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ABSTRACT The Atlantic salmon maturation process has been studied for decades to increase the quantity
and quality of the production in farming facilities. An important topic in this context is the salmon egg
maturation process. Ultrasound imaging is considered an effective tool for monitoring the egg development
stage of salmon, butmanual inspection is time-consuming and dependent on operator experience.We propose
a method for automated monitoring of the egg maturation stage in salmon using deep learning, providing
complimentary decisions on egg morphology. A segmentation network was developed to solve the challenge
of separating and measuring individual eggs in the ovary. The segmentation part was combined with a
classification network to determine the maturation stage of the eggs. Our model was able to segment eggs
and classify their development stage with over 88% accuracy, outperforming established methods designed
for similar tasks. A real-time application was developed which provided an estimation of size and maturity
stage while scanning. The egg state estimation showed potential for replacing manual evaluations and can
enable fully automatic evaluation of maturation in Atlantic salmon.

INDEX TERMS Deep learning, ultrasound, maturation monitoring, salmon maturation, egg maturation
prediction.

I. INTRODUCTION
Atlantic salmon farming stands out as one of the most
significant sectors within the field of aquaculture. Breeding
companies focus on supplying high-quality salmon eggs by
meticulously replicating the natural aquatic environment of
salmon in both sea and land-based facilities. The salmon
which are utilized for egg production have undergone genetic
selection over several decades to enhance their growth and
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overall productivity, making them highly valuable assets [1].
To ensure a year-round supply of eggs for consistent
production and optimal facility utilization, it is important to
have matured salmon available at all times. Since salmon
eggs cannot be preserved for an extended period, controlling
the maturation process becomes imperative. Shortening or
lengthening thematuration period can be used to harvest fresh
eggs from salmon at the time requested by the customer. This
brings out the need to continuously monitor the maturation
stage of salmon and has led to the development of various
methods for maturation monitoring.
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Among several invasive methods, ultrasound imaging is
an approved and non-invasive method for monitoring salmon
maturation, and for identifying egg development stages [2],
[3]. The ultrasound assessment of salmon for maturation
monitoring has two primary stages; evaluation of ovary size
development from early maturation to the stripping time, and
evaluation of the egg morphology from a point where eggs
are sufficiently visible in ultrasound images (approximately
6-8 weeks after transferring to fresh water) up until the
stripping time. Currently, the evaluation of eggmorphology is
a manual process, where experts examine fish eggs within the
ovary and classify them into four main development classes,
as illustrated in Figure 1.
Due to the labor-intensive and subjective nature of the

manual ultrasound evaluation process, it is common practice
to assess only a limited population of fish within a tank
and extrapolate the results to the entire brood stock.
Additionally, this evaluation can be subject to variability,
particularly during the early and final phases of maturation.
By automating the ultrasound maturation grading process,
we can eliminate operator dependency and reduce stress on
the fish. Additionally, the automation facilitates the logging
of more comprehensive data about salmon eggs, including
details such as their size, biological attributes, egg quality
(which can influence the survival, performance, health, and
welfare of the offspring), and overall condition within each
individual salmon. This information is valuable for the
fish farming facility and provides important data for future
research.

To automate this procedure, salmon eggs should be
identified and separated and their stage of maturation should
be estimated, which can be based on image segmentation
and classification respectively. We approach this using deep
learning-based image analysis, which has proven to be effec-
tive and accurate for a number of similar tasks. A particular
challenge in this context is the compact arrangement of eggs
within the ovary, complicating the segmentation of eggs as
distinct entities.

To investigate the literature for potential solutions for the
application-specific challenges, we conducted a literature
survey with an emphasis on the segmentation of closely
situated or small objects. We identified potential solutions,
including the utilization of Watershed, the creation of Hor-
izontal/Vertical maskings, diverse feature extractions, multi-
thresholding, and the incorporation of Attentionmechanisms,
tailored to address the unique aspects of our problem.

The watershed method is proven useful in avoiding
over-segmentation situations where the objects are very close
to each other [4]. It has been used for different segmentation
applications such as partitioning 3D surface meshes [5], flaw
detection in radiographic weldment images [5], randomly
textured color image segmentation [6], and in ultrasound
technology for breast tumor segmentation [7]. Zhang et. al.
[8] introduced aWatershed image segmentation algorithm for

bubble segmentation. Study [9] employs a multi-thresholding
strategy to detect compact objects in images, integrating
geometric characteristics into the decision-making process.
Study [10] tackles the segmentation of closely positioned
objects through a two-stage instance segmentation method.
This approach creates a center-aware feature representa-
tion for predicting masks. In the first stage, objects are
segmented against the background, and their centers are
determined. Then, a position-based encoding is utilized to
combine both geometric and semantic features for further
refinement.

Notably, Attention-based approaches for small object
segmentation have been investigated in the studies conducted
by Fei et al. [11], Sang et al. [12], and Zhang et al. [13]. This
methodology holds the potential to enhance the accuracy of
segmenting a greater number of eggs within the ovary.

Graham et al. [14] introduced the Hover-Net method
mainly for segmenting nuclei in histology images. Hover-
Net has been proven accurate while avoiding intersections
in overlapping regions of clustered nuclei by creating
horizontal and vertical feature maps. The network detects
the objects(nucleus) type in the up-sampling classification
which is made alongside the segmentation (H/V maps)
using the shared encoder. These maps were then used to
separate closely situated objects in a postprocessing step. This
proposed method is able to segment and classify compact
objects.

These various segmentation approaches from the literature
provide valuable insights and techniques that could be
adapted and explored for the specific task of automating
the segmentation of salmon eggs. This work’s primary
contribution is the use of deep learning and ultrasound
technology to autonomously predict the maturation state
of Atlantic salmon eggs. The approach involves data sam-
pling, model development, model evaluation, and an initial
real-time application test in a live-field setting. The developed
application demonstrates efficient segmentation of compact
eggs within the ovary and provides accurate assessments of
their developmental stage.

II. DATA COLLECTION AND ANNOTATION
During this study, a dataset of Atlantic salmon ovaries was
recorded in two time frames of May to September and June to
December. Each survey consisted of 100 PIT-tagged salmon
in brood-stock facilities located in Kyrksæterøra (AquaGen)
and Lysøysundet (MOWI) in Norway. While the observation
period encompasses the entire duration from the transfer
of fish to the land facility up to the stripping time, the
primary dataset for this study predominantly originates from
the period from eight weeks after transfer to freshwater when
most of the eggs become visible in ultrasound images. For
additional details regarding the fish involved in this study,
sampling protocol, and rearing conditions, please refer to [2]
and [15].
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FIGURE 1. Various stages of the maturation of salmon eggs (four main egg morphology stages is shown in green); Two weeks after transferring
fish to freshwater where eggs are mostly not visible (A), Six weeks after the transfer to freshwater where very tiny eggs are visible in some
salmon (B), 10 weeks after transfer to freshwater where eggs are visible on most fish and considered as class=0 of egg maturation (C),
15 weeks after landing fish to freshwater where a small dark spot is visible on some eggs representing class=1 of the egg development (D),
17 weeks after transfer to freshwater the harvesting period and the dark spot has covered almost the entire eggs which represent egg
maturation class=2 where the dark spot has taken more than 50% of the egg area, 19 weeks into the maturation and eggs are released and
floating within the abdominal cavity and the liver has become visible which is class=3 stating the eggs are ready for spawning (F).
In this work, for clarity and simplicity, we use the term ‘egg’ to refer to both the oocyte (before ovulation) and the egg (after ovulation). While
the terms ‘oocyte’ and ‘egg’ are commonly used to distinguish pre- and post-ovulation stages, we adopt a unified terminology and consistently
refer to them as ‘egg’ throughout this article.

The data has been annotated via the open-source tool
AnnotationWeb [16], using a spline segmentation tool.

Additionally, we have added functionality to the software to
extract COCO data formats [17] for instance-wise evaluation
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FIGURE 2. Overview of egg morphology dataset.

of individual eggs and avoiding the intersection of the
segmented areas. The data has initially been annotated
manually and further bymanual supervising andmodification
of the Pseudo-labeling technique in [18]. Figure 2 provides
an overview of the dataset. The dataset exhibits a class
imbalance, primarily attributed to its structure. The imbalance
arises due to the brief duration of class 1 egg development,
while the segmentation of eggs in class 0 is challenging, given
their early and hard-to-segment stages.

III. METHOD
A. NETWORK
Figure 3 provides a visual representation of the architecture
employed in our application. Our primary objective is to
segment compact eggs within the ovary as individual entities.
The automation of this application can be achieved through
a two-step process involving classification to determine the
egg state and segmentation to measure egg size. Alterna-
tively, a more comprehensive approach involves multi-class
segmentation to simultaneously identify both egg state and
size. However, segmenting closely packed eggs that appear
to overlap presents a significant challenge. When using
semantic segmentation, egg masks may intersect, leading
to potential overestimation of egg sizes. While the instance
segmentation method offers a solution to this issue, it’s worth
noting that it may struggle to detect the boundaries of closely
located objects.

Using a set of convolution blocks via a targeted transfer
learning for down-sampling is proven to be effective and
time efficient when the architecture is not very deep [19].
Our approach uses a shared feature extraction via a set of
convolutions blocks obtained from a U-Net used in Leclerc,
and Smistad et al. [19]. It outputs a classification head using
one flattening and one dense layer, with a linear activation
function at the lowest down-sampling level. The full seg-
mentation model is depicted in Figure 3. The utilization
of the linear activation function enables the adjustment of
prediction thresholds, thereby reducing the occurrence of

false positives. Additionally, it enhances the interpretability
of the model, as the weights in a linear layer directly represent
the significance or contribution of individual input features to
the output. The model also up-samples the shared latent space
into a binary segmentation (all egg types vs background),
together with horizontal and vertical maps of the objects in a
4-channel output. The horizontal and verticalmaps are built to
produce high values when intersecting together, making them
detectable. Thus, we replaced the multi-class segmentation
approach for four types of eggs with binary segmentation,
allowing the classification head to determine the stage of
the eggs (4-class) based on full image information and not
individual egg annotations. Moreover, the classification head
includes an additional output specifically designed to detect
the presence of eggs, resulting in a classification system with
4+1 classes. This extension aims to reduce the occurrence
of false positive predictions. When the frame does not
contain any eggs, a designated background class is utilized
to adjust the segmentation head, thereby mitigating the risk
of erroneous positive predictions

In the case of having two classes at the same frame,
we consider the highest class as the egg maturation level
as it has been the common maturation grading procedure.
Therefore, there is no need for patch-wise classification or
up-sampling for the classification head in our application.
As for the segmentation head, the up-sampling architecture
uses each level of the encoder via concatenation to provide
the output.

The outputs of each head of the network are then
post-processed to create the final segmentation mask.

One of the main benefits of the presented architecture is
the advantage of multi-task learning via shared parameters.
It can help the model to focus on the general features that are
common for each task rather than task-specific features [20].
To consider the Attention effect, mainly for segmenting more
eggs by focusing on deeper regions of the ovary in the
image and to generate better descriptions for those deeper
ovary regions, an Attention gate has been added to the
up-sampling levels same as the architecture given in [21].
We explored various segmentation techniques to enhance
the detection of eggs within images. Firstly, we employed
the Attention mechanism within our architecture. This
mechanism dynamically prioritizes features extracted by
the encoder, assigning importance to them based on their
relevance to segmentation. By computing Attention scores
between all pairs of positions in feature maps, we can
selectively focus on significant spatial locations, improving
the accuracy of segmentation.

Additionally, we experimented with the watershed algo-
rithm. This approach treats pixel intensities as a topographic
surface andmimics a flooding process from specifiedmarkers
to divide the image into distinct regions [22]. As flooding
progresses, valleys fill up to form basins, and boundaries
between basins, known as watershed lines, delineate object
boundaries [23]. This technique offers a unique perspective
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FIGURE 3. Overview of egg segmentation model. A modified U-Net is employed to deliver both classification and segmentation outputs. The segmentation
output includes horizontal and vertical map data, as well as a segmentation mask essential for egg boundary identification in a postprocessing step.

on segmentation by leveraging the spatial relationships within
the image.

Finally, we investigated instance segmentation using
YOLACT. Unlike traditional segmentation methods, instance
segmentation architectures like YOLACT, based on concepts
such as Mask R-CNN, employ sophisticated features such
as Feature Pyramid Network (FPN) and Region Proposal
Network (RPN). These components enable the analysis of
objects at different scales and suggest regions of interest. The
mask prediction head generates segmentation masks for indi-
vidual objects, refining detections through techniques like
Non-Maximum Suppression for contextual understanding.
By considering multi-scale features and proposing regions,
YOLACT may segment objects with high precision and
speed [24].

B. PRE-PROCESSING- CREATING H/V FEATURE MAPS
To generate the horizontal and vertical maps, the distance of
each channel of input image pixels to the center of the object
(in this case, eggs) is calculated. This process results in maps
that show how far each pixel is from the object center along
both horizontal and vertical axes. The pixel values associated
with the object are scaled within the range of [−1, 1], based
on the maximum absolute value observed in each map. This
scaling ensures that the center point of each egg corresponds
to a value of zero.

C. POST-PROCESSING- GENERATING FINAL EGG MASKS
In order to create the final output egg masks from the
Horizontal (H) and Vertical (V) maps in conjunction with the
segmentation head, a series of steps are performed. Figure 4
provides a flow chart for egg mask creation. This procedure
involves determining themagnitude of eggs within a frame by
analyzing the H/V maps. This magnitude is derived by taking
the square root of the sum of the squared values obtained
from the H/V maps. Furthermore, we employ Sobel filters
to detect both the horizontal and vertical edges of the eggs.
Subsequently, we calculate the maximum value (element-
wise) between the horizontal and vertical edges, effectively

merging responses from both directions and yielding a
single-edge response value for each pixel. The resulting
tensor is then multiplied by the segmentation head tensor,
to fuse prediction information with a mask. This step helps
mitigate potential mismatches in predictions, particularly in
the detection of eggs in the lower parts of the ovary where the
prediction confidence within each egg pixel may vary.

The generated egg mask is combined with classification
prediction to detect the stage of the eggs. The classification
head generates a 5-class output, where each class represents a
specific stage of egg development. These classes are aligned
with the channel axis: channel 0 indicates the absence of
eggs, while channels 1 through 4 signify different egg devel-
opmental stages. Initially, we determine the channel number
associated with the maximum value across the tensor’s axes.
Subsequently, this channel number, representing the most
probable egg stage, is employed as a scalar value to scale
each element of the segmentation output via straightforward
element-wise multiplication

The whole post-processing steps were combined with the
network as a separate custom layer to enable a direct end-to-
end prediction.

IV. IMPLEMENTATION
We implemented our deep learning model using TensorFlow
2.6.0 on a laptop equipped with an Intel(R) Core(TM)
i7-10750H CPU operating at 2.60GHz, 32GB of RAM, and
an NVIDIA RTX 2080 GPU with 8GB of dedicated memory.

A. NETWORK TRAINING SETUP
The network is composed of a segmentation head with four
channels, encompassing segmentation and H/V maps, along
with an extra classification head. In the computation of
the overall loss function, a weighted cross-entropy loss is
implemented for the classification head. Meanwhile, a blend
of Dice and mean square error loss is utilized for the
segmentation and H/V maps to account for both discrete and
continuous variables in the output head. The total loss is
balancedwith a 10:1 ratio, favoring the segmentation andH/V
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FIGURE 4. The post-processing steps to create egg masks.

maps. This weighting emphasizes the importance of accurate
segmentation and mapping in the overall training process.
Our data augmentations include random rotations within a
range of 30 degrees, the introduction of random noise, gamma
transformations, elastic deformations, Gaussian shadowing,
and image blurring. The model was trained using Adam
optimizer for 50 epochs using mini-batch gradient descent
where 20% of the training set is used for the validation. The
dataset was split into 85% for training and 15% for testing.

B. EGG SIZE AND STAGE ESTIMATION
The final segmentation model was used to predict the egg
size on the test dataset. The top 20% largest segmented
eggs are obtained from each fish. This is mainly to cover
the possibility that the 2D ultrasound cross-section may

TABLE 1. Binary segmentation results.

sometimes cross a secant segment of an egg rather than its
diameter. To predict the egg stage, we used a high threshold
(>6) for our classification head. This threshold was primarily
set to ensure more robust predictions. If the prediction score
falls below this threshold, we only extract the egg size, while
the stage is determined based on other frames in the head-to-
tail scan.

C. REAL-TIME APPLICATION
A real-time application was implemented using the FAST
framework [25], [26], which includes GPU processing and
visualization, and several deep learning inference engines.
Data was streamed in real-time from the ultrasound machine
based on frame grabbing. Further real-time processing
included pre-processing (cropping, resizing, and normaliza-
tion), rendering, and post-processing the egg data to obtain
egg volume. The application with the proposed network ran
at 249 frames per second on GPU and 16 frames per second
on CPU, enabling real-time feedback during imaging.

V. RESULTS
The evaluation result of the segmentation models is pro-
vided for both binary and multi-class segmentation in
Table 1 and 2. We first performed a binary segmentation task
where we segmented eggs of any type and stage to provide an
initial segmentation performance benchmark of the models
for this specific task. As shown in Table 1, the binary
segmentation, segments egg vs background where the models
are baseline U-Net [19], baseline U-Net with Attention [21],
baseline U-Net with watershed [27], instance segmentation
using YOLACT [24], and our proposed method.
Then a multi-class segmentation performance comparison

was carried out in Table 2 to assign a label (maturation stage)
to the segmented eggs. Furthermore, the classification results
of the egg development stage prediction are provided. The
classification performance was assessed by comparing the
segmentation prediction classes to the reference. In the case
of our proposed model, we evaluated the performance of the
classification output.

The model selection was made to compare a robust
baseline with additional functionalities such as the proposed
changes mentioned in the method section, Attention, and
Watershed. The YOLACT segmentation network [24] was
included to compare the performance of a real-time instance
segmentation model as well. The outcomes of training the
models until convergence and subsequent testing them show
that our proposed modifications effectively maintain Dice
and Hausdorff metrics when transitioning from binary to
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TABLE 2. The result of the multi-class segmentation and classification of the eggs.

FIGURE 5. Segmentation quality in different models.

multi-class segmentation. The instance segmentation model
specifically loses precision when it is used for multi-class
egg segmentation. The main cause of this performance
drop seems to be poor egg stage classification rather
than segmentation score when comparing segmentation and
classification performance. The same trend is happening
for the baseline U-Net as well which is expected as the
multi-class segmentation task is more complex. The proposed
model was created with and without Attention. In the
proposed model with Attention, the multi-class performance
did not improve the results in our work. The classification
performance drop is also considerable when using Attention.

The example results of different segmentation models
are provided in Figure 5. Semantic segmentation models
encounter difficulties when segmenting closely located eggs.
In certain instances, these models generate false positive
predictions for eggs. While our proposed architecture has
mitigated this issue to some extent, complete elimination
remains elusive. Some areas in the predictions still exhibit
noise or incomplete segmentation, arising from the partial
segmentation of a portion of an egg.

Since the instance segmentation, and Watershed models
provided a lower accuracy than expected, we also quali-
tatively compare those models in Figure 6. One notable
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FIGURE 6. Comparison of instance segmentation, Watershed technique, and proposed model in salmon egg segmentation.

issue revolves around boundary detection in the Watershed
technique, which exhibits considerable inconsistency. The
use of Watershed for egg separation does not improve the
segmentation results and it can not preserve the egg shape,
causing over-segmentation and inconsistent Watershed line
separation.

As for the instance segmentation, we observed instances of
egg mask intersections in the YOLACT model, even though
one of the primary motivations for incorporating instance
segmentation into this application was to mitigate such
problems. Another problem regarding instance segmentation
was its tendency to generate smaller masks for individual
eggs. This phenomenon also occurs in our proposed model,
although it appears to be even more prevalent in the case of
instance segmentation.

Our proposed model, with and without Attention, most
efficiently addresses the problem of overlapping objects in
the comparison. The utilization of Attention mechanisms
in the proposed model enhances egg segmentation but
still introduces some noise and occasional false positive
predictions. The proposed model without Attention improves
on these issues as can be seen in Figure 6. We, therefore,
chose the model without Attention as our main model for
our use cases of egg maturation state prediction and egg size
measurement.

To evaluate the agreement between the average egg size
in the manual measurement, estimated by operators using
ultrasound data, and the proposed model, we are presenting
the Bland–Altman analysis in Figure 7. While outliers are
present, it’s reassuring to observe that the majority of the
test data comfortably aligns within the boundaries of the
confidence intervals. The mean difference value hints at a
relatively modest disparity between the manual measurement

FIGURE 7. The egg size manual measurement (Reference) comparison to
the model egg size measurement(Prediction).

and the deep learning model. Furthermore, the plot shows
a trend toward overestimation and an increasing level of
disagreement for larger eggs.

The proposed model showed a high potential for Atlantic
salmon egg morphology assessment application and was
tested in a live-field setting for initial verification as shown in
Figure 8, providing in real time the average egg size, number
of segmented objects, and egg maturation stage.

VI. DISCUSSION
The overall segmentation result shows that the proposed
approach provides good accuracy in salmon egg segmenta-
tion and classification.

The Attention gates struggle with small egg segmentation
and increase the classification errors in the image. This is
known for small object segmentation because in the non-local
Attention, vital details of small objects can be neglected or
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FIGURE 8. Real-time egg morphology application.

lost within abstract or coarse feature maps [28]. A potential
solution to this issue is to use deep supervision Attention [29]
or a multi-dimensional Attention [28]. However, employing
deep supervised area-based Attention might not fully resolve
the noise problem, given that the Attention is directed within
the ovary. Eggs situated at lower depths in the ovary may
experience substantial attenuation, making their distinction
challenging. Another issue with using Attention in our
proposed model is that balancing the segmentation and
classification heads becomes particularly challenging due to
the emphasis on segmentation-specific features in Attention,
which may have an impact on classification performance.
While conducting experiments with Attention, our main
focus was on evaluating the efficacy of egg detection in
the lower ovary parts rather than solely comparing the
quantitative performance of two different architectures in our
proposed model. Both versions of the proposed model have
demonstrated satisfactory performance.

We were not able to improve our results using the
YOLACT approach for instance segmentation. Upon an
examination of the classification and segmentation results,
it seems that the primary challenge lies in accurately
classifying eggs. In the binary segmentation comparison,
the YOLACT segmentation results are not comparable to
the proposed model. While YOLACT generally provides
satisfactory segmentation quality, there are instances where
the masks for closely located eggs intersect. This issue
could be attributed to several factors, with anchor boxes or
proposals and Non-Maximum Suppression (NMS) standing
out as potential causes for the intersections. In our YOLACT
architecture, we employ ResNet50 for the FPN feature
extraction. While there has not been such an accuracy drop
in the proposed model by switching from convolution blocks
to ResNet30’s residual blocks for feature extraction, it is
unlikely that feature extraction (FPN) is the root cause of
the problem within YOLACT. A more plausible culprit is
that the anchor boxes, lack of localization step, or Pro-
posals may not be appropriately sized or spaced to handle
closely packed objects effectively. YOLACT, like many
other instance segmentationmodels, relies onNon-Maximum
Suppression (NMS) to eliminate redundant bounding boxes.

In situations where a bounding box mistakenly contains two
or more eggs, it may be prioritized over other underlying
bounding boxes, resulting in intersected mask objects. This
inadequacy can lead to challenges in generating accurate
masks.

Utilizing the Watershed technique, while computationally
efficient, can lead to issues such as over-segmentation and
imprecise separation of eggs. This occurs because Watershed
lines don’t conform smoothly to the actual contours of the
eggs, making it challenging to achieve accurate foreground
and background component separation.

Upon examining Figure 7, it becomes apparent that there
is increased variability in the differences, particularly for
larger eggs in the maturation phase. This variability suggests
a potential inconsistency in the agreement between the
proposed size estimationmethods andmanual measurements.
The observed variationmay be attributed to an overestimation
of egg size by the prediction model, as evidenced by
the mean difference. Furthermore, accurately annotating
rounded objects such as eggs during the manual measurement
process presents challenges, contributing to the observed
dispersion. Annotators might lean towards underestimating
egg boundaries due to the difficulty in precisely representing
the contours of rounded compact shapes. This tendency
results in fewer spline annotation points on eggs, which may
not perfectly align with their actual shapes. Additionally, the
proposed model tends to segment more eggs than manual
measurement in the majority of instances. This leads to
an average egg size calculated from a greater number of
eggs, causing an overall size difference compared to manual
measurements.

Themodel’s performance on larger eggs could be improved
with additional training data and a more comprehensive
dataset. The presence of less frequent large eggs, contributing
to the bias observed in the Bland-Altman analysis, prompts
further investigation to discern whether the variation is
genetically influenced or stems from other factors. This
focused examination can provide valuable insights into the
model’s limitations and guide potential refinements for more
accurate size estimations, especially in the context of larger
eggs.
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Further evaluation of the model, particularly through
testing against ground truth values on a larger scale, can offer
additional insights and enhance the overall assessment of the
model’s performance performance.

In summary, the real-time application yields promising
initial results, allowing continuous monitoring of egg mat-
uration stage and size throughout the harvesting period.
Deploying the system for further training and testing in the
field would contribute to further evaluation and verification.
This could be a step toward automating the measurement of
the maturation state in Atlantic salmon.

VII. CONCLUSION
This paper presents a deep learning application designed to
estimate egg size and egg developmental stage in Atlantic
salmon. The model segments closely situated individual
eggs within the ovary and categorizes them into four
distinct developmental stages. This achievement offers a
valuable tool for assessing salmon egg maturation, enabling
the study of egg size and maturity stage variation for
continuousmonitoring during harvesting. The application has
the potential to replace manual measurements and palpation
processes in fish farming facilities. The application has been
tested in an operational environment with promising initial
results. Future work will focus on further testing on a larger
scale and improving the current method.
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