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ABSTRACT This paper aims to introduce a new strategy for the detection of faulty elements in phased
array antennas. The approach takes advantage on the possibility in phased array to introduce the steering
diversity. Accordingly, by collecting the radiated field over the measurement aperture while steering the
beam, an approach inspired by the Time reversal MUSIC (TR-MUSIC) algorithm is exploited to achieve
the diagnostics. At first, it is shown that such an algorithm allows the detection of only completely
turned-off elements as long as the number of defective elements is relatively (depending on the configuration
parameters) high. To overcome such a limitation, the difference model is built and the approach succeeds
in detecting any failure (amplitude and phase failure) by a reduced set of data, mainly depending on the
number of faulty elements. In addition, from the mere knowledge of the geometric parameters of the
measurement configuration and by invoking the theory of degrees of freedom, the conditions for which
the algorithm succeeded in the diagnostics are analytically derived. Furthermore, it is highlighted that the
proposed algorithm achieves the diagnostics even when both the spacing between the array elements and
the element factor is not a priori known. An extensive Montecarlo numerical analysis is included to show
the capability of the approach to achieve a high probability of detection with a reduced set of data. Finally,
full-wave simulations are also included.

INDEX TERMS Array diagnostics, near field measurements, phased array, TR-MUSIC algorithm.

I. INTRODUCTION
Diagnosing array antennas is a classical and important
problem which is necessary to determine if the antenna under
test (AUT) complies with the design specifications. This
can be accomplished by measuring/estimating the radiation
pattern by direct far-field measurements or by near-field
to far-field transformations. If the pattern is found to be
different with respect to the expected one, then the next
step is to discover why this happened and take some
action that allows to restore the pattern behavior [1], [2].
To this end, defective elements, that is the array elements
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whose excitation coefficients deviate from the nominal
ones, need to be found out. This requires dealing with an
inverse problem where from field measurements the element
excitation coefficients, or some quantity related to them,
have to be determined. The problem is usually cast as a
linear inversion one because the elements’ positions are
assumed known. If this is not the case, linearity can be
maintained by considering the elements’ positions as a subset
of a much finer search grid. Under the linear framework,
the most common and classical methods for addressing
diagnostics are by far the so-called back-transformation
method (BTM) [3] and the matrix method (MM) [4]. The
BTM relies on the field plane-wave spectrum representation
and employs the fast Fourier transformation (FFT) algorithm
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to back-propagate the measured field at the array aperture.
This method is generally limited to planar arrays. The
MM basically performs the diagnostics by inverting the
corresponding matrix model and hence is more flexible and
can handle arrays of general shapes. Methods based on
the MUltiple SIgnal Classification (MUSIC) [5] algorithm
have been proposed as well. While these methods can in
principle only deal with completely turned-off elements,
they allow to beat the resolution which is achievable by
the BTM and the MM. This is an important feature since
isolated defective elements can be easily detected. Instead,
due to the limited resolution of classical methods, isolated
defective elements tend to be masked by the reconstruction
of correctly functioning elements that are adjacent to the
fault.

However, the rank deficiency of the data correlation
matrix needs to be properly accounted for, otherwise, the
performance is no better than BTM or MM. A rank recovery
procedure is indeed mandatory. Unfortunately, decorrelation
algorithms do not work for near-field configurations. This
drawback has been overcome in [6], by spatially employing
Fourier transformed field data. Depending on the array’s
size, the number of required data to achieve diagnostics
through the mentioned methods can be very large. Though
more advanced sampling methods [7], [8] allow for a great
reduction of such a number (as compared to the standard half
the wavelength sampling) it can still be too high to achieve
quick diagnostics. The number of data can be dramatically
reduced by changing perspective and straightway looking
for the defective elements, instead of the ones that work
correctly. This requires to know/estimate in advance the
field radiated by the array without faults (reference array)
so that a difference model, with the defective elements as
unknowns, can be built. Since the faults are, hopefully, a small
fraction of the array elements, the unknown turns out to
be sparse. Hence, compressive sensing (CS) algorithms can
be conveniently employed to pursue the diagnostics [9],
[10], [11]. Many contributions have shown that excellent
diagnostic results can actually be achieved with a number
of data at least twice as large as the number of faults
and that, in principle, it grows only linearly with the
number of faults [9]. In particular, CS has proven to work
well also for near-field configurations, where the restricted
isometry properties are not necessarily guaranteed to hold,
even by sampling the data according to the random or
the deterministic rules suggested in literature. Moreover,
non-convex formulations [12] as well as new mathematical
settings based on Lebesgue space of varying exponent [13]
have been successfully explored.

The CS has been successfully employed even in the
framework of phaseless data [14]. There, the addressed
non-linear problem is cast as a convex minimization thanks
to the difference model and the low perturbation (to the
reference field) due to the small number of faults.

Typically, measurements are collected at different spatial
positions. However, phased arrays are usually checked by

steering the beam. This opens the possibility to employ data
collected while the beam steers in place or in conjunction
to the spatial data. Indeed, this idea was already exploited
in [15] where the steering diversity is combined with some
CS based algorithms. By this strategy, the so-called sensing
matrix has the structure of a discrete Fourier transform (DFT)
for which most of CS theoretical findings apply. Indeed, the
excitation coefficients can be more generally chosen so as to
optimize the property of the sensing matrix (for CS purposes)
[9]. However, for a practical phased array using digital
phase shifters, the range of achievable scanning directions is
limited and the scanning states are discrete [15]. Therefore,
exploiting the steering diversity in place of the spatial one
can lead to a number of independent data insufficient to
detect all failures, especially when they affect both the
amplitude and phase of the element. Nevertheless, steering
the beam (steering diversity) is much more convenient since
for phased arrays it is already on the table. Also, collecting
data through the steering diversity meets the requirement of
quick diagnostics.

Therefore, in this paper, the phase domain sampling is
combined with the spatial one by taking into account that to
speed up the diagnostic procedure one should mainly reduce
spatial data without affecting fault detection performance.
In particular, the aim is to expand the realm of algorithms for
obtaining quick and reliable array diagnostics by exploiting
steering diversity. To this end, we reconsider the MUSIC
algorithm. More in detail, collecting the radiated field over
the measurement aperture while steering the beam leads
to a data matrix which enjoys a factorization similar to
the so-called multistatic data matrix used in time-reversal
MUSIC (TR-MUSIC) [16], [17] for point-like target imaging.
Basically, here, the role played by the view diversity in
imaging problems is instead due to the steering diversity.
Accordingly, a TR-MUSIC based algorithm can be applied
to achieve array diagnostics as well. This approach allows
us to maintain the super-resolution feature of the MUSIC
while avoiding the need for a decorrelation stage. Moreover,
the number of required data is much lower than in [6], since
the spatial Fourier transformation step is no longer necessary.
Indeed, theoretically, the TR-MUSIC works as long as the
number of spatial data and steering angles both exceed the
number of targets.

The TR-MUSIC can be applied to look for the working
elements or the defective ones; in the latter case, the
difference model is employed.

In the first case, the TR-MUSIC is convenient for faults
represented by completely turned-off elements. Of course, the
achievable performance is limited (as for any other method)
when the number of properly functioning elements exceeds
the number of degrees of freedom of the problem (NDF)
(which in turn depends on the measurement configuration)
[18]. Nonetheless, when the number of faults is such that the
elements in the array do not exceed the NDF, the TR-MUSIC
shows amazing detection performances, much better than
other methods. In this regard, it can be considered as being
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FIGURE 1. Geometry of the problem.

complementary to diagnostic methods that are tailored to deal
with sparse unknowns.

When the fault-free reference array is assumed known, the
difference model can be considered. Accordingly, the case
of few faults can be safely addressed with a reduced set of
data. Indeed, say ND the faults in the array, then the number
of required data grows with ND spatial measurement × ND
steering angles. Preliminary results of this approach are
shown in [19], [20]. Compared to these papers, here,
a theoretical discussion is included to derive the conditions
ensuring the correct diagnosis in terms of degrees of freedom
and, hence, in terms of the measurement configuration
parameters. Full-wave simulations are provided to show
the capability of the proposed strategy to outperform CS
when the element factor of the array is not a priori known.
Moreover, TR-MUSIC can also deal well with the case of
non-uniform arrays or when the element positions are not
known in advance. Finally, while in principle TR-MUSIC
allows for the detection of only completely turned-off
elements when the difference model is introduced, faults of
any type can be detected. The paper is organized as follows.
Section II is devoted to giving a mathematical description
of the problem. In Section III the TR-MUSIC is detailed
whereas Section IV introduces the difference model and
discusses the role of the element factor. Section V reports
an extensive numerical analysis to validate our approach,
whereas Section VI compares our proposed algorithm with
CS. Finally, the conclusions end the paper

II. ARRAY DIAGNOSTICS FORMULATION AND
BACKGROUND
Consider a linear phased arraywithN elements deployed over
the array aperture SD = [−Xs,Xs]. Denote by rn = (xn, 0)
the positions of the array elements. The radiated field is
collected at M spatial points, r0m = (x0m, z0), over the finite
linear measurement domain OD = [−X0,X0] parallel to
SD and located in near-field (with respect to the array) at a
distance z0 > λ, λ being the wavelength. A schematic view

of the radiation problem considered is given in Fig. 1. Note
that the array elements, as well as the spatial measurement
positions, do not need to be uniform. Therefore, the following
discussion applies to uniform and nonuniform arrays.

The radiated field can be written as

E(r0m) =

N∑
n=1

G(r0m, rn)cn (1)

where E is the vector electric field, k = 2π/λ is the
wavenumber, cns are the excitation coefficients, and

G(r0m, rn) =
e−jk|r0m−rn|

|r0m − rn|
f (r0m, rn) (2)

with f (r0m, rn) being the element factor.
It is assumed that only one tangent field component is

collected. Accordingly, (1) changes and becomes the scalar
relationship

Et (r0m) =

N∑
n=1

Gt (r0m, rn)cn (3)

where Et (r0m) denotes one among the x or y field components
and Gt (r0m, rn) embodies the corresponding component,
ft (r0m, rn), of the element factor.

Equation (3) can be conveniently arranged in matrix form
as

e = G c (4)

where e ∈ CM×1 is the numerical column vector of the
electric field (of one of the tangent components indeed)
collected over the M measurement positions, G ∈ CM×N is
the propagator matrix whose n m entry is given by Gnm =

Gt (r0m, rn) and c ∈ CN×1 is the coefficient column.
Assume that the array does not comply with the design

specification because ND elements out of N are defective
(faulty elements), that is deviate from the nominal ones
because of amplitude and/or phase errors. The array diag-
nostics problem amounts to finding out which elements are
defective from field measurements and can be cast as the
inversion of (4) for the coefficient vector c.
Let us focus on the particular case where the defective

elements are completely turned off. Then, the inversion of (4)
in principle allows one to determine the elements that are
functioning properly so that the rest of the elements in the
array are considered to be faulty.

The BTM and the MM are classical approaches to achieve
diagnostics. However, the achievable resolution is limited
by the measurement aperture and the distance from the
array under test [18]. For example, when considering a
measurement aperture located a few wavelengths apart from
the array under test and being twice as large in size as the array
length, the achievable resolution is generally larger than λ/2
[21], which in turn is the usual separation distance among the
array elements. The limited resolution generally impairs the
detection of isolated turned off elements that result masked
by the reconstructions of adjacent functioning elements.
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To improve the achievable resolution, the measurement
aperture must be enlarged, or some methods borrowed from
the array processing literature can be exploited [6], [22].
Among them, here we focus on the MUSIC algorithm
because it fits the subtended localization problem well (due
to the assumed turned on/turned off element fault type) and it
is the key ingredient of the TR-MUSIC we aim to exploit.

As is well known, the MUSIC algorithm relies on the data
correlation matrix R = e eH whose eigenspectrum is used
to single out the so-called noise subspace which in turn is
exploited to build the MUSIC pseudospectrum indicator [5].
However, for the case at hand, R is clearly rank deficient
with rank one. Consequently, if MUSIC is applied without
a rank restoring procedure, a dramatic loss in the achievable
performance is experienced. Indeed, MUSIC works no better
than standard BTM orMM procedures (see [6] for theoretical
arguments supporting this statement). To take advantage
of the super-resolution ability of MUSIC, the rank of R
must be recovered. This can be achieved by exploiting
some de-correlation methods (i.e., smoothing procedures),
which have been devised to deal with coherent or partially
coherent signals [23]. Unfortunately, smoothing procedures
cannot be directly exploited for near-field configurations.
This limitation was overcome by the approach presented
in [6], which basically casts the problem in the spatial Fourier
domain and relies on the FFT of the measured data. However
accurate FFT computation requires that the data be collected
over a large aperture, preferably sampled uniformly over a
dense λ/2 grid. Moreover, half the data are spent to achieve
rank recovery.

In the sequel, we are concerned with a different, though
MUSIC based diagnostic algorithm that can work without the
need of the rank recovery step.

III. TIME-REVERSAL MUSIC DIAGNOSTIC ALGORITHM
Phased arrays are a kind of antenna that allows to steer the
main beam. Usually, during the diagnostic stage, the array
pattern is checked by changing the steering angle within
the nominal field of view. From our perspective, this entails
that further data are actually available and can be used in
conjunction with or to reduce the spatial data. While the latter
consideration applies whatever is the diagnostics algorithm,
for the MUSIC this gives the further advantage that a rank
recovery procedure is no longer necessary and hence all the
related issues can be ignored.

To cast the previous discussion within a rigorous frame-
work, assume that the field measurements are collected for
L different steering angles. We call this data acquisition
modality steering diversity. In particular, assume that the
steering angles are chosen within the angular interval AD =

[−θA, θA]. For example, for the l-th steering angle, θl , the
field is expressed as

Et (r0m,θl ) =

N−ND∑
n=1

Gt (r0m, rin )e
jkxin sin θl cin (5)

where ND is the number of faulty elements and SD =

(i1, i2, · · · , iN−ND ) ⊆ (1, 2, · · · ,N ) is the subset of the
properly functioning element indexes.

The overall field data result in L measurement vectors of
size M that can be arranged in matrix form, Et ∈ CM×L ,
which in turn takes on the following factorized form

Et = GCS (6)

where C = diag{c} is the diagonal N − ND × N − ND
matrix obtained from the excitation coefficients c, and S ∈

CN−ND×L is the matrix whose columns collect the phase
terms which steer the beam; more in detail, its n − l entry
is given by Snl = ejkxin sinθl .
It may be noted that Et , expressed in (6), resembles the

so-called multi-static data matrix (MDM), which is the key
ingredient of time-reversal imaging [16]. By virtue of this
similarity, such a matrix in the sequel will be addressed
again as MDM or more precisely as a multi-static multi-
steering data matrix (MMDM). This similarity is by far more
important since it allows to employ MUSIC to pursue the
diagnostics without the need for a rank recovering procedure.
This is because for M ,L ≥ N − ND, S and G have rank
N − ND. For example, by uniformly sampling the steering
term u = sin θ , S exhibits a Vandermonde structure, and
thus its rank is N − ND. For G, because of the near-field
configurations, the matter is quite tricky. Nonetheless, when
the element factor is smooth (as is practically always the
case) the structure of G is basically dictated by the scalar
Green function terms (see (2)). In this case, there is abundant
numerical and experimental evidence in literature that G is
full rank [18]. Eventually, it can be concluded that the rank of
Et coincides with the number of non-defective elements. Let
us regard the MMDM as a matrix operator, that is as

Et : a ∈ CL×1
→ b ∈ CM×1 (7)

and assume that L,M > N − ND. It clearly follows that

CM×1
= R(Et ) ⊕ R(Et )⊥

CL×1
= R(EHt ) ⊕ R(EHt )

⊥ (8)

where R(Et ) is the range of the matrix Et , R(Et )⊥ its
orthogonal complement and analogously for EHt , with the
superscript H denoting the Hermitian transpose. Often R(Et )
and R(Et )⊥ are addressed in literature as the signal and
the noise subspaces, respectively [6]. They can be separated
through the singular value decomposition (SVD) of Et .
In particular, in the noiseless case the signal subspace is
spanned by the singular vectors corresponding to the singular
values which are not zero.

Now, denote as gn and as an n = 1, 2, . . . ,N , the
column vectors of G and the row vectors of S, respec-
tively. According to the previous discussion, it results that
R(Et ) = span{gi1 , · · · , gin , · · · , giN−ND

} and R(EHt ) =

span{aHi1 , · · · , aHin , . . . .a
H
iN−ND

}. Moreover, denote as un and
vn the left and the right singular column vectors of Et
that span R(Et ) and R(EHt ), respectively. Then, the properly
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FIGURE 2. Left side of panel (a) and (b): singular values of matrix Et associated to an array of
N = 41 dipoles directed along the x axis and λ/2 spaced within a SD = [−10λ, 10λ] for ND = 4 and
ND = 10 faults respectively. The field is collected in M = 65 points uniformly spaced over
OD = [−16λ, 16λ] for L = 65 steering angle taken over AD = [−π/2, π/2]. Finally, a complex Gaussian
noise with an SNR = 30dB is added to the data. For this configuration it results rankeff (S) = 41 and
rankeff (G) = 37. Right side panel (a) and (b): pseudospectrum associated to the considered array for
ND = 4 and ND = 10 faults(red asterisks) respectively. The peaks of pseudospectrum, indicated by
triangles, are associated with working elements(green asterisks). In panel (a) since
min(rankeff (S), rankeff (G)) < N − ND, the algorithm failed to detect the working elements and appear
false faults(magenta asterisks). Instead in panel (b) since min(rankeff (S), rankeff (G)) > N − ND the
algorithm allows to identify all the working elements.

functioning elements can be identified as the locus where the
indicators (pseudospectra)

Ir (rn) =
1

1 −
∑

σi ̸=0 |uHi g̃n|
2

(9)

and/or

Iθ (rn) =
1

1 −
∑

σi ̸=0 |vHi ã
H
n |2

(10)

peak, with g̃n = gn/||gn|| and ãn = an/||an|| being the
normalized version of gn and an, representing the so-called
steering vectors, σi are the singular values ofEt . In particular,
under the ideal noiseless case, exactlyN−ND singular values
are different from zero. In practice, the noise is always present
and some threshold is to be employed to separate the signal
and the noise singular values.

Accordingly, (9) and (10) are rewritten as

Ir (rn) =
1

1 −
∑

σi>ϵ |uHi g̃n|
2

(11)

and

Iθ (rn) =
1

1 −
∑

σi>ϵ |vHi ã
H
n |2

(12)

with ϵ being the separation threshold. Of course, the choice
of the threshold impacts on the achievable performance.

A. EFFECTIVE RANK OF ET AND THE ROLE OF NOISE
As discussed above, in the ideal noiseless case, the rank of
Et is equal to the number of properly functioning elements as
long as both M ,L are equal to or greater than that number.
Therefore, ifM ,L > N ≥ N −ND, Ir and Iθ sharply peak at
the working element positions.

When the noise enters the picture things can change
drastically. In this case, the measurements are affected by the
noise so that (4) actually is

Êt = Et + N (13)

where Êt ∈ CM×L denotes the noisy MMDM matrix and
N ∈ CM×L the noise matrix.

The noise clearly perturbs the singular spectrum of Et .
The first obvious effect is that the zero singular values of
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FIGURE 3. The probability of detection PD in terms of 1 returned by a Monte Carlo analysis performed over Ntrials = 1000 trials. A linear
phased array of N = 41 dipoles, uniformly spaced at λ/2 and arranged over the array support SD = [−10λ, 10λ] is considered. The data are
collected in M = ND+1 points uniformly spaced over OD = [−16λ, 16λ]. The steering angles are L = rankeff (S) = 41 selected by sampling
the variable sinθ uniformly in the range [−1, 1]. There are only ND amplitude failures and data are corrupted by noise. Both the noise and
fault locations randomly change at each trial. In each sub-figure, the results for the SNR ∈ {30, 35, 40} dB and ND ∈ {1, 3, 6, 9} are shown.
Panels on the left refer to a uniform amplitude taper: in (a) the element factor is included in the estimation of Ir then in (c) it is neglected.
Panels on the right refer to a Taylor amplitude taper with SLL = 25dB and n̄ = 4: in (b) the element factor is included into the estimation of
Ir , in (d) it is neglected.

Et rise. This can make it difficult to distinguish between the
noise and the signal subspaces. Accordingly, the ϵ threshold
in (11) and (12) may not be easy to determine. Indeed, some
literature methods can be employed to determine the singular
values corresponding to the signal subspace but when the
transition between the signal and the noise singular values
is smooth their performance degrades [24]. A sufficient
condition for the existence of a clear gap between the signal
and the noise singular values can be derived by exploiting
Weyl’s theorem [25]. Denote as σ̂is and σis the noisy and
the noiseless singular values, then |σ̂i − σi| ≤ ||N||2 i =

1, 2, · · · ,min{M ,L}, which implies that σ̂i ≤ ||N||2 for
i = N − ND + 1, · · · ,min{M ,L}. Now, if σN−ND ≫

2||N||2 then σ̂N−ND ≫ σ̂N−ND+1 and there is a clear gap
between theminimum signal singular value and the first noise
one.

The role of noise can be even more serious. Indeed,
even though the signal singular values were discernible or
automatically selectable because the number of unknowns is
a priori known, the noise perturbs the signal and the noise
subspaces by the so-called out of space contribution [26].
Consequently, a significant performance degradation can
occur. This drawback clearly depends on the available signal-
to-noise ratio (SNR) but also on the characteristic of the noise.
The most difficult scenario happens for single-snapshot
measurement. For this case, an elegant formal treatment
based on matrix perturbation theory [25] has been presented
in [27] for the case of the MUSIC algorithm applied to a
spectral estimation problem. There, for the case of well-
resolved harmonics, meaning that they are separated more
than Rayleigh’s limits, the estimation error was provided in
terms of the ratio between the minimum signal singular value
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FIGURE 4. The probability of detection PD in terms of 1 returned by the same Monte Carlo analysis and measurements setup described in
the caption of Fig.3. In this case, both amplitude and phase failures are considered. Panels on the left refer to a uniform amplitude taper:
in (a) the element factor is included into the estimation of Ir then in (c) it is neglected. Panels on the right refer to a Taylor amplitude taper
with SLL = 25dB and n̄ = 4: in (b) the element factor is included into the estimation of Ir , in (d) it is neglected.

and the noise norm. Also, an estimation of the minimum
singular value as a function of the number of the data samples
and the harmonic amplitude dynamic range was provided.

In the multi-snapshots case, the problem simplifies since
a simple averaging procedure allows to reduce the level of
noise. Moreover, for uncorrelated zero mean noise samples
(which is the case commonly assumed), the perturbation
due to the noise while computing the singular value
decomposition is close to a diagonal matrix so that the
out of space perturbations become negligible. However, the
measurement process is slowed down because measurements
need to be collected multiple times for each position.

While the same estimation as in [27] cannot be directly
exploited here, because the model is different and the
array elements are in general not well-resolved, the very
crucial role played by the minimum signal singular value,
σN−ND , also holds for the problem at hand. Eventually,
if such a singular value is very low, then the TR-MUSIC
performance may be insufficient even for a relatively high

SNR. Unfortunately, this is just the case for the problem at
hand due to the mathematical features of the radiation model.

Let us pause on this crucial point by elaborating more in
depth on the rank of G and S.

As discussed above, these matrices are full rank, that is
M ,L > N − ND → rank(G), rank(S) = N − ND. However,
depending on the configuration parameters, their effective
rank can be lower than N − ND, meaning that their singular
values abruptly decay after a certain index.

More in detail, from the obvious link between S and the
prolate spheroidal sequences [28], [29] it follows that its
effective rank is

rankeff (S) ≃
2kXs sin(θA)

π
(14)

As to G, it is basically a discrete version of the radiation
operator for which it has been shown that the singular values
exhibit an almost step-like behavior [30]. Therefore, the
effective rank can be estimated as the singular value index
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FIGURE 5. The probability of detection PD in terms of 1 returned by a Monte Carlo analysis performed over Ntrials = 1000 trials. A linear
phased array of N = 41 dipoles, uniformly spaced at λ/2 and arranged over the array support SD = [−10λ, 10λ] is considered. The data are
collected in M = ND + 2 points uniformly spaced over OD = [−16λ, 16λ]. The steering angles are L = ND+1 selected over the Nyquist grid
by enforcing the sampling to retain at least one pair at the Nyquist rate and the extreme points at -1 and 1. The other L − 3 angles are
randomly chosen from the left samples of the Nyquist grid. Since at least 3 steering angle are needed, the curve associated to ND = 1 start
from 1 = 2. Only ND amplitude failures are considered. There is a noise in the data. Both the noise and fault locations randomly change at
each trial. In each sub-figure, the results for the SNR ∈ {30, 35, 40} dB and ND ∈ {1, 3, 6, 9} are shown. Panels on the left refer to an
uniform amplitude taper: in (a) the element factor is included into the estimation of Ir , then in (c) it is neglected. Panels on the right refer
to a Taylor amplitude taper with SLL = 25dB and n̄ = 4: in (b) the element factor is included into the estimation of Ir , in (d) it is neglected.

where the knee occurs, that is as

rankeff (G) ≃
2
λ
[
√
(Xs + X0)2 + z20 −

√
(Xs − X0)2 + z20]

(15)

Now, by employing the Courant Fisher min-max theo-
rem [31], it can be easily shown that

σN−ND (Et )

≤ min{σN−ND (G)|cmax |σ1(S), σ1(G)|cmax |σN−ND (S)}

(16)

where we have used the notation σ (A) to indicate that
the singular values refer to the matrix A and |cmax | is
the maximum amplitudes of the excitation coefficients
corresponding to the functioning elements. The upper bound

in (16) is generally not tight and hence not useful to establish a
sufficient condition for which the algorithm works. However,
it allows to concluded that a necessary condition for the
TR-MUSIC to work well is that

min(rankeff (S), rankeff (G)) > N − ND (17)

If (17) does not hold true, because of (16), the minimum
signal singular value, σN−ND , is very low and thus even a
low amount of noise can lead to a relevant performance
degradation. The worst case happens when no faulty elements
occur, that is forND = 0. In this case, the number of elements
arranged over the aperture [−Xs,Xs], for example according
to the standard λ/2 distance, is 4Xs/λ. Since, (15) tends
to 4Xs/λ only when X0 becomes unbounded, a very large
measurement aperture would be required. Moreover, this

80290 VOLUME 12, 2024



M. A. Maisto et al.: Near-Field Phased Array Diagnostics by a Subspace Projection Method

FIGURE 6. The probability of detection PD in terms of 1 returned by the same Monte Carlo analysis and measurements setup explained in
the caption of Fig.5. In this case both amplitude and phase failures are considered. Panels on the left refer to an uniform amplitude taper:
in (a) the element factor is included into the estimation of Ir , in (c) it is neglected. Panels on the right refer to a Taylor amplitude taper with
SLL = 25dB and n̄ = 4: in (b) the element factor is included into the estimation of Ir , in (d) it is neglected.

drawback cannot be in practice remedied by increasing the
number of data, for example by exploiting a denser sampling
grid, since increasing M and L much beyond N would only
slowly increase the signal singular values [34]. To this end,
the averaging procedure would be by far more effective and
maybemore convenient to implement. Eventually, the present
formulation of TR-MUSIC is expected to work as long as
the number of defective elements is relatively (depending on
the configuration parameters) high. Thus it can be considered
as being complementary to other methods that address the
case of few faults. It is worth pointing out that the mentioned
limitation is not restricted to the TR-MUSIC but, being
related to the mathematical features of the problem, affects
any inversion method (i.e., BTM, MM, etc.), though in
general with a different performance degradation.

We end this section by remarking that (14) and (15)
can be verified with L and M only slightly larger than
rankeff (S) and rankeff (G), respectively, if the rom and the
θl are properly selected. While it can easily be realized

that the steering angle should be sampled so as to have a
uniform step ≤ π/kXs in u = sin θ , the determination of
the spatial sampling positions is more involved because of
the considered near-field configuration. Indeed, as it has been
shown (for example in [32], [33]) the spatial samples should
be collected according to a non-uniform rule.

B. OVERALL DETECTION ALGORITHM
In this section we briefly describe the steps the TR-MUSIC
based detection algorithm consists of.

As mentioned above, the transition between the minimum
signal singular value and the first noise singular valuemust be
estimated in order to determine the noise subspace, which is
in turn necessary for the formation of the pseudospectra (11)
and (12). Therefore, the algorithm needs to be equipped with
a procedure that achieves such a goal. In the noiseless case
there is a very high gap between the mentioned singular
values. In noisy cases, such a gap tends to be filled.
However, it must still exist to have successful detection.
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Therefore, to estimate the singular value transition index,
we employ the difference vector 1σ = [σ1(Et ) −

σ2(Et ), σ2(Et ) − σ3(Et ), · · · , σN−1(Et ) − σN (Et )]. Say i
the index for which σi(Et ) − σi+1(Et ) is maximum and set
ī = min{i, rankeff (G), rankeff (S)}. Then the noise subspace is
estimated as the span of the singular vectors corresponding to
singular values whose index ranges from ī+ 1 to min{M ,L}.

The selected singular vectors are used to build the
pseudospectra. In particular, this is achieved by considering a
much finer grid (with respect to the array nominal grid). This
allows to relax the need of a priori information about the array
element positions as well as to deal with cases in which the
elements positions are affected by uncertainties.

Finally, since TR-MUSIC allows for detection only,
a standard peak picking procedure is employed and the
results shown in binary form: 1 for detection and 0 for no-
detection. The binary indicators are indicated as Īr and Īθ .
The pseudocode algorithm is shown in Alg.1

C. ILLUSTRATIVE EXAMPLES
In order to support the previous theoretical discussion,
in this section we show a couple of representative numerical
examples.

An array of N = 41 dipoles directed along the x axis and
uniformly spaced at λ/2 over the array support [−Xs,Xs],
Xs = 10λ, is considered. Uniform excitation distribution,
that is cn = 1, ∀n, is assumed, whereas the phase changes
to implement the steering diversity. The steering angles are
selected by uniformly sampling the variable sin θ at L =

42 angles within the interval [−1, 1]. The radiated field is
collected over M = 42 positions (for simplicity) uniformly
deployed over a rectilinear observation domain with X0 =

16λ and located at z0 = 7λ. Note that while L basically
coincides with rankeff (S), M slightly exceeds rankeff (G).
However, bothM and L are greater than N ; thus, in principle,
the array with no fault can be addressed as well.

For noiseless data (not shown here), the TR-MUSIC
always succeed in detecting and locating all the functioning
elements, even when no faults are present. However, in prac-
tical cases, data are always corrupted by noise. Therefore,
in the sequel data are perturbed by adding a zero mean
complex white Gaussian noise matrix whose entries are
independently generated according to the following rule

Nnh =
N (0, 1) + jN (0, 1)

√
2

max{|Etml |}10−SNR/20 (18)

where N (0, 1) denotes the normal distribution and
max{|Etml |} is the noiseless data entry with the maximum
amplitude.

Two cases with ND = 4 and ND = 10 faults
(turned off elements) randomly introduced in the array are
considered. The first case is chosen since the corresponding
number of correctly functioning elements coincides with
min{rankeff (G), rankeff (S)}, whereas in the second case
condition (17) is verified.

Algorithm 1 TR-MUSIC for Array Diagnostics From Et
Data

1: function Binary Pseudospectrum Indicator(Et)
▷ [u, σ, v] = SVD(data) is a function that return the
singular system of data
▷ [Ir ,Iθ ]= PSD(data,SVD(data),signal subspace dimen-
sion) is a function that return the pseudospectra from the
formula (11) and (12)
▷ [pks] = FINDPEAKS(data) is a function that return
the peaks of vector data

2: [u, σ, v] = SVD(Et) ▷ Compute the SVD of the data
3: 1σ = [ ] ▷ Initialize an empty vector

4: for j from 1 to length(σ ) − 1 do
5: 1σ (j) = σ (j+ 1) − σ (j)
6: end for

7: i = max(abs(1σ )) ▷ Find the larger step in σ

8: ī = min{i, rankeff (G), rankeff (S)}
9: ▷ Signal subspace dimension

10: [Ir ,Iθ ] = PSD(Et ,SVD(Et),ī)
11: ▷ Build the pseudospectra
12:

13: pks = [ ] ▷ Initialize an empty vector
14: [pks] = FINDPEAKS(Ir ) ▷ Find peaks
15: pks = SORTDESCENDING(pks)
16: ▷ Sort in descending order pks

17: for k from 1 to ī do ▷ Binary indicator
18: for each index of Ir do
19: if Ir (index) == pks(k) then Īr = 1
20: else
21: Īr = 0
22: end if
23: end for
24: end for

▷ Repeat from line 13 to 24 with Iθ instead of Ir

25: return Īr , Īθ

26: end function

In both cases the SNR = 30 dB. It is worth remarking that
this level of noise is considered reasonable for this type of
problems [9]. Indeed, in lab conditions even a SNR as large
as 60 dB is deemed feasible [10].

Finally, while constructing the pseudospectra the array
aperture has been discretized by 3001 search points.

The outcome returned by the TR-MUSIC is reported in
Fig. 2. The top row refers to the case of ND = 4. As can
be seen, the singular value behaviour does not show a clear
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separation between the signal and the noise subspaces, though
the selection procedure (i.e., algorithm step 2) returns the
correct number of functioning elements (indicated by the
singular value plotted by the red asterisks). Nonetheless,
the indicator reported on the right panel shows inaccurate
localization. Indeed, besides the actual faults (denoted by
red asterisks), further faults (magenta asterisks) appear.
Besides, some of the detected functioning elements show
some deviation from their actual position. The bottom row of
the same figure, instead, refers to the case of ND = 10 faults.
In this case, the noise subspace can be easily identified (see
the left panel of row (b)) and the functioning elements are all
detected and very precisely localized.

It is stressed that even by increasing the SNR till 60dB
and/or the number of data the case of row (a) cannot be
addressed successfully. This confirms that condition (17)
must be strictly verified and that eventually the presented
version of the TR-MUSIC is suited for the diagnostics of
arrays populated by a relatively large number of faults.

IV. LOOKING FOR THE FAULTY ELEMENTS
As discussed above, the performance of the TR-MUSIC
can be limited when dealing with a relatively small number
of faulty elements. Since the latter is deemed to be more
representative of practical scenarios, such a limitation needs
to be overcome.

A commonway to address the defective elements detection
is by employing the difference model, which entails to look
directly for the defective elements. The advantage is that the
number of unknowns is dramatically reduced. However, the
reference array, that is the array with all the elements properly
functioning, must be known/estimated in someway. Also,
a suitable processing scheme is necessary to gain advantage
from the much lower number of data which are in principle
required. In this framework, the inversion of the field data can
be conveniently achieved by some CS algorithm [9].
Denote by cr the excitation coefficients (with the steering

term not included) of the reference array. Also, say Ert
the corresponding MMDM. Then, the difference model is
obtained as

1Et = Et − Ert = G1CS (19)

with 1C = diag(cs), with cs = c − cr . 1Et can be seen as
the field radiated by the virtual array whose active elements
are only the defective elements.

In this case, we relax the assumption of turned off faulty
elements. Hence, the defective elements can be of any
type. In particular, the defective elements are represented
as elements whose excitation coefficients are perturbed with
respect to the reference ones, that is

cn = crn(1 + an)ejφn (20)

with n ranging within the index set corresponding to the
defective elements.

In this case, (17) rephrases as

min(rankeff (S), rankeff (G)) > ND (21)

Since, ND ≪ N , (21) is easily verified. If (21) holds true
the TR-MUSIC exhibits excellent detection and localization,
with practically 100% probability of success when SNR ≥

30 dB (not shown here for brevity). However, (21) implicitly
entails thatM ≥ rankeff (G) and L ≥ rankeff (S).

A. DATA REDUCTION
Condition (21) does not take into account the sparsity of
the unknown cs, since rankeff (G) and rankeff (S) refer to the
whole array grid. Though by a proper sampling strategy
the number of data can be greatly reduced with respect to
the λ/2 sampling [32], in view of the unknown sparsity, the
amount of required data can be much lower. Indeed, the
TR-MUSIC only needsM ,L > ND to work.
The arising question is how to select such a reduced set

of measurement positions. To this end, we select subsets of
size M and L from the grids in rom and ul described at
the end of section III-A. Since M ,L can be much lower
thanN , if the measurement points and the angles are arranged
to be contiguous, then the measurement aperture as well
as the steering angular interval reduce. As a consequence,
Rayleigh’s limits expand andmake the TR-MUSIC procedure
more sensitive to the noise [27]. On the other hand, if the
measurement aperture and the steering angular interval are
kept the same, then a certain degree of under-sampling
occurs. Accordingly, the pseudospectra can lead to false
detection due to aliasing. This certainly holds true for Iθ .
Instead, Ir is more resilient against this drawback. This is
because the amplitude terms that appear in the spatial steering
vectors, i.e., the gns, help in distinguishing faults. Of course,
when the noise enters the picture, the role of the amplitude
terms can result smoothed. Therefore to achieve the detection
of defective elements we considered

Ī (rn) = Īr (rn) Īθ (rn) (22)

Using I (rn) the false detection problem is strongly mitigated
since aliasing in general affects Ir (rn) and Iθ (rn) differently.

B. THE ROLE OF THE ELEMENT FACTOR
The element factor enters the data model. However, because
of the array arrangement, the nominal element factor hardly
coincides with the actual one. That is why, the active element
factor is often employed. However, its estimation can be
problematic so that usually simulations are employed. Also,
the element factor depends on the actual array layout and
hence can change according to the occurrence of the defective
elements. This issue is not so serious for TR-MUSIC. Indeed,
Iθ computation does not require the element factor. Instead,
Ir weakly depends on it and can be obtained without knowing
the element factor. This will be shown by numerical examples
in the sequel.
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FIGURE 7. Left panel: Linear phased array array of N = 21 45◦ angled printed dipole
antenna, directed along the z axis and uniformly spaced at λ/2 over the array support
SD = [−5λ, 5λ]. The working frequency is 5 GHz. Right panel: side views of the single
dipole of the array. The images come from Ansys HFSS.

V. NUMERICAL ASSESSMENT: DATA REDUCTION AND
THE ROLE OF THE ELEMENT FACTOR
In this section, we present the outcomes of an extensive set of
numerical simulations devoted to assess the performance of
the proposed diagnostic procedure against the data reduction
and the lack of the element factor in Ir . All the examples
deal with the array introduced in section III-C, consisting
in N = 41 dipoles directed along the x axis and uniformly
spaced at λ/2 over the support [−Xs,Xs], with Xs = 10λ.
The radiated field is collected over a rectilinear observation
domain with X0 = 16λ and located at z0 = 7λ. Again, the
steering angles are selected by sampling the variable sin(θ)
within the interval [−1, 1]. Data are corrupted by an additive
zero-meanwhite Gaussian noise, generated according to (18).
In the examples, we consider two different tapers for the
excitation coefficients: a uniform taper with cn = 1 ∀n
and a Taylor’s taper with SLL = 25dB and n̄ = 4. The
considered faults can affect both the amplitude and phase of
the excitation coefficients. They are taken into account by
varying both an and φn in (20) according to the following
probabilistic laws

an = −1 + 0.2N (0, 1) (23)

and

φn = −
π

3
+

2π
3
N (0, 1). (24)

Evidently when only the amplitude is considered, φn is set to
zero ∀n.

The outcomes have been evaluated by running the diag-
nostic procedures for different values of ND = {1, 3, 6, 9}
and SNR ∈ {30, 35, 40}dB. For each value of ND and
SNR, a Monte Carlo analysis is performed by repeating
the diagnostics NTrials = 1000 times and by randomly
changing the fault locations and the noise realization. The

performances of the approach have been quantitatively
evaluated by the probability of detection (PD)

PD =
1

NTrials

NTrials∑
n=1

FD(n)
ND

(25)

where FD denotes the number of detected faults. Two
different data sampling strategies are considered. In case A,
data are collected over M = ND + 1 positions uniformly
deployed overOD and with 1 the surplus of data against ND,
instead steering angles are selected at L = rankeff (S) angles.
In case B, both M and L are reduced and controlled by the
number of faults. Both results achieved with and without the
element factor in Ir are shown.

A. PD EVALUATION: CASE A
In these numerical examples, the steering angles are selected
at L = rankeff (S) = 41 angles that represents the Nyquist
number. On the contrary, near field data are collected over
M = ND + 1 positions. Note thatM is mainly controlled by
the number of faults and it can be lower than rankeff (G) =

37 resulting into an under-sampling of data. First of all,
we focus on detecting only amplitude faults. We start by
considering an array with a uniform taper. The achieved
probabilities of detection (PDs) in terms of 1 are shown
in panel (a) and (c) of Fig. 3. In particular, the results in
panel (a) are achieved by including the element factor in Ir ,
in panel (c) without it. As can be seen, in the case of a single
fault, only M = 2 measurements are required to achieve a
high PD. As ND increases, a 1 ≥ 2 ensures a PD close to 1,
by adding more measurements, PD reaches 1. Note that only
when 1 = 1, the lack of the element factor compensation
affects the results, as1 ≥ 2, the performances are close to the
other case. It must be pointed out that in order to achieve these
large values of PD, we need M = {2, 5, 8, 11} (depending
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FIGURE 8. Comparison between TR-MUSIC algorithm and CS methods. ND = 3 faulty elements (red asterisks) are considered in
the array shown in Fig.7. The other parameters are OD = [−8λ, 8λ] and z0 = 7λ. The number of data is ML with M = 5 and
L = 6 collected with the sampling strategy described in Fig.5. The data are noisy with SNR = 35dB. Panel(a): Binary
pseudospectrum indicator Ī using TR-MUSIC. Panel (b) and (c): Reconstructed coefficient using CS with regularization parameter
ϵr = 4.55 and ϵr = 5.54 respectively. Notice that in panel c) we are not able to detect all the faults due to a wrong choice of
regularization parameter instead of panel b) the detection is clear.

on ND), numbers highly lower than rankeff (G). Accordingly,
we succeed in fault detection with a reduced number of near
field measurements. Moreover, the performance is quite the
same regardless of the SNR and the lack of element factor
compensation. The stability of the approach against the noise
is expected thanks to the considered sampling strategy that
keeps the measurement aperture unchanged.

Now let’s consider Taylor’s current taper. For this type
of taper, it is difficult to distinguish the faults from
excitation coefficients, especially where the latter are very
low. Accordingly, standard approaches often fail to detect
them.

However, this degradation is not observed in TR-MUSIC.
In fact, as can be seen in panels (b) and (d) of Fig.3 results
similar to the amplitude taper can be achieved.

Now, we consider both amplitude and phase faults. Again
the PD in terms of 1 are shown in Fig.4. In the panels on
the left, the results concerning the uniform taper obtained
with and without the element factor (top and bottom panel,
respectively) are shown, and on the right the Taylor one.

As can be seen, similar results as before can be obtained. A1

larger than 2 is sufficient to reach a very large probability of
detection.

This set of simulations confirms the capability of
TR-MUSIC of detecting any type of defect by a reduced
number of near field measurements. Moreover, the lack
of the element factor is not such a serious issue for it.
As pointed out in the introduction, since beam scanning is
achieved at electronic speed, the data acquisition time is
mainly dominated by the one necessary to collect spatial
data. Accordingly, their reduction can significantly speed up
the diagnostic procedure. However, according to theoretical
results, the TR-MUSIC only needsM ,L > ND to work. This
means that also the number of steering angles can be reduced.

B. PD EVALUATION: CASE B
In order to assess the performance of the proposed approach
against the reduction of steering angle number, we suppose
to set M = ND + 2 and L = ND + 1. Accordingly, L can
be lower than rankeff (S) = 41, so an under-sampling can
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FIGURE 9. Comparison between TR-MUSIC algorithm and CS methods. ND = 4 faulty elements (red asteriks) are considered in the
array shown in Fig.7. The measurements parameter are the same as in Fig.8 Panel(a): Binary pseudospectrum indicator Ī using
TR-MUSIC. Panel (b) and (c): Reconstructed coefficient using CS with regularization parameter ϵr = 5.54 and
ϵr = 4.55 respectively. Again a wrong choice of regularization parameter fails in the detection as reported in panel c).

occur. As detailed in section IV, compared to the previous
case, the under-sampling in Iθ is more critical. In fact, if the
steering angles are selected by sampling uniformly sin θ in
[−1, 1], the under-sampling gives rise to the same phase in
ãn = an/||an|| for different fault testing positions, resulting
in false detection in Iθ . To address this issue, the steering
angles are randomly selected over the Nyquist grid (uniform
step equal to π/(kXs)) by enforcing the sampling to retain
at least one pair at the Nyquist rate and the extreme points
at −1 and 1. This means that at least 3 steering angles are
necessary. With that in mind, we perform the same numerical
analysis as before, by focusing first on the scenario with only
amplitude failures for uniform taper and the Taylor’s one. The
results with and without the element factor compensation are
shown in Fig.5. By comparing the latter to Fig.3, a slight
reduction in probability of detection is observed especially for
SNR = 30dB and without the element factor compensation.
It’s essential to highlight that, compared to scenarios where
all steerings were considered, the amount of available data
significantly decreases, specifically to (ND + 2)(ND + 1).
Accordingly, a slight degradation in performance is expected.

However, a 1 ≥ 3 is sufficient to guarantee a PD close to 1.
In Fig. 6, PD is shown for both amplitude and phase faults.
The results are aligned to the trends observed before. This
confirms the algorithm’s effectiveness, even when a reduced
number of steering angles is considered.

According to the previous discussion, the total number of
data ML guaranteeing a PD close to 1 is equal to (ND +

2)(ND + 3). This probability also occurs when the element
factor is not included in the evaluation of Ir .

VI. TR-MUSIC VS COMPRESSIVE SENSING
Since the difference model promotes the sparsity of the
unknown, the proposed approach is compared to CS
algorithm. In particular, the latter is applied to (19) by
stacking the data coming from different steering angles to
create a single data vector. So the faulty element coefficients
are determined by considering the following model

vec(1Et ) = St ∗ G1cs (26)

where vec(·) denote the vectorization of the matrix argument,
∗ is the column-wise Khatri–Rao product and (·)t means
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the transpose matrix. Let us consider an array composed of
N = 21 45◦ angled printed dipole antenna, directed along
the z axis and uniformly spaced at λ/2 over the support
Xs = 5λ and working at 5 GHz as sketched in Fig. 7.
The observation domain is parallel to the array, located at
z0 = 7λ and with size X0 = 8λ. The field radiated
by this array has been computed with the full wave 3D
electromagnetic software Ansys HFSS [35] forM = (ND+2)
points over OD and L = ND + 3 different steering angles
sampled according to the strategy discussed in the previous
sections. Finally the ML data are corrupted by an additive
zero mean white Gaussian noise, generated according to (18)
with SNR = 35dB. Note that for this type of radiating
element, the nominal factor is not known in closed form.
Accordingly, it should be numerically estimated. In order to
avoid this step, we suppose to neglect it in both the diagnostic
approaches. So for CS algorithm we solve the following
minimization problem using

min
1cs

||1cs||1 subject to ||A1cs − vec(1Et )||2 ≤ ϵr (27)

where A = St ∗ Ḡ, Ḡ is the matrix G without the element
factor, ϵr is the regularization parameter and || · ||1 indicate
the l1 norm. To solve problem (27) we used CVX, a package
for specifying and solving convex programs [36], [37].
Of course, we pass from a coefficient estimation to a mere
detection due to the lack of element factor that enters in the
definition of the entries of G. This is indeed true for any
other reconstruction procedure. In order to simulate faulty
elements, a number of ND = 3 and ND = 4 elements are
completely turned off. The detection results are shown in
Fig.8 and Fig.9. In particular, panel a) refers to TR-MUSIC,
panel b) and c) to CS algorithm for different value of ϵr . Both
the approaches allow to achieve the fault detection. However,
the CS algorithm needs the setting of the regularization
parameter. Typically, since the latter represents the data fitting
constraint, it should be set larger than the norm of the noise
but, in this case, the data fitting error should contemplate also
the lack of element factor. Accordingly, it is very difficult
to set it. Moreover, its best value can be affected by both
the number and layout of faults that are unknowns of the
problem,making the CS algorithm unpractical to be exploited
in realistic scenario. In fact for the layout in Fig.8 the best
regularization parameter is ϵr = 4.55, then in Fig.9 is
ϵr = 5.54. On contrary, the proposed approach does not
require any optimization procedure and no regularization
term must be set. Another advantage of TR-MUSIC is its low
computational effort. In fact, while CS algorithm needs to
built the matrix A whose size is ML × N , in the proposed
approach, the data matrix is only M × L in size. Finally,
the TR-MUSIC, as well as other similar approaches, is often
addressed in literature as a grid-less method. Basically, this
refers to the fact that the grid of points over which the
unknown is supported only enters during the pseudospectrum
formation and needs not to be stored since the beginning.
Note that this is not the case for CS algorithm or other

approaches based on a direct inversion of (26), which instead
requires the matrix model to be stored in advance.

VII. CONCLUSION
In this paper, a novel strategy for the detection of faulty
elements in a phased array from near-field measurements has
been proposed. In this type of array, it is possible to introduce
the steering diversity. Accordingly, by collecting the radiated
field over the measurement aperture while steering the beam,
the TR-MUSIC algorithm is borrowed by the signal process-
ing and exploited to achieve the diagnostics. In particular,
it can be applied to look for the working elements or the
defective ones. In the first case, the TR-MUSIC is expected
to work for the detection of completely turned off elements
as long as the number of defective elements is relatively
(depending on the configuration parameters) high. Thus it can
be considered as being complementary to other methods that
address the case of few faults.

Instead when the case of few faults is considered, TR-
MUSIC can be applied to the difference model. In this case,
it succeeds in detecting any type of failure by a reduced set
of data, mainly depending on the number of faulty elements.
Performance in terms of detection probability was analysed
by means of Monte Carlo numerical analysis. In particular,
through this analysis, we concluded that the total number of
spatial data that guarantees a probability of detection close to
1 is equal to (ND + 2)(with at least (ND + 3) steering angles).
This probability also occurs when the element factor is not
included in the evaluation of Ir . In fact, because of the array
arrangement, in the practical case, the nominal element factor
hardly coincides with the actual one, so it must be estimated.
Its estimation can be problematic because the element factor
depends on the actual array layout and hence can change
according to the occurrence of the defective elements. It is
shown that this issue is not so serious for TR-MUSIC that
always works. On contrary, for CS algorithm, the lack of
the element factor in the model affects the choice of the
regularization parameter. Accordingly, it is very difficult
to set it and its best value can be affected by both the
number and faults layout that are unknowns of the problem,
making the CS algorithm unpractical to be exploited in a
realistic scenario. Another advantage of TR-MUSIC is its low
computational effort, in fact, it works with a matrix lower in
size than CS. Finally, for the TR-MUSIC, the grid of points
over which the unknown is supported only enters during the
pseudospectrum formation and need not be stored since the
beginning. Note that this is not the case for CS algorithm or
other similar approaches, which instead require the matrix
model to be stored in advance.
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