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ABSTRACT Significant challenges are involved in tactical flying ad-hoc network (FANET) missions
because network environments are very dynamic. In addition, energy-efficient network operation is
important in tactical FANETs owing to the limited capacity of the on-board battery in unmanned aerial
vehicles (UAVs). In a slotted-ALOHA (S-ALOHA)-based tactical FANET, frequent packet collisions due to
changes in the network environment deteriorate the energy efficiency. Therefore, accurately estimating the
number of active UAVs is crucial for improving the performance of S-ALOHA-based networks. Several
estimation methods such as low-bound, Schoute, max-probability, and Bayesian estimation have been
studied, and these methods perform well in static network environments; however, the estimation error
significantly increases in dynamic network environments. To accurately estimate the number of active UAVs
in highly dynamic environments, this study proposes an online hybrid pseudo-Bayesian estimation (HyPE)
method. Specifically, this method combines the pure-Bayesian and pseudo-Bayesian estimation methods to
overcome their shortages such as the inability in a dynamic environment of the pure-Bayesian method and
the low estimation accuracy of the pseudo-Bayesian method. This paper compares the performance of the
proposed HyPE method with that of benchmark methods in terms of the estimation error according to the
variation period and variation step size. The results show that HyPE is more adaptable to dynamic changes
in network environments.

INDEX TERMS Bayesian estimation, unmanned aerial vehicle (UAV), active UAV, slotted-ALOHA, tactical
flying ad-hoc network (FANET).

I. INTRODUCTION
Compared with the existing terrestrial networks, the flying
ad-hoc network (FANET) is emerging as a promising
technology because of its various advantages, such as high
flexibility, cost efficiency, and adaptability. The FANET is
a wireless communication network composed of unmanned
aerial vehicles (UAVs), where UAVs communicate with each
other without a permanent infrastructure to exchange flight
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and control information and collect data [1], [2], [3], [4], [5],
[6]. FANETs play a crucial role in various aerial applications
such as military services, monitoring of agricultural areas,
disaster monitoring, and civil construction [7], [8], [9],
[10], [11], [12], [13]. In particular, a tactical FANET
must accomplish mission-critical military tasks in highly
dynamic network environments. However, owing to the
limited capacity of the on-board battery of UAVs, FANETs
have a short lifetime; thus, energy-efficient network operation
is critical [14], [15], [16], [17], [18], [19]. In addition,
topological dynamics inherent to the high-speed movement
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of UAVs and data traffic diversity cause rapid changes in
the surrounding environment, resulting in inefficient radio
resource utilization [20], [21], [22]. Even in a slotted-
ALOHA (S-ALOHA)-based tactical FANET, frequent packet
collisions caused by changes in the network environment
may make it difficult for UAVs to complete their missions.
These issues can be resolved by controlling the transmission
probability of each active UAV effectively, which can be
adjusted by accurately estimating the number of active UAVs.

Several studies have been conducted to estimate the num-
ber of active tags in radio-frequency identification (RFID)
systems. The low-bound [23] and Schoute [24] methods
estimate the number of active tags based on the numbers
of collision slots and success slots of the previous frame.
However, these methods still have a high error rate because of
the inaccuracy in the number of tags that transmit packets in
collision slots. The maximum probability (max-probability)
method [25] estimates the number of active tags using a pos-
terior probability distribution based on the events of the pre-
vious frame. Because the current estimation is based on the
events of the previous frame, the estimation error gradually
increases as the number of tags continuously changes. In [26],
Eom and Lee estimated the number of tags by multiplying the
number of collision slots by a proportional factor to achieve
the optimal performance of dynamic framed S-ALOHA
(DFSA) in RFID systems. The length of the next frame was
adjusted according to the estimated number of tags.

Even though these conventional estimation methods
perform well in static network environments, they face
challenges in accurate estimation with changes in the number
of tags. Hence, a Bayesian estimation method has been
studied to enhance estimation accuracy compared to these
methods. In [27], Tong et al. estimated the number of
RFID tags (η) using a pure-Bayesian estimation method.
Specifically, the length of the next frame in the DFSA was
determined using the expected value of the estimated η.
In [28],Wu and Zeng estimated η using a risk function, where
the types of risk functions were based on the mean square
error, absolute error, and posterior probability. The optimal
frame length was determined to maximize the channel
utilization efficiency. In addition, Annur et al. utilized the
number of tags estimated using the Bayesian method to
determine the access probability of an S-ALOHA-based anti-
collision protocol in RFID systems by setting it to 1/η0 [29].
This value was derived from the posterior probability
distribution to maximize the probability of success. In [30],
Liu et al. proposed a pseudo-Bayesian backoff method for
unsaturated slotted systems. The estimation process was
simplified by assuming the probability distribution of backlog
size as a Poisson distribution. The access probability was then
adjusted based on the estimated backlog size to maximize
the system throughput. Furthermore, in [31], to minimize
the access delay in S-ALOHA systems, Liu et al. devised
a delayed pseudo-Bayesian estimation method to obtain the
transmission probability of users. In this study, the delay
in broadcasting the optimal transmission probability at the

FIGURE 1. System model of the S-ALOHA-based tactical FANETs.

base station (BS) was considered to control the transmission
probability.

These Bayesian estimation methods can improve the
estimation accuracy of the number of active users because
they utilize specific channel status information in the previous
and current frames in a probabilistic manner; however,
these methods are difficult to adapt flexibly to variations
in the number of users as they still use a cumulative
probability distribution for the number of active users.
Therefore, by combining the advantages of pure-Bayesian
and pseudo-Bayesian methods, this paper proposes a new
Hybrid Pseudo-Bayesian Estimation method (HyPE) that can
adapt to changes in the FANET environment. Specifically, the
proposedHyPEmethod initially utilizes an accumulated prior
probability distribution, and in the pseudo-Bayesian phase,
the accumulated prior probability distribution is reset to a
Poisson distribution, which enables adaptability in environ-
ments with varying numbers of active UAVs. The main con-
tributions of the proposed method are summarized as follows.

• This paper addresses the challenge of estimating the
number of active UAVs in dynamic environments, such
as tactical FANETs. The proposed HyPE combines
pure-Bayesian and pseudo-Bayesian methods to offer
accurate estimations, overcoming the limitations of each
approach when used separately.

• In S-ALOHA, the estimated number of active UAVs
can be used to determine the packet transmission prob-
ability. The well-determined transmission probability
effectively minimizes collisions among multiple active
UAVs, reducing unnecessary packet retransmissions.
Optimizing the transmission probability can, there-
fore, maximize the throughput of S-ALOHA-based
tactical FANET.

• Even if there is an estimation error, efficient resource
allocation can be achieved by considering margins in
advance. However, for more efficient resource utiliza-
tion, accurate estimation is crucial. Through HyPE,
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efficient resource utilization by estimating the number
of active UAVs accurately can be achieved.

• In this study, to evaluate the performance of the
proposed HyPE, low-bound, Schoute, max-probability,
pure-Bayesian, and pseudo-Bayesian methods are con-
sidered benchmark methods. Through simulations, the
robustness of the proposed method is verified by
showing the superiority in simulation results depending
on changes in factors such as the maximum number of
active UAVs, variation period, variation threshold, and
pseudo-Bayesian update period.

The remainder of this paper is organized as follows:
Section II describes the system model and the proposed
HyPE method for a tactical FANET environment. Section III
presents various simulation results, demonstrating the excel-
lent performance of HyPE compared with that of benchmark
methods. Finally, in Section IV, conclusions are drawn.

II. SYSTEM MODEL AND PROPOSED METHOD
A. SYSTEM MODEL
This study considers an S-ALOHA-based tactical FANET,
where all active follower UAVs have packets to transmit to
the leader UAV, as shown in Figure 1. Follower UAVs can
transmit packets every time slot, and packet transmission is
attempted according to the packet transmission probability of
each UAV.

At this time, it is assumed that all follower UAVs
can overhear the packet transmission of neighbor UAVs
and adjust their transmission probability by estimating the
number of active UAVs. The individual calculation of the
transmission probability based on overhearing can efficiently
reflect the characteristics of the aerial network environment.
In tactical FANETs, UAV mobility leads to operational
accidents, mission-related losses, and interactions with other
UAV formations, resulting in variability in the composition
of the formation. Since the number of UAVs changes and
cannot be accurately known, it is important to estimate
the number of UAVs for the increase in the throughput in
S-ALOHA. If the estimated number of UAVs is too large
or too small for the actual number of UAVs, the throughput
may eventually decrease. Therefore, this study estimates
the number of UAVs by channel access event information
and determines the packet transmission probability of each
UAV using this estimated value. Specifically, the channel
access event (E) is classified as success (S), collision (C),
or idle (I). Success refers to a case in which only one UAV
attempts to transmit in a specific slot, idle means that no
one transmits, and collision implies that two or more UAVs
attempt to transmit simultaneously. In this study, the actual
and estimated numbers of active UAVs in time slot t are
denoted as N (t) and N̂ (t), respectively. The other parameters
used in this study are summarized in Table 1.

B. CONVENTIONAL BAYESIAN ESTIMATION METHODS
When the number of active follower UAVs is unknown by
each UAV, pure-Bayesian and pseudo-Bayesian estimation
methods can be used to estimate the number of active UAVs.

TABLE 1. Notation summary.

1) PURE-BAYESIAN ESTIMATION METHOD [29]
In the pure-Bayesian estimation method, the posterior
probability P(n|E) of the number of estimated active UAVs
when E are given, can be expressed as

P(n|E) =
P(E|n)P(n)

P(E)
. (1)

Here, P(E|n) can be expressed as

P(E|n) =

(
n
k

)
(p)k (1 − p)n−k . (2)

Equation (2) expresses the probability of each event when
the estimated number of active UAVs is n. Specifically, the
probability of an idle slot (PI ) is calculated as PI = (1− p)n,
the probability of a success slot (PS ) as PS = np(1 − p)n−1,
and the probability of a collision slot (PC ) as PC = 1 −

PI − PS , where p represents the transmission probability. In
addition, P(E) represents the total probability of E for all
possible n, which can be expressed as

P(E) =

∞∑
n=0

P(E|n)P(n). (3)

In Equation (3), P(n) represents the prior probability that
the estimated number of active UAVs is n, where P(n) is
updated to P(n|E) in the previous time slot. In this process,
the probability distribution, initially equal to the likelihood
of all active UAVs, converges to a specific number of active
UAVs since the active UAVs are estimated based on the
accumulated prior probabilities during the previous slots.
This characteristic suits a static environment, but accurate
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FIGURE 2. Signaling flow of the proposed HyPE method.

estimation is difficult when the number of active UAVs is
very dynamic. Unfortunately, this pure-Bayesian estimation
method calculates P(n) for all n in every slot, which results
in a significant computational burden for each UAV. Using
Equation (1), the estimated number of active UAVs is
calculated as N̂PB(t) =

∑
∞

0 n× P(n|E).

2) PSEUDO-BAYESIAN ESTIMATION METHOD [30]
To relieve the computational complexity of the pure-Bayesian
estimation method, the pseudo-Bayesian estimation method
assumes that the prior probability P(n) is a Poisson distribu-
tion. The pseudo-Bayesian estimation method assumes that
the prior probability P(n) is a Poisson distribution to relieve
the computational complexity of the pure-Bayesian estima-
tion method. Assuming a Poisson distribution for the prior
probability can simplify the estimation process by reducing
the complexity of storing and updating the distribution of
n in each time slot. Instead of exploiting the accumulated
overall prior probabilities, only the average parameter (ν) of
the Poisson distribution needs to be calculated and updated,
which increases computational efficiency. In this method,
P(n) can be represented as follows:

P(n) = P(n, ν) =
νn

n!
e−ν . (4)

where ν means the average of the Poisson distribution and is
set as the expected value of the estimated number of active
UAVs in the previous slot. In addition, in each slot, ν is

calculated according to E as follows:

ν =


ν − 1, if E = I ,

ν, if E = S,

ν + 2.3922, if E = C .

(5)

From Equation (5), if E = I , the estimated value is assumed
to be greater than the actual value and ν is decreased. If E =

S, the estimated value is assumed to be accurate; thus, the
current value is maintained. Finally, if E = C , the estimated
value is smaller than the actual value, and thus ν is increased
by 2.3922. The increased value of 2.3922 is calculated using
the Schoute method [24] as follows:

P(k|C)

=

 0, if k = 0, 1,
Pk

1 − P0 − P1
, if k ≥ 2, where Pk = e−1/k!.

(6)
∞∑
k=2

kP(k|C)

=

∑
∞

k=2 e
−1 1

(k−1)!

1 − 2e−1 =
e− 1
e− 2

≈ 2.3922. (7)

Here, Pk is the probability that k UAVs will transmit packets,
and the number of active UAVs in the collision slot can be
obtained from the conditional expected value for P(k|C).
Consequently, ν is increased by 2.3922 when E = C . When
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E = I , an idle event represents an overestimation of the
number of active UAVs, and ν is decreased by 1 [30].
Because the pseudo-Bayesian estimation method uses a

Poisson distribution to obtain P(n), this method has an
advantage in terms of computational complexity compared
with the pure-Bayesian estimation method, which calculates
P(n) for all possible n. In the pseudo-Bayesian method,
the estimated number of active UAVs can be obtained
simply using N̂SB(t) = ν. However, unlike the pure-
Bayesian method, the pseudo-Bayesian method continuously
updates ν, which results in an error-divergence problem for
the estimated value.

C. PROPOSED ONLINE HYBRID PSEUDO-BAYESIAN
ESTIMATION (HYPE) METHOD
The pure-Bayesianmethod in Section II-B1 has the advantage
of being able to show high estimation accuracy in environ-
ments, where the number of active UAVs is fixed because it
updates the probability distribution for the number of active
UAVs by accumulating it with events that occur in each slot.
However, this method is not suitable for the environment
under consideration in this study, in which the number of
active UAVs is variable, because the probability distribution
converges to a specific number of active UAVs when
applying a pure-Bayesian method. To address this problem,
the pseudo-Bayesian method described in Section II-B2
is useful, but as explained, the pseudo-Bayesian method
may have a high estimation error due to the unstable
probability distribution. Therefore, the HyPE method is
proposed to overcome the drawbacks of pure-Bayesian and
pseudo-Bayesian methods by alternating between the two
methods depending on whether the criteria are met. This is
explained in detail as follows: The proposed HyPE method
estimates the number of active UAVs based on the prior
probability distribution P(n) for the estimated value n of the
number of active UAVs. P(n) is updated using P(n|E) of the
previous slot, as mentioned in the pure-Bayesian estimation
method. To adapt to network dynamics in the tactical FANET
environment, when update criteria are satisfied, the HyPE
method updates P(n) using the Poisson distribution with the
mean value, ν, which is the estimated number of active UAVs
in the previous slot. As update criteria, Mod(t, ϵ) = 0 and
|N̂ (t)− N̂ (t − 1)| > νth are utilized. Here, t is the slot index,
ϵ is the pseudo-Bayesian update period, and νth represents
the update threshold. Even though it is optimal to set the
update criteria, such as ϵ or νth, to precisely match actual
traffic variations, this is nearly impractical. Therefore, update
criteria can be set to the average of past traffic changes.
Consequently, N̂ (t) is calculated as N̂ =

∑
∞

0 n × P(n|E).
Using N̂ (t), the transmission probability of active UAV i is
determined as p(t + 1) = 1/N̂ (t) to improve the network
performance. The detailed operational procedure is shown in
Figure 2 and Algorithm 1.

III. PERFORMANCE EVALUATION
This study considered S-ALOHA-based tactical FANET
environments and simulations were conducted using

Algorithm 1 Detailed Operational Procedure of HyPE
1: for t = 1, 2, . . . do
2: Follower UAVs transmit a packet to the leader UAV

with transmission probability p in time slot t .
3: for i = 1, 2, . . . do
4: UAV i has information on channel access events.
5: UAV i calculates P(n) as follows:
6: if (Mod(t, ϵ) = 0) or (|(N̂ (t − 1)− N̂ (t − 2)| > vth)

then
7: P(n) =

νn

n! e
−ν , ν is set as N̂ (t − 1).

8: else
9: P(n) = P(n|E) in t − 1.

10: end if
11: UAV i calculates P(E|n) from Equation (2).
12: UAV i calculates P(E) from Equation (3).
13: UAV i calculates P(n|E) using P(E|n), P(E), and

P(n) from Equation [PnE](1).
14: UAV i estimates the number of active UAVs in time

slot t as N̂ (t) =
∑

∞

0 n× P(n|E).
15: UAV i determines its transmission probability in

time slot t + 1 from p(t + 1) = 1/N̂ (t).
16: end for
17: end for

MATLAB on a computer with an i5-12600 CPU (3.30 GHz)
and 32.0 GB of RAM. To analyze the performance of the
benchmark and proposed methods, the error function for
estimation (f (N , N̂ )) was applied, which can be defined as
follows:

f (N , N̂ ) =

∣∣∣∣∣N − N̂
N

∣∣∣∣∣ × 100 [%]. (8)

In this section, the initial number of active UAVs is
set to 30, and the minimum number (Nmin) and maximum
number (Nmax) are set to 10 and 50, respectively. For each
variation period (β), up to α UAVs can enter or leave the
network, where α and β are set to 5 [UAVs] and 50 [slots],
respectively. Here, α is the variation step size of the number
of active UAVs. In addition, the pseudo-Bayesian update
period (ϵ) and variation threshold (νth) for the proposed
HyPE method are configured as 50 and 10, respectively. To
evaluate the performance accurately, Figure 3 is the result
of 2000 slots in a particular traffic change environment, and
Figures 4, 5, and 6 are the results of 1,000 iterations consisting
of 2,000 slots.

A. BENCHMARK METHODS
This section presents three benchmark methods for compar-
ing the performance of the proposed method. The following
section provides a detailed description of the three benchmark
methods used to estimate the number of active UAVs.

• Low-boundmethod: Thismethod estimates the number
of active UAVs using the number of success slots (S̄)
and collision slots (C̄) that occurred among the previous
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FIGURE 3. Actual number of active UAVs (N(t)) and estimated number of active UAVs (N̂(t)) under α = 5 and β = 50 in tactical FANET environments.

N̂ (t − 1) slots. Here, N̂ (t − 1) denotes the estimated
number of active UAVs in the previous slot. Each active
UAV transmits a packet at a transmission probability
set to 1/N̂ (t − 1). If a collision occurred in a specific
slot, it means that at least two UAVs transmitted packets.
Thus, this method estimates the number of active UAVs
as N̂ (t) = S̄ + 2C̄ .

• Schoute method: This method estimates the number of
active UAVs using the S̄ and C̄ that occurred among the
previous N̂ (t − 1) slots. The transmission probability
for each active UAV is determined as 1/N̂ (t − 1).
Unlike the low-bound method, the Schoute method
calculates the number of active UAVs in the collision
slot from Equation (6) and Equation (7). Consequently,
this method estimates the number of active UAVs as
N̂ (t) = S̄ + 2.3922C̄ .

• Max-probability method: In this method, the number
of active UAVs can be estimated using the following
equations (9), as shown at the bottom of the page,
and (10).

N̂ (t) = argmax
n

P(n|Ī , S̄, C̄). (10)

From these equations, the max-probability method
estimates the number of active UAVs through n max-
imizing P(n|Ī , S̄, C̄) given N̂ (t − 1), Ī , S̄, and C̄ ,
where the transmission probability for each active UAV

in the max-probability estimation method (pM ) is set
to 1/N̂ (t−1).

The low-bound, Schoute, and max-probability methods
estimate the number of active UAVs on a frame-by-
frame manner based on the information about events that
occurred in the previous frame. However, since this study
performs slot-by-slot estimation, it is not suitable to directly
apply the benchmark method devised based on a frame-
by-frame manner. Therefore, the low-bound, Schoute, and
max-probability methods are assumed to estimate the current
number of active UAVs by identifying events in previous slots
equal to the estimated number of active UAVs.

B. SIMULATION RESULTS
Figures 3(a)–3(f) show the actual and estimated numbers
of active UAVs for the proposed and benchmark methods
according to the progress of the slot, respectively. The
simulation was conducted under α = 5 and β = 50. The
low-bound, Schoute, and max-probability methods estimate
the number of active UAVs based on the events that occurred
in the previous N̂ (t − 1) slots, that is, the estimated number
of UAVs in the (t − 1)th slot. Unlike the low-bound method,
which estimates N̂ (t) as S̄ + 2C̄ in the previous N̂ (t − 1)
slots, the Schoute method determines N̂ (t) as S̄ + 2.3922C̄ .
Also, it can be seen that N̂ in the max-probability method
does not exceed 50, because this method estimates the
number of UAVs as the number with the largest P(n|Ī , S̄, C̄),

P(n|Ī , S̄, C̄) =
(N̂ (t−1))!

Ī !S̄!C̄ !
×

[(
1− pM

)n]Ī
×

[
n

N̂ (t−1)

(
1− pM

)(n−1)
]S̄
×

[
1 −

(
1− pM

)n
−

n

N̂ (t−1)

(
1− pM

)(n−1)
]C̄

. (9)
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FIGURE 4. Estimation error of the benchmark and proposed methods according to α and β.

which considers only n from 0 to Nmax . As shown in
Figures 3(d)–3(f), Bayesian estimation methods estimate
the number of active UAVs more accurately because they
determine N̂ (t) by obtaining the posterior probability using
the prior probability. The pure-Bayesianmethod is vulnerable
to dynamic network environments, where the number of
active UAVs is variable, because it performs an estimation
based on the accumulated prior probability during the
previous slots. In contrast to the pure-Bayesian method, the
pseudo-Bayesian method obtains N̂ (t) through a Poisson
distribution with mean ν, where ν denotes the estimated
number of active UAVs obtained from the previous slot.
Thus, it is more adaptable to variations in the number
of active UAVs. However, the estimation error of the
pseudo-Bayesian method becomes relatively large because
it utilizes an instantaneous Poisson distribution. In the
proposed HyPEmethod, to compensate for the problem of the
pure-Bayesian estimation method, P(n) is updated using the
pseudo-Bayesian estimation method when the update criteria
mod(t, ϵ) = 0 and |N̂ (t)− N̂ (t − 1)| > νth are satisfied. As a
result, compared with the benchmark methods, the proposed
method can minimize the estimation error, even when the
number of active UAVs is very dynamic.

Figures 4(a) and 4(b) show the estimation errors of the
benchmark and proposed methods according to the variation
step size (α) and variation period (β) in S-ALOHA-based
tactical FANETs. Because the FANET topology is very
dynamic, a large α and a small β result in an increase
in the estimation error. In Figure 4(a), β is set to a fixed
value of 50 and α takes various values such as 0, 5, and
10. As α increases, it can be observed that the estimation
error increases in all methods except the max-probability
method. When α = 10, the low-bound, Schoute, and
max-probability methods have relatively high estimation
errors of 41.57 [%], 52.01 [%], and 37.09 [%], respectively.
Moreover, because the low-bound and Schoute methods

estimate the number of active UAVs simply using channel
access events, the difference in performance degradation
is not severe against an increase in α. However, the
estimation errors are still higher than those of the other
methods. Because the max-probability method determines
the optimal n that maximizes P(n|Ī , S̄, C̄), the estimation
results may vary significantly depending on the combinations
of {Ī , S̄, C̄}. In addition, this method considers only the
probability distribution for the number of active UAVs
ranging from 0 to 50, and thus, estimation errors resulting
from estimating beyond 50 are not taken into account.
The pure-Bayesian method estimates the number of active
UAVs based on the accumulated prior probability during the
previous slots, resulting in a considerable increase in the
estimation error as α increases. In particular, this method
has the lowest estimation error of 4.34 [%] among all the
methods when α = 0, but a significantly higher estimated
error of 35.6 [%] when α = 10. In addition, because
the pseudo-Bayesian method determines N̂ (t) only from
the channel access events in the previous slot, this method
can better follow the variations in the number of active
UAVs. However, the estimation error is relatively high. The
proposed HyPE method has the best estimation accuracy and
adaptability to variations in the number of active UAVs, with
the lowest estimation errors of 10.59 [%] and 13.83 [%] when
α = 5 and α = 10, respectively.

In Figure 4(b), α is set to a fixed value of 5 and β takes
various values such as 25, 50, and 75. As β decreases, the
estimation error of all the methods increases. In particular,
when β = 25, the low-bound, Schoute, and max-probability
methods show higher estimation errors than the proposed
method, resulting in errors of 40.01 [%], 50.58 [%], and
36.92 [%], respectively. As mentioned previously, because
the low-bound, Schoute, and max-probability methods esti-
mate the number of active UAVs using only channel access
events, the variation in the estimation errors is not severe
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FIGURE 5. Estimation error of the proposed method according to Nmax .

FIGURE 6. Estimation error of the proposed method according to ϵ.

against the increase in β. However, the estimation errors are
still higher than those of other Bayesian-based estimation
methods. The proposed HyPE method estimates with better
accuracy even as β increases. Among these estimation
methods, it achieves the lowest estimation errors of 10.12 [%]
at β = 75 and 12.50 [%] at β = 25.
Figures 5 and 6 present the estimation errors of the

proposed HyPE method against the maximum number of
active UAVs (Nmax) and pseudo-Bayesian update period (ϵ)
in S-ALOHA-based tactical FANETs. Figure 5 corresponds
to the outcomes of the proposed method with ϵ set to 50 and
vth set to 10 in a dynamic environment where α and β are
configured as 5 and 50, respectively. It can be seen that
the estimation error increases as Nmax increases because
it is more difficult to estimate an exact number against a
wide estimation range. Specifically, the proposed method
has estimation errors of 11.43 [%], 12.15 [%], 13.21 [%],
14.56 [%], 15.69 [%], and 16.90 [%] respectively as Nmax
increases by 10 from 50 to 100. These estimation errors
can be mitigated by allocating resources with additional
margins. However, for more efficient resource utilization,
accurate estimation is crucial. Therefore, the proposed
method accurately estimates the number of active UAVs to
achieve efficient resource utilization.

In Figure 6, the proposed method with a fixed vth of 10 was
evaluated in a dynamic environment with α set to 5 and Nmax
set to 50. Here, the pseudo-Bayesian update period (ϵ) in
the proposed method is varied between 0, 25, 50, 75, and
100, while the variation period (β) ranges from 25 to 75.
The minimum estimation error in each environment is found
when both ϵ and β have the same values. This is because
the proposed method can be more effectively adapted to
these changes by performing a pseudo-Bayesian update
immediately at the time of traffic change. For example, in an
environment with β = 25, the minimum estimation error is
13.67 [%] when using the proposed method with ϵ = 25,
and in an environment with β = 75, the estimation error
is minimized to 10.63 [%] when ϵ is set to 75. In addition,
it can also be seen that the estimation error increases as the
two values are far away.

IV. CONCLUSION
This study proposes the HyPEmethod to estimate the number
of active UAVs in S-ALOHA-based tactical FANETs.
To adapt to the network traffic dynamics of FANETs,
a hybrid approach that combines pure-Bayesian and pseudo-
Bayesian estimation methods is devised. To evaluate the
performance of the proposed method, the low-bound,
Schoute, and max-probability methods were considered
benchmarkmethods. In addition, to investigate the worst-case
performance of the benchmark and proposed methods in
tactical FANET environments, this paper demonstrated two
additional results for f (N , N̂ ) according to variation period
and variation step size. Specifically, it was demonstrated
that the proposed method had the best estimation accuracy
and adaptability to the variations in the number of active
UAVs. For example, the estimation errors were 8.61 [%] and
13.83 [%] when α = 0 and α = 10, respectively, and
10.12 [%] and 12.50 [%] when β = 75 and β = 25,
respectively. In addition, simulations were conducted based
on changes in factors such as the maximum number of
active UAVs and pseudo-Bayesian update period to confirm
the robustness of the proposed method. Specifically, the
proposed method shows that the estimated error of 5.46 [%]
increases when the maximum number of active UAVs
increases from 50 to 100, and the lowest estimation error
occurs when the pseudo-Bayesian update period is equal
to the variation period, as well as the increase in the
estimation error is not significant even when the two
values do not match. The simulation results unequivocally
demonstrate the superior performance of the proposed HyPE
method. This method outperforms the benchmark methods
and exhibits notable adaptability to the dynamic and frequent
changes inherent to FANET environments. Through the
proposed method, the computational complexity of pure-
Bayesian calculations, which is challenging to implement
on an onboard processor, and the lower estimation accuracy
associated with the pseudo-Bayesian method are effectively
resolved. Furthermore, this estimation method can be utilized
to adjust not only the transmission probability of each
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UAV but also the frame length, thereby improving network
performance.
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