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ABSTRACT Time-Sensitive Networking (TSN) encompasses standards to facilitate near-deterministic
performance in wired networks and the integration of TSN with modern wireless systems, such as Fifth
Generation (5G) systems, is intensely pursued. Consequently, TSN is examined by numerous research
groups. Given the limited and costly access to TSN hardware, a reliable simulator becomes crucial.
OMNeT++ is a modular simulator that can be expanded with network simulation models, such as INET,
which can simulate TSN functionalities. We evaluate the accuracy of the OMNeT++ INET simulator
in mirroring the physical (hardware-based) reality by comparing OMNeT++ INET simulations with
measurements of two commercial TSN switches. Our evaluations encompass the generalized Precision
Time Protocol (gPTP) accuracy, the Store-and-Forward (SF) and Cut-Through (CT) switching forwarding
latencies, the Time Aware Shaper (TAS), and Frame Preemption (FP), including combinations of CT,
TAS, and FP. We find that compared to hardware measurements, INET simulations exhibit different
clock synchronization dynamics, underestimate the switching latencies, and do not support CT with FP.
We enhance the alignment of INET simulations with authentic hardware behaviors by modifying INET
modules. We modify the INET gPTP synchronization model and the INET simulation models for the SF and
CT forwarding latencies. Also, we modify the INET simulation modules to support the combined operation
of CT and FP. We demonstrate how our INET modifications, which we make publicly available, accurately
simulate the behaviors of real TSN hardware.

INDEX TERMS Frame preemption (FP), hardware testbed, measurement, OMNeT++, open-source
software, simulation, time-aware shaper (TAS), time-sensitive networking (TSN), time synchronization.
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I. INTRODUCTION
Emerging industrial applications exhibit diverse require-
ments, with some mandating high availability, reliability,
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and guaranteed performance in terms of both jitter and
latency [1], [2], [3], [4], [5]. For instance, bounded jitter
is crucial in machine-to-machine communication, where an
uptick in jitter may be treated as packet loss, triggering a
robot’s transition to a safe mode and causing interruptions
in the production line. The benefits of near-deterministic
communication extend beyond industry, encompassing, for
instance, healthcare [6], Vehicle to Everything (V2X) [7],
[8], and tactile Internet communication [9], [10], [11].
Generally, various applications, with their unique require-
ments, share the same network infrastructure. Effectively
managing the coexistence of critical high-priority traffic
and regular low-priority traffic within the communication
bandwidth poses a notable challenge [12]. Time-Sensitive
Networking (TSN) incorporates over 20 standards to enable
near-deterministic communication over wired links [13],
[14], [15]. The ongoing integration of TSN with 5G aims to
expand the application scope of TSN [16], [17], [18], [19],
[20], [21], [22] and has drawn significant attention from both
academia and industry in recent years.

TSN [23], [24] utilizes diverse standards for effective
flow management, whereby some standards rely on the
time synchronization facilitated by synchronization proto-
cols [25], such as the generalized Precision Time Protocol
(gPTP) for timely transmission. Shaping mechanisms, such
as the Time-Aware Shaper (TAS), enable the isolation
of high-priority traffic from low-priority traffic, fostering
near-deterministic communication [26], [27]. Integrating
these standardized mechanisms with others, such as Cut-
Through (CT) switching and Frame Preemption (FP) with
the Hold-Release mechanism, elevates the achievable level
of determinism. Several studies, e.g., [12], [28], and [29],
underscored the significant impact of configurations and
tools on TSN performance. Consequently, it becomes imper-
ative to thoroughly evaluate these mechanisms across various
scenarios and combinations.

A. EXISTING TSN EVALUATION METHODOLOGIES
Hardware deployments provide insights into real-world
networks and their practical capabilities, but the cost and
limited accessibility to the required hardware pose significant
challenges [29]. Moreover, not all hardware includes the
desired features. Alternatively, simulations, with a level of
simplification, prioritize rapid iterations, enabling the testing
of diverse ideas across various topologies and scales. Diverse
simulators are utilized to simulate TSN networks. Recent
research [29] reveals that about 53% of TSN simulations
utilize the OMNeT++ framework [30], while 14% use the
Riverbed Modeler (formerly OPNET Modeler Suite), and
33% use various other simulators. Due to the dominant
role of the OMNeT++ framework in TSN simulations,
we focus on OMNeT++ in this study. However, similar to
our study methodology, the Riverbed Modeler and the other
simulators should be validated with hardware measurements
in future research. OMNeT++ lacks networking models in

its simulation framework and works with external networking
libraries, such as the INET framework. INET encompasses
a diverse set of simulation models, including TSN fea-
tures. Approximately 80% of TSN simulations based on
OMNeT++ leverage the INET framework for performance
evaluation [31].

Ensuring that simulation results closely align with hard-
ware outcomes is crucial for accurately reflecting real-world
scenarios. However, most validation studies for OMNeT++

results, such as [31] and [32], have not considered TSN
features. One notable exception is a study based on the Engine
platform [33], [34]. The Engine platform, initially designed
for reproducible TSN network emulation, is expanded in [35]
to include configuration capabilities for OMNeT++ and
INET. The findings in [35] indicate that simulations generally
exhibit lower delays and jitters compared to hardware. While
the results in [35] shed light on traffic-shaper behaviors in
simulation, the study refrains from modifying the simulation
framework to enhance the simulation modeling for better
alignment with hardware characteristics.

B. SUMMARY OF ORIGINAL CONTRIBUTIONS
We rigorously evaluate the simulation accuracy by comparing
INET results with our TSN-FlexTest testbed [28], which was
developed for measurements of real-world TSN hardware
as a validation reference. Specifically, we utilized the
Kontron D10 MMT Series and FibroLAN Falcon-RX/G
TSN switches in our TSN-FlexTest testbed. To ensure the
timely transmission of high-priority traffic, the corresponding
transmitters were equipped with Intel I210 interface cards.
Initially, we investigate clock deviations across different
gPTP configurations, identifying discrepancies in the INET
results. We modify INET and demonstrate through hard-
ware measurement results that the modified INET version
improves alignment with real-world scenarios across diverse
gPTP settings.

We examine the switch forwarding latency, finding that
simulated Store-and-Forward (SF) switching exhibits lower
latencies than the hardware measurements. Furthermore, CT
in the original INET simulation model maintains a stable
latency for all packet sizes, while hardware measurements
show that the latency increases linearly for packet sizes below
a certain threshold. We modify the INET framework to better
reflect the forwarding latency of the real hardware testbed.
Simulations with the modified INET demonstrate that our
modifications produce more accurate outcomes. We publicly
provide the source code for the modified INET [36].

We also investigate the accuracy of TAS simulations,
revealing that our modified INET version aligns the sim-
ulations closely with hardware measurements. Moreover,
we find that when FP is combined with CT, then the original
INET simulator exhibits higher latency than hardware
measurements due to the conflict of enabling CT and FP.
We modify INET to resolve this conflict and demonstrate
that the modified INET achieves sub-microsecond accuracy
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for the combined TAS, CT, and FP features. In general,
we align the INET simulator more closely with the latency
characteristics of real TSN hardware, providing researchers
with an improved simulation tool for evaluating TSN
networks.

The paper is organizedwith the following section structure.
A comprehensive definition of latency is presented in
Section II, which also introduces the fundamental features
of TSN. Section III presents a summary of relevant literature
on software simulations and hardware testbed validations of
TSN features, highlighting the distinguishing original aspects
of our study. In Section IV, we model the processing delay
within switches and compare the CT mode with the SF
mode. Section V describes the testbed and simulation setups
employed for our comparative validation experiments, while
the comparison results are presented in Section VI. Finally,
we summarize key insights from our study in Section VII.

II. BACKGROUND
This section defines the latency metrics and introduces four
core TSN features, namely gPTP, CT, TAS, and FP. These
four core TSN features are fundamental pillars employed in
various scenarios and can support a broad range of industrial
use cases [2], [3], [8], [12], [14], [26], [29]. Importantly, INET
has adopted these core features for implementation, thereby
underscoring their significance.

A. DEFINING LATENCY
Four different delay components in a network node are
identified in [37, Section 1.4.1]: The processing delay is
the time interval that it takes to examine the packet header
and to identify the correct output port. During the queuing
delay, the packet waits for the previously arrived packets to
be transmitted. The transmission delay is the time interval
needed to push all of the packet’s bits into the link. The
propagation delay is the time interval that it takes for the
bits to propagate from the beginning of the link to the end,
which depends on the physical medium and the length of the
link.

Latency is commonly measured in two ways: the end-to-
end delay or the first-bit to first-bit delay. The end-to-end
delay encompasses the transmission delay of the sender
(source node), the propagation delay from the source node
to the first intermediate network node (switch), and all
four delay components in all intermediate switching nodes
between the sender and the receiver (destination node). That
is, the end-to-end delay is the time interval from the time
instant when the sender starts the transmission of the first bit
of the packet to the time instant when the last bit of the packet
is received by the destination node.

On the other hand, the first-bit to first-bit delay is the
time interval between the time instant when the sender starts
transmitting the first bit of the packet to the time instant when
the receiver begins receiving the first bit of the packet.

Collectively, we refer to the two latency metrics (end-to-
end and first-bit to first-bit) as representing the ‘‘forwarding

latency’’ in discussions that address the general latency char-
acteristics of a network. Throughout this study, we examine
the one-way forwarding latency from a sender to a receiver
(and do not consider the round-trip latency).

B. SELECTED TIME-SENSITIVE NETWORKING FEATURES
1) TIME SYNCHRONIZATION WITH PTP
The Precision Time Protocol (PTP) is a clock synchro-
nization protocol commonly used in networks. The PTP
can achieve sub-microsecond accuracy and is primarily
designed for mission-critical applications. The PTP employs
a master-slave architecture, where the master clock transmits
the synchronization message to the slave clock along with a
timestamp. The slave clock records the received timestamp
and responds to the master clock with the delay-request
message containing the send-out time. The master clock
includes the timestamp when it received the request message
and sends a delay-response message back to the slave clocks.
Through this process, slave clocks can adjust their time to
synchronize with the master clock.

The generalized PTP (gPTP) protocol, defined by IEEE
802.1AS [38], is an adaptation of the PTP to the requirements
of TSN applications. There are three key distinctions between
gPTP and PTP: First, gPTP operates exclusively at the data
link layer (layer two) for all communication, whereas PTP
offers support for higher protocol layers. Second, in gPTP,
devices capable of gPTP directly exchange information with
other gPTP devices, while the PTP protocol accommodates
non-PTP-capable devices between two PTP devices. Third,
gPTP makes it easier to classify time-aware systems by
reducing the types of PTP Instances [38, Section 7.5] to
only two: time-aware stations (PTP End Instances) and
time-aware bridges (PTP Relay Instances), in contrast to
the four clock types (ordinary clocks, boundary clocks,
end-to-end transparent clocks, and P2P transparent clocks)
in PTP. Consequently, gPTP presents a simplified profile
of PTP, reducing configuration complexity and enhancing
performance in terms of minimized jitter and accelerated
synchronization.

2) FORWARDING WITH CUT-THROUGH (CT) SWITCHING
Packet switching networks commonly use SF switching.
CT switching is an ongoing project involved in the TSN
standard [39]. With CT switching, the frame forwarding
begins as soon as the destination address is identified. CT
reduces the contribution of the frame transmission delay
component in the intermediate network nodes to the end-to-
end delay and the first-bit to first-bit delay compared to SF
switching, which requires complete frame reception before
forwarding the frame. However, this latency reduction comes
at the expense of not checking the integrity of frames at the
intermediate switches, which can lead to error propagation.
For instance, if all layer-two intermediate nodes work in
CT switching mode, only the receiver can check the frame
integrity.
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FIGURE 1. Illustration of effects of Hold-Release mechanisms on
response times and jitter for low-priority traffic (blue rectangle) and
scheduled traffic (purple rectangle).

3) SCHEDULING AND SHAPING WITH TIME-AWARE SHAPER
(TAS)
TAS was introduced in [40] to provide bounded latency
and jitter for high-priority Scheduled Traffic (ST) streams
by isolating them from background traffic streams [41].
This isolation is achieved by allotting transmission times for
different frame classes. In TAS, traffic streams are enqueued
into a certain number of queues, each representing a Quality-
of-Service (QoS) level. By opening and closing the gates
of each queue, TAS offers various QoS levels. This queue
management complies with a Gate Control List (GCL) that
repeats cyclically. The GCL specifies which queues are
permitted to transmit when and for how long.

For isolating high-priority ST streams from background
traffic streams, each GCL cycle is commonly composed
of two distinct time slots: During time slot one, only
high-priority traffic is permitted for transmission, while
time slot two allows for the transmission of lower-priority
traffic. This concept is founded on a time-division multiple
access scheme, which effectively allocates time intervals
for different traffic priorities. This scheme requires that all
network nodes are synchronized [42], which ensures that
the sender is well-informed about the designated time slot
(slot one) for transmitting ST streams, thereby preventing
collisions with other traffic streams.With the implementation
of this mechanism, the network can effectively prioritize
and manage different traffic types, enabling hard real-time
traffic, soft real-time traffic, and background traffic to coexist
non-reactively on the same Ethernet infrastructure.

4) INTERRUPTING TRANSMISSIONS WITH FRAME
PREEMPTION (FP)
FP was introduced in [43] to reduce the worst-case response
times and to ensure that time-critical frames receive priority
over lower-priority or non-time-critical frames. The FP
method is often beneficial in the presence of large non-
time-critical frames. To reduce the latency of time-critical
traffic, the switch suspends the lower-priority traffic by
preempting the ongoing transmission of a lower-priority
frame and transmitting time-critical traffic instead. After full
transmission of the time-critical frame, the remaining data
in the previously preempted frame can be transmitted. FP
is a MAC layer extension; whereby, both the sending and
receiving node of a given link must support FP in order to

employ FP on the communication link connecting the two
nodes [43], [44].

Annex S of the IEEE 802.1Q-2018 standard specifies
two approaches for implementing TAS with FP: with or
without the Hold-Release mechanism. The choice of this
mode influences the response time and jitter [45]. Figure 1
contrasts the system behavior with an example when the
mechanism is disabled (subfigure a) and enabled (subfigure
b). In the depicted example, the gate opens for high-priority
ST in the first time slot and for low-priority traffic in the
second time slot.

In the absence of the Hold-Release mechanism [Fig. 1(a)],
the low-priority preemptable traffic can transmit up to
123 bytes (B) uninterrupted, even when the ST gate is open
because frames of 123B or smaller cannot be preempted [46].
In this example, the low-priority traffic continues transmis-
sion even after time slot 2 in cycle n finishes. Consequently,
the transmission of ST starts in cycle n + 1 only after the
ongoing transmission of low-priority traffic is completed,
leading to jitter for ST.

With the Hold-Release mechanism enabled [Fig. 1(b)],
a guard band is enforced prior to the start of time slot 1 for
ST traffic in cycle n + 1. An ongoing traffic transmission
can continue within the guard band. However, the ongoing
transmission must either be completed before the onset of the
next time slot or must be preempted and resumed when the
next slot (time slot 2 in cycle n+1) becomes available for low-
priority packets. No new frame transmission can commence
in the guard band. In essence, enabling the Hold-Release
mechanism increases communication delay for low-priority
frames, while decreasing the jitter for ST frames.

III. RELATED WORK
A. GENERAL OVERVIEW
This section reviews the related literature on INET verifica-
tion and TSN feature evaluation. The first release of INET
was in 2010, without TSN protocols. Based on pure INET
and OMNeT++, CoRE4INET [47] is an open-source project
which supports TSN features, including IEEE 802.1Qci and
IEEE 802.1Qbv (TAS). NeSTiNg [48] was published in
2019 and implemented TSN functionalities based on pure
INET. The NeSTiNg evaluation study [48] compared TAS
and FP (independently, not in combination) with the strict
priority mechanisms in the NeSTiNg implementation. The
TSN framework and capabilities released from INET in
2022 are based on the experience gained from CoRE4INET
and NeSTiNg; specifically, the 2022 INET release includes
gPTP, CT, TAS, and FP. To clarify, in this study,
we focus on verifying the TSN functionalities in the INET
release.

Regarding the accuracy of INET simulations in general,
to our knowledge, there have been only three validation stud-
ies that have used networking hardware to verify simulation
results. One validation study focuses on WiFi commu-
nication [31], while another validation study investigates
the real-time Ethernet protocol [32]. Therefore, these two
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TABLE 1. Comparison of related studies on evaluation of the four core
TSN features with INET simulations (SW) or measurements in hardware
(HW) testbeds.

validation studies are not directly relevant to the validation
of the INET TSN capabilities. The third study is relevant as
it verified the INET TSN capabilities with measurements of
TSN hardware [35], as elaborated in Section III-D.
As TSN features released from INET were introduced in

May 2022, there has been very limited research to date on
the accuracy of the implementation of the TSN features in
INET. However, a number of studies have evaluated the core
functions of TSN in various scenarios. As summarized in
Table 1, we review studies that focus on evaluating TSN
core functions with simulations conducted using OMNeT++

INET as well as with measurements based on hardware
testbeds. Overall, we note that there is a pronounced lack
of literature on validating the accuracy of TSN simulations
in comparison to measurements with real TSN hardware,
whereby validation studies of simulations that combine
multiple TSN functions are entirely lacking.

B. INET SIMULATIONS OF CORE TSN FEATURES
Several existing studies have evaluated the four core TSN
functions with OMNeT++ INET simulations. However,
the existing simulation studies typically focused on an
individual or a subset of the four core TSN functions.
For instance, Heise et al. [49] present an open-source TSN
simulation framework based on OMNeT++ and simulated
FP. However, in [49], FP is simulated in isolation as the
simulated scenario does not account for time synchronization.
Similarly, Ashjaei et al. [45] design a novel FP technique
and evaluate the performance of the proposed FP technique
using OMNeT++ in different scenarios, assuming perfect
time synchronization. However, evaluating FP in isolation
overlooks the potential performance gains that could be
obtained by utilizing TSN features in combination.

The combination of TAS and limited TSN features in INET
simulation has been investigated in several prior studies,
including [48], [50], [51]. Huang et al. [50] comprehensively
simulate Cyclic Queuing and Forwarding (CQF) and develop

a novel scheduling algorithm called Time-Aware Cyclic-
Queuing (TACQ), which combines TAS with CQF. TACQ
achieved zero jitter and lower delay for isochronous flows
compared to CQF in the evaluations in [50]; however, the
precision of time synchronization was neglected in [50].
Falk et al. [48] and Arestova et al. [51] simulated TAS
and FP separately (i.e., without combining them) in the
INET simulation framework; in contrast, we evaluate TAS
operating jointly with FP in this study.

C. HARDWARE MEASUREMENTS OF CORE TSN FEATURES
Ma et al. [52] implemented latency control label scheduling
in an asynchronous bridged network hardware testbed.
Ma et al. [52] claim to have included FP in their design;
however, no comparison to non-frame preemption is pre-
sented in [52]. Konradi et al. [53] implemented a TSN testbed
that integrates the Open Platform Communications Unified
Architecture (OPC UA) PubSub specification with TSN,
allowing researchers to evaluate the interoperability of TSN
devices from different vendors.

Miranda et al. [54] built a cloud-based testbed with
Software Defined Networking (SDN) controller to enable
TSN deployments. However, both studies [53], [54] focus on
PTP synchronization with TAS, while their implementations
lack consideration of the other core TSN features, such as FP
and CT, which we consider this study. Hagargund et al. [55]
built an open-source, SDN-based TSN testbed that integrates
802.1Qbv (TAS) and 802.1Qcc (Stream Reservation Proto-
col). The open-source testbed [55] includes the software,
which uses the Linux queuing discipline to implement virtual
queues.

In our previous research [28], we have created the
TSN-FlexTest hardware testbed that is flexible, publicly
accessible, and open-source. With the TSN-FlexTest hard-
ware testbed, we measured the end-to-end latency in various
scenarios, such as CT and TAS (both in combination
with time synchronization); however, we did not measure
FP in [28]. To address this omission, we extend our
TSN-FlexTest testbed measurements to include FP in the
current study; and, we compare all TSN-FlexTest testbed
measurements with INET simulations.

D. RESEARCH WITH BOTH HARDWARE AND SIMULATION
Bosk et al. [35] expanded the TSN Engine platform [33],
which involves a Commercial-of-the-Shelf (COTS) hardware
testbed, to the simulation realm by translating the hardware
configuration to the OMNeT++ INET simulator, thus
enabling the same setup to run on both hardware and in
simulation. The evaluations of Bosk et al. [35] indicate that
the simulations typically give lower delays and jitters than the
hardware measurements. This discrepancy can be attributed
to the idealistic nature of simulations, which do not account
for typical system artifacts experienced in hardware setups.
However, the validation comparisons in [35] only focus on
TAS and the Credit-Based Shaper (CBS) in isolation. The
impact of clock drift in the PTP is not considered in [35].
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In contrast, our TAS evaluations in this study consider TAS
operating in conjunction with PTP.

E. ORIGINAL CONTRIBUTIONS OF THIS ARTICLE
The present study aims to address two gaps in the existing
literature, making two main contributions:

1) METHOD CONTRIBUTION
We evaluate the accuracy of the TSN features implemented
in INET through hardware testbed measurements, and we
modify the INET simulation framework to improve the
simulation accuracy. We make the modified INET publicly
available [36] so as to advance the openly accessible
evaluation methodologies for TSN.

2) RESEARCH CONTRIBUTION
We conduct simulation evaluations with our modified INET
and corresponding hardware measurements for scenarios that
include PTP, CT, TAS, and FP to demonstrate the benefits
of combining TSN features; specifically, we evaluate the
combinations PTP+CT+TAS and CT+TAS+FP.

IV. MODIFICATIONS OF INET SIMULATION FRAMEWORK
This section describes how we have enhanced the INET
software to mimic the behavior of real TSN switches.
In Section IV-A, we provide an overview of the INET TSN
software modules. In Section IV-B, we model the switch
forwarding delays in the SF and CT modes and introduce
new parameters in the INET delay models. In Section IV-C,
we explain the gPTP implementation in INET and provide
a new approach for modeling the oscillator compensation.
In Section IV-D, we describe our INET modification to
simulate CT switching in combination with FP and TAS.
Table 2 summarizes the parameter notations for the delay and
gPTP modeling.

A. OVERVIEW OF INET TSN MODULES
OMNeT++ is a C++ framework that enables the con-
struction of network simulators using a component-based
architecture. OMNeT++ comes with the INET library,
which provides models for various Internet protocols and
components. The INET library includes TSN protocols,
making the INET library more comprehensive than other
available network simulators. We currently use version
6.0 of OMNeT++ and version 4.5.2 of INET. The TSN
features were for the first time included in the INET
release 4.4, initially launched in May 2022. As illustrated
in Figure 2, the INET TSN encompasses essential features,
including time synchronization, per-stream filtering and
policing, scheduling and traffic shaping, frame replication
and elimination, frame preemption, and CT switching.

This study specifically focuses on the evaluation of gPTP
time synchronization, CT switching, TAS scheduling and
traffic shaping, and FP within INET TSN. To complement
these features, INET includes specialized TSN-specific
network devices, such as a TSN clock, TSN device, and

TABLE 2. Summary of notation.

TSN switch. A TSN clock emulates a hardware device
functioning as a gPTP master node, which is essential for
time synchronization. A TSN device models a TSN end
device with the capability to run multiple applications. ATSN
switch represents an Ethernet switch tailored to support the
aforementioned TSN features.

We modified the code of the TSN switch module. In order
to explain the context for these modifications, we describe
the software components of the TSN switch in detail. On the
right side of Figure 2, the bottom component is the Ethernet
interface module which enables Ethernet connectivity. This
module acts as a physical port to the hardware. The Ethernet
layer module is situated above the interface and has the
capability to support the 802.1Q protocol. Above the Ethernet
layer are the bridging layer and the logical link control
modules. These modules offer packet forwarding, interface
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FIGURE 2. Illustration of the TSN features and modules that INET
supports, as well as the illustration of the software architecture within
the TSN switch module.

selection, virtual LAN handling, and logical link control
functionalities. Lastly, at the topmost level is the gPTP
module which measures link delays to neighboring nodes and
provides time synchronization.

B. CUT-THROUGH SWITCHING
We initially model in Section IV-B1 the end-to-end delay
in the SF mode, to then arrive at an end-to-end delay
model for the CT mode. In Section IV-B2, we describe
our modifications of the INET switch simulation models to
enhance the accuracy of the INET SF and CT delay models.

1) SWITCH DELAY MODELING
Figure 3 compares the SF end-to-end delay (Dsf ) and
the CT end-to-end delay (Dct ) for a network with one
intermediate switch. Generally, we denote N for the number
of intermediate nodes, i.e., switches. As summarized in
Table 2, we denote P [in bytes] for the mandatory Interpacket
Gap, Preamble, and Start Frame Delimiter that precede the
transmission of the first byte of the link-layer Ethernet frame
of size f [bytes]. Thus, the size of a physical-layer Ethernet
packet is P + f [bytes], resulting in the packet transmission
delay dt = (P + f )/L. We denote dp for the propagation
delay of a link. The variable dl refers to the time required by
a switch for looking up and processing information in order
to determine the destination for forwarding.

a: STORE-AND-FORWARD (SF) END-TO-END DELAY
For SF, d frame

f is the time for the fabric transit for the whole
(link layer) frame. Each switch incurs a processing delay
dl + d frame

f , which is the time interval from the time instant
when the switch has received the last bit of a given packet
from the ingress port to the time instant when the switch
commences transmitting the first bit of the packet from the

egress port. The processing delay dl + d frame
f can be shorter

than 32 ns [57].
We assume that the delay components dt , dp, dl , and d frame

f
are the same for allN switches and links; also, we assume that
the sender incurs the packet transmission delay dt and that the
link from the sender to the first switch has propagation delay
dp. Summing the processing delays of the N switches as well
as the transmission delays of the sender and the N switches
and the propagation delays on theN+1 links that interconnect
the sender via the N switches with the receiver gives the SF
end-to-end delay:

Dsf = (dl + d frame
f ) × N + (dp + dt ) × (N + 1). (1)

For an SF switch, we define the store-and-forward switch (SF
switch) delay dsf as the time interval from the time instant
when the considered switch begins to receive the first bit of
a given packet (from the preceding node) to the time instant
when the switch commences the transmission of the first bit
of the packet (to the next node). As illustrated in Figure 3(a),
the SF switch delay dsf consists of the packet transmission
delay dt and the processing delay dl + d frame

f , i.e.,

dsf = dt + dl + d frame
f . (2)

We emphasize the contributions of the N switches to
the end-to-end latency Dsf by grouping the N related delay
components together:

Dsf = (dsf + dp) × N + dp + dt . (3)

Thereby, as illustrated in Figure 3(a), the delay (dsf+dp)×N
is due to the switches, while the remaining dp and dt can be
interpreted to account for the transmission delay of the sender
and the propagation delay from the sender to the first switch.
Commonly, the transmission delay component dt (as themain
contributor to the SF switch delay dsf) dominates the end-to-
end delay Dsf; for example, transmitting a 1500B frame via
a 1Gbit s−1 link takes 12µs and propagating through a 2m
cable requires 6.67 ns.

b: CUT-THROUGH (CT) END-TO-END DELAY
We define the cut-through switch (CT switch) delay dct as
the time interval from the time instant when the considered
switch begins to receive the first bit of a given packet (from
the preceding node) to the time instant when the switch
commences the transmission of the first bit of the packet
(to the next node), as illustrated in Figure 3(b). With CT
switching, the transmission of a given packet can commence
before the packet has been fully received, thus reducing the
end-to-end delay, as observed by comparing Figure 3(b) with
Figure 3(a). Formally,

Dct =
(
dct + dp

)
× N + dp + dt , (4)

whereby the CT switch delay dct is typically substantially
shorter than the SF switch delay dsf.
According to [56] and [58], the CT switch delay dct can

be modeled based on the size P of the frame preamble
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FIGURE 3. Illustration of end-to-end delay D with one intermediate switch between the sender and the receiver. The SF switch delay dsf consists of the
packet transmission delay dt and the switch processing delay dl + d frame

f ; whereas, the CT switch delay dct consists of the components illustrated in
part (c).

[IPG, Preamble, and SFD in byte], the amount 1 of frame
data [in byte] required for the forwarding decision, the link
capacity L [in byte/s], the lookup delay dl , the internal switch
buffering delay db, and the fabric transit delay for one bit dbitf :

dct =
P+ 1

L
+ dl + db + dbitf . (5)

The CT switch delay dct is illustrated in Figure 3(c): a switch
has to collect sufficient data (P + 1 bytes) to decide on the
forwarding, and then incurs the lookup delay and the internal
buffering delay [dbitf is neglected in Figure 3(c)]. This CT
switch delay equals the time interval from the time instant
when the first bit of the frame preamble (i.e., the first bit of
the packet) begins to be received (RX) in the CT switch to
the time instant when the switch commences the transmission
(TX) of the first bit of the packet.

c: FIRST-BIT TO FIRST-BIT DELAY
The first-bit to first-bit delay signifies the time taken by a
frame to traverse the intermediate nodes (i.e., the switches).
According to Figure 3, for the case of one intermediate node,
the first-bit to first-bit delay of SF is 2dp+dsf; while CT incurs
the first-bit to first-bit delay 2dp + dct. For the general case,
withN switches, the SF first-bit to first-bit delay is 2dp+(N×

dsf), while the CT first-bit to first-bit delay is 2dp+ (N ×dct).
Clearly, the shorter CT first-bit to first-bit delay is due to the
shorter CT switch delay dct (compared to the longer SF switch
delay dsf).

2) MODIFICATIONS OF INET SWITCH DELAY MODEL
a: STORE-AND-FORWARD (SF)
The default INET dsf model only considers the packet
transmission delay dt ; and does not consider the lookup delay
dl , nor the fabric transit delay d frame

f . Since we do not have
the ability to measure the dl and d frame

f separately from our
commercial TSN switches, we define a parameter βsf as a

constant to model the combined lookup and fabric transit
delay, i.e.,

βsf = dl + d frame
f . (6)

With the delay constant βsf, we modify the INET SF
forwarding latency model to:

dsf = dt + βsf. (7)

The parameter βsf of the modified INET SF delay model
is a constant for a given hardware switch and can be
readily measured, e.g., with the TSN-FlexTest testbed [28].
We provide the βsf values for two common TSN switches in
Table 4. In terms of computational complexity, our modified
INET SF delay model only requires the addition of the
constant βsf to the default INET SF delay model (dsf = dt ),
which is a negligible added computational effort.

b: CUT-THROUGH (CT)
We modify (5) to mimic the behavior of a real CT switch.
Real CT switches typically exhibit linearly increasing switch
delaywith increasing Ethernet frame size f , up to a prescribed
frame size threshold FT [in byte] at which the CT switch
delay plateaus [28], [59].

We specify a linearly increasing delay using two param-
eters: the slope αct and the intercept βct. Specifically, αct
represents the rate (gradient) at which the delay increases
linearly with the frame size f . Conversely, βct signifies a
delay component that models the hardware capability. More
specifically, we consider db in (5) as a parameter related to the
frame size f , which produces the linearly increasing portion
of the CT forwarding delay dct, proportional to the frame size.
The remaining parameters, i.e., P, 1, L, dbitf , only depend on
the switch hardware capability.
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FIGURE 4. Detailed illustration of the sub-module structure of the INET
Ethernet Interface in the TSN Switch in Fig. 2: We modified the
PacketDelayerBase module at the top by adding a configurable
processing delay computed by the new computeinbuffDelay function.

For our INET modification, we model the CT forwarding
delay dct as a linear function of the frame size f :

dct =

{
αctf + βct if f ≤ FT
αctFT + βct if f > FT .

(8)

We implemented this CT switch delay dct model in all
versions of our modified INET simulation framework [36].
The slope αct and intercept βct are configurable parameters
in [36]. For a given hardware switch, αct and βct are constants
that can be readily obtained from measurements, e.g., with
the TSN-FlexTest testbed [28]. We provide the αct and βct
values for two common commercial TSN switches in Table 4.
From a computational complexity perspective, the dct model
in Eqn. (8) requires one if-then condition, one multiplication,
and one addition; whereas, the default INET CT model
neglects dct entirely, thus avoiding computational cost but
incurring errors (see Fig. 8).

c: MODIFIED DELAY MODEL IMPLEMENTATION IN INET
For SF, there is an existing INET module, namely
PacketDelayerBase, allowing the addition of the con-
stant delay βsf.

For CT, we changed the switching behavior in the
EthernetInterface module as visualized in Figure 4.
To enable the CT mode, we need to configure the
egress port of the TSN switch, which is defined
by the EthernetCutthroughInterface module.
By default, this module only contains the macLayer and
phyLayer submodules. Therefore, we manually include
the processingDelayLayer (with the two submodules
ingress and egress) in the EthernetCutthrough

Interface. To implement our CT delay model, we only
add latency to the egress module. We configure the
egress module as a PacketDelayerBase module and
implement a new function called computeinbuffDelay.
This function accepts a packet object as input and calculates
the CT switch delay dct based on (8).

C. TIME SYNCHRONIZATION IN INET FRAMEWORK
We focus on the gPTP clock synchronization mechanism
implemented in INET, which is aligned with the TSN
standard [38]. Our investigation focuses on a network
architecture consisting of a master clock (node) and a slave
clock (node), as depicted in Figure 5. Time synchronization
in INET is achieved through two fundamental mechanisms.
The first mechanism entails the measurement of propagation
delays through peer-delay messages. The second mechanism
revolves around the distribution of the master clock time via
sync messages.

1) gPTP CLOCK SYNCHRONIZATION PROCEDURE
In the current INET release (4.5.2), the slave clock initiates
the propagation delay measurement process. The slave
clock accomplishes this by transmitting the Pdelay_Req
message to the master clock. The master clock, in turn,
responds by sending both the Pdelay_Resp and the
Pdelay_Resp_Follow_Up messages. As is common in
PTP descriptions, we use the terms ‘‘clock’’ and ‘‘node’’
interchangeably. The reception of the Pdelay_Resp_
Follow_Up message by the slave clock enables the slave
clock to compute the propagation delay between the master
node (clock) and the slave node (clock), as

dp =
η(t4 − t1) − (t3 − t2)

2
; (9)

whereby, we consider the physical link propagation delay
dp (of the direct master-slave link). Our model does
not consider multi-hop scenarios (with intermediate nodes
between master and slave) since the INET gPTP does
currently not implement the multi-hop gPTP functionality
completely; for example, the correction field is always set to
zero, which inherently introduces errors into the multi-hop
master-slave synchronization. The extension of INET gPTP
to the multi-hop gPTP functionality and then the addition of
our gPTP modeling modification to a functional multi-hop
INET gPTP are important directions for future research.

In order for readers to understand and compare to the IEEE
802.1AS standard [38], we also provide the official names of
these timestamps according to IEEE 802.1AS [38], e.g., t1 =
PdelayReqEventEgressTimestamp.

First, the slave clock sends the Pdelay_Req message at
timestamp t1 = PdelayReqEventEgressTimestamp.
The time at which the master clock acknowledges receipt
of the Pdelay_Req message is designated as timestamp
t2 = requestReceiptTimestamp. After the master
node [i.e., the node that runs the gPTP protocol with
the master clock (oscillator)] receives the Pdelay_Req
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FIGURE 5. Illustration of gPTP time-synchronization according to INET
implementation.

message, the master node transmits the Pdelay_Resp
message and the Pdelay_Resp_FollowUp message,
which encapsulates timestamp t3. This specific times-
tamp is denoted as t3 = responseOriginTimestamp.
Lastly, the instant at which the slave clock receives the
Pdelay_Resp message is precisely marked as timestamp
t4 = PdelayRespEventgressTimestamp. Since the
time passing in the slave clock (based on the slave clock
oscillator) differs from the master clock (with its master
clock oscillator), the difference between t4 and t1 needs to
be multiplied by a compensation value η.

The INET implementation calculates the neighbor rate
ratio parameter η in (9), which represents the ratio between
the oscillator frequency of the master clock and the oscillator
frequency of the slave clock, using consecutive Sync and
Sync_FollowUp messages:

η =
t ′5 − t5
t ′6 − t6

. (10)

As the oscillators of the two clocks differ, the slave clock
should multiply its own timestamp by the ratio η to
compensate for the difference. For instance, if t ′5 − t5 equals
1 second and t ′6 − t6 equals 1.2 seconds, then η would be
0.83. This indicates that the slave clock has a higher oscillator
frequency than the master clock. i.e., the slave clock is faster
than the master clock.

In INET gPTP, the Sync message distributes the master
clock time, and the slave clock adjusts its timewhen receiving
the Sync_FollowUp message based on

T ′
s = Tm + dp + c+ r . (11)

The new time of the slave clock, T ′
s , is the sum of the master

clock Sync message sending time Tm (t5 in Figure 5 as an
example), the propagation delay dp, the correction field c, and
the residence time r . In the current INET gPTP, the correction
field c is set to zero as only master-slave (no intermediate

mode) clock synchronization is considered The correction
field will be updated if intermediate nodes are on the gPTP
synchronization path (which is a future development for
INET). INET’s calculation of the correction field is underway
and will be included in a forthcoming release. The residence
time r equals the time duration between receiving the Sync
message and receiving the Sync_Follow_Up message by
the slave node, and the slave can adjust its clock time; for
example, from timestamp t6 to T ′

s each time when it receives
Sync_Follow_Up messages.

During the clock time distribution mechanism, the slave
clock updates its clock time and its oscillator frequency
compensation following the principles of the common
proportional-integral (PI) control of the clock servo [60],
[61], [62]. The new oscillator frequency compensation of the
slave clock is:

F sn = (η − 1) + (η × F sn−1), (12)

which is derived based on the current frequency compensa-
tion F sn−1. The integer parameter n, n = 1, 2, . . ., represents
the nth Sync_Follow_Up message received by the slave
clock. The initial frequency compensation value is F s0 = 0.
For example, assuming a neighbor rate ratio of 0.83 (slave
clock is faster than master clock), η − 1 would be negative.
As a result, the new frequency will be lower, indicating that
the slave clock will become slower. Through this recursive
process, the slave clock time will gradually approach the
master clock.

2) gPTP MODEL MODIFICATION 1
After investigating the Linux-PTP operation of the clock time
of the hardware TSN switch, we found that the slave clock
time of the hardware TSN switch was gradually updated by
changing the oscillator frequency instead of being instantly
changed by the gPTP protocol. Based on the Linux-PTP
implementation, we modify the INET gPTP by introducing a
threshold 0. If the offset between the slave and master clock
is above the threshold 0, then we enable the reset slave clock
function. Otherwise, we disable the functionality of setting
the slave clock time directly in the INET program to reduce
the gap between the simulation and hardware since the direct
setting would cause an abrupt step behavior.

3) gPTP MODEL MODIFICATION 2
Additionally, we introduce two weighting parameters γ and
δ in the simulation to adjust the frequency of oscillator
compensation; specifically, to allow for faster convergence
of the slave clock to the master clock. The parameter γ

controls the weight of the offset between the slave clock and
the master clock, whereby the offset is represented by the
neighbor rate ratio η. Also, δ weighs the contribution of the
previous frequency compensation:

F sn = γ × (η − 1) + δ × (η × F sn−1). (13)
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D. FRAME PREEMPTION (FP) AND CUT-THROUGH (CT)
SWITCHING MODIFICATION
We note that the original INET cannot simulate CT
combined with FP due to differences in implementing
the MAC and PHY layers. For example, if FP is
enabled, then the EthernetPreemptingPhyLayer
and the EthernetPreemptingMacLayer are required.
However, to support CT, users need to configure the
layers as EthernetStreamingPhyLayer and as
EthernetMacLayer. This module conflict prevents
simulating the combined CT and FP in the original INET.
The MAC and PHY layers of the original INET need to be
modified to enable simulating the combined CT and FP.

Specifically, in our simulation topology, see Figure 6b,
we encountered the issue that the CT ceased at Switch 2,
which means that Switch 2 is waiting to receive a full packet
and then transmits the full packet to the Receiver. INET
handles two types of data: signals and streams. A signal can
be a packet-start or packet-end marker, whereas a stream
represents the bytes on the physical layer (wire). Signals
are mainly handled inside network nodes, whereas streams
represent the data which is transmitted over the edges
between the nodes. Normally, the conversion between signal
and stream is conducted by the PHY layer. In the FP case, i.e.,
when using the EthernetPreemptingMacLayer, this
conversion is already conducted in the sub-MAC layers inside
the EthernetPreemptingMacLayer. This violation of
the layer concept makes it hard to merge the CT and FP
components.

Our modification is based on integrating the PHY and
MAC layers from CT and FP and creating new PHY
and MAC layers to support the CT and FP features
together. We first investigate the MAC layer. In order to
support FP, the EthernetFragmentingMacLayer is
configured by the original INET, whereby the Ethernet-
FragmentingMacLayer consists of two sublayers,
namely expressMacLayer and preemtableMac
Layer. The expressMacLayer schedules the higher-
priority traffic, whereas the preemtableMacLayer pre-
empts the lower-priority traffic. The expressMacLayer
module in the original INET is inherited from the INET
EthernetStreamingMacLayer module, while the
preemtableMacLayer module in the original INET
is inherited from the INET EthernetFragmenting-
MacLayer module.
We configure the ingress port of Switch 2 in Figure 6b to

our newMAC layer, namely theEthernetFragmenting-
ThroughMacLayer, which reuses the original INET
EthernetFragmentingMacLayer module to coordi-
nate with our new PHY layer.

Moving on to the PHY layer, we discovered that in
the default INET CT implementation, there is a module
called cutthroughSource. This cutthroughSource
module enables the sending of the CT Ethernet frame in the
default INET CT PHY layer, which is not present in the
default INET FP PHY layer.

FIGURE 6. Network topologies for evaluations: Each link is 10 m long and
has a bitrate of 1Gbit s−1. The best effort traffic load is 200% of the link
capacity, while an ST frame is transmitted every 1ms. Frame Preemption
(FP) occurs between Switch 1 and Switch 2 in Figure 6b. For the gPTP
validation, Clock is the master and Switch 1 is the slave. For the SF vs.
CT evaluation, no synchronization is involved (perfect sync is assumed).
For the TAS evaluation, Switch 1 is the gPTP master, while Senders 1 and
2 as well as the Receiver are the gPTP slaves. For the FP evaluation,
we assume perfect sync.

Therefore, based on the current INET FP PHY
layer, we design a new PHY layer called Ethernet-
PreemptingThroughPhyLayer, wherein we have
incorporated the missing cutthroughSource mod-
ule. Furthermore, we encountered an incompatibility
between the cutthroughSource module used in the
default INET CT PHY layer and the receiver module
DestreamingReceiver used in the default INET FP
PHY layer. Therefore, in our new PHY layer, we replaced
the INET DestreamingReceiver with the INET
StreamThroughReceiver to address the incompatible
issue, see [36] for details.

V. TESTBED AND SIMULATION SETUP
This section first describes the hardware testbed setup,
followed by the simulation setup.

A. HARDWARE TESTBED SETUP
The setup of our hardware testbed follows the TSN-FlexTest
testbed [28] and employs a Kontron D10 MMT Series
switch and a FibroLAN Falcon-RX/G switch. Nodes built on
COTS hardware generate high-priority and best-effort traffic.
By sending all traffic through a single port of the TSN switch
we provoke a bottleneck situation which is the base of our
measurements. All nodes are synchronized via gPTP and
hardware one-step time stamping is used for first-bit to first-
bit end-to-end time measurement. As illustrated in Figure 6,
we extend the setup from [28] with an additional TSN switch
to enable FP measurements. Both switches support FP, so the
second switch acts basically as a transparent preemption
terminator.
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B. SIMULATION SETUP
1) gPTP SETUP
We investigate the difference in clock synchronization
between the master clock and the slave clock by configuring
the Clock as the master clock and Switch 1 as the slave
clock for the gPTP evaluation, see Fig. 6. The master clock
is configured as an ideal clock with an ideal oscillator to
precisely match the simulation time. The slave clock is
configured as a settable clock, allowing the gPTP protocol
to adjust its time. Specifically, we set the oscillator of the
slave clock to be a random drift oscillator, which means that
the oscillator frequency changes randomly from time to time.
The detailed settings of the random drift oscillator are: the
Change Interval is 5ms, the Drift Rate Change
is uniformly distributed between −0.05 ppm to 0.05 ppm,
and the maximum drift rate change is set to 0.1 ppm, while
the minimum is set to −0.1 ppm. In addition, the oscillator
frequency compensation weighting parameters are γ = 1 and
δ = 0.7. The threshold 0 to enable the reset slave clock
function is 10 ns.

2) TIME STAMPING
To enable a valid comparison between our hardware testbed
measurements and the INET simulations, we patch the same
time stamping mechanism used for the hardware testbed
into OMNeT++. A timestamper module writes the actual
simtime into the Ethernet packet payload at a predefined
offset. We add the timestamper module to our UDP-Source
and UDP-Sink modules and capture the packets using
the pcap recorder. Thus, a packet can be timestamped in
different locations in the network. At the packet destination,
all timestamps can be extracted from the packet payload.
Both, the simulations and the hardware testbedmeasurements
produce pcap files which can be evaluated with the tools
described in [28].

VI. MEASUREMENT AND SIMULATION RESULTS
This section compares the INET simulation results with
measurements for two state-of-the-art hardware switches
from Kontron and FibroLAN. We start with gPTP clock
deviation comparisons in Section VI-A and evaluate the
improvements for our modified version of the INET gPTP
clock adjustment method. Then, in Section VI-B, we evaluate
the differences of Store-and-Forward (SF) versus Cut-
Through (CT) and the effects of our INET modifications.
In Section VI-C, we evaluate the Time-Aware Shaper (TAS).
In Section VI-D, we examine combined TSN features,
including Frame Preemption (FP).

A. PRECISION TIME PROTOCOL
Figure 7 shows two measurement results for the gPTP time
synchronization. In Figure 7a, we show boxplots of the
difference in time (clock deviation) between the slave clock
and the master clock. A boxplot represent the interquartile
range from the first quartile Q1 to the third quartile Q3 as a

TABLE 3. Three variations of the INET gPTP library.

box with the median marked by a horizontal line; the lower
(upper) whisker indicates the minimum (maximum) latency
that was measured within the range [Q1, Q1−1.5{Q3−Q1}]
([Q3, Q3 +1.5{Q3 −Q1}]); outliers below (above) this range
are indicated by dots. In Figure 7b, we compare gPTP clock
adjustment methods by plotting sample paths of the deviation
between the slave clock and the master clock.

1) HARDWARE: KONTRON AND FIBROLAN
In Figure 7a, we examine five different configurations: two
hardware-assisted clocks (Kontron and FibroLAN) and three
modifications of the INET gPTP implementation.We vary the
frequency of Syncmessages (cf. Figure 5), ranging from 8 to
128messages per second. ThePdelay_Reqmessage is sent
once per second. The two hardware switches perform almost
identically, with the clock deviations being at most 13 ns and
14 ns for the Kontron and FibroLAN switches, respectively,
at the rate of 8 Syncmessages per second. At the rate of 128
Sync messages per second, the maximum clock deviations
are reduced to 9 ns for both switches.

Note: The resolution of the hardware testbed measure-
ments is 1 ns, whereas it is 1 ps for the INET simulation
results. Therefore, we show in the following more decimal
digits for the simulations than for the hardware measure-
ments.

2) INET SIMULATION
a: ORIGINAL
When evaluating the original INET gPTP implementation,
a significant difference to the hardware was noticeable.
Therefore, we have modified INET in two different ways, see
Section IV-C, in order to reduce the gap. Table 3 summarizes
the three INET configurations.

According to the default INET gPTP implementation, the
slave clock time is periodically reset to the master clock time
based on the design following (11). The procedure is also
called a step jump of the clock time or stepping the clock.
This stepping of the clock results in many of the sample
points being zero, causing the height of the box to be very
small, almost zero, but with many outliers. For instance,
for 8 Sync messages per second, there are 3928 outliers
for 7998 sample points in a 500 s simulation, the mean
deviation to the master clock is 0.003 ns while the standard
deviation is 4.999 ns compared to 3.940 ns and 3.932 ns for
the Kontron and FibroLAN switches, respectively, for the
same configuration.
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FIGURE 7. Time synchronization measurements for two hardware TSN switches and three simulation implementations.

b: MODIFICATION 1
To overcome this gap, we disable the function of stepping
the clock time and setting it immediately to the master clock
and only use the original oscillator frequency compensation
function to change the time gradually. We call this imple-
mentation ‘‘Modified 1’’. Figure 7 indicates that when the
rate of the Sync messages is low (8 and 16), the slave
clock cannot perfectly synchronize to the master clock. For
instance, in case of 8 Syncmessages per second, we observe
a positive shift of the clock with a mean clock deviation of
9.852 ns. We notice a less intense, but negative shift for 16
Sync messages. This means that for low synchronization
rates, the reaction of the PI controller of the clock servo [60],
[61], [62] in the INET gPTP Modification 1 is not strong
enough to compensate for the oscillator drift and delay
variation. Therefore, we decided to tweak the servo for a
faster response function resulting in our gPTPModification 2
(Sec. IV-C3).
With more Sync messages per second, the deviations

to the master clock stabilize, i.e., they oscillate around the
desired mark of 0 ns. However, with the upper and lower
whiskers of 0.686 ns and −0.661 ns for 128 Sync messages
for Modified 1, the deviations are significantly lower than
with real hardware.

c: MODIFICATION 2
The right-most boxplot for each frequency of sync messages
in Figure 7 shows the clock deviations of our secondmodified
INET version (labeled as Modified 2). With Modified 2, the
behavior of the simulation is similar to the hardware testbed.
Especially at the rate of 128 Sync messages per second, the
span of the box and the whiskers are close to the hardware
results. For example, the upper quartile and upper whisker of
Modified 2 for 128 Sync messages per second are 2.987 ns
and 10.377 ns. The differences of the upper quartile and upper

whisker to the FibroLAN switch in the same scenario are
0.987 ns and 2.377 ns, respectively.

3) SUMMARY OF BOX PLOT COMPARISON
Comparing all results together, we observe that more gPTP
Sync messages per second can reduce the deviation of the
slave clock from the master clock. However, the absolute
reduction of the deviation when increasing the sync message
frequency from 8 to 128 Sync messages per second is
relatively small. The default 8 Sync messages from the
IEEE standard are generally sufficient, andwe cannot observe
clear advantages for higher frequent Sync messages in our
measurements.

4) SAMPLE PATH COMPARISON
In order to further examine the effects of our gPTP library
modifications in INET, we plot in Figure 7b the sample paths
of the deviation of the slave clock from the master clock over
5 s for 8 Sync messages per second. The master clock exists
in both the hardware testbed and simulation environment.
As reference, the dark blue, horizontal line depicts the ideal
master time, that the slave clocks try to synchronize to (in
contrast to the universal time). The plot shows a 5 s snapshot
out the middle of a 500 s evaluation to highlight the general
behavior of the different clock adjustment methods.

The sample points are generated by the OMNeT++

simulation environment. If the time changes due to a re-set
or step of the clock in the slave clock module, the slave clock
module triggers a sample; therefore the sampling rate differs
between the three INET gPTP library versions; see Table 3.
However, this improves the resolution of the sampled data
since, in the hardware measurements, we can only observe
the system when the hardware slave clock receives the Sync
message.
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In theory, there is clock drift due to the settable slave clock
configuration, see Section V-B1. We can see from Figure 7b,
that the slave clocks immediately start to deviate from the
master clock. The internal oscillator must be adjusted from
the outside to run faster or slower; or in case of too much
deviation to be stepped (as explained in Section IV-C1).
The original INET implementation exhibits frequent step

jumps back to the master clock as evidenced by the frequent
abrupt vertical line segments back to the master clock
horizontal line in Figure 7b. This behavior is in contrast
to the behavior of the actual gPTP implementation in real
FibroLAN switch hardware, which reduces the deviation
gradually (via sloped line segments). Our Modification 1
disabled this stepping, as can be clearly observed from
Figure 7b. However, as a side effect, the oscillator is
not adjusted in the correct manner, which causes a more
or less constant offset from the master clock (as also
observed in Figure 7a). We observe from Figure 7a that our
Modification 2 oscillates around the master reference time
while, similar to the real hardware, reducing the deviation
gradually.

B. FORWARDING LATENCY
Figure 8 compares the mean one-way first-bit to first-bit (1 -
1 bit) delay of SF and CT for the network topology in Figure 6
(from Sender 1 to the Receiver). Figure 8 also compares
the INET simulations (without and with the modifications of
Sec. IV-B2) with the hardware testbed measurements.

1) LATENCY PLATEAU
In general, we expect a linear 1-1 bit delay increase for SF
with increasing frame size, as the entire packet needs to be
received by the switch before it can be processed. With CT,
the plot should also have a linear increase for small frames.
However, there should be a point where the latency reaches
a plateau, as discussed in Sec. IV-B2. This turning point, i.e.,
the frame size threshold FT , is implementation-specific. The
linear 1-1 bit delay increases with increasing frame size for
the entire SF line and for the CT line segment below the
threshold FT correspond to one frame transmission delay dt ,
see Section IV-B1c.

We briefly note that the end-to-end (E2E) delay from the
beginning of the first byte transmission at the sender to the
complete reception of the last byte at the receiver, which we
do not include in the plots to avoid clutter, would behave as
follows. The SF E2E delay increases linearly with increasing
frame size with double the slope of the corresponding SF
1-1 bit delay since the SF E2E latency includes two frame
transmission delays dt , see Fig. 3a and Eqn. (3). The CT
E2E delay has the same doubled slope for the line segment
below the threshold FT ; at the threshold FT , the slope halves
and the linear increase continues with a slope corresponding
to one frame transmission delay dt , see Fig. 3b and
Eqn. (4).
The vendor Kontron informed us in discussions, that

the forwarding latency of the switch varies over the ports;

FIGURE 8. Mean first-bit to first-bit delay for Store-and-Forward (SF) and
Cut-Through (CT) as a function of Ethernet frame size in the link layer.
Legend: K : Kontron, F : FibroLAN, I : INET simulation, with O: Original and
M: Modified. 1/3 and 5/6 for Kontron switch indicates the used Ethernet
ports.

specifically, ports 5 and 6 (denoted ‘‘5/6’’ for brevity) should
have a lower latency. A reason was not disclosed. In a first
measurement series, we used ports 1 and 3 (1/3), and in
Figure 8, we show results for both port combinations.

2) HARDWARE: KONTRON VS. FIBROLAN
We observe for the two hardware switches the expected
linearly increasing 1-1 bit delay with increasing frame size
for SF; respectively, the linear latency increase and then the
latency plateau for CT. For SF, the Kontron and FibroLAN
switches have similar latencies. Especially, if ports 5/6 are
used on the Kontron switch, the latencies are almost identical.
For the Kontron switch ports 1/3, there are little periodic
‘‘bumps’’, which are an example of implementation-specific
characteristics and a demonstration of the high precision of
the TSN-FlexTest testbed. For instance, for a frame size of
1514B, we measured mean Kontron SF forwarding latencies
of 15.13µs for ports 1/3 and 14.43 µs for ports 5/6. Similar
results were obtained in the CT mode: For a 1514B frame,
the mean Kontron CT latencies are 3.72µs for ports 1/3 and
3.00µs for ports 5/6. For the FibroLAN switch, for a frame
size of 1514B, the mean latencies are 14.51µs for SF and
4.99µs for CT.
The mean SF 1-1 bit delay of the FibroLAN switch is

very similar to ports 5/6 of the Kontron switch. However,
there is a difference in the CT mode: the CT latency of
the FibroLAN switch (2.85µs for 64B) is higher than the
Kontron ports 5/6 CT latency (2.74 µs for 64B); however,
for the small 64B frames, the Kontron ports 1/3 CT latency
is 3.47 µs, i.e., longer than the corresponding FibroLAN
latency. For the Kontron switch, the frame size threshold
FT for entering the CT plateau is approx. FK

T ≈ 113B for
port 5/6, and 93B for port 1/3, while for the FibroLAN switch
FF
T ≈ 340B. A reason for both observations can be again

implementation-specific internal processing pipelines, which
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TABLE 4. Parameter values of modified INET SF model, see (7), and CT
model, see (8), measured with TSN-FlexTest testbed for two TSN switches
(and two port combinations for Kontron switch).

we cannot examine from the outside. Moreover, this means
that frame sizes below these frame size thresholds FT will
not benefit from CT.

3) MODIFIED INET SIMULATION
Figure 8 also shows the improvement of our INET modifi-
cations. The original INET implementation (see triangular
markers) gives the following mean latencies for a 1514B
frame: 12.18µs for SF and 0.18µs for CT. However, these
latencies are not realistic (they are too small) compared to the
hardware measurements. Also, for the CT mode, the original
INET simulation entirely misses the characteristic hardware
CT latency behavior consisting of linear increase, frame size
threshold, and then latency plateau.

The original INET SF model only considers the packet
transmission delay dt , without considering the switch pro-
cessing delay dl + d frame

f , see Eqn. (2), resulting in a gap
between the original INET simulations and the hardware
measurements. Therefore, we modified the INET SF models
by adding a delay offset βsf that models the switch processing
delay, see Eqns. (6) and (7). The βsf values of the FibroLAN
and Kontron switches as obtained from our measurements
are given in Table 4. Figure 8 indicates that this INET
SF model modification vastly reduces the gap between the
simulations and the hardwaremeasurements for the SF 1-1 bit
latency.

For CT, we modified the INET code (see Sec. IV-B2) to
implement our CT delay model. Based on our measurements,
we configured the model parameters αct, βct, and FT
see Eqn. (8), as summarized in Table 4. The results obtained
with the modified INET (see diamond markers) are very
close to the latencies of the hardware switches, whereby the
FibroLAN switchmeasurements essentially coincide with the
modified INET simulations for CT switching. For a 1514B
frame, the modified INET gives an SF latency of 14.24µs and
a CT latency of 4.86µs.

C. TIME-AWARE SHAPER (TAS)
We present the results of the TAS evaluations in Figure 9 as
Complementary Cumulative Distribution Function (CCDF).
On the x-axis, the figure shows the one-way first-bit to first-
bit latency, and the y-axis represents the proportion of delay
samples with the respective latency. The intention of using a
TAS is to reduce variations and thus to increase determinism.
A characteristic for this deterministic behavior is a straight
vertical CCDF line.

TABLE 5. Gate Control List (GCL) configuration for Time-Aware Shaper
(TAS) measurements, with: τ1 = 500µs, τ2 = 485µs, τ3 = 15µs. Open gates
are marked with a blue cross and the guard band with a gray G.

1) TAS CONFIGURATION
For both hardware testbed and INET simulation, we use the
same GCL configuration provided in Table 5. First, the gate
is only opened for ST for τ1 = 500 µs, followed by the gate
being exclusively open for Best-Effort Traffic (BE) for τ2 =

485 µs. To protect the ST in the next cycle from the BE in the
preceding cycle, there is a guard band of τ3 = 15 µs during
which no traffic is allowed to be transmitted (see Figure 1).
The 15 µs roughly correspond to oneMaximumTransmission
Unit (MTU) of 1522B. Note: We use ports 1 and 3 of the
Kontron switch for the TAS measurements (see Section VI-B
for more explanation).

Overall, Figure 9 demonstrates that applying the TAS
can achieve very small latency variations. We compare the
TAS of the Kontron (K ) and FibroLAN (F) switches for SF
and CT for both small (128B) and large (1518B) Ethernet
frames. Furthermore, the figure contains the results of the
INET TAS implementation, labeled as I . In this evaluation,
we employ our modified gPTP (see Sec. IV-C2) and modified
CT simulation model (see Sec. IV-B2) with the original INET
TAS implementation.

2) HARDWARE: FIBROLAN AND KONTRON
The FibroLAN switch has a lower latency compared to the
Kontron switch for SF in Figure 9 (see filled markers),
which is consistent with the mean latencies without TAS in
Section VI-B. For SF and 128B, we observe from Figure 9
and Table 6 a maximum latency of 4.09µs for the Kontron
switch and 3.41µs for the FibroLAN switch.

For CT, the results are again consistent with Section VI-B:
the FibroLAN switch has a lower latency for small frames, but
a higher latency for larger frames compared to the Kontron
switch ports 1/3. For CT and 128B (resp. 1518B) frames,
the maximum Kontron ports 1/3 latency is 3.81µs (resp.
3.81µs) while the maximum FibroLAN latency is 3.41µs
(resp. 5.03µs).

3) INET SIMULATION
The simulation outcomes demonstrate the effectiveness of
the TAS in achieving small jitter, aligning closely with the
hardware results. Specifically, in the SF 128B scenario,
the simulation’s maximum of 3.72µs is very close to the
FibroLAN switch measurement, differing only by 0.31µs.
For CT and 128B, the offset of themaximum latency between
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TABLE 6. Summary statistics of TAS first-bit to first-bit latency evaluation
for SF and CT switching of small 128 byte frames and large 1518 byte
frames.

FIGURE 9. Time-Aware Shaper (TAS) first-bit to first-bit forwarding
latency plotted as Complementary Cumulative Distribution Function
(CCDF). Legend: Device: Switching technology, Ethernet frame size with
K : Kontron, F : FibroLAN, I : INET simulation.

the Kontron switch and the simulation is only 0.04µs.
Similarly, SF 1518B reveals a minuscule difference, with the
simulation’s maximum at 14.31µs in contrast to FibroLAN’s
14.59 µs. Moreover, the CT 1518B simulation results with
a maximum of 4.92µs closely mirror the FibroLAN switch
measurements. In general, the TAS in the INET simulation
performs close to the hardware testbed results, reflecting the
real hardware behavior.

D. FRAME PREEMPTION (FP)
We investigate FP exclusively and in combination with
other TSN features (different switching modes and TAS) via
boxplots in Figure 10. We measure the one-way first-bit to
first-bit latency for the topology in Figure 6b. Specifically,
we utilize the FibroLAN switch as Switch 1 and the Kontron
switch as Switch 2. Table 7 shows the legend of Figure 10.
While previous subsections have focused on individual TSN
features in isolation, we now highlight the advantages for
increasing determinism when features are used together.
Generally, high-priority ST is always impaired by BE, and we
examine how combining FP with other TSN features reduces
the ST latency and latency variation.

FIGURE 10. Frame Preemption (FP) in isolation and in combination with
other TSN features; Explanation of x-axis legend in Table 7, frame size
1518 B.

We start with configurations A and B, that use only
Strict Priority Queuing (SPQ) to distinguish the streams.
This means that frames of different priorities are handled
by the switch in different queues, but there is no advanced
mechanism, such as TAS, to protect them from each other.
As a result, the ST may compete with BE, causing higher
delays and variation for ST in comparison to subsequent
configurations. From Figure 10, the benefit of CT is evident
when comparing A (SF) and B (CT). The median INET
latencies are 47.30µs (which is 4.09 µs higher than the
hardware median latency) for configuration A (SF) and
19.15 µs (1.91 µs lower than hardware) for configuration B
(CT).

By implementing TAS in configuration C, the latency and
jitter are significantly reduced. The median INET latency of
box C is 8.10 µs, which is 0.60 µs higher than the hardware
median latency. Compared to configurations A and B, where
the differences between the upper and lower latency whiskers
exceed 10 µs, both whiskers and the median coincide for
box C; i.e., TAS can achieve essentially zero jitter.

Configurations D, E, and F use FP (see Section II-B4),
which can reduce the latency compared to pure SF and
CT. The median original INET latencies are 40.57µs for
configuration D and 21.05 µs for configuration E. Compared
to the hardware SPQ measurements, we observe a decrease
in the hardware latency for both SF and CT as well as a
decrease of the hardware latency variation (smaller boxes and
whiskers).

We observed that for configurations D, E, and F with FP,
the latency values from the original INET simulation are
about 10 µs higher than the corresponding hardware testbed
measurements. More specifically, the medians of original
INET for the configurations D, E, and F are 7.58µs, 7.70 µs,
and 9.60 µs higher than the medians of the corresponding
hardware measurements. The higher simulation latencies can
be attributed to the original INET implementation, where
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TABLE 7. Legend details for Figure 10. In the measurement of the
combined features, we disable the gPTP protocol and assume perfect
synchronization because in the current INET release (4.5.2), FP is not
compatible with gPTP.

the CT at switch 2 in Figure 6b is not compatible with FP
(see Section IV-D), increasing the first-bit to first-bit delay.
With our INET modification in Section IV-D, the median
latencies of the modified INET versions D, E, and F are
33.37 µs, 14.42 µs, and 8.10µs, respectively. The medians of
the modified INET simulation are only 0.38µs, 1.07 µs, and
0.58µs, respectively, higher than the corresponding medians
of the hardware measurements.

VII. CONCLUSION
A. SUMMARY OF STUDY CONTRIBUTIONS
In recent years, TSN has become an important networking
technology for enabling near-deterministic communication
within the data link layer (layer two) of networks, attracting
significant attention. A significant amount of research is
currently centered around evaluating the performance of TSN
networks under different scenarios and configurations, and
developing various mechanisms to optimize the TSN network
performance. Conducting hardware testbed evaluations can
be challenging due to limited hardware availability, test
environment setup complexities, and the high cost of TSN
switches, especially in large-scale scenarios. As a result,
research in this domain heavily relies on simulation as an
evaluation method to refine and improve TSN tools and
standards. Recent studies commonly employ the combination
of OMNeT++ and the INET framework for simulating TSN
networks.

This study rigorously evaluated the accuracy of INET
TSN simulations by comparing simulation results with
measurements on our real-world TSN-FlexTest testbed [28],
equipped with commercially available COTS TSN switches
and interfaces. When disparities arose, we modified INET
to more closely align with the real hardware behaviors. Our
evaluation focused on specific TSN features in INET that
were available in August 2023, namely time synchronization,
CT, TAS, and FP. Our investigation initially delved into clock
deviation among diverse network devices for various gPTP
configurations, exposing disparities between simulation and
testbed outcomes. To address these disparities, we enhanced
the INET framework to simulate the gPTP of real hardware
better. Our measurements validated that the modified INET
version closely matches gPTP results from hardware-based
measurements.

Furthermore, we observed disparities between simulations
with the original INET and hardware measurements of
first-bit to first-bit latency for both SF and CT switching.
We conducted a mathematical analysis, identified the source
of the difference, and modified INET accordingly. Simula-
tions with our modified INET framework closely mirror the
SF and CT forwarding latencies of hardware measurements.
We also modified the FP MAC and PHY layers to support FP
in conjunction with CT. Our modifications, which we make
publicly available [36], aim to provide researchers with a
more precise tool for evaluating TSN networks.

B. FUTURE RESEARCH DIRECTIONS
The evaluation and enhancement of the INET TSN simu-
lation accuracy in this paper can form the foundation for
several important future research directions on advancing the
capabilities of INET TSN simulations. First, once the gPTP
protocol in the current INET release 4.5.2, see Section IV-C1,
has been extended to support gPTP over multiple hops,
then follow-up research should evaluate the accuracy of
end-to-end time synchronization for large-scale multi-hop
networks.

This study has focused on four core TSN features,
namely gPTP time synchronization, CT packet switching,
TAS traffic shaping, and FP, which support a wide range
of TSN use cases [29]. Future research should consider
other TSN features, such as the Credit-Based Shaper (CBS,
IEEE 802.1Qav), the Asynchronous Traffic Shaper (ATS,
IEEE 802.1Qcr), Frame Replication and Elimination for
Reliability (FRER, IEEE 802.1CB), and Per-Stream Filtering
and Policing (PSFP, 802.1Qci, also referred to as Ingress
Policing) [29], [63]. Since OMNeT++ is a modular simula-
tor these features can directly use our modified gPTP and CT
INET models. In particular, similar to TAS jointly operating
with CT in our study, future studies can integrate CBS and
ATS with CT. PSFP is a higher-layer management protocol,
which can readily employ our lower-layer modifications of
gPTP and CT. On the other hand, since CT is not compatible
with the original INET FP, requiring the modifications in
Section IV-D for integrating CT with FP, we anticipate that
similar modifications will be required for integrating CTwith
FRER; specifically, when the duplicated CT streams reach the
destination and need to be eliminated.

Since 5G integrationwith TSN is a promising technique for
a wide range of applications [17], [18], [19], e.g., for smart
factories, investigating the end-to-end latency of integrated
5G-TSN networks is important. Such investigations can
employ combinations of our modified INET with open-
source 5G projects that are based on OMNeT++, e.g., [17],
[64], and [65]. Moreover, expanding the TSN-FlexTest
testbed [28] to incorporate 5G capability is imperative to
validate the simulation of integrated 5G-TSN networks.
More broadly, the capabilities of simulators and testbeds of
integrated TSN andwireless networks should be continuously
expanded to accommodate emerging wireless communica-
tion paradigms for very-high-speed 5G systems and for 6G
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systems, such as visible light communication [66], [67], [68],
[69], [70], [71].

The INET simulation framework releases to date lack
control plane TSN components within the fully centralized
TSN architecture. Thus, it is urgent to add specific control
plane functionalities, such as Centralized User Configuration
(CUC) and Centralized Network Configuration (CNC) [72],
to the INET simulation framework and to validate these
additions using commercial hardware.
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