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ABSTRACT Although there are numerous studies that have developed human action recognition (HAR)
algorithms, they have mostly focused on accurate recognition of actions; there is a lack of knowledge on
analysis and interpretation of the recognition results for identifying the critical factor causing work delay.
Further, from a technical standpoint, existing algorithms have difficulty dealing with missing objects during
work processes. To overcome these two limitations, this study developed a new HAR algorithm for the
recognition of bimanual actions of industrial workers, termed coordinate-BiLSTM with missing object
information (C-BiLSTM+MO), and proposed a multi-regression model for conducting in-depth analysis of
the recognition results. The proposed HAR algorithm was verified with experimental data from two typical
industrial scenarios (pick-and-place, assembly-and-disassembly). The proposed multi-regression model was
applied to the recognition results of these tasks and the data from existing bimanual action recognition
datasets. The results revealed that the proposed HAR model could recognize the actions of both hands over
85%of the time, for tasks includingwhen an object ismissing or appearing, and each key component included
in the proposed HAR model could significantly improve the recognition performance. Further, the proposed
multi-regression model can explain over 50% of the variance of work time for all seven tasks. Notably,
we clarified that the parameter of asymmetricity in the action of the two hands had a significant effect on
the work delay for all tasks (p<.01). These results suggest the benefits of in-depth analysis of recognition
results to improve time efficiency.

INDEX TERMS Human action recognition, human–object interaction, machine learning, performance
analysis, time and motion study.

I. INTRODUCTION
Improving the efficiency of manual workers is beneficial in
many industries. Previous studies have revealed that human
workers spend up to approximately 50% of their work time
on non-productive activities such as waiting [1]. Convention-
ally, to detect such wasteful actions during work processes,
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analysts perform a time and motion study (TMS) [2], [3],
which decomposes workers’ actions into several primitive
actions, such as picking or transporting a product, and visu-
alizes the entire work process as a time series of primitive
actions to identify wasteful parts. In this context, the impor-
tance and effectiveness of visualizing work processes using
TMS analysis have been demonstrated in various indus-
tries [4], [5], [6], [7], [8], [9]. However, in the traditional
approach a considerable amount of time is required for
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FIGURE 1. Missing (appearing) object problem for HOI detection in industrial scenario, (a) an object moves to behind the obstacle, (b) shape of
an object changes during the working process.

analysts to manually assign action labels to all activities
during the work process. Hence, the reduction in human
resource requirement and TMS efforts is a critical issue.

One potential approach that is used to address this issue
is TMS automation, which utilizes human action recognition
(HAR) algorithms. Currently, studies on HAR, which aim to
develop algorithms for classifying human motion data into
several action labels, are the focus of considerable attention
in the machine learning field [10]. Of the different HAR algo-
rithms, sequence-to-sequence recognition algorithms, which
receive the sequence input of humanmotion data such as joint
position information and return sequence output of action
labels, that best represent human motions at each time step
(e.g., [11], [12]), can be used for TMS. Specifically, HAR
algorithms for bimanual actions [13], [14], [15], [16], which
can recognize the actions of both hands, separately, have
high applicability because they can be used to capture the
coordination between both hands during the working process;
this is a key factor in TMS [2].
However, there are several problems associated with the

aforementioned approaches that need to be addressed. The
first and most critical problem is that although many HAR
algorithms have been developed, specifically for industrial
scenarios (e.g., [17], [18], [19], [20], [21], [22]), there is
a lack of knowledge related to the analysis of recognition
results to identify the cause of work delay and to evaluate time
efficiency. Most previous studies aimed to achieve higher
recognition accuracy, that is, ‘‘how to accurately recognize
the worker’s action.’’ However, in the practical workflow
analysis, in-depth analysis for identifying wasteful actions,
which follows the accurate visualization of the entire process,
is essential to improve the work efficiency [23]. Therefore,
this lack of knowledge on ‘‘how to analyze the recognition
results’’ decreases the effectiveness of the analysis of HAR
algorithms. To identify wasteful actions and determine the
relationship between different activities of the worker from
the recognition results obtained using an HAR algorithm, in-
depth analysis of the worker’s activities at each time step and
total work time should be conducted.

Additionally, existing methodologies have difficulty man-
aging interactions with ‘‘missing objects’’ during the working
process. That is, most industrial work includes the process
of changing the states of the objects in the environment

(shape or position), the work inevitably includes the object
disappearing and appearing as shown in Fig. 1. This makes it
difficult to apply existing algorithms, particularly the exist-
ing bimanual HAR algorithms [13], [14], [15], [16] that
explicitly use object information for considering complex
human–object interactions (HOI). Even if the above in-depth
analysis problems could be solved, the limitation on the
range of target tasks owing to the missing object problem
reduces the effectiveness of HAR-algorithm analysis in prac-
tical applications. Therefore, in addition to developing an
effective in-depth analysis methodology, the missing object
problem should be addressed for wide application of the HAR
algorithm.

II. RELATED WORK
A. TIME AND MOTION STUDY
Methods for measurement and evaluation of workers’ activi-
ties has been a significant research topic. The idea of a ‘‘time
and motion study,’’ which decomposes a worker’s activity
into several sub-activities and identifies waste, originated
from the work of Taylor, and has been further developed by
others such as Gilbreth and Bedaux [24], [25]. As reported in
several case studies, this concept is presently being utilized
for improving work efficiency [4], [5], [6], [7], [8], [9],
[26], [27], [28], [29], [30]. For example, Moktadir et al. [7]
improved productivity of the manufacturing process of
leather products by decomposing it into sixty sub-processes
and identifying points for improvement. Duran et al. [27]
achieved a 53% improvement of time efficiency by applying
TMS to the process of making tea glass models by identi-
fying redundancies from the calculation of the standardized
time for each process. The traditional TMS consists of the
following procedures: (1) recording all information related
to the job, (2) breaking down or decomposing the job into
elements, (3) examining these elements and determining the
sample size, (4) recording the time to perform each elemental
task using a stop-watch, (5) assessing the speed of working,
(6) converting the observed time to basic time, (7) deter-
mining the allowances, and (8) determining the standard
time [30]. Evidently, performing all these procedures man-
ually requires a considerable amount of time, which can be a
potential barrier for the introduction of TMS.
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B. HAR ALGORITHM FOR INDUSTRIAL APPLICATIONS
Although HAR algorithms have usually been applied to ana-
lyze daily human activity using common datasets [31], many
studies have attempted to develop an HAR algorithm for
manufacturing lines [21], [22], hand crafting [17], [18], [19],
[20], [32], [33], [34], [35], [36], [37], [38], [39], warehouse
picking [40], construction sites [41], [42], [43], [44], agri-
culture [45], and human–robot (machine) interaction [46],
[47], [48], [49], [50], [51], and other industrial tasks such as
spraying [52]. The introduction and usage of HAR algorithms
is a key concept for the modern manufacturing industry [53].
From a technical perspective, sequential recognition is

usually used in industry scenarios to capture the details of
a workflow [32]. While statistical modeling methods such as
the hidden Markov model [54] or pattern matching [55] were
mainly used in the period from the early 2000s to the mid-
2010s, deep learning methods such as convolutional neural
network (CNN)- [19], recurrent neural network (RNN)- [36],
and graph neural network (GNN)-based methods [37] have
become dominant in recent years. The difficulty related to the
use of HAR in industrial scenarios is that there are numerous
activities, the durations of these activities vary, and the per-
formance rate of an activity does not remain constant [39].
Therefore, previous studies developed specialized HAR algo-
rithms with custom features for each industrial scenario. For
example, Hernandez et al. [40] proposed a work-monitoring
system for a warehouse picking task with a specialized neural
network having two RNN-based processing streams of the
human skeleton and image information around both hands.
Zhang et al. [34] also developed two stream networks to
process both human and object information for considering
the complex interaction between them in the assembly sce-
nario. Additionally, Yan and Wan [21] recently developed an
automatic monitoring system for car assembly tasks involv-
ing several workers by combining the YOLO V3 detector
and VGG16, a kind of CNN-based architecture for image
data processing [56]. Finally, Gammulle et al. [51] captured
the hand motion of assembly operators using Kinect and
classified their intention using a Gaussian mixture model to
achieve efficient human–machine interaction.

Further, as a more specific HAR algorithm for capturing
detailed work actions, some recent studies developed a HAR
algorithm and datasets for human bimanual action recogni-
tion [13], [14], [15], [16]. While most conventional HAR
algorithms assigned one single action label to each time point,
those studies attempted to assign separate labels for each
hand of the human worker. In particular, Dreher et al. [13]
first addressed this problem by developing the ‘‘bimanual
action dataset,’’ which consists of 540 human bimanual
actions. They also proposed a HAR algorithm for use with
the dataset. To the best of our knowledge, this is the only
dataset that contains separate label information for each
hand at each time step. After Dreher’s work, several studies
proposed various algorithms with that dataset and updated
the highest recognition score. Morais et al. [14] proposed
ASSIGN (asynchronous-sparse interaction graph networks)

that contains two layers of spatio-temporal graph networks
for detecting the HOI with multiple time spans. Xing et al.
proposed PGCN (pyramid graph convolutional network),
which employs a pyramidal encoder–decoder architecture
consisting of an attention-based graph convolution network.
This system represents the 2D or 3D spatial relations of
humans and objects from the detection results in video data
as a graph [16]. Finally, Qiao et al. [15] developed 2G-GCN
(two-level geometric feature-informed graph convolutional
network) that considers both visual and geometric features of
humans and objects using two graph networks. By assigning
separate labels to each hand at each time frame using these
methods, key factors for executing a bimanual tasks such as
hand roles and symmetry [57] can be extracted.

However, as mentioned in Section I, the common problem
of these studies is a lack of knowledge of how to analyze
and evaluate the recognition results to identify the cause of a
work delay or the increase in time efficiency. Although many
studies have focused on the development of accurate recogni-
tion algorithms, from the viewpoint of industrial applications,
improvements in the work process ‘‘after recognition’’ is also
essential. Therefore, a gap exists between the focus of current
studies (recognition part) and requirements of practical appli-
cations. Further, the existing bimanual HAR algorithms [13],
[14], [15], [16] assume the possibility of explicit detection
of the objects; hence, recognition of the HOI with missing
or appearing objects during the working process is problem-
atic. This complicates the application of HAR algorithms to
industrial tasks that frequently contain missing or appearing
objects such as assembly.

III. METHODS
A. AIM AND APPROACH OF THIS STUDY
Based on the literature reviewed, this study aims to address
two critical issues that hinder the HAR-algorithm applica-
tion for automating the TMS analysis. The first issue is
the lack of knowledge on ‘‘how to analyze the recognition
results,’’ which complicates making specific improvements
and re-designing the workflow to increase the time effi-
ciency. To address this issue, we build a new statistical model
that can explain the variance of work time using the rec-
ognized bimanual label sequence information from an HAR
algorithm. The model contains some key variables from the
aspects of bimanual hand coordination such as the asymmetry
of the two hands or waiting time for one hand; therefore,
we can identify the key variable responsible for the improve-
ment of the time efficiency by referencing the weights of each
variable.

Second, to address the missing or appearing object prob-
lem, which limits the range of target tasks of the analysis
using an HAR algorithm, we propose a new HAR algorithm
called coordinate-BiLSTM with missing object information
(C-BiLSTM+MO) that can recognize an HOI with miss-
ing objects during the work process. The objective of this
algorithm is to detect the object’s missing or appearance point
in the image as the clue for identifying certain specific actions
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FIGURE 2. Overview of proposed method: C-BiLSTM+MO. (A) Input image sequence data are processed, and the human skeleton and object’s
missing (appearance) points are extracted; (B) Generation of the input data of each hand including MOscore, and (C) performing HAR for each
hand using the proposed network architecture.

(for example, removing a part). This reduces the required
information needed to identify human-object interactions,
and enable us to extend the range of target tasks.

B. PROPOSED HAR ALGORITHM FOR ADDRESSING THE
MISSING OBJECT PROBLEM
Fig. 2 presents an overview of the proposed HAR, namely
the C-BiLSTM+MO algorithm. This algorithm converts
the image sequence of a worker’s hand motion into two
sequences of corresponding action labels for each hand,
in a frame-by-frame manner. The basic architecture is a
stacked BiLSTM that can deeply process the time-series
data along both forward and backward directions and accu-
rately represent the complex temporal dependencies of the
time-series data [58], [59]. Lack of information on the coor-
dination between two hands negatively impacts performance
of bimanual HAR [15]; hence, our algorithm has a specific
BiLSTM layer called the ‘‘coordinate stream’’ for consider-
ing the complex coordination between the hands. To reduce
the complexity and the cost for the measurement system,
we adopt skeleton data extracted from a single RGB camera
image as human motion information.

Similar to existing bimanual HAR algorithms [13], [14],
[15], [16], the proposed model uses both human motion and
object information as input data. However, while existing
methods continuously detect and use object information such
as a name or bounding box, our approach is to only use the
initial and end states of the object for calculating where the
object disappeared or appeared. Specifically, we considered

that the fact of ‘‘object missing or appearing’’ itself increases
the probability of some specific worker action. If the worker’s
hand is close to the object missing point, it suggests a high
probability of an action that changes the position or shape of
an object (Fig. 1). Although identifying ‘‘interaction points’’
such as the midpoint between human and target objects is the
common approach for human–object interaction recognition
(e.g., [60]), we extend it to deal with the missing and appear-
ance objects. Information on the interaction with a missing
object is defined as the Missing Objects’ Interaction Score
(MOscore) and used as a feature variable for HAR (right side
of Fig. 2 (A) and (B)). This reduction of the requirements for
implementation will facilitate industrial applications of the
algorithm.

C. PROCESS OF C-BILSTM+MO
In the process of C-BiLSTM+MO, the image sequence of
the motion of the manual worker was first recorded using an
RGB camera. The recorded imageswere then processed using
skeleton recognition software, and two-dimensional joint
position information of the two shoulders, elbows, wrists,
hands, thumbs, and the hand tips were extracted (Fig. 2 (A)).
In addition, to evaluate and quantify the HOI with missing

and appearing objects, the missing objects and appearance
points were determined using theYOLOv4 object recognition
algorithm [61]. Fig. 3 shows the details of the calculation
process. First, the YOLOv4 detector defines the bounding
boxes of all the objects included in the image sequence
in T × S seconds at the beginning and end of the video

79878 VOLUME 12, 2024



R. Takamido, J. Ota: Action Recognition and Subsequent In-Depth Analysis

FIGURE 3. Process of calculating missing and appearance points. First, the object existence matrices that represent the position and number of
target objects included in each image frame are calculated (Step 1) and summarized in the initial and end phases (Step 2). Missing objects and
appearance points were detected by subtracting both matrices (Step 3).

(Fig. 3. Step 1). Here, T represents the time length of the
image sequence, and S represents the ratio of the initial
and end phases to the entire time sequence, which was set
to 0.05 in this study. Subsequently, the number of objects
included in each R × C divided region (set as R = C = 5,
in this study) of each image was counted and summarized
for the duration, and the existence matrices N and M were
calculated (Fig. 3, Step 2). If the detector can find the target
object, the element in the matrix becomes positive, and the
value increases in response to the frequency and number of
objects found during the T × S timespan. The difference
of the two matrices (L) represents changes in the status
(missing/appearance) of the target objects because of the

entire work process:

L = N −M =

 n11 − m11 · · · n1C − m1C
...

. . .
...

nR1 − mR1 · · · nRC − mRC


=

 l11 · · · l1C
...

. . .
...

lR1 · · · lRC

 . (1)

The plus and minus signs of the indices lrc indicate the
missing appearance of the object during the work process.
That is, if target objects that were not seen in the initial
span appear in the end phase, the value of index lrc becomes
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negative. If the position of the object does not change during
the entire work process, the value becomes zero; hence, the
existence of fixed objects is unaffected. In addition, because
matrix L can be calculated even when there are no target
objects at either the initiation or end of the work, it can
deal with actions that include missing or appearing objects,
such as placing the objects into an opaque container. The
missing object and appearance points Pm(xm, ym), Pa(xa, ya)
are defined by calculating the weighted mean of each index
in matrix L:

Pm (xm, ym) =

∑
lrc × prc∑
lrc

lrc > 0

Pa (xa, ya) =

∑
|lrc| × prc∑

|lrc|
lrc < 0,

(2)

where prc = (xrc, yrc) is the position vector of the center of
R × C divided region.
After calculating the missing and appearing points, we cal-

culated a MOscore that represents how close the hand is to
an object’s missing or appearance points. Given hr and hl
are the two-dimensional positions of the right and left hands,
respectively, they are calculated using the following equation
(Fig. 3, Step 3):

MOscorer =
1

1 +
√

|Pm − hr|
−

1

1 +
√

|Pa − hr|

MOscorel =
1

1 +
√

|Pm − hl |
−

1

1 +
√

|Pa − hl |
(3)

If the worker’s hand is close to the missing point and
away from the appearance point, the value of the MOscore
approaches+1 and its differentiation becomes positive. Here,
even if there is no difference in the positions of the hands, the
MOscore can differ depending on the position of the missing
and appearance points. This enables us to discriminate similar
actions, such as attaching a screw versus detaching a screw
with the same pose, because the former occurs near the
missing point (MOscore > 0), and the latter occurs near the
appearance point (MOscore < 0). If one of the missing or
appearance points cannot be defined, the MOscore is calcu-
lated using only one term in (3), which can be defined.

Finally, the network input variable was generated and
action recognition was performed for each hand (Fig. 2 (C)).
The input variables were composed of 2-dimensional position
information of the aforementioned joints (six joints for each
hand), the MOscore, and its differentiation. These variables
were normalized and combined, and two sets of input data
were generated for the recognition of the left- and right-
hand action. These processing flows produced two predicted
action-label sequences for each hand at each time step using
a frame-by-frame analysis.

D. PROPOSED MODEL FOR ANALYZING THE OBTAINED
BIMANUAL LABEL SEQUENCE
This study also conducted subsequent in-depth analysis of the
obtained label sequence data to identify the cause of work

delay and evaluate time efficiency. To quantitatively evaluate
the relationship between work delay and its potential factors,
we adopted a multiple regression model for the analysis.
Specifically, we proposed the multiple regression model to
explain the variance of work time among several repeated
operations with the following four feature variables, which
are considered as potential factors affecting the working effi-
ciency in TMS [2], [3], [23], [24].

(1) Asymmetry in the action of the two hands (A): This
variable represents the asymmetry in the movement left and
right hands. The importance of effective hand coordination
for working efficiency was emphasized in TMS as ‘‘both
hands should move and stop at the same time’’ [2]. To quan-
tify the A, all labels are roughly divided into either ‘‘dynamic
label’’ or ‘‘static label.’’ Subsequently, the summation of time
durations having asymmetric movement intensity (dynamic
vs. static) was counted and defined as this feature. If the
timing of initiation and end of both hand actions differs, the
value of this variable increases.

(2)Waiting time (W ): This represents the summation of the
duration that both hands have the ‘‘idle’’ label indicating that
the hand does not do anything regarding the target process.
The waiting time also depends on the timing of completion
of the previous process [62]; hence, if this parameter makes
a large contribution to the explanation of the working time,
the engineers should verify the connection with the previous
process.

(3) Total number of right-hand actions (Nr ): This rep-
resents the total number of right-hand actions included in
the obtained label sequence. A previous study revealed that
productivity is improved by eliminating unnecessary move-
ments and simplifying individual tasks [29]. If the work time
increases as a result of a worker performing extra actions,
this parameter makes a large contribution to the work time
variance. Specifically, this was defined as the number of time
frames that have right-hand action labels that are from the
ones in the previous frame.

(4) Total number of left-hand actions (Nl): This represents
the total number of left-hand actions included in the obtained
label sequence. By evaluating the effect of both Nr and Nl on
the working time, we can obtain more detailed insights about
the current process and identify points for improvement.

Using these features, we constructed the following multi-
ple regressionmodel to predict the deviation from the average
working time W̄T among repeated operations:

WT − W̄T = w1(A− Ā) + w2(W − W̄ ) + w3
(
Nr − N̄r

)
+ w4

(
Nl − N̄l

)
, (4)

wherew1−w4 indicates the multiple regression coefficient of
each independent variable.When there were several data gen-
erated from different task domains, this multiple regression
model was fitted to each domain separately, and identified the
cause of work time variance in each domain. If a large asym-
metricity in the actions of the two hands action causes a delay
in a specific task, the contribution and significance of A for
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FIGURE 4. Details of the pick-and-place task. The worker tried to move all target objects from a shelf to a container, and vice versa. The motion of
the worker is continuously classified into seven labels at each video frame.

work time prediction becomes larger, and if the waiting time
(W ) is the main factor, it becomes the significant factor in the
task. Therefore, through thismultiple regression analysis with
the Equation (4), we can obtain more in-depth insights into
the task than through visualization of the recognition action
sequences alone.

IV. VERIFICATION OF PROPOSED METHODS
A. VALIDATION OF THE PROPOSED HAR ALGORITHM
Although the dataset collected byDreher et al. [13] for human
bimanual motion recognition is available, it does not include
missing object information because the data were collected
under ideal situations where the object was continuously
captured in the image. Moreover, the task used to generate
the dataset was relatively simpler than that in a practical
industrial situation that involves actions such as unscrew-
ing and removing only one screw. Therefore, we conducted
experiments to collect more industry-oriented data for the
verification of the proposed approach.

The target task in the experiment consists of two repre-
sentative industrial scenarios. One is the pick-and-place task,
in which the target object from a container is manually picked
up and moved to a shelf or vice versa (Fig. 4). The pick-
and-place task is the basic object of interactive work such
as arranging products on a shelf or warehouse picking that
can be observed in many industries. As this task involves a
large change in the object position, it usually includes objects
that appear and disappear. In addition, we tested the proposed
method on a more complex task: assembly and disassembly
tasks with miniature cars (Fig. 5). Product assembly and
disassembly are representative manual tasks in industries that
require dexterous coordination between the hands and various
interactions with objects. In this task, the human worker tried
to assemble the miniature car by attaching 13 parts to the

body frame or disassemble it by removing the parts from
the frame. As this task involves a major change in object
shape, it also includes missing and appearing objects. This
study was approved by the Ethics Committee of the School
of Engineering, University of Tokyo.

1) DATA COLLECTION
In the pick-and-place task, one male worker carried a total
of ten target objects (500 ml plastic bottles) for one trial, and
the position of the lined-up objects on the shelf (DOSHISHA,
WSD6012-4) was varied for three patterns (upper, middle,
and lower layers of the shelf). The heights of the three layers
were 100 cm, 75 cm, and 15 cm for the upper, middle, and
lower layers, respectively. During the target task, the worker
was allowed to use both hands and asked to minimize work
time asmuch as possible. Theworker could change and adjust
the initial position of the shelf and container for each trial to
increase the work efficiency.

The motion was recorded using an RGB video camera
(SONY, FDR-AX45A) at 30 fps from nine different angles,
and 18 trials (three object positions × 2 task patterns ×

3 iterations) were performed for each angle. As a result,
we recorded 162 pick-and-place motions (9 angles × 18 tri-
als) with 1620 individual object-transportation actions. The
data from three trials were excluded owing to recording
errors. The mean required time for completing the task is
18.3 s (549 frames). After completing the recording, seven
action labels (Fig. 4) were manually assigned to each hand in
all the video frames (87,840 frames).

For the assembly and disassembly task, the same worker
assembled or disassembled a miniature car (THEXIN,
MY5032ACementMixer) 60 times. In the assembly task, the
worker attached parts such as screws or tires to the body frame
until all of them were attached. Parts such as screws or tires
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FIGURE 5. Details of the assembly and disassembly tasks. The worker tries to attach (or detach) a total of thirteen parts on the frame. The worker’s
action was classified into twelve action labels.

were initially stored in containers, the body frame was set on
the center of the desk, and the screwdriver was also placed
on the desk. In the disassembly task, the worker removed all
parts from the car and placed the parts into the container. The
worker could change and adjust the arrangement of the ini-
tial position of the body frame, containers, and screwdrivers
for each trial. To increase the validity of the camera angle
differences, three synchronized cameras with different angles
were used for recording and changing the position every ten
trials. Synchronized cameras were used to reduce the number
of iterations and worker fatigue. A total of 360 videos were
recorded (six angles× 3 cameras× 10 trials× 2 task patterns
(assembling and disassembling)), and among them, the data
of one trial were excluded owing to unsuccessful recording.
The mean recording time and number of frames for one trial
were 35.7 s and 1,073 frames, respectively. Twelve action
labels were manually assigned to both hands in all the frames
(385,207 frames).

2) DATA PROCESSING
To generate the input data of the proposed model based on
the data collected from the experiment, all recorded images
were processed using skeleton tracking software (VisionPose,
NEXT-SYSTEM), and the time series of two-dimensional
joint position data and the differentiation of shoulders,
elbows, wrists, hands, thumbs, and index fingers were col-
lected. Subsequently, a low-pass filter with a cutoff frequency
of 6 Hz was used to smooth the data. To reduce the effect

of differences in the recording angles, the skeleton data
were normalized. Twelve input variables containing human
skeletal information were generated for both hands.

Additionally, the MOscore and its differentiation were cal-
culated across all time spans and normalized to generate the
input data for the network by following the processmentioned
in the previous section (Fig. 3). The recognition of the target
object was performed using a pretrained YOLOv4 detec-
tor (CSP-DarkNet-53 framework with the COCO dataset)
on the MATLAB deep learning toolbox (MATLAB 2022b,
The Math Works, Inc.). The detector attempted to detect the
position of the ‘‘bottle’’ object in the image and return its
bounding box in the pick-and-place task. In addition, because
there was no existing object detection model for the target
object (miniature car) in Experiment 2, we manually trained
the YOLO-v4 detector to detect the target object using the
image sequences of six videos with different camera angles
(approximately 6,000 images in total). We assigned ‘‘object’’
label and bounding box information only when all parts
were attached to the frame, therefore, if some parts were
removed from the body frame, the detector would not find
the object, and the result would be ‘‘object missing’’. The
detection threshold was set to 0.2, and the durations of the
initial and end sequences were set to be S = 0.05 (5%) for
each experiment. The calculated MOscore and its differen-
tiation were also normalized and combined with the joint
position information to generate input data with 28 dimen-
sions (14 variables × 2 hands) for the proposed model for all
trials.
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3) TRAINING AND PERFORMANCE EVALUATION
We trained the proposed HARmodel and evaluated its recog-
nition performance based on a generated dataset of the input
variables and action labels. During the training process,
a leave-one-angle-out cross-validation was performed for the
pick-and-place task, and a leave-one-synchronized-pair-out
(three different angles) cross-validation was performed for
the assembly task. The number of hidden layers for each
Bi-LSTM cell was set as 128. The batch size was set to 64, the
number of maximum epochs was set to 100, and the learning
rate was set to 1e-4. To avoid overfitting of the training data,
the training process was monitored and manually interrupted
as required. The proposed model was trained to minimize the
summation of the two cross-entropy losses. The training time
for the proposedmodel was approximately 15min and 45min
for each task obtained by running three GPUs (NVIDIA
RTX A5000) in parallel on a MATLAB platform with a deep
learning toolbox and parallel computing toolbox. Recogni-
tion performance was evaluated by calculating the average
value of the accuracy, macro-averaged precision (maP), recall
(maR), and F1-score (maF1) by considering the differences in
the frequency of occurrence of each action.

Additionally, to verify the effect and role of each com-
ponent included in the proposed model (C-BiLSTM+MO)
such as usage of missing object information, we compared
its recognition performance with that of the following three
simplified models:

(1) Single LSTM with no object information (single
LSTM): This model processes human motion information
using a single LSTM layer and does not contain coordination
stream or object information.

(2) Coordinate-LSTM with no object information
(C-LSTM): This model processes human motion information
using two LSTM layers with a coordinate stream. By compar-
ing the above results, we can confirm the effectiveness of the
coordination stream.

(3) Coordinate-LSTMwith object information (C-LSTM+

MO): this model processes both human motion and object
information. By comparing this model with the above results,
we can confirm the effectiveness of the missing object
information.

We verified the effectiveness of the proposed model by
comparison with the simplified models rather than with exist-
ing algorithms because there is no existing method that meets
the following criteria: (1) assigns action labels for each hand
separately, (2) does not require continuous object detection,
(3) recognizes in a sequence-to-sequence (frame-by-frame)
manner. However, insights regarding the critical component,
namely, the missing object information would increase the
performance of the HAR algorithm in practical industrial
scenarios through comparison with the above models.

B. VALIDATION OF THE MULTIPLE REGRESSION MODEL
FOR WORK TIME VARIANCE
To verify the proposed multiple regression model, we fitted
the model to two different datasets. One was the bimanual

label sequence data of Dreher’s datasets (bimanual action
dataset [13]) and the other was the recognized label sequence
data from the above recognition tests. The former was used to
test whether the model could explain the variance of the work
time in the simplified task when the correct label sequence
information was given, namely, to verify the model itself. The
latter was used to verify the applicability of the model in a
more practical context by applying it to noisy, non-perfect
recognition results with more industry-oriented scenarios.

Specifically, for the Dreher datasets [13], we selected five
tasks (cooking, cooking with bowls, cereals, hard drive, free
hard drive) with an average work time exceeding 10 s for the
nine different tasks included in the datasets. The data of each
task included the label sequence information of both hands
and total work time for each of the 10 trials made by the six
workers. For the pick-and-place and assembly and disassem-
bly tasks, the output recognition results from the proposed
HAR model were directly used for model fitting. The data
from one of the three synchronized cameras for the assembly
and disassembly task were used to avoid duplication. Table 1
presents the mean work time and its standard deviation, and
minimum and maximum work time for each task. Table 2
shows the definition of static and dynamic labels for calcu-
lation of A. The model of (4) was fitted by a least-squares
method for each task to verify whether the proposed statistical
model could explain the variance of work time based on
the bimanual label sequence information. Variance inflation
factors (VIF) were used to detect the multicollinearity of the
independent variables with the value of 10 as the criteria. The
adjusted R-squared value, RMSE (root mean squared error)
and significance of the fitting result (p-value) were calculated
to evaluate the fitness of the multi-regression model for each
task; the multiple regression coefficient, t-value and p-value
of each parameter were also calculated to identify the domi-
nant factor causing work time variance in each task.

V. RESULTS AND DISCUSSIONS
A. VERIFICATION OF THE PROPOSED HAR MODEL
Tables 3 and 4 present the comparisons of the recognition
results of the seven models, and Fig. 6 and 7 show the confu-
sion matrices for each hand and examples of the predicted
label sequences obtained using the proposed method. The
total accuracies for the right- and left-hand action recognition
are 0.89 and 0.87 for the pick-and-place task and 0.91 and
0.91 for the assembly task, respectively. Therefore, the pro-
posed algorithm can well recognize the bimanual actions in
both the industrial scenarios even though it does not use the
explicit and continuous object information.

By comparing the proposed method (C-BiLSTM+MO)
with its simplified models (Single LSTM, C-LSTM and
C-LSTM+MO), we can confirm the effect of setting each
component. First, from the comparison of the results of single
LSTM and C-LSTM, the increase in total accuracy is in
the range of 10–14% and 18–22% for each task, respec-
tively. This demonstrates the importance of considering the
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TABLE 1. Work tme variance of the target tasks.

TABLE 2. Definition of the static and dynamic labels in each dataset.

coordination information between both hands for bimanual
HAR. Previous studies also revealed a large decrease in accu-
racy when there is no information regarding the interaction
between them [15]. Additionally, on comparing C-LSTM and
C-LSTM+MO, the total accuracy increased by 6% and 1–2%
for each task, respectively, by adding the MOscore and its
differentiation. Therefore, the information about the missing
and appearing object increases the recognition performance
in each industrial scenario. This is the novel finding revealed
by the results of this study. The effect of missing object
information in the assembly task may be lower because of the
range of motion of the hand was smaller in the task; there was
no clear difference in the MOscore for each action. Finally,
the introduction of bidirectional architecture improved the
recognition accuracy by 4–5% and 7–12% for each task.
Hence, considering the long-term interaction of bimanual
action can increase recognition performance, particularly for

a complex task such as manual assembly. Although this study
adopts two typical tasks in the practical industrial scenario,
the insights with regard to the effects of each component can
be transferred to other tasks.

As a case where the proposed method did not work, the
‘‘set’’ action to attach parts to the body frame by contact-
ing them exhibited the worst recognition accuracy (52.4%).
As shown in Figure 6, the action was frequently confused
with the ‘‘hold’’ action to fix the body frame so that it did not
move when attaching parts with the other hand. Because both
actions were performed near the appearance point with slow
speed movements, the potential reason is the high similarity
of those actions from both aspects of MOscore and move-
ment of body joints. In addition, errors tended to increase
for the action labels with fewer observations (e.g., ‘‘idle’’
label of the right hand in the pick and place task). Finally,
errors also increased in timing of transitions between actions
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TABLE 3. Recognition results of each model in the pick-and-place task.

TABLE 4. Recogntion results of each model in the assembly and disassemhly task.

(e.g., ‘‘reach’’ to ‘‘pick’’). This may be because of the
difficulty in manually assigning consistent labels for the
ambiguous ‘‘mid-term action’’.

B. VERIFICATION OF THE PROPOSED MULTI-REGRESSION
MODEL
Table 5 presents the goodness of fit of the proposed model
to each target task. The proposed multi-regression model

could explain more than 50% of the variance of work
time (R-squared value > 0.5 for all tasks). Fig. 8 shows
the relationships between the predicted work delay from
mean value (WT - W̄T ) and the true value. As shown in
the figure and table, the proposed model can well explain
the variance of the work time for each repeated operation
using the bimanual label sequence information, even if
noise causes imperfect recognition results (87–89% accuracy
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FIGURE 6. Confusion matrixes for each hand recognition task. (a) pick-and-place task (b) assembly-and-disassembly task.

for pick-and-place, 91% for assembly and disassembly
task).

To get more detailed insights, Table 6 shows the coeffi-
cient, t-value, and p-value of each feature variable of TMS
in each task. As there is no variance in the number of actions
of each hand in the cooking tasks, Nr and N l were excluded
from the analysis. The results of themulticollinearity test with
VIF showed that no variables exceeded the criterion value.
In Table 6, the asymmetricity of both hands (A) have signifi-
cant effects on all even tasks (p <0.01). This suggests that as
mentioned in the conventional TMS [2], the coordination of
both hands is a key factor for work efficiency. Remarkably,
as the coefficients of A are above 1.0 for most tasks, the
duration of the asymmetric phase of both hands results in a
further work delay in the entire process. This may be due to
the additional time that the ‘‘preceding’’ hand waits until the
other hand to recovers from the misalignment between them.

Further, waiting time (W ) is also a significant factor for
all tasks. Although there are no other processes before and
after the target task, the difference in time interval between
the signal to start and the initiation of movement was rep-
resented as the W and reflected in the overall work time.
Finally, the number of actions of both hands (Nr and N l )
have a significant effect on the task of cooking with bowls
and cereals, but not in other tasks. The reason for rela-
tively minimal effects may be that increased primitive actions
sometimes have a positive effect on work efficiency. For
example, when a portion of ‘‘idle’’ labels are split into
other action labels, the overall work time will decrease.
Therefore, it may be important to consider what type of
movements increased or decreased. It can be seen from the
result that these parameters have a negative coefficient in
the task of cooking with bowls, and negative coefficient in
cereals.
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FIGURE 7. Predicted action label sequences for each hand by the proposed model (left figure) and true sequence (right figure). (a) pick-and-place
task, (b) assembly-and-disassembly task. Results of one test trial (disassembly) are shown as an example of the action sequence.

TABLE 5. Results oe the multi-regression analysis for the bimanual label sequencl of each task. **: β < 01.

Finally, the proposed model showed relatively low
R-squared value for the free hard drive task, and assembly
and disassembly task (Table 5). The common feature of these

two tasks is the large variation in the execution time within
the same action label, that is, these two tasks include the
action to turn the screw using the tool to install it in its
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FIGURE 8. Relationship between the predicted work time delay from mean time by the proposed model (a) the task in the Bimanual actions
dataset [12], (b) the task performed in the experiment.

TABLE 6. Contribution of each feature variable por multi-regression analysis.

proper place. Because this action requires precise alignment
of screws and tools, the worker sometimes took longer time to
adjust the position of them, and sometimes did not. Therefore,
this increases the variance of motion time within same label
and may decrease the prediction accuracy of the model.

C. GENERAL DISCUSSION
In summary, insights about the dominant factor causing a
work delay can be first obtained by the in-depth analysis
developed in this study. Although some information can be

obtained from visualizing the work activities as a series
of label sequences, by conducting further analysis we can
increase the interpretability and explainability of the recog-
nition results for the users. Moreover, the results of this
study suggest the importance of bimanual recognition for
understanding the detailed process of industrial manual work-
ers because the asymmetricity of both hands’ action was a
dominant factor for all target tasks in this study. Although
there are few studies that address the problem of separate
recognition of both hands’ action as discussed in a previous
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study [13], it is necessary to identify the cause of a work
delay and improve efficiency. From this aspect, the method
of dealing with missing objects proposed in this study can
contribute to expand applicable tasks from one in an ideal
experimental room to more practical environments.

From general aspects, discussing the applicability of the
proposed method to other task domains is worthwhile.Within
many industrial tasks, the task that satisfies the following
conditions has a high possibility: (a) the environment allows
to capture the visual (image) information of workers’ upper
body, (b) one or both the locations of missing and appearance
points of the target objects can be identified, (c) the missing
and appearance points of the target object is caused by a
worker’s action. From these aspects, the proposed method is
highly applicable to some industrial tasks such as packaging
or food processing at the same location (e.g., a workbench).
Conversely, to increase the generalizability of the proposed
method, further improvements such as integrating the force
or sound information to address the case where vision sensor
is not available is needed.

Finally, limitations exist in applying the proposed method
to the real-world applications although this study addressed
some gaps to use the HAR algorithm for TMS analyses in
industrial scenarios. First, because real scenarios inevitably
include undesirable cases for action recognition, such as
including unknown (anormal) actions or class imbalance,
the proposed method should be extended to address those
cases by adding some processes of unknown action rejec-
tion [63] or data augmentation [64]. Moreover, from a
practical perspective, it is desirable to introduce unsuper-
vised or semi-supervised learning methods [65], [66] because
manual label assignment for preparing the training dataset
is time-consuming, particularly for the bimanual recogni-
tion task, which can be a barrier for application. Finally,
as mentioned previously, the statistical model should also
be extended to cover more variated works. For example,
by introducing the explainable-AI technique that emphasizes
the interpretability and explainability of the model may be
useful as an alternative for dealing with more complicated
causes in the real industrial scenarios [67]. If sufficient
amount of data can be collected from the work environment,
more detailed findings could be obtained by replacing the
simple regression model with such a complex deep-learning
model.

VI. CONCLUSION
This study addressed two critical issues in the existing HAR
algorithm for practical industrial applications. To overcome
the difficulty of dealing with missing and appearing objects,
we proposed a new HAR model, C-BiLSTM+MO, and
verified its recognition performance in two experiments with
typical industrial scenarios (pick-and-place, assembly-and-
disassembly). Further, to address the lack of knowledge
of how to analyze recognition results, we proposed the
multi-regression model with four key features in TMS to
identify the dominant factor causing a time delay. The

results revealed that our proposed multi-regression model can
explain over 50% of variance of the work time in the seven
different tasks. Specifically, the asymmetricity in the actions
of the two hands has a significant effect on work delay in
all tasks, which suggests the importance and effectiveness
of bimanual recognition and subsequent in-depth analysis
in industrial scenarios. The limitations of the method-
ologies used in this study should be addressed to make
further improvements for enhancing it suitability for practical
applications.
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