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ABSTRACT Bruxism is a sleep disorder which is manifested by unintentional grinding and clenching
of teeth during sleep. An automated sleep bruxism recognition system using single channel EEG data
is proposed in this paper which is based on Inverse Discrete Wavelet Transformed Reconstructed Band
Limited (IDWT-RBL) signals. These band limited EEG signals are used for extracting various features.
Instead of using handcrafted features, feature reduction is done by ranking using statistical test scoring
combined with classifier testing. This technique finds optimal features, reduces model complexity, lowers
computational burden and increases model interpretability. Abundant features from time, frequency and
statistical domains are used primarily so that no significant feature is ignored. Choosing a good subset of
features from a larger set is a challenge for data with low sample size. To meet this challenge, a Group
wise Feature Ranking (GFR) technique is introduced to reduce feature dimension. After statistical ranking
and group wise averaging the scores, most significant groups of features are chosen. The proposed scheme
is validated on a publicly available dataset. This process is examined for both unlabeled and labeled sleep
stage. For segments with unlabeled sleep stage, cubic Support Vector Machine (SVM) performed best for
F3C3 channel using 6 features with an accuracy of 97.83%. For segments with labeled sleep stage, F3C3
and REM sleep stage using 10 features performed best with 98.39% accuracy. The accuracy of proposed
method is superior to most recent bruxism detection techniques. Finally, the GFR technique is applied to
detect sleep disordered breathing (SDB). The outstanding performance to detect SDB clearly demonstrates
the versatility of the proposed GFR technique to solve binary classification problem using EEG signals.
Moreover, the introduced GFR technique enhances confidence and pellucidity of the system as it is more
explainable.

INDEX TERMS Bruxism, classification, EEG signal, sleep stage, feature ranking, feature optimization.

I. INTRODUCTION
The unintentional and unwanted grinding and clenching of
teeth while one is asleep are the main clinical symptoms
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of sleep bruxism. The sleep bruxism possesses risk of
various illnesses in the stomatognathic system which include
tooth breakage, tooth wear etc. [1]. The dominance of
bruxism is found to be 13.6% and it is comorbid with
asthma, rhinitis, sinusitis, mental problem, back pain,
allergy etc. [2]. Obstructive sleep apnea, gastroesophageal
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pH/gastroesophageal reflux disease are also associated factor
of bruxism [3]. Patients having previous implants may be
fractured or damaged by the occlusal force [4]. Bruxism
may be comorbid with acute neurological diseases such
as encephalitis, intracerebral hemorrhage, traumatic brain
injury, hypoxic-ischemic encephalopathy and acute ischemic
stroke [5]. This may lead to recurrent aspiration pneumonia,
endotracheal tube dislodgement etc. In its extreme case,
a patient may face tongue amputation [5]. Recently, inci-
dence of bruxism increased significantly during COVID-19
pandemic [6], [7]. Hence, detection and treatment of sleep
bruxism is very important.

Bruxism can be diagnosed using clinical examination as
well as self-reporting of the patient [8]. Polysomnography
(PSG) is the standard method to detect bruxism. PSG has
some pitfalls which include invasiveness to sleep in new
environment, high cost, devoted infrastructure and lab [9],
[10]. PSG requires continuous assistance by an expert
person [11]. If number of patients increase, many expert
persons need to be appointed for a long duration [9]. There
is always a chance of human error in identifying the targeted
instances. Hence, there is a demand for detecting bruxism
automatically during sleep. Various studies are conducted to
automatically detect bruxism.

In [12], EMG and ECG signals are used to detect bruxism
episodes with the help of a neural network. In [13], con-
volutional neuronal network (CNN) is used to differentiate
bruxism events by analyzing mandibular movements. Ultra-
miniature EMG system is developed and used in [14] to detect
bruxism. Force-based stress sensors are used for detecting
bruxism [15]. In [16], EEG, EOG, EMG and ECG data
are captured and a satisfactory detection performance is
achieved.

The methods described in [12], [13], [14], [15], and [16]
utilized multimodal signals to detect bruxism which resulted
in complex systems. Some of them used device inserted into
mouth or outer surface of mandible which creates discomfort
to patients. Most of them used handcrafted features. Hence,
to reduce the complexity of the system and ease the patient,
a method with less modes and explainable features is
required.

II. RELEVANT WORKS
Some studies are done to use less number of channels
without insertion of device in patients mouth. These studies
also considered sleep stage as a biomarker for bruxism
detection.

First study of bruxism detection based on labeled sleep
stage annotations is reported in [17] where the rapid eye
movement (REM) and wake stages are considered and EMG
and/or ECG signals are utilized. They used normalized value
of power spectral density as feature. 149 segments from
bruxism patients and 95 segments from normal subjects are
considered for their study. Each segment is of one minute
duration. However, the study has some limitations. One
of the major limitations of this study is the use of only

two sleep stages without examining the other sleep stages.
No justification is reported for using only two sleep stages.
A very small number of segments are taken into consideration
for the study. This number is very small compared to the
whole night’s data. Moreover, on which criteria or reason
this small number of segments are chosen is not reported.
In preprocessing stage, they used low pass filter with a
cut-off frequency of 25Hz. The use of such low cut-off
frequency might lose high frequency information. The reason
for using such low cut-off frequency in preprocessing stage
is not mentioned. Authors claimed higher accuracy but no
comparison with previous study is presented. They reported
that their method took much less time in comparison to
the traditional systems without presenting any computational
complexity comparison. Handcrafted feature of frequency
domain is used in their study. Hence, time domain variations
are not captured.

First study of bruxism detection using only EEG signal
with sleep stage annotations is conducted in [18]. 140 seg-
ments from bruxism patients and 84 segments from normal
subjects are considered for this study. Each segment is of
one minute duration. Here, the power spectral density of a
single-channel EEG data is utilized with the information of
two sleep stages: S1 and REM. This study has some similar
limitations as the study done in [17], such as the use of
only two sleep stages without mentioning any justification.
A very small number of segments are taken into consideration
which are very few compared to the whole night’s data.
No reasoning or selection criteria is mentioned for choosing
these small number of segments. Low pass filtering with a
cut-off frequency of 25Hz is used in preprocessing which
is prone to lose high frequency information. The reason
behind this cut-off frequency selection is not reported.
In their study, they used EEG data of two channels: C4-P4
and C4-A1. No explanation is given for choosing these
channels and ignoring other channels in their study. In result
comparison, they compared their result of bruxism detection
with neruomascular disease detection using EMG, which is a
rather irrelevant comparison. They also compared their result
with general sleep disorder detection study not confined to
bruxism detection. The only case where they compared their
work with bruxism detection used EMG and ECG. This
comparison is also not relevant because their work is solely
based on bruxism detection using EEG. Some handcrafted
features are used. They used only frequency domain features
which is prone to not capturing temporal variations.

An approach very similar to [18] is reported in [19]
using ten classifiers and a majority voting method. Their
study has the same limitations as the study reported in [18].
Moreover, in comparison of their method with the prevailing
approaches they have specified some irrelevant comparisons.
They compared their bruxism detection technique to three
sleep stage classification studies, two obstructive sleep apnea
studies and one sleep apnea classification study. While
comparing their proposed hybrid classifier with the present
hybrid classifiers, they compared with the hybrid classifiers
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which are used to detect cancer, heart disease, schizophrenia
andCushing’s syndrome. These existing hybrid classifiers are
not tested on the same data they used. Hence, this comparison
does not indicate the true performance of their proposed
classifier.

The aim of our study is to overcome the inadequacies of the
methods described in [12], [13], [14], [15], [16], [17], [18],
and [19]. Hence, we tried to use single EEG channel to detect
bruxism which can result in simple system without the use of
devices inserted into mouth or outer surface of mandible that
can result comfort to the patients. Without using handcrafted
features we selected important feature subset from a larger
feature set so that no statistically important relevant feature is
overlooked. Therefore, the study is not prone to arbitrariness
of research methodology. Only frequency based analysis
may not provide satisfactory performance because temporal
variations are not properly captured in such case. Hence,
without confining the study to only frequency domain
features we extended it to incorporate statistical features,
Hjorth parameters and entropy based features. Without using
only two sleep stages we examined all other sleep stages
so that most appropriate sleep stage to detect bruxism can
be found. Without using a very small number of chosen
segments we considered all segments from whole night’s
sleep data. This results in bias free data collection. Without
limiting the signal to a cut-off frequency of 25Hz, we used
frequency up to 128Hz so that high frequency information
are kept. A Power Spectral Density (PSD) based analysis is
presented in Section III to support our motivation of using
very high frequency EEG data.

Most of the EEG based studies carried out on bruxism
detection focused on bruxism events or symptoms detection
from a given EEG segment. Event detection study is less
challenging as there are visible changes in EEG during
symptoms. During bruxism events heart rate increases as
well as masseter muscle moves. These motor events generate
from neural firing. Hence, simple statistical measures are
sufficient to differentiate these events. Event independent
bruxism detection is more challenging as there might not be
dominant changes in all segments of EEG data collected from
a bruxism patient, which is rarely investigated, e.g. in [17],
[18], and [19]. The limitations of these studies are discussed
earlier. Our study tries to overcome the limitations of these
studies.

A great portion of human lifespan is consumed by sleep.
Apparently inactive sleep has a great influence on wellbeing
of a person. Sleep disorders put great negative impact on
human health. Sleep epochs (each of 30 second duration) are
labeled by sleep experts using standard rules [20]. According
to American Academy of Sleep Medicine (AASM) rule sleep
stages are labeled into 5 classes such as Wake, NI, N2, N3,
and REM. Rechtschaffen and Kales (R & K) rule [21] labels
sleep stages into 6 classes. They are Wake, NI, N2, N3, N4
and REM. Broadly, sleep stages are categorized as rapid eye
movement (REM) sleep and non-REM (NREM) sleep [22].
Detection of sleep stage is a decisive way to assess sleep

quality as well as diagnose sleep disorders [23]. Changes
in sleep stage patterns and lengths are observed in various
sleep disorders [21]. Hence, sleep staging is very crucial.
The effectiveness of sleep stage classification can be greatly
improved using automated sleep stage classification and has
vital clinical significance. Some studies focused on this issue
and had very good performance [20], [21], [23], [24]. Due to
relation of sleep stage and sleep disorder, sleep stage based
bruxism detection is done in our study, which is termed here
as classification using labeled sleep stage.

The main unique contributions of our study are stated
below:

• A novel Group wise Feature Ranking (GFR) technique
is introduced to rank the features. To the best of
our knowledge, this technique is completely a new
one and such technique is never used before to rank
features in any study which considered feature ranking.
The technique uses a very simple algorithm to rank
features in a group wise manner. This holds grouped
structure in final selected features. The EEG segments
are decomposed and then ranked in a groupwisemanner.
This retains the explainable property of features.

• Data with low sample size are characteristic of many
machine learning applications. Choosing subset of the
features that can discriminate the classes very well,
becomes the main importance for the user. In this study,
a very simple algorithm is introduced and used to find
the good subset of features which resulted in excellent
performance.

• In this study, feature dimension is reduced from
many less computationally expensive features. Highly
computationally expensive features such as fractal
dimension, approximate entropy etc. are excluded in
initial feature extraction. This ensures overall reasonable
computational complexity.

Other distinct contributions regarding bruxism detection in
this study are:

• To the best of our knowledge, for the first time, average
PSD for all segments from patients and normal subjects
for a particular sleep stage are demonstrated in this
study to show the distinguishing spectral characteristics
between bruxism patients and normal subjects.

• In this study, we consider both very high frequency
EEG data along with the low frequency EEG data unlike
conventional methods where only traditional bands are
used ignoring the very high frequency signals.

• Rather than using handcrafted/arbitrary features, this
study first starts with some neurophysiological inspired
features and then attempts to find a smaller useful feature
subset from a larger set to classify bruxism and healthy
subjects.

• This study is the first attempt to classify bruxism and
healthy subjects considering both labeled and unlabeled
sleep stages, unlike existing methods that only considers
few labeled sleep stages.

88088 VOLUME 12, 2024



A. A. S. Khan et al.: Detection of Bruxism Using IDWT-RBL EEG Signals by GFR

FIGURE 1. Block diagram of the proposed method.

• It is also the first attempt to use IDWT-RBL EEG signals
to successfully classify bruxism and healthy subjects.

• All sleep stages are examined in this study to find the
most significant sleep stage to classify bruxism and
healthy subjects, unlike other studies where not all sleep
stages are tested.

• It is also the first endeavor to investigate all available
channels of EEG data in the dataset and channel
selection is done experimentally which reduced data and
made the system less complex to classify bruxism and
healthy subjects.

• It examines all available data segments of each subject
unlike existing methods where some segments are
discarded.

• Features are ranked after decomposing the signal.

• The results of this study are superior to recently reported
EEG based bruxism detection techniques

The comprehensive description of our scheme is pre-
sented next with proper rationalization and reasoning. The
remaining writings are structured as follows. In Section III,
a clear description of the main procedure is presented.
In Section IV, the results obtained from labeled and
unlabeled sleep stages are presented with logical justification.
In Section V limitations of the study are discussed. Section VI
concludes the paper with remarks and impending research
directions.

III. METHODS
Proposed method is illustrated through a block diagram in
Fig. 1. Given EEG signal is first preprocessed and DWT
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is applied. Band limited reconstructed signals are then
obtained to extract different features. Features extracted from
different bands are concatenated. Then feature dimension
reduction is performed. Finally, supervised classifier is
utilized.

The steps of the method are described in the following
sections

A. DATA COLLECTION
The EEG records corresponding to patients and normal
subjects are collected from the cyclic alternating pattern
(CAP) sleep database available in PhysioNet [25]. The
data were logged at the Sleep Disorders Center of the
Ospedale Maggiore of Parma, Italy. The data include
EEG channels, electroocoulogram, electromyogram (EMG)
of the submentalis muscle, bilateral anterior tibial EMG,
electrocardiogram signals etc..

Expert neurologists trained at the Sleep Center of the
Ospedale Maggiore of Parma, Italy, provided the scoring
of the sleep macrostructure, according to the Rechtschaffen
Kales rules. The Cyclic Alternating Patterns (CAP) are
also included in the dataset. CAP refers to episodic EEG
activity that happens in NREM stages. Each CAP consists
of activation and deactivation of cerebrum. These are termed
as phase A and phase B. Phase A is separated into three
subtypes: A1, A2 and A3.

In our study EEG recordings of all existing EEG channels
in the dataset from six subjects (two with bruxism and
four normal) are collected for processing. All subjects have
13 common EEG channels. Hence, experimentations on all
channels could be done and it can be possible to find the
best EEG channel for the classification task. Details of
experimented data are specified in Table 1. Segments of
one minute from each channel are considered for feature
extraction. The segments are considered using and without
using the labels of sleep stages during classification.

TABLE 1. Details of experimented data.

B. PREPROCESSING
At first, EEG data are downsampled to 256Hz to convert all
the data to same sampling frequency. Then EEG data are
segmented to one minute duration. Each EEG segment is
preprocessed using z-score normalization to avoid bias due
to acquisition process. Segments of data from patient and
healthy person are collected serially. Except some faulty data,
all segments are considered which reduces the chance of bias
on result due to personal selection.

C. BAND LIMITING BY DWT
Our objective is to find some distinguishable features which
can easily differentiate two classes: normal and bruxism.
It is required to observe or analyze the types of variations
that are expected. The information content in EEG extends
beyond the traditional maximum frequency band [26], [27].
Traditional consideration of the EEG up to 30Hz may not be
sufficient. Hence, frequency bands higher than custom ceiling
are considered in this study.

Only frequency based analysis may not provide satis-
factory performance because temporal variations are not
properly captured. Time resolution and frequency resolution,
both need to be increased to capture time and frequency
domain variations. Multi-resolution analysis is used here to
extract band limited signals. Here, low frequency components
of the EEG signals are investigated with less time resolution
and higher frequency resolution. The high frequency compo-
nents of the EEG signals are investigated with higher time
resolution and lower frequency resolution.

A wavelet function of limited duration with zero mean can
be expressed as in (1)

ψa,b(t) =
1
√
a
ψ

(
t − b
a

)
(1)

where a is known as dilation parameter and b is known as
translation parameter. Here, ψa,b(t) is the mother wavelet

The continuous wavelet transform (CWT) coefficients of a
function f (t) is expressed as (2).

wa,b =
〈
f (t), ψa,b

〉
=

∫
∞

−∞

ψa,bf (t) dt. (2)

To simplify the computation, parameters a and b are
selected based on power of 2 i.e. dyadic.

a = am0 , b = nb0am0 m, n ∈ Z (3)

If a0 = 2 and b0 = 1, the set of the wavelet becomes

ψm,n(t) = a−m/20 ψ(a−m0 t − nb0)

= 2−m/2ψ(2−mt − n). (4)

The DWT coefficients of a function f (t) are now given as

wm,n =
〈
f (t), ψm,n(t)

〉
= 2−m/2

∞∑
k=−∞

f (t)ψ(2−mt − n). (5)

88090 VOLUME 12, 2024



A. A. S. Khan et al.: Detection of Bruxism Using IDWT-RBL EEG Signals by GFR

FIGURE 2. Analysis of a signal using DWT based on the filter banks.

The signal can be reconstructed at each level with the
wavelet coefficients by using inverse DWT. Implementation
of DWT based on multi resolution proposed by S.G. Mallat
is accomplished using filter banks, [28] as shown in Fig. 2.
For a three level decomposition D1, D2 and D3 are detail
coefficients of level 1, level 2 and level 3 respectively. A3
denotes approximate coefficients of level 3. The signal at
different levels can be reconstructed back again using inverse
DWT based on the filter bank as shown in Fig. 3.

FIGURE 3. Reconstruction of a signal using inverse DWT based on the
filter banks.

The EEG signal is decomposed into different levels using
DWT and is reconstructed at each level again [28]. Five level
decomposition is used. During reconstruction of band-limited
signal of 0-4Hz, 4-8 Hz, 8-16Hz, 16-32 Hz, 32-64Hz and
64-128Hz are obtained as shown in Fig. 4.

FIGURE 4. Reconstructed signals of one minute EEG of a subject.

Mostly, EEG signals are analyzed up to frequency range
of 30Hz. In bruxism detection using EEG [18], [19], they
used low pass filter in preprocessing stage to limit the EEG

frequency up to 25Hz. As discussed earlier, EEG activity
extends further than the customary frequency range. Hence
high frequencies are kept in our analysis and 32-64Hz is
considered as high frequency band 1 (HF Band 1) and
64-128Hz is considered as high frequency band 2 (HF
Band 2). This is justified in Fig. 5 which demonstrates
the average PSD by Welch’s method for sleep stage 2 and
5 for F3C3 channel for all segments from patients and
normal subjects. There is a clear distinction in high frequency
components between normal subjects and patients.

To the best of our knowledge, for the first time, average
PSDs for all segments from patients and normal subjects for
a particular sleep stage are demonstrated in this study to show
the distinguishing spectral characteristics between bruxism
patients and normal subjects. As these PSDs are average
of many segments they represent the characteristics of each
group of subjects i.e. patient and normal.

FIGURE 5. Average PSDs of patients and normal subjects for channel
F3C3 for sleep stage 2 (top) and sleep stage 5 (bottom).

D. NEUROPHYSIOLOGICAL INSPIRED FEATURES
EXTRACTION
Bruxism patients have greater number of transient arousals
during sleep, which is manifested by desynchronized EEG
signals along with the shift in their frequencies [29]. It is
well known that the cerebral triggering maintains a recurring
structure (known as phase A) which is trailed by phases of
deactivation (known as phase B), the overall phenomena is
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TABLE 2. CAP summary of considered subjects.

termed as the cyclic alternating pattern (CAP) [30]. Each
Phase A is separated into three subtypes: A1, A2 and A3.
CAP is the manifestation of sleep instability between sleep
retaining phase A1 and stronger arousal phases A2 and A3.
Bruxism patients have greater sleep instability (more phase
A3) than that of healthy subjects [31].

For a better understanding of this fact, in Table 2, number
and duration of different CAP phases (A1, A2 and A3)
corresponding to some Bruxism patients and healthy subjects
are presented. Moreover, for each subject, the CAP rate and
total CAP time are also shown in the table. It can be noted
from the table that the number and duration of Phase A3 are
greater in case of Bruxism patients, as expected, which in turn
will produce significant differences in spectral characteristics
of the recorded EEG signals (between Bruxism patients and
healthy subjects). In Fig. 6, in order to demonstrate the
time-frequency characteristics in phases A1, A2 and A3,
sample spectrogram plots for the Bruxism patient and healthy
subject are shown. For a fair comparison, total duration of
the EEG signal is kept similar for the two cases (Bruxism
and healthy) and the starting point is selected where A1
phase is initiated. It is evidently perceived from the figure
that the spectrogram of Bruxism patient exhibits dominancy
of high frequency components (up to 16 Hz) while that of
the healthy subject contains only low frequency components
(mostly below 7 Hz). Above facts regarding the arousals
(or instability) in sleep demonstrate that there is a strong
chance of distinguished spectral variation in EEG signals
during sleep for bruxism patients. Hence, some frequency
domain features extracted from the EEG signal. Spectral
entropy, spectral peak frequency and average spectral power
(usingWelch’s method) are considered as potential frequency
domain features in classifying bruxism patients and healthy
persons.

Spectral entropy is actually use of the Shannon entropy per-
ception to the power distribution of the Fourier-transformed
signal. The spectral entropy portrays the information content

FIGURE 6. Spectrograms of consecutive phases A1, A2 and A3 of a
patient (top) and a normal subject (bottom). The vertical black lines
separate phase A1, A2 and A3. Channel considered: Fp2F4.

of the signal in spectral domain and thus it can be used
proficiently to compare EEG signals obtained from Bruxism
and healthy cases.

Welch’s method is a popular technique to find the power
spectral density of a signal. Here, the sub frames are
overlapped and instead of using Periodograms, altered Peri-
odograms (without using rectangular window) are averaged.
It reduces noise in the estimated power spectra. Average spec-
tral power obtained by using Welch’s method can capture
spectral variation in the EEG signals and are used as potential
spectral feature in the proposed method. Moreover, spectral
peak frequency is also considered as a distinguishing feature.
In Fig. 6, spectra obtained in two cases (healthy and Bruxism)
are shownwhere the dominance of the Bruxism case is clearly
observed in the low frequency regions.

A negative-positive peak in the EEG signal with higher
amplitude is regarded as a K-complex [32]. It has amplitude
(measured peak to peak) which is twice as much compared
to background activity in the preceding section. It has
duration from 0.5 to 3 seconds [33]. This activity has also
characteristics of biphasic or triphasic asymmetric slopes.
Less number of K-complexes is observed in bruxism patients
relative to healthy controls [34]. In [35], it is shown that
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FIGURE 7. Plots of Shannon’s entropy against consecutive segments for different bands
for channel F3C3.

FIGURE 8. Plots of histograms of probability distribution of Shannon’s entropy against
feature values for different bands for channel F3C3.

the bruxism patients have distinct neurobehavioral pattern
throughout the awake state. Greater EEG amplitude and
smaller latency of visual evoked potential is observed in
patients. A number of studies discovered that the behavioral
pattern of the bruxism patient is different from that of the
healthy subject and it is manifested by anxiety, depression,
paranoid ideation etc. [36], [37]. These studies suggest
alteration of neurobehavioral pattern in bruxism patients.
If neurophysiology is changed due to disease this change
should persist all the time. Therefore, magnitude variation
of EEG may be present in patients throughout day and
night. This motivated us to use statistical features namely,
interquartile range (IQR), standard deviation, root mean

square (RMS), mean, energy, mean absolute deviation, ranges
of value, skewness, kurtosis, central sample moments of
order 3, harmonic mean, sample mode and 25% trimmed
mean in our study. Hjorth parameters (e.g. mobility and
complexity) are established on the variation of the derivatives
of the EEG signal. They have the ability to designate
EEG signal characteristics simultaneously in the time and
frequency domains and they are extensively used in analyzing
nonstationary signals [38]. Hence, Hjorth parameters are
considered as potential features for this study.

Entropy quantifies the information in a certain process. It is
anticipated that there are differences in information content
in EEG of patient and healthy control. This anticipation
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FIGURE 9. Boxplots of Shannon’s entropy for different bands for channel F3C3.

is vindicated by using general feature plot, probability
distribution and boxplots as shown in Fig. 7, Fig. 8 and
Fig. 9. Two entropy based features, Shannon’s entropy and
log energy entropy are also included.

From Fig. 7, Fig. 8 and Fig. 9, the justification of using
IDWT-RBL signal is eminent. The features are well separated
in some of the bands. This is due to fact that multi resolution
analysis has the ability to capture details of high frequencies
with finer time resolution and that of low frequencies with
wider time resolution.

Hence, the feature vector in this study comprises some
spectral features, some statistical features, Hjorth parameters
and entropy based features to find the characteristics
of 6 IDWT-RBL signals for each 60 second segment.

E. PROPOSED GROUP WISE FEATURE RANKING (GFR)
TECHNIQUE AND DIMENSIONALITY REDUCTION USING IT
As 6 IDWT-RBL signals are obtained for each 60 second
segment, particular feature from these six signals inher-
ently exhibit group structures. It is more interpretable and
interesting to retain the group structure of the features
during feature selection. Moreover, as the features of same
group come from different frequency bands, this may retain
good frequency resolution too. This is our motivation for
introducing GFR technique. Features of same group may
be selected or not selected based on some criteria. In our
proposed GFR technique, group selection is performed using
statistical rank scoring to find the discriminative properties of
the features. The strength of the proposed GFR technique lies
in its simplicity while retaining excellent performance.

The GFR technique is introduced in this study. To the best
of our knowledge, this technique is completely new and novel
one and such technique is never used before to rank features.

This technique and its convenience are described next. The
robust performance of this technique is elaborated through
experimentations in Section IV.
Firstly, 6 IDWT-RBL signals are constructed for each

60 second segment. Same features are obtained from
6 IDWT-RBL signals. For example, 6 standard deviation
values are obtained from 6 IDWT-RBL signals. These
6 standard deviation values are termed as standard deviation
feature group. 20 feature groups i.e. total 120 features
(=6 bands×20 features) are collected from 6 bands. All
120 features are ranked using Wilcoxon rank-sum test. Then
average ranking of each feature group is calculated with
respect to 6 bands as shown in Fig. 1. One feature group
means 6 same features from 6 IDWT-RBL signals of each
segment. 20 ranks are obtained for 20 feature groups. Then
top ranked feature groups are chosen serially based on the
average score of each group of features for dimensionality
reduction. Result of this ranking procedure and its worth
is presented in Section IV. Feature ranking and selection
process for a fixed channel is depicted in Algorithm 1 during
classification with unlabeled sleep stage.

Since features of same group comes from different band
limited signals there might be less chance of correlation
among these features. As aforementioned 20 features come
from same IDWT-RBL signals similar spectrum content
may cause more correlation among them. Hence top ranked
features from different feature groups may not have good
distinguishing influence. There is a more chance of class
separation supremacy of classifier if we use group wise
features.

For ranking the featuresWilcoxon rank-sum test is utilized.
The reason behind choosing this test is that it does not assume
any hypothesis about the shape of the distribution of the
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Algorithm 1 Algorithm for Feature Ranking by GFR
Input: Feature data D with n groups of features and m
bands, number of patients p, number of healthy
controls c. D[1X1

1, 1X
1
2, . . . , 1X

1
m, . . . , nX

1
m;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1X
p
1, 1X

p
2, . . . , 1X

p
m, . . . , nX

p
m;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1X
p+c
1 , 1X

p+c
2 , . . . , 1X

p+c
m , . . . , nX

p+c
m ]

Output: Ranks assigned to feature group 1 to n by
GFR, 1R, 2R, 3R, . . . , nR
START
for i=1 to n do

for j=1 to m do
for k=1 to (p+c) do

Sort from smallest to largest, iX kj
Assign ranks, irkj

end
Initialize ranksum score, iW

pat
j ← 0

for s=1 to p do
Summing the ranks, iW

pat
j ← iW

pat
j + irsj

end
Initialize ranksum score, iW con

j ← 0
for t=(p+1) to (p+c) do

Summing the ranks, iW con
j ← iW con

j + ir tj
end
if p<n then

izj← iW
pat
j

else
izj← iW con

j
end

end
end
Z-score normalization of calculated ranks,
izj← |zscore(izj)|
Averaging the rank score of each group,
for i=1 to n do

izsum← 0
for j=1 to m do

Summing the ranks of each group,
izsum← izsum + izj

end
iravg← izsum/m

end
Sorting average ranks, iravg
Assign ranks, iR
Return iR ;
END

data [39]. Other tests assume certain shape of the distribution
of the data. Hence, chance of error or bias due to distribution
assumption in ranking is reduced. Moreover, as Wilcoxon
rank-sum test does not start with any assumption it is a more
comprehensive test. The test is a statistical test to decide
if two sets of data come from same population. It checks

for any difference in sum of ranks that exists between two
groups. Standardized test-statistic is used to find the ranks
[40], [41].

As there are 13 EEG channels available in the dataset
we sought after finding out which channel is best suited
to classify bruxism. We also wanted to find the classifier
which can distinguish the classes remarkably well for this
data. Hence, channel selection and classifier selection using
extensive experimentation is also included in our study.

Instead of using a fixed channel averaged ranks of features
for different channels could be used and then average of all
channels may be considered into account. It should be noted
that different channels have different spatial location. Some
spatial location might have insignificant neurological role.
Channels from these locations can lower the rank score of
a significant feature. Hence, instead of using all the channels
for feature ranking one best performing channel in terms of
accuracy is selected.

At first all 20 feature groups are utilized using a single
classifier on all 13 EEG channels. All 20 feature groups are
extracted and ranked for best performing channel. Top ranked
5 feature groups are tested on 13 channels using 10 classifiers.
Best performed classifier is used for next step. Top ranked
different number of feature groups (4, 5, 6 etc.) are tested on
13 channels using 1 selected classifier. In this tuning manner
optimized features and best channel is found.

Feature ranking and selection process for a fixed channel
and fixed sleep stage is same as in Algorithm 1 during
classification with labeled sleep stage. 20 feature groups
are utilized using a single classifier on all 13 EEG
channels and 5 sleep stages. Best sleep stage according to
classification performance is selected. All 20 feature groups
are extracted and ranked for data of best sleep stage and
best performing channel. Top ranked 5 feature groups are
tested on 13 channels and 1 selected sleep stage using
10 classifiers. Top performed classifier is chosen for next
phase. Top ranked different numbers of feature groups are
tested on top performed channel using 1 selected classifier.
Then, optimized features and best channel is obtained.

F. CUBIC SVM CLASSIFIER
In previous subsection it is shown that the classes are
distributed to some extent in an overlapping manner. The
two-dimensional space cannot separate the features as they
are linearly non distinguishable. These features can be
linearly distinguishable in the nonlinear feature space which
is characterized indirectly by nonlinear kernel function. This
type of kernel function is used in support vector machine
(SVM) [42]. Hence, cubic SVM is used in this study to get
the maximum class separability. It uses polynomial kernel
which utilizes exact optimization rather than approximation.
The core strength of SVM is its kernel trick. A kernel function
provides techniques to avoid complicated calculations. Using
it, data can be converted to higher dimensions and a
hyperplane is obtained in this multidimensional space to
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separate the classes in an efficient manner. Polynomial kernel
of order 3 is used in this study. Cubic SVM’s robustness
for this dataset is tested by comparing with nine other types
of classifiers namely: Decision Tree (DT), Medium DT,
Liner Discriminant Analysis (LDA), Support VectorMachine
(SVM), k-Nearest Neighbor (KNN), Cosine KNN, Bagged
Trees, Subspace KNN and Boosted Trees.

IV. RESULT AND DISCUSSION
There are two classification investigations: classification with
unlabeled sleep stage and classification with labeled sleep
stage. In the subsections to follow, the assessment technique
of the proposed method is described with detailed steps with
relevant explanation and discussion.

A. PERFORMANCE MEASUREMENT MATRICES
Commonly used performance measurement matrices such as
sensitivity (Ssen ), specificity (Sspec) and accuracy (Aacc) are
used to measure the performance of the method.

Ssen =
(

TP
FN+ TP

)
× 100 (6)

Sspec =
(

TN
FP+ TN

)
× 100 (7)

Aacc =
(

TP+ TN
FP+ FN+ TP+ TN

)
× 100 (8)

where, FN refers to number of false negative detections,
TN refers to number of true negative detections, FP means
number of false positive detections and TP means number of
true positive detections.

5-fold cross validation is used to evaluate the performance
of the classifiers. Features from all of the one minute
segments from all subjects (both patients and normal
subjects) are randomly distributed into 5 equal subgroups
for this purpose. In each fold, four subgroups are used for
training and residual one subgroup is utilized for testing. This
procedure is reiterated 5 times.

Classification with unlabeled sleep stage and classification
with labeled sleep stage for all channels and all sleep stages
for all data from six subjects (two with bruxism and four
normal) are tested. The results are summarized in next
sections followed by discussion. Each accuracy is calculated
by averaging the accuracies of at least 10 independent trials.

The term overall average accuracy is defined here as
average of accuracies of all channels in case of unlabeled
sleep stage. It is defined as average of accuracies of all
channels for all sleep stages in case of labeled sleep stage.

B. CLASSIFICATION WITH UNLABELED SLEEP STAGE
During classification with unlabeled sleep stage 20 features
from each band are collected initially to test the classification
performance. Initially Decision Tree (DT) classifier is chosen
to test the performance with 5-fold cross validation and
100 independent trials for each classification result.

Experimental and investigative procedure is followed
to find a good subset of features which would result

in a reasonable classification performance. Twenty less
computationally expensive features are chosen to reduce the
computational complexity of the system. Computationally
expensive features such as approximate entropy, fractal
dimension etc. are not included in our study. DT classifier
is chosen to test initial performance because of its simplicity
and faster performance. 5-fold cross validation is chosen as it
is a standard practice as well as the recent reported methods
with which our results are compared also used it. In some
random executions of 5-fold cross validations, the results are
exceptionally outstanding. These outstanding results may not
be produced in most of the executions of the system. Hence,
reporting such results represents an excellent performance
of the system. These true results give a false impression of
the system. To avoid this false representation and become
more confident on the proposed method, each 5-fold cross
validation is repeated 100 times and average results are
reported.

The results are summarized in Table 3. The plot of
average accuracies of different channels is shown in Fig. 10.
On average the F3C3 channel shows highest average accuracy
of 92.99%. Overall average accuracy for all channels is
91.28±1.33%

Sensitivity and specificity are also highest for F3C3
channel. Sensitivity values are lower than specificity values.
This is due to the unbalanced nature of the dataset. There
are less disease data than normal data. The results are
biased towards the normal class. Lower sensitivity indicates
some wrong prediction in positive class i.e. disease class.
This results in Type I error. During disease classification
Type I error should be minimized as much as possible.
In ideal case all disease segments should be classified
as disease even at the cost of some wrong prediction of
normal classes as disease classes. Hence, no patient segment
remains undiagnosed. Our feature selection algorithm not
only increased accuracy but also increased sensitivity which
is described in later section. There is an increasing trend of
accuracies from pre-frontal region towards parietal region
for both hemispheres. 20 features from each 6 band limited
signals for each 1 minute segment are used. It is observed
that channel F3C3 has the highest average accuracy. Best
performing channel i.e. F3C3 is considered for further feature
optimization process. A feature vector for F3C3 is compiled
using 20 features from each band. Those 20 features are
ranked using absolute values of the standardized test-statistic
of a two-sample unpaired Wilcoxon test. Fig. 11 shows the
average score of each group of features. Then performance
is tested with top five features namely sample mode,
Shannon’s entropy, complexity, spectral entropy and standard
deviation.

Ten different classifiers including cubic SVM are used
to check their performances. 5-fold cross validation and
10 independent trials are used for each classification. The
results are summarized in Table 4, Table 5 and Table 6 and
accuracies are shown in Fig. 12. It is evident that among all
classifiers cubic SVM performs best with less deviation for
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TABLE 3. Summary of classification performances with unlabeled sleep stage using 20 features.

FIGURE 10. Average accuracy of each channel for classification with unlabeled sleep stage using
20 features.

FIGURE 11. Average score of each group of features used for classification with unlabeled sleep stage.

all channels. Channel F3C3 showed best performance with
97.67% accuracy.

The individual channel wise and average sensitivity values
are much higher for cubic SVM as expected. This reflects
the ability of cubic SVM to detect the minority class
in an unbalanced dataset. All other classifiers’ average
sensitivity values are below 90%. Only four of them crossed
80% mark. Hence, cubic SVM clearly outperforms other
classifiers in terms of sensitivity. This is due to the fact
that, in used dataset classes are distributed in an overlapping
style. The two dimensional space cannot separate the features
as they are linearly non distinguishable. These features
are distinguished using nonlinear feature space which is
characterized indirectly by nonlinear kernel function used in

cubic SVM. High sensitivity also reduced Type I error. This
is much desired for disease classification.

Average specificity is highest for Bagged Trees but it
has low average sensitivity. SVM has very good average
specificity but it has very poor sensitivity. Boosted Trees has
also very good average specificity but it has low average
sensitivity. Cubic SVM has very good average specificity
along with highest average sensitivity. As our aim is mainly
to reduce Type I error, our choice of using cubic SVM as
classifier, seems justified. This is also reflected in overall
average accuracy and individual channel accuracy values.
Channel F3C3 continues to show better performance.

Hence, channel F3C3 and cubic SVM is selected for further
feature optimization process.
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TABLE 4. Summary of classification accuracies (%) with unlabeled sleep stage using 5 features and 10 classifiers.

TABLE 5. Summary of classification sensitivities (%) with unlabeled sleep stage using 5 features and 10 classifiers.

Then top 6,7 and 4 features from Wilcoxon test are
also tested for all channels. For obtaining each classifi-
cation result cubic SVM with 5-fold cross validation and
10 independent trials are used. The results are shown in
Fig. 13. Using top 6 features highest average accuracy for all
channels and highest accuracy using single channel (F3C3) is
obtained.

Classification performance depends not only on number
of features but also on feature quality. It is observed that the
classification accuracy increases with the increase of number
of top ranked features up to a certain limit. This increase in

classification accuracy is expected as we are incorporating
features from the top ranks. After certain numbers, features
from the relatively lower rank are incorporated and thus the
classification accuracy does not increase and it eventually
decreases. It is expected that if the quality of a new feature
to be incorporated is not relatively good with respect to
the existing (already chosen) features, it may not enhance
the classification performance and even it may reduce the
existing classification performance.

Finally, top 6 features (sample mode, Shannon’s entropy,
complexity, spectral entropy, standard deviation and RMS),
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TABLE 6. Summary of classification specificities (%) with unlabeled sleep stage using 5 features and 10 classifiers.

TABLE 7. Summary of classification performances with unlabeled sleep stage using 6 features.

FIGURE 12. Average accuracy of each classifier with unlabeled sleep
stage using 5 features.

channel F3C3 and cubic SVM are selected for detection
bruxism with unlabeled sleep stage. The results are sum-
marized in Table 7 and shown in Fig. 14. Channel F3C3
showed best performance using cubic SVM with 6 features.
The accuracy obtained is 97.83%. It is worth noting that the
pattern of classification accuracy is similar for both using
20 features and using top 6 features as shown in Fig. 10
and Fig. 14. But for the latter case the accuracy levels are
increased.

FIGURE 13. Overall average accuracies of all channels and highest
accuracies using single channel for different feature subset.

C. CLASSIFICATION WITH LABELED SLEEP STAGE
As our method performed well with data of unlabeled sleep
stage and it is a sequential method, it is anticipated to
converge for optimum features with good result for labeled
sleep stage too.

Initially cubic SVM classifier is chosen as it performed
better during classification with unlabeled sleep stage. To test
the performance 5-fold cross validation and 10 independent
trials are used for each classification result.

The results are summarized in Table 8. The plots of average
accuracy of each channel for all sleep stages and average
accuracy of each sleep stage for all channels are shown in
Fig. 15. On average the F3C3 channel for REM sleep stage
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FIGURE 14. Average accuracy of each channel for classification with unlabeled sleep stage using
6 features.

FIGURE 15. Average accuracy of each channel and average accuracy of each sleep stage for classification with labeled sleep stage using
20 features.

FIGURE 16. Average score of each group of features used for classification with labeled sleep stage.

shows highest average accuracy of 97.44%. Overall average
accuracy for all channels and all sleep stages is 91.76%.

It is observed that using 20 features for 6 band limited sig-
nals for each 1minute segment, combination of channel F3C3
and REM sleep stage has the highest average accuracy. This
channel-sleep stage combination also has best performance
in terms of sensitivity resulting in reduced Type I error. This

combination has also specificity performance very close to
best. Best performing channel i.e. F3C3 and best performed
sleep stage i.e. REM is considered for further feature
reduction process for getting maximum accuracy. A feature
vector for the segments from F3C3-REM is compiled using
20 features from each band. Those 20 features are groupwise
ranked using absolute values of the standardized test-statistic
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TABLE 8. Summary of classification performances with labeled sleep stage using 20 features.

TABLE 9. Summary of classification accuracies (%) with labeled sleep stage using 5 features and 10 classifiers.
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TABLE 10. Summary of classification sensitivities (%) with labeled sleep stage using 5 features and 10 classifiers.

TABLE 11. Summary of classification specificities (%) with labeled sleep stage using 5 features and 10 classifiers.

of a two-sample unpaired Wilcoxon test. Fig. 16 shows the
average score of each group of features. Then performance is
tested with top five features namely: sample mode, spectral
entropy, standard deviation, RMS and energy.

Previously mentioned 10 different classifiers are used
to check their performances. 5-fold cross validation and
10 independent trials are used for each classification. The
results are summarized in Table 9, 10 and 11 and average
accuracy of each classifier is shown in Fig. 17.

Again, F3C3-REM combination has shown highest sen-
sitivity. Average specificity is highest for Bagged Trees but
it has low average sensitivity. LDA and boosted trees both
have good specificity but they have poor sensitivity. Cubic
SVM has very good average specificity along with highest
average sensitivity. Hence, cubic SVM shows balanced

performance in terms of both sensitivity and specificity,
which in turns results in reduced Type I error and good
accuracy.

It is evident that among all classifiers cubic SVM performs
best for all channels. Channel F3C3 and REM stage showed
best performance with 97.52% accuracy. Hence, channel
F3C3, REM stage and cubic SVM is selected for further
feature optimization process.

During feature optimization, top ranked features are
stacked serially and accuracy is observed. With top 10 fea-
tures F3C3 channel and REM sleep stage obtained highest
accuracy. These results are summarized in Table 12 and
shown in Fig. 18.
It is anticipated that training a model with less data may

require more features to give desired performance which
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TABLE 12. Summary of performance metrics for F3C3-REM with labeled
sleep stage using top ranked features.

FIGURE 17. Average accuracy of each classifier with labeled sleep stage
using 5 features.

FIGURE 18. Average accuracies of F3C3 channel for REM stage for
different number of features.

is reflected in the results. Top 10 features (sample mode,
spectral entropy, standard deviation, RMS, energy, average
power by Welch’s method, complexity, Shannon’s entropy,
log energy entropy and IQR), channel F3C3, REM sleep
stage and cubic SVM are selected for detection bruxism
with labeled sleep stage. Combination of channel-sleep stage
F3C3-REM showed best performance with 10 features using
cubic SVM with 98.39% accuracy.

In summary, our study concluded that accuracy of channel
F3C3 is best for classification with unlabeled sleep stage
and channel-sleep stage combination F3C3-REM is best for
labeled sleep stage. This agrees with the functional Magnetic
Resonance Imaging (f-MRI) study [43] of bruxism patients.

In their study, the right inferior parietal lobe demonstrated
lower stimulation in bruxism patients. Hence, active regions
in left and right portions of brain are not balanced in
bruxism patients. Blood oxygenation level-dependent signal
difference images revealed increased activation during teeth
clenching in the localized confined region of frontal and
parietal region boundaries of both lobe of brain. There are
more active areas in left lobe. There are also increased
activations in localized regions of frontal lobe. This fact
indicates more activation in left brain region and hence left
brain region can be more distinguishable to detect bruxism.
F3C3, which is located in left region, is found to have
more class separation ability. This finding is concordant with
clinical finding.

Our study is not event based, rather our objective is to
distinguish every one minute EEG segment (irrespective of
events/symptoms occurring or not). Our study reveals REM
sleep stage as a potential biomarker to distinguish bruxism
without checking all other sleep stages. REM sleep stage is
easily identifiable by eyemovements and all other stages need
not be checked. Hence computational cost can be reduced.
Another study [44] suggests that patients with bruxism have
more REM sleep than healthy individuals. This also confirms
the potential credibility of using REM sleep stage to detect
bruxism.

In both DT and medium DT, split criterion used is Gini’s
diversity index. In medium DT, maximum number of splits
is set to 20 to make the classification tree less complex
or deep. Using medium DT performance is equivalent to
DT. In medium DT, performance is almost same both for
unlabeled sleep stage and labeled sleep stage. Performance
is not high as it uses simple if-else structure which is not
sufficient to classify overlapping classes.

In LDA, regularized LDA is used where discriminant
type specified as linear. In linear LDA computation is less
expensive. Compared to DT, using LDA performance is
slightly decreased for unlabeled sleep stage and slightly
improved for labeled sleep stage. Linear LDA assumes
distributions of all classes have the same shape. This is
not true for the data used in this study. Unsatisfactory
performance is due to oversimplified algorithm of LDA to
separate complicated overlapping classes.

In SVM linear kernel is used and in cubic SVMpolynomial
kernel of order 3 is used. Both for unlabeled sleep stage
and labeled sleep stage SVM performs poorly but cubic
SVM shows the best performance among all classifiers. The
classes in used data are distributed in an overlapping way.
Hence, the two-dimensional space is unable to separate the
features as they are linearly indistinguishable. They can be
linearly distinguishable in the nonlinear feature space which
is categorized by nonlinear kernel function. This nonlinear
kernel function is used in cubic SVM.

In KNN, number of nearest neighbors is only 1 in
predictors for classifying every instance while predicting.
The distance metric used is Euclidean. In cosine KNN,
number of nearest neighbors is 10 and cosine distance metric
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TABLE 13. Summary of performances of all channels for classification with unlabeled sleep stage utilizing proposed method using 6, 4 and 2 bands.

FIGURE 19. Accuracies of different channels for classification with unlabeled sleep stage utilizing proposed method using 6,4 and
2 bands.

is used. Additionally it centers and scales each column
of the predictor data by the column mean and standard
deviation, respectively. KNN performs poorly for unlabeled
sleep stage and moderately for labeled sleep stage. Cosine
KNN performs better in both cases. Increase in number of
neighbour from 1 to 10 resulted in improved performance
because majority voting from 10 neighbours is more reliable
than considering only 1 neighbour for prediction.

Bagged trees is an ensemble learner which is com-
posed of several weak learners i.e. decision trees to
improve performance. Bootstrap aggregating is used
as ensemble-aggregation method and 30 DT are used.
As expected, performance of bagged trees is better than both
DT and medium DT in case of unlabeled and labeled sleep
stage.

Subspace KNN is an ensemble learner. For each learner
feature subspace is chosen at random with replacement.
30 learners are used. Its performance is similar to KNN
both for unlabeled and labeled sleep stage. The reason may

be number of nearest neighbors is only 1 both for KNN
and subspace KNN. This low number of nearest neighbors
degrades predictive power.

Boosted trees is also an ensemble learner. Here adaptive
boosting is used with 30 trees. Maximum number of splits
is set to 20. Its performance is superior to DT and medium
DT for unlabeled sleep stage. But for labeled sleep stage its
performance is similar to DT and medium DT. The reason
might be the less number of data used for labeled sleep stage,
which is insufficient for growing adaptive trees.

To test the justification of considering non traditional
high frequency bands, the proposed method is also tested
by using 4 bands which have maximum 32Hz frequency
components. These 4 bands consist of IDWT-RBL signals
of 0-4Hz, 4-8Hz, 8-16Hz and 16-32Hz respectively. It is
also tested with 2 bands consisting of 0-4Hz, 4-8Hz bands.
Results are summarized in Table 13 and shown in Fig. 19.
It clearly indicates that considering two high frequency bands
(32-64Hz and 64-128Hz) in analysis proved their worth.
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FIGURE 20. Accuracy obtained by using GFR and without GFR considering unlabeled sleep stages for (a) F3C3 channel (b) C4P4
channel.

FIGURE 21. Overall average of accuracies of different channels using proposed method, method of Heyat et al. [18] and method of
Heyat et al. [19].

To check the robustness of proposed GFR technique group
wise top ranked features are stacked one after another and
checked for accuracy. Accuracy is also checked by stacking
top ranked features one after another without grouping. The
results are shown in Fig. 20. It is obvious from figure
that features ranked with group outperforms features ranked
without group. From 24 features to 120 features ranked with
group shows higher accuracy than features ranked without
group for F3C3. In case of C4P4, features ranked with group
reached similar highest accuracy as features ranked without
group with less number of features. Throughout the tests
green curve is above blue curve which demonstrates overall
superiority of GFR. Less correlation exists among intragroup
features as they are from different bands. This is the reason
for enhanced performance for features ranked with group.

D. PERFORMANCE COMPARISON
To further examine the performance of our method, the
EEG based methods using labeled sleep stage described by
Heyat et al. [18] andHeyat et al. [19] are tested using the same
data we used. Using similar methods as they used, the results
are summarized in Table 14. A comparison of proposed
method with their methods using same data is presented in

Table 15. Average of accuracies of different channels using
proposed method, method of Heyat et al. [18] and method of
Heyat et al. [19] using the same data are shown in Fig. 21.
It is clear that proposed method outperforms their methods
by a good margin. In spite of the dataset being unbalanced,
the sensitivity and specificity of our method is much superior
to other methods.

In order to demonstrate the ability of the proposed method
to perform in the real-time application, its computational
complexity is computed. For the purpose of comparing
the computational complexity, two other methods are con-
sidered. For these methods, the computational complexity
is computed using the same data shown in Table 15.
The summary of computational complexity comparison is
presented in Table 16. Here, preprocessing and feature
extraction time/instance (PFET/instance) refers to the time
of preprocessing each 60 second segment and extracting the
desired features. Testing time/instance (TT/instance) refers to
the time to classify these extracted features by the trained
classifier/classifiers. Run time/instance (RT/instance) refers
to the time from start of preprocessing to final classification
of each 60 second segment i.e. sum of PFET/instance and
TT/instance. The PFET/instance of the proposed method is
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TABLE 14. Results using method of Heyat et al. [18] and Heyat et al. [19].

TABLE 15. Result comparison of proposed method with other methods using same data for classification with labeled sleep stage.

found higher due to the use of more features which require
more computational time and the use of IDWT-RBL signals.
The TT/instance is longer in the method reported in [19] as
it requires voting after prediction of 10 different classifiers.
The TT/instance of the method reported in [18] is bit shorter
than that is found by the proposed method. They used DT
classifier which uses a simple tree structured algorithm to
classify. The use of Cubic SVM classifier in the proposed
method is one of the reasons behind the greater computational
complexity. However, the relatively longer computational
complexity is still within the acceptable limit considering
significantly better classification performance with respect to
other existing methods.

The proposed method has potential in detection of bruxism
by using single EEG signal with high accuracy. It may be
used in self-applicable, wearable, single channel EEG based
bruxism diagnostic system.

E. APPLICATION OF DEEP LEARNING TO DETECT
BRUXISM
Applications of deep learning methods are also introduced in
this study to detect bruxism. Deep learning models with three
convolution-2D layers and four convolution-2D layers are
used. They are termed as first and second model respectively
for ease of description. Their schematics are shown in Fig. 22.
The input consists of 60 second segments of EEG of all the
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FIGURE 22. Schematic diagrams of 2D-CNN used. (a) 2D-CNN using 3 convolution-2D layers. (b) 2D-CNN using 4 convolution-2D layers.

TABLE 16. Computational complexity comparison of proposed method
with other methods using same data for classification with labeled sleep
stage.

channels. In conv-2D layers valid padding is used with stride
1. In the dense layers, 16 and 8 dense layers are used with
0.1 dropout rate. In final dense layer sigmoid activation is
used. In the first model 32, 16 and 8 convolution filters are
used and in the second model 64, 32, 16 and 8 convolution
filters are used. 80% data are used for training and remaining
20% data are used for validation. Sleep stage independent
classification is performed. Best model in 100 epoch is
chosen for final evaluation. The results are summarized
in Table 17. The accuracies are 90.93% and 90.72% for
first model and second model respectively. The accuracies
are similar in both cases. Specificity values are very good.
Sensitivity values decreased from 76.67% to 67.50% from
first to second model. Low sensitivity scores of these models
resulted in increased Type I error. This is not at all desired
for disease classification. However, further study can be done
using various deep learning techniques to increase sensitivity
as well as accuracy.

TABLE 17. Results using deep learning models.

F. APPLICATION OF PROPOSED METHOD ON OTHER DATA
To the best of our knowledge, the used dataset is the only
publicly available dataset that contains whole night sleep

TABLE 18. Summary of data for SDB detection with unlabeled sleep
stage.

TABLE 19. Result using proposed method to detect SDB.

EEG data of bruxism patients. No other such dataset of
bruxism patients is found online. Therefore, to demonstrate
the versatility of the proposed GFR method, it is applied
to detect sleep disordered breathing (SDB) from normal
subjects.

Bruxism and SDB have a firm association [45]. Bruxism
and SDB occur concurrently in around 20% to 40%
of circumstances. Both the diseases have some common
signs and symptoms, such as, reduced quality of sleep,
mouth breathing, nighttime snoring, a fondness for a supine
position during sleep, headaches at morning etc. Rhythmic
masticatory muscle activity (RMMA) occurs during bruxism
events. RMMA precedes an apnea or hypopnea event in 55%
of cases. In 25% of bruxism patients, an apnea or hypopnea
event precedes RMMA. As bruxism and SDB have some
similarity and both are sleep disorders, SDB is chosen for
demonstration of proposed method on other data.

The data are collected from CAP sleep database [25].
Three SDB and five normal subjects are considered. The
summary of the data is presented in Table 18. F4C4 channel
is chosen and features are ranked using the proposed GFR
algorithm and shown in Fig. 23. Performance using top
ranked features is tested. Cubic SVM classifier is used with
5 fold cross validation scheme. Accuracies with top ranked
features are demonstrated in Fig. 24. With top 10 feature
groups the maximum accuracy of 99.14% is obtained.
Table 19 summarizes the results. Sensitivity of 98.45% and
specificity of 99.43% are obtained at maximum accuracy.
The performance metrics attained to detect SDB clearly
demonstrate the effectiveness of proposed GFR technique.
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FIGURE 23. Average score of each group of features used for
classification of SDB with unlabeled sleep stage.

FIGURE 24. Average accuracies of F4C4 channel for SDB detection with
unlabeled sleep stage using top ranked feature groups.

V. LIMITATIONS OF THE STUDY
There are only 6 subjects, two subjects belong to bruxism
class and four subjects belong to healthy class. All EEG
segments collected from a particular subject are labeled as
the same class, i.e. the class of that particular subject. All
samples of a subject possess same class. In this case, subject
independent classification problem would be formulated as
to classify a subject as one of the two classes, bruxism or
healthy class. One can take decision on a subject based on
the identified classes of all segments of that subject (majority
voting could be a simple solution). In this case, to get a better
classification performance, there must be a large number of
subjects in the training phase. Since the dataset contains only
2 bruxism subjects, subject independent evaluation under
leave-one-subject-out cross validation may not be a suitable
measurement.

In some medical applications, not necessarily all samples
of a particular subject belong to the same class. In that case,
leave-one-subject-out cross validation will provide samples

of one particular subject for testing purpose, where the
problem would be formulated as to classify a sample as one
of the two classes. This type of classification is not applicable
in our case as a particular subject of the dataset contains only
one class.

The cross-database evaluation is very crucial for any
clinical application. Unfortunately, we failed to get any
publicly available database which contains sleep EEG data of
bruxism and normal subjects. Hence, we could not evaluate
the performance of the proposed method on other datasets.

There are 2 patients’ data and 16 normal subjects’ data in
the CAP Sleep Database in PhysioNet database. To reduce
the class imbalance, we considered 2 patients’ data and
4 normal subjects’ data in our study. In spite of this, the
data used is not balanced. This is a limitation of the dataset.
This same data that we used is tested on different methods
reported in literatures and our method performed well in
terms of accuracy, sensitivity and specificity compared to
other methods. However, the method should be tested on
more balanced data for real world application.

The run time/instance of the proposed method is higher
due to using more features, the use of IDWT-RBL signals
and the use of Cubic SVM classifier. The relatively longer
computational complexity is within the acceptable limit
considering its better classification performance than other
existing methods.

The database has only small number of patient data i.e.
only two patients’ data are available. If sufficient numbers of
data are available, the method could be generalized for more
standard statistical assessment. Therefore further evaluation
is necessary.

VI. CONCLUSION
The proposed GFR technique and IDWT-RBL signal based
feature extraction approach have shown an overall satisfac-
tory performance. One of the major advantages of the method
is that optimal feature subset is obtained using group wise
ranking. This subset of features resulted in improved accuracy
with lower feature dimension. In this study, both unlabeled
and labeled sleep stages are considered. The classification
performance is deteriorated while removing the features
from the non-traditional high frequency bands. It indicates
that these high frequency bands contain useful information
along with customary bands. Moreover, use of band-limited
signals confirms frequency resolution of the system. Unlike
other study, all available data segments are considered.
Hence, it can be considered as bias free collection of sample
data. Comparison of proposed method with other recent
methods is done. The proposed method shows classification
accuracy of 97.83% and 98.39% in 5-fold cross validations
with unlabeled and labeled sleep stage respectively. This
automated approach can help medical practitioners in the
related field as a convenient tool for aiding proper diagnosis
of the disease. Only EEG data is used for the experiment
as our aim is to use only one EEG channel to make the
system simple. There might be contribution of other types
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of data such as EMG, ECG etc. on the results as heart rate
and muscle movement are involved in the symptoms of the
disease. This sort of multimodal data analysis could lead to
other algorithm and should be tested on larger dataset for
practical application. However, the proposed method is tested
on small EEG database and therefore further evaluation is
necessary for more standard statistical assessment.
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