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ABSTRACT Performance of radio frequency machine learning (RFML) models for classification tasks
such as specific emitter identification (SEI) and automatic modulation classification (AMC) have improved
greatly since their introduction, especially when measured against simulated data. When using captured
RF data in a real environment, the performance of these RFML-based models is inconsistent when the
propagation environment of the training data significantly differs from testing data. In this work, the
correlations between measurable variations in propagation environment, ambient interference, amplifier
compression, and overall classification performance are investigated and quantified. Parametric variations
are ranked by impact to predict how well models trained in one environment can support operation in a
dissimilar environment. Consistent with previous work, almost every factor studied was shown to impact
classification performance in some way, with the effect of interference being particularly severe even at low
levels.

INDEX TERMS Specific emitter identification (SEI), automatic modulation classification (AMC),
RF fingerprinting, radio frequency machine learning (RFML).

I. INTRODUCTION
Radio Frequency Machine Learning (RFML) is the appli-
cation of Machine Learning (ML) techniques to solve
problems in the RF domain. ML is particularly useful
for higher-dimensional problem spaces. It can excel where
manually-specified (expert) features are unable to capture all
useful information, or when the relationship between inputs
and desired output is unclear. These considerations make
RFML well suited to applications such as the spectrum sens-
ing task of automatic modulation classification (AMC) and
the source identification task of specific emitter identification
(SEI).

AMC is the task of determining the modulation scheme
of a received RF signal with little to no a priori information
about the signal or channel, such as signal power, carrier
frequency, phase offset and timing information [1]. This is
often used as an intermediate step between signal detection
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and demodulation [1]. RFML is commonly used for this task,
due to ML strategies historically having high classification
performance [2], [3], [4], [5], [6], [7], [8], [9]. SEI is
the task of distinguishing individual radio emitter identities
by comparing features of their RF fingerprint, unique and
unavoidable imperfections in the hardware of the RF signal
chain that are orthogonal to the data being transmitted [10],
[11], [12], [13]. SEI has potential applications in wireless
network security for Wi-Fi, VHF, IoT, and cellular networks,
cognitive radio, self-organized networking, traffic analysis,
and spectrum management [10], [11], [12], [14].

For both AMC and SEI, the overwhelming majority of
new approaches are partially or completely based on ML
strategies [2], [15]. Models that rely on RFML techniques
are often preferred since they permit correlations to observed
data, which may lead to the discovery of powerful non-
expert-defined features. SEI benefits, in particular, given the
difficulties of modeling nonlinearities in the transmit path
that are caused primarily by manufacturing variation [10].
However, these models may also learn ill effects that are
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FIGURE 1. A comparison of the types of data sources available for the
development of RFML models: collected, synthetic, and augmented.

not necessarily applicable to general use cases, and therefore
suffer severe performance penalties outside their ideal
environment [16]. Nomodel for AMCor SEI is complete, and
each one makes assumptions, either implicitly or explicitly,
about the hardware and propagation environment.

Channel environments can vary significantly with differ-
ences in path loss, shadowing, and multipath propagation.
Attenuation due to path loss and shadowing intensifies at
longer ranges or with obstacles present, while multipath
propagation varies unpredictably based on the physical
environment and the location of emitters within it. In addition,
relative motion between transceivers can induce variance in
Doppler and delay spread effects [17]. It is common for
AMC and SEI models to suffer performance degradation
when these channel effects deviate from the baseline seen in
training or development [18], [19], [20], [21].
There are few studies on the impact of specific channel

effects on model performance. One study by Al-Shawabka
quantifies the impact of channel effects by analyzing existing
models using transmissions data collected through a direct
wired connection and over-the-air. This data was gathered
in both an anechoic chamber and in a typical indoor
environment [22]. Elmaghbub and Hamdaoui tested the
performance of SEI models for LoRa devices in varying
indoor and outdoor environments, software and hardware
configurations, and physical locations [19]. Hauser et al.
studies receiver distortion effects, such as errors in carrier
frequency estimation and sample rate estimation [23]. Other
prior sensitivity analyses are scattered across various works
for AMC or SEI models that include a section evaluating
sensitivity to one or more channel effects [13], [14], [21],
[23], [24], [25].

When developing anRFMLmodel, a large part of its ability
to accurately classify signals depends on the quantity and

quality of available data. For AMC and SEI applications,
this data can come from three sources: simulation, collection,
and augmentation [2], [26]. Prior work [26] has demonstrated
varying levels of efficacy with training models using each
of the three data types, while recent work in RF transfer
learning [16] has developed quantified dataset similarity
models for data collected in different RF environments.
A visual comparison of these data sources is shown in Fig. 1.
Simulated or synthetic data is simple to obtain in large

quantities, since it can be created quickly and inexpen-
sively with open-source toolkits such as GNURadio [27]
or liquidDSP [4]. Synthetic data is applicable for initial
development and modeling of simplistic environments, but
can be unsuitable as the only data source for models deployed
in a real-world environment [2], [3]. Simulated data has
historically proven effective for AMC [23]. For an application
such as SEI, simulated data can be problematic for eventual
real-world use due to the inability to accurately model
non-idealities in a transmission from specific real-world
hardware.

Collected or captured data from a real-world environ-
ment or physical testbed can potentially lead to superior
performance, due to data being more similar in training and
deployment. However, the process of collecting this data
can be orders of magnitude more expensive in terms of
time, effort, and hardware costs when compared to synthetic
data [28]. In addition to increased cost, for SEI, collected data
also carries the risk of incorrectly associating features of the
channel environment with specific emitters rather than actual
impairments in the hardware [3], [24]. Augmentation is an
intermediate step between data collection and training where
domain knowledge is used to expand the effective size of
a dataset to improve model generalization and performance
across more diverse scenarios [26], [29], [30], [31], [32].
Augmentation can be used to improve upon limited data
to create more robust training datasets, yet has limitations
particularly for controlled experiments to isolate specific
channel effects.

Wide coverage of diverse channel conditions and scenario
parameters in a training dataset is especially critical for
RFML applications. For new observations that are on
the interior of known cases, it is more likely that a
correlation-based (interpolation) decision will be accurate,
while new observations outside the contour of learned
behaviors from known examples (extrapolation) may bemore
unpredictable [33], [34]. Increasing the range of conditions
under which known examples are collected therefore serves
to increase the likelihood that new observations lie within
these learned behaviors, improving the robustness and
predictability of the model.

Given the possible deployment of RFML models in
military applications or otherwise congested spectral envi-
ronments, the presence of non-cooperative interference is
inevitable [35]. If it has not been accounted for in the devel-
opment of a model, interference can significantly degrade
performance. It is therefore needed to condition RFML-based
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decision agents to be robust against ambient interference
whenever the intended application has the possibility of
interference that is outside the control of the user. Co-channel
interference can be especially damaging to performance,
since is likely to overlap in the frequency-domain with
symbols from the signal-of-interest – potentially obscuring
critical features for classification and demodulation [36].
With the density of spectral environments increasing, expe-
riencing co-channel interference is becoming increasingly
likely even in commercial settings [37]. Adjacent-channel
interference can also degrade performance of some RFML
algorithms, but can be removed with analog filters if the
center frequency and bandwidth of the signal-of-interest is
known. This technique has the notable downside of invali-
dating RFML models that rely on out-of-band distortions for
classification [38].

This work aims to identify and characterize the factors
in testbed configuration and propagation environment for
collected RF data that impact RFML model performance
and generality across scenarios. We evaluate sensitivity to a
broad set of parametric variations from a common baseline
to better understand RFML algorithm performance under dif-
ferent training and evaluation conditions. Since propagation
channels and RF signal chains can be highly diverse, the
list of possible sensitivity parameters in this environment
is near-inexhaustible, meaning comprehensive understanding
can only be built up over time. The parametric variations
of specific interest covered in this work are co-channel
interference – both synthetic and real-world, transmitter
high power amplifier (HPA) non-linearity, path loss, and
transmitter displacement by fractions of a wavelength –
referred to asmicro-channel multipath variations in this work.

This paper is structured as follows. Section II-A discusses
the AMC and SEI models used as baseline for experimen-
tation. Section II presents the experimental setup for each
of the variations of interest, the hardware and software
configuration of the testbed collection system, and each of
the data collection scenarios. Section III goes into detail about
the methodology for dataset creation, RFML model training,
and performance evaluation. The results of the testing, overall
takeaways, and ranking of the impact of the tested parameters
is given in Section IV. Finally, recommendations for future
work and conclusions are discussed in Section V.

II. EXPERIMENTAL SETUP
A. BASELINE MODELS
This work aims to evaluate the relative impacts of parametric
variations in the RF signal chain and in the propagation envi-
ronment. Therefore, the training regimen and architecture for
the RFML models are held the same across all experiments.
Only the training data changes between scenarios; the model
structure remains constant.

The model trained for each experiment is a Convolutional,
Long-Short Term Memory (LSTM) Deep Neural Network
(CLDNN) [39]. From the non-testing subset, 90% of

available data from real-world captures is allocated for
training, while the remaining 10% is allocated to verification.
The CLDNN is trained for a maximum of 50 epochs on
all allocated data or until loss during validation fails to
decrease for 4 epochs. This CLDNN model was selected
due to its proven success in SEI and AMC tasks across
synthetic, real, and augmented datasets [13], [26], [39].
A variety of other RFML-based models have been considered
for these AMC and SEI applications in related works, using
Convolutional Neural Networks (CNN) [10], [40], [41], Deep
Neural Networks (DNN) [42], Recurrent Neural Network
(RNN) approaches like Long Short-Term Memory Networks
(LSTM) [43], decision trees [44], ensemble methods such
as Adaboost and Random Forest [45], and other network
types [26], [46]. Our analysis [47] demonstrated that differ-
ences in performance are attributable more to the training
and operational parameters than the chosen architecture. The
sheer number of models to be trained in this experiment led
us to choose the faster training CLDNN architecture. The
structure of the CLDNN is shown in Fig. 2. This structure is
most similar to the structure presented in Clark et al. [26],
based on the work of Flowers et al. [48] and West and
O’Shea [39].

The input to the first convolutional layer is two channels
of 256 raw RF floating-point samples, one for in-phase
and another for quadrature. Each convolutional layer, with
50 output channels and 1 × 8 kernel, is succeeded by a layer
with rectified linear unit (ReLU) activation and then a layer
of 1-dimensional batch normalization. The output of the first
layer set is both fed into the second convolutional layer and
saved to concatenate with the output of the third layer set as
an input to the LSTM. The output of the LSTM is flattened
into a vector and then fed through a ReLU activation layer
with output size of 256, then through 1-dimensional batch
normalization.

B. PARAMETERS
The parameters studied here are variances in multi-path prop-
agation, (co-channel) narrowband interference, HPA non-
linearity/compression effects, and SNR. A non-exhaustive
table of parameters that may affect RFML performance is
given in Table 1. These specific parameters were chosen to
balance the anticipated impact on classification accuracy and
practicality of study with a real-world collection setup. Path
loss can be studied simply by varying the distance between
transmitter and receiver, but the resulting attenuation is not
expected to have a large impact on general classification
performance at the smaller scales evaluated in this work.
Multi-path, due to the high variability of distortion, especially
in indoor spaces, is expected to have a large impact on
classification performance for both AMC and SEI; its
effect can be studied by varying the relative position of
transmitter and receiver within the same indoor space.
The effect of co-channel interference can be studied by
either augmenting a ‘‘clean’’ dataset with different levels
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FIGURE 2. Structure of the CLDNN used for classification tasks. b represents the number of samples
provided to the network at a time, in this case 256. c represents the number of classes, which is the number
of modulation schemes for AMC and the number of unique radios for SEI. x represents the input and
progression of data throughout the forwarding process and a represents the output of the first layer that is
concatenated to the output of the third layer.

of simulated interference or by introducing an extra emitter
in the collection environment. Co-channel interference may
degrade classification performance by introducing energy on
frequencies where a model may be expecting to only see
out-of-band distortions that are consistent with a particular
emitter or modulation scheme in the baseline environment.
HPA compression effects are comparatively more difficult
to induce and study, since manufacturers have an incentive
to produce transmitters with amplifiers that can operate in
the linear region across the range of supported power levels.
This effect is studied by varying the power level of emissions
from the device, with less compression distortion at lower
power levels – decreasing the intensity of HPA compression
artifacts. If compression artifacts were features learned by an
SEI model, reducing these effects should result in degraded
classification performance.

Dynamic channel effects, temperature, mixing and filtering
errors, and clock jitter were among the parameters with
higher anticipated impact that were not chosen for practicality
reasons. Previous work showed that channel effects that vary
from day-to-day affect classification performance, but this
non-stationarity is impossible to predict or control [49]. Mea-
suring and controlling for transmitter hardware temperature
would be impractical for the number of devices used in this
work [50], since it would require modification of each device
with specific measuring, heating, and cooling components.
The chosen parameters are discussed further in Section II-D.

C. EXPERIMENTAL TESTBED
The experimental data collection strategy uses the Blind
User Reconfigurable Platform (BURP) that is described in
detail in a previous work [63]. The experimental hardware
and software setup consists of a number of transmitters
connected to a transmitter host machine, several co-located

TABLE 1. Table comparing various parameters of the transmitter, receiver,
and channel environment that could affect AMC and SEI classification
performance by anticipated impact on performance and anticipated
feasibility of evaluation using captured RF data on a real-world testbed.

receivers connected to ‘‘collection node’’ (CN) machines,
and a software control back-plane to coordinate the entire
system. The system’s quick reconfigurability facilitates
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FIGURE 3. System-level diagram of the transmitters and receiver in the propagation environment with labeled
non-idealities used as parameter variations.

TABLE 2. Components of the transmitter host and each collection node
in the experimental setup.

adjustments to data collection for varying specific parameters
of interest [63].

1) RECEIVE HARDWARE
The chosen receivers are 2 USRP X310s with SBX-120
daughterboards and 1 USRP B210. Each receiver radio is
connected to a dedicated CNmachine, which provides control
and data storage functionality. To minimize any possible
differences resulting from antenna positioning, all receivers
share a common antenna though an RF splitter/combiner
network. The upper half Table 2 gives a list of significant
components of the collection nodes. Fig. 4 shows a photo-
graph of this portion of the collection setup.

FIGURE 4. The receive-side hardware setup with collection nodes and
their attached radios. The collection nodes are located on the lower shelf
while the radios are placed on the top of the cart.

2) TRANSMIT HARDWARE
The BURP machine is unique in the literature for the
number of real-world transmitters, with support for up to
120 emitters [63]. For this work, the chosen transmitters
are 60 Great Scott Gadgets YARD Stick Ones (YS1s) [64].
The transmitters communicate with the transmitter host over
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FIGURE 5. The transmit-side hardware setup of the transmitter host and
attached YARD Stick One radios on the front USB hub array.

the USB protocol and are installed in an array of USB hubs
on the side of the machine oriented towards the receivers.
These transmitters are low cost and are based on the Texas
Instruments CC1111Fx MCU [64]. Being an off-the-shelf
device, the YS1 is both highly available and similar in
construction to IoT devices that operate in the sub-GHz ISM
bands. With the quantity of low-cost emitters in the same
weight-class as the typical IoT transmitter, this platform is
well suited to collecting data for RFML algorithms intended
for IoT applications – security, cognitive radio, etc. the lower
half of Table 2 gives a list of significant components of the
transmitter host. Fig. 5 shows a photograph of the transmitter
host used for this portion of the collection setup.

D. PARAMETERS
The choice of real-world over-the-air collections with real
hardware enables the study of sensitivity to the differences
in the propagation environment and emitter impairments.
Fig. 3 gives an overview of these real-world effects on
the collection setup. The experimental setup of this work
seeks to isolate and study the impact of power amplifier
gain compression, co-channel interference, path loss, and
micro-channel variations of multipath fading differences due
to variable transmitter location.

1) POWER AMPLIFIER GAIN COMPRESSION
Impairments in the RF signal chain, particularly HPA
nonlinearities, contribute to distortions in the emitted sig-
nal that lead to a transmitter’s specific RF fingerprint,
whose distinctness is important for the performance of SEI
algorithms [19]. These distortions become very significant
when the HPA enters compression at higher power levels,
i.e., when the gain of the HPA begins to near the 1 dB
compression point, P1dB, decreasing gain 1 dB from its
previously constant value. This effect is studied by proxy
by varying the target output power of emissions. For the
chosen emitter, limits imposed by themanufacturer prevented
over-driving of the output to fully enter the compression
region, but non-linearities still contribute to varying output
characteristics when modulating the target power level.

2) CO-CHANNEL INTERFERENCE
Co-channel interference can significantly degrade the quality
of data for received signals by introducing energy at
unexpected frequencies. This signal, that is not part of the
signal-of-interest, may be incorrectly interpreted as useful
features by AMC or SEI algorithms, leading to undefined
behavior and decreased classification accuracy. Adding a
notch filter to remove the interference will remove the
unexpected signal, but any out-of-band features that may have
been useful for classification will be unavailable to the RFML
models, also possibly decreasing classification accuracy. This
work studies real interference introduced by another emitter.

The choice to differentiate between synthetic interference
and real-world interference is due to the expectation that
real-world interference, by existing in the same environment
as the signal-of-interest, will also be influenced by similar
multipath and phase noise effects. Synthetic interference is
much easier to generate at scale, since it can be injected
as a post-processing step, but it is unknown whether using
it during training significantly improves performance of an
RFML algorithm when faced with real interference.

3) MICRO-CHANNEL VARIATION
Differences in transmitter placement within the environ-
ment induce a heterogeneous multipath fading effect for
each transmitter. Transmissions from radios located close
together may have similar, but not identical, multipath
fading – referred to in this work as channel micro-variations.
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RFML works dealing with captured data generally agree
that variations multipath propagation may have some role
to play in classification performance, but it is unknown
how intense these variations can be before performance is
affected. Depending on placement in the hardware setup, with
emissions at 915.25MHz, the position of each transmitter
can vary from fractions of a wavelength (<1λ) to multiple
wavelengths (∼5.4λ) between the top and bottom slots.
This effect is explored by scrambling the positions of most
emitters, maintaining a subset stationary, and comparing the
model’s classification performance across these groups.

4) SIGNAL-TO-NOISE RATIO
Background noise is present in all channel environments,
typically modeled as additive white Gaussian noise (AWGN).
The signal-to-noise ratio (SNR) of a signal determines the
clarity of raw data available to amodel, influencing the degree
to which subtle features are discernible to RFML algorithms.
SNR is the most common system parameter over which the
existing literature evaluates performance (i.e. classification
accuracy).

E. COLLECTION SCENARIOS
We examine RFML model sensitivity through six scenario
sets, each designed to isolate specific environmental and
hardware effects that may affect classification performance.
Each of the scenarios is a variation upon the baseline scenario
that is intended to isolate a particular effect commonly
cited in RFML works. These effects include: co-channel
interference, both synthetically generated and produced by
real emitters within the environment, variable transmission
power – intended to elicit transmit signal chain nonlinearities,
micro-variations in transmitter location, and line-of-sight
path loss.

1) BASELINE SCENARIO
The baseline scenario is intended to represent a benign lab
collection environment. The transmitter host and the receivers
are indoors and placed 30m apart, with the receivers sharing
a common antenna through an RF combining network. Each
device transmits a full-power (10 dBm), 1024 byte burst of
randomized data at 31,250 bits per second. The transmissions
are at a chosen center frequency of 416.4 MHz and use one
of the OOK, MSK, 2-FSK, 4-FSK, or 2-GFSK modulation
schemes. The receiver sample rate and bandwidth are both
250 kHz.

The testbed setup is discussed in detail in Section II-C.
A diagram for the arrangement of transmitters and receivers
within the collection environment for the baseline scenario is
shown in Fig. 6, and pictures of the receive-side and transmit-
side setup are shown in Fig. 4 and Fig. 5, respectively.
As described in Subsection II-C, each transmitter is

positioned on a bank of USB hubs on a transmitter host.
To increase generality and reduce the likelihood of the
models learning patterns associated with specific transmitter

FIGURE 6. The arrangement of the collection setup for the baseline
scenario (not to scale). Each of the receivers shares a common antenna
through a 3-way RF splitter and stores data on their respective CNs. The
transmitter host and CNs are connected through a control back-plane to
coordinate accurate data labeling.

locations, the transmitter positions within the bank are
scrambled at regular intervals.

2) SIGNAL-TO-NOISE RATIO
This scenario assesses the model’s performance across
different SNR levels. Understanding the impact of SNR is
important because a model trained on high SNR data may
learn subtle features that are not discernible at low SNRs.
Learning these features may cause the model to have high
performance on its own dataset, but worse performance in
noisier conditions. Documenting the inflection point where
this begins to occur is crucial for optimizing future dataset
generation efforts.

No changes occur in the data collection process
from the baseline scenario, except for the inclusion of
varying-intensity additive white Gaussian noise (AWGN)
introduced as a post-processing step on each example. The
channel effects and noise in the original baseline collections is
still present along with the augmented noise. Typically, signal
SNR refers to the ratio in power of a symbol to the noise floor.
In this scenario, SNR instead refers to the decision SNR – the
ratio of the power of every symbol in an example to the
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FIGURE 7. A composite image from a spectrum analyzer of a sample
2-FSK transmission with interference of 1 kHz bandwidth positioned 30%
of the way between the symbol tones. The signal is visible in blue, the
interference in red, and the resulting signal+interference in magenta.

background noise. In this case, the model makes a decision
based on an observation window 8 symbols in length.

3) REAL-WORLD INTERFERENCE
The real-world interference scenario assess the model’s
performance with adjacent emitters introducing co-channel
narrowband interference. This is intended to mimic a
deployment environment with many devices communicating
on similar frequencies and to reflect the fact that real-world
interference is subject to the same channel conditions and
receiver characteristics as the signal-of-interest.

An emitter is placed between the transmitter and receiver as
in the baseline scenario. Data collections are conducted with
the emitter producing Gaussian interference with bandwidths
of 1 kHz and 10 kHz (equivalent to 1.4% and 13.8% of
the modulated bandwidth) and at random center frequencies
within the bandwidth of the signal of interest. The interfering
emitter’s gain was tuned to create interference with signal-
to-interference ratio (SIR) levels targeted around 30, 20, and
10 dB. In reality depending on the actual power of signal-of-
interest.

4) TRANSMISSION POWER
Especially for SEI performance, a considerable amount of
the noticeable variation between transmitters is attributed
to HPA non-linearity distortions [9], [65], [66], [67]. Using
real integrated circuit hardware limits direct control over
HPA distortion intensity. Instead, varying transmission power
is used as a proxy for attenuating this effect – decreasing
transmission power will move the transmitter’s HPA further
into its linear region, potentially reducing the distortion that
typically contributes to an RF fingerprint.

Transmission power is varied from the baseline scenario
and data is collected for emissions at 5, 7, 8, 9, 10 dBm. The
chosen power levels are concentrated near the upper end of
the transmitters capabilities to attempt to excise the nonlinear
region where HPA compression occurs. It is expected that

the greatest observed differences will lie between increments
near the devices’ upper limit, though speculation also exists
that the manufacturer’s software limits prevent driving the
device into full-on saturation.

5) STATIC SUBSET
Variations in multipath propagation commonly hinder SEI
algorithms’ ability to generalize across scenarios [4], [24],
[31]. This is because RFML algorithms trained on real
world data have been shown to have a tendency to associate
the patterns of variations in the propagation channel with
particular labels instead of real differences in an emitter’s RF
fingerprint or modulation scheme [15], [23], [24], [25]. The
purpose of this scenario is to test if small variations of radio
positioning and multipath affect classification accuracy.

In this scenario, 12 transmitters are held at constant
positions on the bank of USB hubs while the rest are
scrambled at regular intervals. RFML models trained on this
data are evaluated on classification performance comparing
radios with constant position versus those that are scrambled.

6) COMMON ANTENNA
This scenario assesses RFML model performance by elim-
inating propagation environment differences to isolate the
effect of micro-channel variations in multipath propagation.

In this scenario, all transmitters from the baseline scenario
use a common antenna, connected through an RF combining
network. We use passive Wilkinson-based combiners since
they are the cleanest for large-scale signal combining. Trans-
mitter positions within the bank are no longer scrambled.

III. METHODOLOGY
A model is trained for each scenario based on datasets
reflecting each specific parametric variation. Performance is
then evaluated against the respective testing sets. The model
is a CLDNN trained on real-world captured RF data, whose
structure is described in Section II-A. The performance for
each of these models is communicated through a confusion
matrix rasterized as an image – a visualization of how
frequently examples of a particular class are associated with
each label and how often the classification is correct. In a
confusion matrix, the horizontal position corresponds to the
predicted class, and the vertical position corresponds to the
true class, with the entries along the diagonal corresponding
to when the predicted class matches the true class. Overall
classification accuracy, the average precision, average recall,
and the average F1 score for each class (macro F1) are also
provided. The F1 score is a commonly-used metric to assess
classification performance; it is defined as the harmonicmean
of precision and recall. Precision measures the accuracy
of predictions; it is defined as the ratio of true positive
predictions to all predicted positives. Recall measures the
frequency at examples of a particular class are able to be
correctly identified as that class; it is defined as the ratio
of true positive predictions to all occurrences of that class
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in the dataset (true positive predictions and false negative
predictions).

For experiments such as this static subset, where only the
relative classification accuracy of a subset is compared to the
rest of the group, only the confusion matrix is necessary. For
the experiments with multiple variations, such as different
SNR levels, overall performance is compared between trials.
Developing different datasets for each parametric variation
is important since it allows the creation of a model from
a specific set of parameters that can then be evaluated in
performance on examples in different channel environments,
thus isolating performance difference resulting from a change
in parameters.

For SEI, each dataset consists of 720,000 (12,000 per
class) training, 60,000 (1,200 per class) validation, and
60,000 (1,200 per class) testing examples. For AMC, each
dataset consists of 60,000 (12,000 per class) training, 6,000
(1,200 per class) validation, and 6,000 (1,200 per class)
testing examples. This quantity is believed to be sufficient
from previous work on this architecture, which observed
that marginal performance gains decreased as data quantity
increased, with similar AMC classification accuracy between
5,000 and 10,000 training examples per class [3]. From raw
captures, examples are generated by isolating transmissions
of 1024 symbols (31,250 samples) by comparing timestamps
of detected energy at the receiver and those recorded in the
groundtruth during data collection and then partitioning into
individual examples. Each example in the dataset consists
of 256 raw IQ samples in a window that contains about
8 symbols, meaning each isolated transmission yields around
122 usable examples. The model for each scenario has the
same architecture as the baseline model, which has been
trained on its corresponding dataset from collected data in the
baseline scenario, discussed in Section II-E1.

IV. RESULTS AND ANALYSIS
Classification models for each parametric variation were
created on the data collected in each of the scenarios outlined
in Section II-E according to the training regimen outlined
in Section III. Classification performance of the models in
these scenarios are compared to the established baseline
performance. Some factors were found to cause performance
degradation, such as decreased SNR or the presence of
interference. Other scenarios, such as variable transmission
power, showed patterns of classification accuracy between
circumstances that suggested different levels of model
interoperability depending on the specific pairings of training
and evaluation datasets.

A. BASELINE
The overall classification performance in the baseline sce-
nario is given in Table 3, showing an 89% baseline accuracy
for AMC tasks and 34% baseline accuracy for the 60-class
SEI task. The confusion matrix for AMC is shown in Fig. 8,
which is acceptable on its own for a single input.

FIGURE 8. Baseline confusion matrix for AMC.

TABLE 3. Classification performance of the model in the baseline
scenario.

B. DECISION AGGREGATION
Before proceeding further to the quantitative performance
analyses, it is important to briefly introduce a previously
published method [68] to aggregate CNN-based classifier
decisions into an improved overall decision. To use this
multinomial-based method, the core assumptions are that the
inputs are drawn from independent, identically distributed
(iid) sets and that for the brief window of observation that
the signal classifications should be the same. In our scenario,
temporal edge detections are used to isolate the burst, which
we know to not have any significant co-channel effects
(except where intended), so we can confidently aggregate the
classification decisions of successive input frames during that
isolated burst into a single decision. Our CNN input frame
size is on the order of 8 symbols, so aggregating successive
decisions by a factor of 10x or 100x is a reasonable range
over which to combine decisions. The SEI confusionmatrices
for the base case (without applying multinomial decision
synthesis), and the cases for n = 10, and n = 100 are shown
in Fig. 10.

Under these iid assumptions, the multinomial decision
aggregation approach will lead to a better overall classi-
fication as long as the correct decision (i.e., the diagonal
elements of the confusions matrix) is in fact the dominant
one. Moreover, the rate of the increase in performance, which
naturally converges to a fixed value, is relative to the ratio
of the correct decision and the most likely error(s). When
any of the error cases exceeds the correct decision, then
aggregation will actually decay performance, making the
resulting decision [incorrectly] more confident in the error.
As such, the net effect of aggregation is a benefit as long as
the correct decision exceeds random guessing and none of
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FIGURE 9. The next-highest classification rate normalized by the true
classification rate for a given transmitter ID expressed in dB.
S1 represents the highest classification rate of an incorrect class for a
true class of a particular transmitter ID. S2 represents the next highest
false-classification rate and S3 represents the next highest after that.
Values below 0 indicate that classification accuracy would improve with
aggregation, while values above 0 indicate that classification accuracy
would degrade for that specific emitter.

the error cases are more prevalent. For the case of a 60-class
SEI algorithm, where random guessing is only 1.4%, that
means that a 10 − 20% baseline accuracy from a single
input can actually be quite positive and grow into a highly
confident decision over multiple successive input frames.
To demonstrate this more concretely, a visual comparing the
confusion matrices of the 60-class SEI classifier output based
upon a single input (left), 10 inputs (center) and 100 inputs
(right) is shown in Fig. 10. As more decisions are aggregated,
the aggregated decisions have substantially higher accuracy,
with the notable exceptions where the baseline trained CNN
had errors that exceed the correct decisions for a given
emitter. A deeper inspection of that condition is shown
in Fig. 9, where the top-3 conditional errors are depicted,
normalized as a ratio with the true decision probability.
As such, a value of 0 dB for S1 corresponds to a equal
probability of the true decision and the worst case of
potential SEI classification error; S2 and S3 correspond to
the next two ordered error cases, respectively. The emphasis
in these further analyses of the classification decision
is to explore how well aggregating multiple successive
decisions into a higher confidence decisionwill perform, with
guaranteed improvements whenever {S1, S2, S3} are smaller
(< 0dB) than the true decision probability [68]. These results
show that decision aggregation approach leads to emitters
{26, 27, 31, 44, 61, 62} each decaying in performance, while
the other 66 emitter classes improve. The remainder of the
paper makes use of this decision aggregation method, with a
consolidation of 10 successive outputs for AMC algorithms
and 100 successive outputs for SEI decisions.

C. INTERFERENCE
Interference tests focused on center frequencies within the
signal-of-interest’s bandwidth. Results are separated into

TABLE 4. Classification performance with different intensities of 10kHz
interference.

TABLE 5. Classification performance with different intensities of 1kHz
interference.

cases where interference of two bandwidths was introduced
with three levels of intensity. Evaluation results reflect the
performance of models trained on data with this interference
present. Interference presents a particularly challenging
problem for the current approach to both AMC and SEI with
the observed level of performance degradation. Successfully
mitigating these effects could substantially recover perfor-
mance.

1) 10KHZ BANDWIDTH
AMC model performance declined with increasing interfer-
ence intensity at 10kHz bandwidth, as given in Table 4.
In Fig. 11, it is shown that at the highest level of interference,
the model became much more likely to classify examples
as 4-FSK, appearing to incorrectly interpret the interferer as
an extra tone in the FSK symbol set. This likely occurred
because 4-FSK’s wider occupied bandwidth, similar to that
of the 10kHz interference, led the model to mis-classify
narrower-bandwidth modulation schemes as 4-FSK.

As can be observed from Table 4, SEI performance
also decreased as interference intensity increased. Fig. 12
shows the pattern in more detail, where SEI performance
is somewhat preserved in the low interference case and still
somewhat present in the medium case, but completely useless
when high interference is present. Vertical bands appear in the
confusion matrices, where the model appears to pick from a
small subset of classes that it prefers to pick over others as
interference intensifies.

2) 1KHZ BANDWIDTH
With 1kHz bandwidth interference, performance of the AMC
model was impaired even at the lowest level of interference,
further decreasing as intensity increased, as shown in
Table 5. In Fig. 13, it can be seen that as the level of
interference increases, the model begins to confuse examples
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FIGURE 10. Confusion matrices of the SEI performance in the baseline case. n represents the number of iteration of the multinomial sampling
technique applied, with the leftmost matrix (n = 0) representing the raw performance before the statistical algorithm is applied and the rightmost
matrix (n = 100) showing the result of 100 iterations.

for 2-FSK and GFSK. This is possibly because of the
narrow bandwidth interference having a more distinct energy
‘‘spike’’ at a particular frequency, a characteristic consistent
with transmissions of those modulation schemes. It is not
known why the model prefers these two over MSK, but it
should be noted that predictions of MSK are still much more
frequent than the remaining modulation schemes.

Under the same circumstances, Table 5 shows that the per-
formance of the SEI model became extremely deteriorated.
From Fig. 14, it can be seen that at lower and medium levels
of interference, the model was still able to make inferences
with very minor success. The classification accuracy in the
medium case is slightly higher than in the low case, however
the F1 score is identical, suggesting that the model is not
actually any more reliable. It can also be seen that the output
is also not completely random, with the model seemingly
preferring to predict from a small subset of emitters whenever
it had low confidence – a pattern especially discernible in the
severe interference case.

3) PERFORMANCE COMPARISON
Fig. 15 shows the performance of the models trained on
each variation of interference evaluated on each other variant.
Each model seems to have the best performance only on the
exact type of interference they were trained on, without much
evidence of natural generalization to even different intensities
of same-bandwidth interference.

The level of observed performance degradation was found
to be a function of both SIR and the interference bandwidth.
For both AMC and SEI, the classification performance
of the model was found to have a positive relationship
with SIR, with performance decreasing in tandem with
decreasing SIR level. Controlling for the same SIR level,
the narrower bandwidth interference was found to have a
greater impact than the wider bandwidth interference. For
SEI, this is likely because the interference at each SIR level

was calibrated to a specific total integrated power instead of
peak power spectral density, meaning the narrower bandwidth
interference had the same amount of total power as the wider
bandwidth interference, but with a higher power spectral
density concentrated around its center frequency. The model
had an easier time coping with the more distributed nature of
the wider bandwidth interference, where it was able to more
easily ignore the excess information and discern the critical
components of the signal-of-interest. On the other hand, the
more concentrated peak power of the narrower bandwidth
interference completely dominated the local region around its
center, making unrecoverable components of the signal that
were critical for classification.

For AMC, the specific patterns of mis-classification
also depended on the bandwidth, with wider bandwidth
interference contributing to a dominant decision of the
wider bandwidth modulation scheme 4FSK and narrower
bandwidth interference contributing to a dominant decision
of the narrower bandwidth modulation schemes FSK and
GFSK.

D. TRANSMISSION POWER
Overall classification performance for both AMC and SEI
at every level of transmission power is given in Table 6.
From these observations, there is no clear linear relationship
between transmission power and performance. The power
levels 8dBm and 0 dBm have noticeably lower classification
performance for both AMC and SEI, suggesting that the
same factor that is degrading performance impacts both
tasks in a similar manner. It can be seen in the confusion
matrices that there is no particular pattern of favoring any
particular modulation scheme or transmitter ID, unlike what
was observed in the case of interference. It is unlikely
that this factor lies in the data collection setup, since
examples for every power level were collected in serial
with only the transmission power adjusted in software.
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FIGURE 11. Confusion matrices for AMC with 10kHz bandwidth
interference.

It is similarly unlikely that this is due to an error in the
detection and isolation phase of dataset creation, given that
scenarios of both higher and lower power levels still had
high performance. It is possible that this pattern arises
from behavior that is consistent across all transmitters at

FIGURE 12. Confusion matrices for SEI with 10kHz bandwidth
interference.

these specific power levels, such as a consistent pattern of
attenuation or garbled output that makes the emitted signal
less recognizable as a well-formed transmission.

Fig. 16 shows a comparison of the performance of every
model trained on variable transmission power on the testing
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FIGURE 13. Confusion matrices for AMC with 1kHz bandwidth
interference.

sets for each transmission power. For AMC, there is a clear
pattern of each power level having a particular evaluation
accuracy, regardless of the power level the model was trained
on. This suggests that the models learned very similar
features for each power level and that the factors impacting

FIGURE 14. Confusion matrices for SEI with 1kHz bandwidth interference.

classification accuracy remained consistent between devices
within each power level. SEI performance shows that models
were most successful on the datasets they were trained on
and very unsuccessful on datasets they were not trained on,
with minor spillover into power levels one step higher or
lower. The differences in the patterns between AMC and
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FIGURE 15. Performance matrix comparing AMC and SEI classification
accuracy of models trained on one type of interference evaluated on
every other type of interference.

TABLE 6. Classification performance with different levels of transmission
power.

SEI classification accuracy suggest that whatever factors
are contributing to differences in AMC performance do not
contribute to the RF fingerprints of the transmitters.

FIGURE 16. Performance matrix comparing classification accuracy for
AMC and SEI of models trained on one transmission power level
evaluated on every other transmission power level.

TABLE 7. Classification performance comparison between models
trained on static radios, shuffled radios, and on the overall dataset.

E. STATIC SUBSET
The performance of the collection scenario where a subset
of radios is held in constant position is given in Table 7.
The confusion matrix is shown in Fig. 17. The overall
AMC performance was similar to the baseline scenario, with
the static subset having slightly lower performance. The
overall SEI performance was measurably higher, with the
shuffled subset having similar performance to the baseline
and the static subset having considerably higher classification
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FIGURE 17. Confusion matrices for AMC and SEI where emitters with
IDs 1-15 and below were held in a constant position.

TABLE 8. Classification performance of the model with all transmitters
using a common antenna.

performance. When looking at the confusion matrix, there
are two clearly-defined regions split between the static and
shuffled set, where emitters are not often confused between
the two regions. This suggests that consistency in radio
positioning plays some part in classification performance.

F. COMMON ANTENNA
Performance of the model in the common antenna case is
given in Table 8 and the confusion matrices are shown in
Fig. 18. The performance for AMC was somewhat inferior
to that in the baseline scenario, possibly caused by the
attenuation introduced by the passive RF combining network.
For SEI, performance was about the same. Some interesting

FIGURE 18. Confusion matrices for AMC and SEI where all emitters
shared a common antenna.

artifacts of the collection process are visible in the confusion
matrix for the transmitters with an ID greater than 45.
Data collections took place over the course of two days
with devices from one day almost never being confused for
devices whose collections took place on the other day. This
pattern would suggest that while no changes occurred in the
actual experimental setup, dynamic channel conditions were
different enough to make the two sets appreciably different.

G. SIGNAL-TO-NOISE RATIO
A performance matrix comparing every pairing of training
SNR and evaluation SNR for both AMC and SEI for indoor
collections is shown in Fig. 19. For AMC, a pattern emerges
where models seem to be able to generalize quite easily to
higher SNRs than what they were trained on, but have some
more difficulty generalizing to lower SNRs. This matches
previously obtained results in related research. For SEI,
models tend to have the highest performance on the SNR they
were trained on and slightly lower performance with higher
SNR levels, but seem to be limited to the accuracy they are
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FIGURE 19. Performance matrix comparing AMC and SEI classification
accuracy of models trained on one SNR evaluated on every other SNR
level of data collected in the baseline scenario.

able to achieve with their native dataset. Models seem to have
considerable difficulty with data at a higher SNR than what
theywere trained on. This would suggest that increasing noise
levels obscure features necessary for a reliable RF fingerprint,
with higher noise levels obscuring more features. Models
trained at lower SNR levels do not seem to learn certain
features that are discernible at higher SNR levels, but are still
able to discern the features they have learned even when the
SNR increases.

H. SUMMARY
From the results of these experiments, the studied factors are
ranked in order of their observed impact:

1) Interference
2) SNR
3) Transmitter HPA non-linearity
4) Multipath propagation

When creating datasets from real-world captured data, it is
necessary to label these conditions in experimental setup,
because a model trained under one set of circumstances may

not necessarily be applicable to circumstances with different
conditions. This is especially true for high-impact factors
such as interference and SNR, which have the potential to
drastically diminish model performance. As such, detailed
analyses of performance over SIR are warranted.

V. FUTURE WORK
This work investigated only a small fraction of the factors
that could affect RFML performance, with manymore not yet
investigated. Even of the parameters investigated here, factors
such as differences in multipath propagation and dynamic
channels remain difficult to characterize.

There are too many variations of possible types of
interference to address in a introductory work such as this
one looking for a common way to compare sensitivity to
parametric variations for RFML models. Interference can
vary in terms of fractional bandwidth of the transmis-
sion, from extremely narrow to wide bandwidths. While
a rudimentary relationship between bandwidth and AMC
classification patterns was observed in this work, the full
impact of interference bandwidth requires further investi-
gation. In-band and out-of-band interference can also be
present; while this work only studied interference within
the bandwidth of the signal-of-interest, different effects may
be observed when the bulk of the interference energy lies
outside the transmission band. The type of interference can
also vary, with types and prevalence varying depending on
the frequency and circumstances. This could take the form
of spectral congestion in commonly-used communications
bands, patterns of emissions from electronic equipment,
or deliberate jamming attempts.

Effects of transmitter construction and operating circum-
stances also require further investigation. Specific com-
ponents within the RF signal chain and their operation,
especially the HPA, are thought to have partial responsibility
for the RF fingerprint that plays a part in SEI performance.
However, it is not known how factors such as fatigue or
temperature affect the nature of their influence.

VI. CONCLUSION
This work presented a series of experiments to investigate
the real-world considerations for RFML applications of
interference, multipath propagation, transmitter HPA non-
linearity, and SNR. By varying data collection conditions,
links between these conditions and the associated impacts
of RFML model performance were evaluated. Results from
existing works that have documented changes in performance
due to SNR and dynamic channel conditions have been
reproduced. The observed trends established here prompt
the further study of how RFML models can be adapted
to function under wider variety of conditions and different
hardware configurations.
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