measured velocity of the experiment test
with the robust SLS gain controller and MPC.

V. NUMERICAL AND EXPERIMENTAL RESULTS
We begin by outlining the test setup for both numerical
simulations and experimental tests. Next, we highlight the
robust performance of the path tracker and TDF controller,
respectively. Finally, we end this section by validating the
kinematic and dynamic models.

FIGURE 5. Lateral position control errors ey for numerical simulation and
experimental results. Experiment is performed with the constant SLS gain
and MPC.

A. TEST SETUP
The unmanned surveillance vehicle and the corresponding
control structure are depicted in Fig. 1 and Fig. 2, respec-
tively. The MPC loop of (33) determines the feedforward
steering input and the state trajectory that the path tracking
controller should follow. The nonlinear and linear equations
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FIGURE 6. Test results of the TDF control system with the robust SLS gain controller. Robust stability is guaranteed even on the
rain-soaked and unpaved road. (Top) Optimal trajectories (green lines) on the traversability map. Online trajectory generator, MPC
uses a traversability map constructed by using three LiDAR sensors and continuously replans the trajectory during execution.
(Bottom) Environment image captured by the on-board visible camera.

of motions in (6) and (9) are used for MPC and the design of
the path tracking controller, respectively. The SLS controllers
are synthesized in MATLAB and Python, where CVX and
CVXPY packages are used [55], [56]. The time horizon for
MPC is set to T = 40 in (33a). The number of particles
is N = 10 and the number of amplitude and frequency
parameters is M = 5 as presented in (35). The maximum
number of iteration of (36) is J = 100.
We consider the effect of discretization time on the

prediction error because the inner and outer control loops
operate at two different control frequencies. The inner and
outer loop control periods are tin = 0.02 s and tout = 0.1 s,
respectively. Larger discretization time allows the model to
predict over longer horizon, whereas shorter step size tends
to yield more accurate predictions when we use the same
number of predicted points, T = 40. As the computation for

PSO is demanding, the nonlinear kinematic model with fewer
states in (7) is used for the estimated dynamics f̂ instead of the
linear dynamics in (4) to enhance computational efficiency.
In addition, it is known that the accuracy of the kinematic
model is less sensitive to the larger step size [57]. The path
tracking controller is designed based on the more accurate
dynamic model using the discretization time of tin = 0.02 s.
All program is written in C/C++ and parallel computation is
used in PSO. We do not use any graphical processing unit
(GPU).

We are given estimated system matrices Â ∈ R4×4, B̂ ∈
R4×1 for the true system (9). The time horizon for the FIR
function in (28) is F = 40. Then, the state-feedback SLS
controller is realized by a standard state space form [49],
AK ∈ R156×156, BK ∈ R156×4, CK ∈ R1×156, and DK ∈
R1×4. The matrix size of the SLS controller is too large
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TABLE 1. The root mean square (RMS) errors for lateral position control
errors ey and stability. Units are meters.

for efficient implementation on a small, ruggedized on-board
computer. Therefore, the experiment is conducted with the
LQR and SLS gain controllers, where each path tracker has a
constant gain matrix K ∈ R1×4.
Field tests are conducted at Changwon Proving Ground

in Changwon City, South Korea. The track features a varied
road course with several turns, straight-line paths, and uphill
and downhill sections, as shown in Fig. 4. We verified the
effectiveness of the TDF controller over four distinct seasons
throughout the year. Representative results are presented in
the following sections.

FIGURE 7. Control angle error eθ for TDF control system with the SLS gain
controller. Maximum and RMS angle errors are 13.1 (deg) and 2.8 (deg)
respectively.

B. ROBUST PERFORMANCE FOR TRACKING CONTROL
The path tracker incorporates three types of controllers, one
of which is the transfer matrix K, while the other two have
constant gain matrices K . The transfer matrix is obtained
from the SLS framework in (27) and it is realized in the form
of the FIR function. The latter two controllers come from the
LQR of (10) and the robust SLS gain controller in (32). The
same state weighting Q and control input weighting matrix
R are used. We confirm that the same system responses 8x
and 8u are obtained from LQR and SLS when 1 = 0. The
performance of three path tracking controllers is verified by
simulating the closed-loop system using the nonlinear vehicle
model in (1). Here, to evaluate only the tracker’s performance,
MPC is not used.

We measure the control performance over 15,000 time
steps to simulate the test scenario imitating the environ-
ment shown in Fig. 4. For numerical simulations, the
parameter-dependent and nonlinear dynamic model, fc(π )
in (6) is used with the parameter vector π = (π1, . . . , πm)

in (1). Given interval bounds πi ∈ [π i, π i] on each πi,
where ±10% variations from the nominal value are applied.
We repeat this simulation for 500 independent runs, each with
a different Gaussian random disturbance w and perturbed
parameter dependent dynamics fc(π ). The parameter vector
πi is uniformly sampled from [π i, π i]. The averages of lateral
position control errors from the simulation tests are illustrated
on the left side of Table 1 and Fig. 5. Although stability
is ensured by all controllers in numerical simulations, the
performance of the LQR controller is found to be inferior to
the other two controllers.

C. ROBUST PERFORMANCE FOR TDF CONTROL
The vehicle trace and corresponding measured velocity are
presented in Fig. 4. During the course of the experimentation,
the MPC loop with the robust SLS gain controller is utilized.
Fig. 6 illustrates the optimal trajectories on the traversability
map along with the environment image captured by the
on-board visible camera. Three LiDAR sensors are used
to acquire a three-dimensional point cloud for the analysis
of the environment. Within the traversability map, areas
marked in white and black denote traversable and non-
traversable regions, respectively. The gray space represents
the probability of traversablity between 0 and 1. The structure
of the map is similar to the well-known occupancy grid map,
but each cell reflects the traversability rather than occupancy
of the given space. Each cell is

p(i, j) =


< 0.5 Non-traversable
0.5 Unknown
> 0.5 Traversable

(39)

where i, j are the cell indices in the map.
As shown in Fig. 6, by using the exteroceptive perception,

the vehicle could anticipate the terrain and adapt its motion
to achieve fast and smooth driving via MPC. With these
results, we see that the generated trajectory satisfies vehicle
dynamics (7) while simultaneously avoiding obstacles and
minimizing the cost in (34). The trajectories are generated
as far from the obstacles as possible, which are represented
by black dots. The controller is solving the optimization
problem (33) within tout = 0.1 s, and updates are made to
the cost function, to reflect new regions of the state space.
In the inner loop, the robust SLS gain controller stabilizes the
system for every sampling interval tin = 0.02 s.

We conclude that the TDF controller with the robust SLS
gain controller can guarantee the robust performance even
in wet, dirty, and off-road environments as well as in dry
conditions. Due to uncertainty and unknown disturbance,
the experimental result of the SLS gain controller exhibits a
slightly larger control error when compared to the numerical
simulation, as evidenced by Table 1 and Fig. 5. Fig. 9 shows
that the control angle error eθ , where the maximum and RMS
values are 13.1 deg and 2.8 deg respectively. It verifies that the
TDF control works well so that the small angle approximation
in (8) is a valid assumption. The driving area after 120 s is
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FIGURE 8. Test results of the TDF control system with the LQR controller. The controller cannot always ensure stability and thus robust
stability is not guaranteed. (Top) Optimal trajectories (green lines) on the traversability map. (Bottom) Environment image captured by
the on-board visible camera.

downhill withmany curves, as presented in Fig. 4. The control
angle error is increased from 120 s because the vehicle slips
more often in this area.

Yet there are a few instances when the LQR controller
fails to maintain stability. In other words, the TDF controller
with LQR cannot always ensure stability. Fig. 8 shows one
case that robust stability is not guaranteed on the dry road.
When the vehicle slips at t = 227 s, the path tracker does
not compensate this small deviation. As the tracking error
grows, the reference trajectory of MPC is abruptly changed
to follow given way points. The tracking controller attempt to
adheres to the trajectory by drastically changing the steering,
but subsequently stability is lost. The experimental results
of Fig. 6 and 8 are also demonstrated in the supplementary
video.

FIGURE 9. Experimental results for the adjusted reference velocity and
measured velocity when the command velocity is set at 6.94 m/s.

Fig. 9 shows the adjusted reference velocity and measured
velocity for TDF control with the SLS gain controller. Here,
the command velocity is set at 6.94 m/s; however, the

FIGURE 10. Distribution of yaw rate prediction errors between kinematic
and dynamic models with disretization interval tin = 0.02 s.

reference velocity for the speed control system is adaptively
reduced to guarantee its stability. This velocity is adjusted
by the curvature of the optimal trajectory S∗ generated by
MPC and is used as the command to the speed controller.
The driving course from the starting point to 100 s is uphill
and is a straight line, so there is little change in the reference
velocity. In the road section between 90 s and 120 s, where the
curvature is very large as can be seen in Fig. 6, the reference
velocity is greatly reduced. The driving area after 120 s is
downhill with many curves, as presented in Fig. 4. To ensure
stability, there are many changes to the reference velocity
from 120 s and the response of the speed controller exhibits
many overshoots as shown in Fig. 9. Because the brake and
motor torque are frequently used to tack the speed command
when going downhill.
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FIGURE 11. Measured yaw rate and estimated yaw rate of the dynamic model.

TABLE 2. The root mean square (RMS) prediction errors. with the
integration time tin = 0.02 s.

D. MODEL VALIDATION FOR CONTROLLED SYSTEM
We investigate the validity of the linear dynamics in (4)
and nonlinear kinematic model in (7) as the performance
of the TDF controller heavily depends on these models.
In numerical simulations, it has been observed that the
kinematic model tends to cause oversteering, resulting in
a smaller turning radius, compared to the dynamic one.
This difference arises because the kinematic model cannot
properly account for slip.

We evaluate how well the two models are able to predict
vehicle’s yaw rate in comparison to the state measured in the
experimental test. This error is referred to as the prediction
error. The states are initialized with zeros and measured
control input or steering sequences of the experimental tests
of Fig. 4 are inputted into the models. The distributions and
RMS errors of the prediction errors are presented in Fig. 10
and Table 2, respectively. The linear dynamics proves to
be more accurate than the kinematic model under off-road
conditions.

Fig. 11 shows the yaw rates of the dynamic model and the
real autonomous vehicle. The estimated yaw rate is observed
to be lower than that of the experimental result. Specifically,
while the dynamic model is more accurate than the kinematic
one, it still does not capture the tire’s slip in curved off-road
conditions. However, the robust TDF controller consistently
ensures stability and performance in the face of uncertainty.

VI. CONCLUSION
This paper introduces a real-time optimal trajectory generator
and a robust controller designed for an unmanned off-road
vehicle. We take advantage of the two-degree-of-freedom
controller in order to achieve predictive driving control when
perceptual information is given while the fast state-feedback
controller concurrently attains robustness. To generate tra-
jectory, the model predictive control method is used where

the optimization is solved via PSO. It addresses problems
of the non-smoothness of the traversability information and
nonlinear nature of vehicle dynamics. For the feedback
controller, we leverage the system level synthesis framework
for robustness and convexity. Especially, we concentrate
on realizing the proposed method as a practical means
of the real-time control system. The robust performance
of TDF control system is highlighted through extensive
numerical and experimental tests for the unmanned vehicle
to successfully execute the navigation missions in highly
uncertain environments.

APPENDIX A
MATHEMATICAL DERIVATIONS FOR ROBUST SLS
CONTROLLER
The cost function in (22a) satisfies the following inequality if
||1||H∞ ≤ γ < 1

C1 ≤ C
∥∥(I +1)−1

∥∥
H∞ ≤

C
1− ||1||H∞

≤
C

1− γ
(40)

where

C1 =

∥∥∥∥∥
[
Q

1
2 0

0 R
1
2

][
8x(I +1)−1

8u(I +1)−1

]∥∥∥∥∥
H2

, (41a)

C =

∥∥∥∥∥
[
Q

1
2 0

0 R
1
2

][
8x
8u

]∥∥∥∥∥
H2

. (41b)

In (40), the following inequalities are used

||(I +1)−1||H∞
≤ ||(I −1)−1||H∞

≤ I + ||1||H∞ + ||1||
2
H∞ + . . . ≤

1
1− ||1||H∞

. (42)

To address the intractability of ||1||H∞ in (22d), the
following upper bound is used

||1||H∞ =

∥∥∥∥[ δA
ϵA

δB
ϵB

] [
ϵA8x
ϵB8u

]∥∥∥∥
H∞

≤

∥∥∥[ δA
ϵA

δB
ϵB

]∥∥∥
2

∥∥∥∥[ϵA8x
ϵB8u

]∥∥∥∥
H∞
≤
√
2

∥∥∥∥[ϵA8x
ϵB8u

]∥∥∥∥
H∞

. (43)
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With (40) and (43), the robust SLS problem in (22) becomes

minimize
γ∈[0,1)

1
1− γ

minimize
8x ,8u

C (44a)

subject to (22b), (22c), (44b)
√
2

∥∥∥∥[ϵA8x
ϵB8u

]∥∥∥∥
H∞
≤ γ. (44c)

In this paper, we assume that γ is given and focus on
the minimization of H2 performance index rather than the
robustness maximization as shown in (27).

APPENDIX B
MATHEMATICAL DERIVATIONS FOR SLS GAIN
CONTROLLER
A. H∞ CONSTRAINT
Let Acl := Â + B̂K and identity and zero matrices with
appropriate dimensions be denoted by In ∈ Rn×n and 0n×p ∈
Rn×p, respectively. The Kalman-Yakubovich-Popov lemma
or bounded real lemma enables us to reformulate the H∞
constraint (31b) represented in the time domain as linear
matrix inequalities with a positive definite matrix X = X⊤ ≻
0 [58]: Acl In[√

2ϵAIn√
2ϵBK

]
0(n+p)×n

⊤ [ X 0n×(n+p)
0(n+p)×n In+p

]

×

 Acl In[√
2ϵAIn√
2ϵBK

]
0(n+p)×n

− [ X 0n×n
0n×n γ 2In

]
(45)

=

A⊤clXAcl +
[√

2ϵAIn√
2ϵBK

]⊤ [√
2ϵAIn√
2ϵBK

]
A⊤clX

XAcl X


−

[
X 0n×n

0n×n γ 2In

]
⪯ 0. (46)

Dividing both sides of inequality (46) with γ 2 and renaming
X/γ 2 as X , (46) can be written as[

A⊤clXAcl − X A⊤clX
XAcl X − In

]
−

[√
2ϵAIn

√
2ϵBK⊤

0n×n 0n×p

]
×

[
−γ−2In 0n×p
0p×n −γ−2Ip

] [√
2ϵAIn 0n×n√
2ϵBK 0p×n

]
⪯ 0. (47)

From Schur complement lemma [50], (47) can be rewritten
as 

A⊤clXAcl − X A⊤clX
√
2ϵAIn

√
2ϵBK⊤

XAcl X − In 0n×n 0n×p√
2ϵAIn 0n×n −γ 2In 0n×p√
2ϵBK 0p×n 0p×n −γ 2Ip

 ⪯ 0. (48)

The following equation is equivalent to (48)
−X−1 Acl In 0n×n 0n×p
A⊤cl −X 0n×n

√
2ϵAIn

√
2ϵBK⊤

In 0n×n −In 0n×n 0n×p
0n×n

√
2ϵAIn 0n×n −γ 2In 0n×p

0p×n
√
2ϵBK 0p×n 0p×n −γ 2Ip

 ⪯ 0. (49)

We can obtain (48) by applying Schur’s lemma to (49). Let
us multiply both sides of (49) by the matrix D such as F =
DED⊤. Where E is the matrix in (49) andD := diag[In,X−1,
In, 1
√
2
In, 1
√
2
Ip]. Then, applying Y := X−1 to F leads to the

following inequality:
−Y AclY In 0n×n 0n×p
YA⊤cl −Y 0n×n ϵAY ϵBYK⊤

In 0n×n −In 0n×n 0n×p
0n×n ϵAY 0n×n − 1

2γ
2In 0n×p

0p×n ϵBKY 0p×n 0p×n − 1
2γ

2Ip

 ⪯ 0. (50)

We use the similarity transformation, H = J−1GJ ,
to change the basis. Where G is the matrix of (50), and the
transformation matrix is

J−1 :=


In 0n×n 0n×n 0n×n 0n×p

0n×n In 0n×n 0n×n 0n×p
0n×n 0n×n 0n×n In 0n×p
0p×n 0p×n 0p×n 0p×n Ip
0n×n 0n×n In 0n×n 0n×p

 . (51)

Thus, the equation (50) is rewritten as:
−Y AclY 0n×n 0n×p In
YA⊤cl −Y ϵAY ϵBYK⊤ 0n×n
0n×n ϵAY − 1

2γ
2In 0n×p 0n×n

0p×n ϵBKY 0p×n − 1
2γ

2Ip 0p×n
In 0n×n 0n×n 0n×p −In

 ⪯ 0. (52)

With Schur’s lemma, the inequality (52) is rewritten as:
In − Y AclY 0n×n 0n×p
YA⊤cl −Y ϵAY ϵBYK⊤

0n×n ϵAY − 1
2γ

2In 0n×p
0p×n ϵBKY 0p×n − 1

2γ
2Ip

 ⪯ 0. (53)

Thus, theH∞ in (31b) is finally expressed in (53).

B. LINEAR MATRIX INEQUALITIES
The H2 norm of the cost function (31a) can be written with
the trace of a matrix

Tr(QZ + RKZK⊤) (54)

if there is a matrix Z = Z⊤ ≻ 0 satisfying Lyapunov
equation [45]

(̂A+ B̂K )Z (̂A+ B̂K )⊤ − Z + In ⪯ 0. (55)

With (54) and (55), the optimization problem (31) can be
written as the following nonconvex semidefinite program if
there are matrices Z = Z⊤ ≻ 0 and Y = Y⊤ ≻ 0 such that

min
Y ,Z ,K

Tr

([
Q

1
2 0n×p

0p×n R
1
2

]⊤ [
Z 0n×p

0p×n KZK⊤

][
Q

1
2 0n×p

0p×n R
1
2

])
(56a)

subject to
[

In − Z (̂A+ B̂K )Z
Z (̂A+ B̂K )⊤ −Z

]
⪯ 0 (56b)
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In − Y (̂A+ B̂K )Y 0n×n 0n×p

Y (̂A+ B̂K )⊤ −Y ϵAY ϵBYK⊤

0n×n ϵAY −
1
2γ

2In 0n×p
0p×n ϵBKY 0p×n − 1

2γ
2Ip

 ⪯ 0. (56c)

The constraint (55) is converted to (56b) by Schur’s lemma
and theH∞ constraint (31b) is rewritten with (53) and (56c).
The optimization problem involves two constraints (56b)
and (56c) with Lyapunov matrices Z and Y respectively.
Due to these Lyapunov matrices and control variable K , the
optimization problem becomes non-convex.

To recover convexity, we impose the constraint P := Y =
Z ≻ 0 and thus we have a single closed-loop Lyapunov
function [59]. The constraint (56b) becomes redundant and
thus unnecessary. We can perform the standard variable
substitution L := KP, and then we obtain the following
optimization problem

min
P,L

Tr
([

Q 0n×p
0p×n R

] [
P 0n×p

0p×n LP−1L⊤

])
(57a)

subject to
In − P ÂP+ B̂L 0n×n 0n×p

PÂ⊤ + L⊤B̂⊤ −P ϵAP ϵBL⊤

0n×n ϵAP −
1
2γ

2In 0n×p
0p×n ϵBL 0p×n − 1

2γ
2Ip

 ⪯ 0. (57b)

If we use the following inequality[
U V
V⊤ W

]
−

[
P 0n×p

0p×n LP−1L⊤

]
(58a)

=

[
U V
V⊤ W

]
−

[
P
L

]
P−1

[
P L⊤

]
(58b)

=

 U V P
V⊤ W L
P L⊤ P

 ⪰ 0, (58c)

then the nonlinear component, LP−1L⊤ in the cost func-
tion (57a) becomes linear. Finally, the convex optimization
problem is obtained as

minimize
P,L,U ,V ,W

Tr(QU )+ Tr(RW ) (59a)

subject to

 U V P
V⊤ W L
P L⊤ P

 ⪰ 0, (59b)


P− In ÂP+ B̂L 0n×n 0n×p

PÂ⊤ + L⊤B̂⊤ P ϵAP ϵBL⊤

0n×n ϵAP 1
2γ

2In 0n×p
0p×n ϵBL 0p×n 1

2γ
2Ip

 ⪰ 0. (59c)
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