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ABSTRACT This research presents a novel approach to detecting epileptic seizures leveraging the strengths
of Machine Learning (ML) and Deep Learning (DL) algorithms in EEG signals. Epileptic seizures are
neurological events with distinctive features found in Electroencephalography (EEG) that lend considerable
credibility to researchers. Machine Learning (ML) and Deep learning (DL) algorithms have emerged as
powerful feature extraction and classification tools in EEG signal analysis. Many studies have converted
the EEG signals into either images and /or calculated time-frequency domain features and performed
classification. This study focuses on classifying time-series data representation of EEG signals with machine
learning-based classifiers by tuning parameters and deep learning-based One-Dimensional Convolutional
Neural Network (1D CNN) methods. The primary objective is not only to determine the optimal classifier
but also to emphasize critical metrics such as sensitivity, precision, and accuracy, which are critical in
medical investigations, particularly for the early detection of diseases and patient care optimization. The UCI
Epileptic Seizure Recognition dataset used in this study consists of time-series data points extracted from
the EEG signals. The dataset has been preprocessed and fed to the classifiers, namely Extreme Gradient
Boosting (XGBoost), TabNet, Random Forest (RF), One Dimensional Convolutional Neural Network, and
achieved encouraging accuracies of 98%, 96%, 98%, and 99%, respectively. The proposed 1D-CNN model
performed better than other state-of-the-art models concerning accuracy, sensitivity, precision, and recall.

INDEX TERMS XGBoost, TabNet, deep learning (DL), machine learning (ML), random forest (RF),
epileptic seizures, 1D CNN, data points, time series.

I. INTRODUCTION

Epilepsy, a neurological disorder affecting approximately
50 million individuals globally, stands as one of the most
prevalent neurological diseases worldwide, as reported by
the World Health Organization. It is characterized by recur-
rent and unpredictable seizures. Epileptic seizures pose a
significant challenge to the quality of life for affected indi-
viduals [1]. It is marked by a tendency for recurrent episodes
across one’s lifespan. Epileptic seizures can manifest under
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diverse circumstances, encompassing factors such as skull
fractures, genetic predisposition, tumors, and other contribut-
ing factors [2]. It is found that anyone can be affected at any
age, but it is most initiated in childhood or over the age of
65 [3].

An epileptic seizure is a sudden and temporary distur-
bance in the normal functioning of the brain, characterized
by abnormal and excessive electrical activity. This electrical
activity can result in various physical and mental manifesta-
tions, ranging from subtle sensations to convulsions and loss
of consciousness, and sometimes leads to sudden, unexpected
death [4]. Accurate detection of seizures in epilepsy patients
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is vital for diagnosing the condition correctly and devising
personalized treatment strategies. A better quality of life and
reduced life risks can be ensured through early diagnosis and
continuous monitoring of seizures.

The purpose of analyzing the electroencephalogram (EEG)
signals, which record electrical activity in the brain, is to
evaluate patients with known seizures to detect the accurate
seizure type [5]. Epileptic EEG signals provide a dynamic
representation of neural activity, capturing the intricate pat-
terns associated with seizures. EEG signals are recorded
using electrodes attached to the scalp. These electrodes detect
the electrical impulses generated by neurons in the brain.

Raw EEG signal data often contains noise and irrelevant
information. Preprocessing steps, such as filtering, artifact
removal, and baseline correction, are applied to clean the
signals and enhance their quality. Once preprocessing is
done, feature selection and extraction play a crucial role
in epileptic seizure detection using EEG signal classifica-
tion [6]. Extracting relevant features from the signal data
provides more discriminative information than the raw sig-
nal alone. Machine learning and Deep learning techniques
have shown remarkable potential in extracting relevant fea-
tures and classifying them in various medical applications,
including epilepsy diagnosis.

Epileptic seizures can vary widely in their presentation,
severity, and duration. The brain’s regular activity results
from intricate communication between neurons through elec-
trical signals. In individuals with epilepsy, there is a tendency
for the brain’s neurons to fire excessively and abnormally,
leading to a seizure. Seizures can be classified into different
types based on their characteristics and the brain regions from
which they originate. In Figure 1, we observe the diverse
patterns of EEG signals recorded from different brain regions:
the healthy brain area, the region affected by a tumor, and
during a seizure event. In healthy brain areas, we typically
observe regular, rthythmic patterns characterized by consis-
tent frequency and amplitude, which reflect normal electrical
activity. At the tumor site, the EEG signals exhibit alter-
ations compared to those from the healthy brain area. These
can manifest in various ways depending on the nature and
location of the tumor. However, during a seizure event, the
EEG signals exhibit distinctive patterns that reflect abnormal
neuronal activity with high frequency and amplitude.

The X-axis in the above figure represents the EEG signal at
a particular time interval, and the Y-axis represents the signal
amplitude.

This study employs various ML classifiers and a 1D- CNN
network to classify EEG time-series data. This approach
allows for a comprehensive comparison of different classi-
fication techniques, enabling insights into which methods are
most effective for seizure detection. The aim of this study is
not only to acquire the best accuracy but also to demonstrate a
commitment to addressing the real-world needs of healthcare
practitioners and patients. The focus is on the critical metrics
relevant to medical diagnosis and decision-making, such as
sensitivity, the ability to identify seizures and specificity
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FIGURE 1. Variation in EEG signals at different instances.

correctly, and the ability to correctly identify non-seizures to
classify EEG time-series data, explicitly targeting the accu-
rate prediction of epileptic seizures. The dataset used in this
study consists of time series data points that represent the
value of the EEG signal at a particular time. Further, the
data was preprocessed and classified using XGBoost, TabNet,
Random Forest, and 1D CNN methods. The parameters of the
classifiers are tuned according to the nature of the dataset to
acquire qualitative results and high-performance evaluations.

The subsequent sections of this research paper are outlined
as follows: Section II briefly discusses existing works rele-
vant to this study, Section III discusses the methodology with
details about the dataset employed, and offers insight into the
methodology utilized in this research. Section IV illustrates
the evaluation process, presents graphical analyses, and com-
pares our findings with pertinent state-of-the-art research.
Lastly, Section V concludes the study, highlighting the lim-
itations and challenges encountered and outlining potential
avenues for future research.

Il. RELATED WORK

The EEG signal, characterized by non-stationary behavior
and notable time variations, necessitates applying non-linear
analytical methods. To address this, [7] employed the dis-
crete wavelet transform (DWT) to extract the intricate
frequency components inherent in EEG signals. Their pro-
posed approach utilizes an optimized k-nearest neighbors
(KNN) algorithm for enhanced detection accuracy.

The quantitative features have been extracted from the
EEG data using a one-dimensional local binary pattern
(IDLBP) in [8], and these features were fed to various clas-
sifiers, which include logistic regression, BayesNet, SVM,
ANN, and functional tree. The authors in [9] introduced
a novel seizure detection algorithm that employs princi-
pal component analysis (PCA) for feature extraction. The
algorithm compares these features with other machine learn-
ing (ML) algorithms, incorporating four prediction models:
logistic regression (LR), dense trees, 2D-support vector
machine (2D-SVM), and cosine k-nearest neighbor (cos-
KNN). The algorithm enhanced training and test datasets’
performance by leveraging PCA to reduce data dimensions.

VOLUME 12, 2024



H. Kode et al.: Epileptic Seizure Detection in EEG Signals Using ML and DL Techniques

IEEE Access

Furthermore, The authors in [10] introduce an innovative
approach to identifying epileptic seizures in EEG signals
through the application of the Improved Correlation-based
Feature Selection method (ICFS) in conjunction with the
Random Forest classifier (RF). The methodology entails an
initial step of employing ICFS to extract key features from the
time domain, frequency domain, and entropy-based features.
Subsequently, the Random Forest ensemble is trained on
a refined set of selected features. Furthermore, the authors
in [11] chose fourteen highly correlated features using the
Chi-square tests. They applied classifiers such as random for-
est, decision tree, support vector machine, k-nearest neighbor,
and TabNet. Extraction of meaningful features from EEG
signals will directly impact the classification of the model’s
performance [12].

The Convolutional Neural Network (CNN) employs
various filters in its convolutional layers to extract a dis-
tinctive and rich set of meaningful features. However, one-
dimensional CNNs are suitable for tasks where the input
data is structured in a sequence, time-series data. In [13], the
author proposed a 1D-CNN approach by converting EEG sig-
nals into 2D/3D images and achieved an accuracy of 96.30%.

In [14], nineteen EEG data channels were selected,
and then the signals were resampled at a frequency of
256Hz. Subsequently, these signals were partitioned into time
frames of 3 seconds each. Further, we feed the data into
the ConvLSTM model for epileptic seizure identification.
Another study [15] proposed an innovative method capa-
ble of autonomously extracting features from deep within a
CNN and generating easily interpretable rules for classifying
seizures in EEG signals. Their objective is to elucidate the
internal logic, providing neurologists with valuable insights
for decision-making, whereas [16] proposed a 13-layer deep
CNN algorithm to detect normal, preictal, and seizure classes.
Their proposed method achieved accuracy, sensitivity, and
specificity of 88.67%, 95.00%, and 90.00%, respectively.

A supervised deep convolutional autoencoder (SDCAE)
model [17] was proposed to detect seizures in children with
epilepsy. The Bi-LSTM-based classifier used in this model
with an EEG signal segmented to 4s length achieved an
accuracy of 98.79%.

ill. METHODOLOGY

This section describes the dataset and methods we propose
to detect epileptic seizures, including the machine learn-
ing algorithms such as extreme gradient boosting classifier
(XGBoost), TabNet classifier, Random Forest classifier with
fine-tuning their parameters, and a 1D- CNN based deep
learning algorithm.

A. DATASET DESCRIPTION

The dataset used in this study is a publicly available UCI
Epileptic Seizure Recognition [18] dataset, which is a pro-
cessed version of the original Bonn dataset [19]. The Bonn
dataset is organized into five folders. Each folder corresponds
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to a unique individual, with 100 files per folder, each repre-
senting brain activity over 23.6 seconds. The corresponding
time series are sampled into 4097 datapoints, where each
point reflects the EEG value at a specific time. So, a total
of 500 individuals with 4097 data points each are available.

The UCI Epileptic Seizure Recognition [18] dataset par-
titioned the above 4097 datapoints (from Bonn dataset) into
23 segments, each containing 178 data points, representing
a l-second time interval. This process was applied to all
500 individuals, resulting in 11500 (23 *500) data instances.
This process was made to make it available for the users to
use for different classification purposes. This dataset has five
classes. Each is represented as below.

Class 1: Seizure activity recordings.

Class 2: EEG signal captured from the tumor’s region.

Class 3: EEG recordings were from the healthy brain area.

Class 4: EEG recordings were captured when patients
closed their eyes.

Class 5: EEG recordings were captured when patients
opened their eyes.

All the non-seizure class values (2,3,4 and 5) were uni-
formly set to O and the seizure class to 1. The graphical
representation in Figure 2 illustrates the distinct nature of
the EEG signal data present in the dataset, categorized
into epileptic and non-epileptic. The binary classification is
denoted by the label ‘y’, where y = 0 signifies non-epileptic
instances, and y = 1 represents epileptic seizures.

1000
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o 100 200 300 400 S00 600 700 800
EEG

FIGURE 2. Histogram representation of the epileptic and non-epileptic
seizures in the dataset.

B. PROPOSED APPROACH
This study employs a comprehensive approach utilizing four
distinct classifiers: XGBoost, TabNet, decision tree, and
1D-Convolutional Neural Network (CNN). Before model
training, the dataset underwent preprocessing steps to ensure
data quality and consistency. The dataset was strategically
divided into an 80% training set and a 20% validation set.
Figure 3 illustrates the framework of the proposed method-
ology representing data processing, classifiers, and a set of
evaluation metrics employed in the approach. In the feature
extraction process, the authors in [18] extracted data points
from the EEG signals. In our study, we considered those
extracted datapoints as features and further preprocessed and
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FIGURE 3. The Block diagram for the proposed method.

TABLE 1. Experimental configuration.

Component Specification
GPU Google Colab T4 GPU
CPU AMD Ryzen7 5700u

Operating System 64-bit OS, Windows

RAM 16.0 GB
Language Python 3.8
Development Google Colab
Platform
Keras, Pandas, Scikit Learn,
Libraries Pytorch, TensorFlow.

normalized to ensure all the features are on a consistent
scale, preventing certain features from dominating others in
the learning process. Further, the data was fed to the classi-
fiers and evaluated with the following metrics as shown in
Figure 3.

Table 1 details the hardware and software configura-
tion utilized for developing this proposed method. We used
Google Colab for both code development and execution.

C. XGBOOST CLASSIFIER
Extreme Gradient Boosting (XGBoost) [20] is a robust
and widely used machine learning algorithm, particularly in
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Parameters in
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Classification

Data XGBoost OR
TabNet )

Epileptic Seizures

Non- Epileptic Seizures
Random Prer ¢

CNN

Evaluation Metrics
Accuracy

Precision

Recall
F1 Score
ROC-AUC curve
MCC, Kappa and CSI

gradient boosting frameworks. This classifier can capture
temporal dependencies in time series data due to its ensemble
of decision trees. Each tree can recognize patterns and
trends within the temporal sequence of data points. Epileptic
seizures may exhibit non-linear patterns that can be effec-
tively captured by XGBoost’s decision trees, allowing the
model to learn complex relationships between features across
different time steps. Also, the regularization techniques in this
classifier help prevent overfitting, which is crucial for mod-
eling epileptic seizures where noisy data or outliers might
be present. In this study, we configured the parameters of
XGBoost as follows: a learning rate was set to 0.01 as it
controls the contribution of each tree to the overall model.
A lower learning rate makes the model more robust. In the
context of epileptic seizure detection, setting a small learning
rate suggests a cautious and deliberate learning approach.
Regularization parameter ‘alpha’ is used, which helps avoid
fitting noise in the data. A booster tree specified as ‘gbtree’
is suitable for capturing non-linear relationships and tempo-
ral dependencies present in the time-series data of epileptic
seizures. The maximum depth of individual trees was set to 8.
A depth indicates a relatively deep tree structure allowing
the model to capture intricate patterns in the data, and the
number of estimators (n_estimators) is set to 1000, which
indicates a commitment to build a sufficiently large ensemble
to capture diverse patterns in the epileptic seizure time-series
data.

D. TABNET CLASSIFIER

Tabular Neural Network is an architecture designed for tabu-
lar data with sequential dependencies. TabNet [21] combines
the elements of deep learning with attention mechanisms
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FIGURE 4. CNN architecture of the proposed method.

to handle structured data efficiently. In epileptic seizures,
where the order of observations matters, TabNet’s attention
mechanism allows the model to focus on relevant time steps
while considering their sequential relationships. The attention
mechanism in this classifier provides transparency into the
decision-making process, enabling researchers to understand
which time steps contribute most to the seizure classification.
In our study, we imported the TabNet classifier from PyTorch
and adjusted the parameters as follows: patience was set at
20, and maximum epochs (max_epochs) were set to 100.
Combining these two parameters indicates a strategy of early
stopping that allows the training process to stop automat-
ically when the model’s performance on the validation set
stops improving, preventing unnecessary computation and
potential overfitting.

E. RANDOM FOREST CLASSIFIER

Random Forest is an ensemble learning like XGBoost method
that operates by constructing a multitude of decision trees
during training and outputting the class, which is the mode
of classes of the individual trees. This classifier has high
predictive accuracy, robustness to overfitting, and the ability
to handle large amounts of data with high dimensionality.
Combining multiple decision trees enhances the model’s abil-
ity to generalize well to different temporal patterns observed
in epileptic seizure data. This classifier can identify the most
important features at different time points, aiding in iden-
tifying crucial factors contributing to seizure occurrences.
In this study, the parameters of the Random Forest are
set as follows: a number of estimators (n_estimators) set
to 1000 to create a large and diverse ensemble of trees
leads to more robust and stable models reducing the risk
of overfitting and improving generalization performance.
random state at 42, and the criterion parameter specifies
the function used to measure the quality of a split in the
decision tree. We used ‘gini’ criterion measures of how
often a randomly chosen element would be incorrectly
classified.
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F. CONVOLUTIONAL NEURAL NETWORK
Convolutional Neural Networks (CNNs) can be used for
various data types, not just images. In the case of one-
dimensional data, such as sequences or time series, 1D
convolutions are employed. In this study, 1D CNN is used
with kernel_size = 2 to capture relatively short-term features
in EEG data, max pooling layer helps reduce the spatial
dimensions of the data, and activation function “ReLU” is
used to learn complex relationships in the data. Four lay-
ers of convolutions were used in this model with filters
of 32, 32, 64, and 128. The progressive increase in the
number of filters across the convolutional layers implies a
hierarchical feature learning process. Deep layers with more
filters learn more abstract and high-level representations.
This architecture allows the model to extract hierarchical
features at different levels of abstraction from the EEG data.
The dropout rate of 0.2 used in this model indicates a reg-
ularization strategy to prevent overfitting. The first fully
connected layer has 64 neurons with activation function
ReLU and a dropout rate 0.5. The final FC layer has one
neuron with the activation function ‘Sigmoid.” Here, Adam
Optimizer is used with a ‘learning_rate’ equal to 0.0005 and
‘binary_crossentropy’ as a loss function. FIGURE.4 repre-
sents the architecture of the 1D- CNN model proposed in this
study.

The equations below represent the mathematical form of
the Sigmoid, ReLU, and Binary cross-entropy functions used
in the CNN model.

Sigmoid (x) = (1)

1+e*
Here, x is the input to the function, e is the base of the natural

logarithm (Euler’s number, approximately equal to 2.71828),
Sigmoid (x) is the output, which has a value between 0 and 1.

(@)

The ReLU activation function outputs the input value x if
x is positive or zero, and zero if x is negative. Graphically,

ReLU (x) = max (0, x)
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FIGURE 5. Confusion matrices of four classifiers. (a) XGBoost classifier, (b) TabNet classifier, (c) RF classifier, and (d) 1D-CNN.

it looks like a ramp, allowing positive values to pass
through unchanged while converting negative values to
zZero.

L(y,9)=—(ylog(3) + (1 =y .og(1-3)) (3)

From the above equation L (y,$) is the binary cross-
entropy loss, y is the true label (either O or 1) and ¥
is the predicted probability that the instance belongs to
class 1.
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IV. PERFORMANCE EVALUATION AND RESULTS

The evaluation metrics accuracy, precision, recall, and F1
score, CSI, MCC, and Kappa are computed below to assess
the performance of the proposed method to differenti-
ate seizures and non-seizures accurately. The mathematical
representation of these metrics is shown below:

Accuracy = (IP + IN) “4)
Y= TP+ TN + FP+ FN)
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FIGURE 6. ROC-AUC curve of four classifiers. (a) XGBoost, (b) TabNet, (c) Random Forest, and (d) CNN.

Precision

Recall

F1 Score

CSI

mcc

P
= Q)
TP + FP
TP
= (6)
TP + FN
(Precision % Recall)
=2x — (7
(Precision + Recall)
TP
= ®)
TP + FN + FP

TP x TN — FP x FN
(TP + FP)(TP + FEN)(IN + FP)(IN + FN)
9

where TP is true positive, correctly predicts as positive.

TN is true negative, correctly predicts as negative.

FP is false positive, incorrectly predicts as positive also
called as Type 1 error.
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FN is false negative, incorrectly predicts as negative also
called as Type 11 error.

P, —P,

TP 1o

Cohen's Kappa =
where, P, is the relative observed agreement and
P, is the expected agreement.

A. CONFUSION MATRIX

The key evaluation metrics, such as accuracy, precision,
sensitivity (Recall), and specificity, were derived from the
confusion matrix. FIGURE 5 illustrates the visual repre-
sentation of the confusion matrices generated for all four
classifiers. It serves as a comprehensive tool for assessing
the performance of the model by revealing the distribu-
tion of true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) predictions. Based on the

80663



lEEEACCGSS H. Kode et al.: Epileptic Seizure Detection in EEG Signals Using ML and DL Techniques

precision  recall fl-score support

0 9.97 0.99 0.98 1835

1 0.98 0.90 0.94 465

accuracy 0.98 2300
macro avg 0.98 0.95 0.96 2300
weighted avg 9.98 0.98 9.97 2300

(a)

precision  recall fl-score support
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0.95 0.94 0.95 465

accuracy 0.98 2300

macro avg 9.97 0.97 0.97 2300
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FIGURE 7. Classification report of four classifiers. (a) XGBoost, (b) TabNet, (c) Random Forest, and (d) 1D-CNN.

TABLE 2. Weighted average values of the proposed method.

Classifier Accuracy Precision Recall

F1 score

XGBoost 0.98 0.98 0.98
TabNet 0.96 0.96 0.96
Random 0.98 0.98 0.98
Forest

CNN 0.99 0.99 0.99

results shown in FIGURE 5, 5(a) shows the XGBoost
classifier predicts ten non-epileptic instances as epileptic
and 47 epileptic instances as non-epileptic, 5(b) shows
the TabNet classifier predicts 20 non-epileptic instances as
epileptic and 75 epileptic instances as non-epileptic whereas,

80664

0.97 0.920 0.922 0.88
0.96 0.86 0.86 0.80
0.98 0.93 0.93 0.90
0.99 0.96 0.96 0.94

5(c) shows the Random Forest classifier predicts 21 non-
epileptic instances as epileptic and 26 epileptic instances
as non-epileptic. Finally, 5(d) shows the 1D-CNN pre-
dicts 18 non-epileptic instances as epileptic and 9 epileptic
instances as non-epileptic. These results provide insights
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TABLE 3. Comparison table with previous works.

Datasets Classification Type Accuracy | Precision | Recall F1-Score
% % % %

Bonn CNN + RNN 99 - - -

CHB-MIT [22], 2023 96

CHB-MIT [17], 2021 Bi-LSTM 98.79 98.86 98.72 98.79

Bonn Dataset [23], 2022 CNN 93.9 - - -
Bi-LSTM 97.2

Epileptic Seizure 1D CNN -LSTM 99.39 98.39 98.79 98.59

Recognition-UCI [24],2020 | CNN 97.13 94.24 92.34 0.93

AdventHealth [25], 2020 1D -CNN 89.73

Data from Shiraz University Random Forest 64.8 64.1 68.25 -

of Medical Sciences, Iran TabNet 70.36 68.12 80.95 -

[11], 2022

Bonn Dataset [26], 2014 Fuzzy approximate entropy, 97.36 - 98.3
SVMRBF, SVML 97.38 98.17

Epileptic Seizure CNN 98 - 96

Recognition- UCI [15], 2021

Epileptic Seizure RF 97.08 - - -

Recognition- UCI [27], 2020

Epileptic Seizure 1D-CNN-BiLSTM+TBPTT 99.41 - 98.99 -

Recognition- UCI [28], 2023

Bonn dataset [10], 2017 Improved Correlation Feature | 97.4 - 97.4 -
selection and Random Forest

Bonn dataset [29], 2022 Fuzzy Random Forest 99.4 98.8 99.4 96.3

Epileptic Seizure 1D CNN -LSTM 99.39 98.39 98.79 98.59

Recognition-UCI [24], 2020

Proposed Approach XGBoost 98 98 98 97
Tabnet 96 96 926 96
Random Forest 98 98 98 98
1D- CNN 929 929 929 99

into the performance and characteristics of each classifier in
terms of their ability to correctly classify instances as epilep-
tic or non-epileptic. For instance, TabNet classifier exhibits
more misclassifications than the other classifiers, particularly
in falsely identifying epileptic instances as non-epileptic.
On the other hand, the 1D-CNN model demonstrates rel-
atively fewer misclassifications among all the proposed
classifiers.

B. ROC-AUC CURVE
The Receiver Operating Characteristic Area Under the Curve
(ROC AUC) is a metric used to assess the performance of
a classification model, mainly in binary class classification.
It is a graphical representation between sensitivity (true pos-
itive rate) and specificity (true negative rate) across various
threshold settings.

The ROC curve plots the true positive rate against the
false positive rate, whereas AUC is the area under the
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ROC curve. In FIGURE 6, (a), (b), (c), and (d) have
the AUC values of 0.997, 0.98, 1.00, and 0.98, respec-
tively, which indicate that a has the AUC value of
0.997 and ¢ has an AUC value of 1.00 which rep-
resents those proposed approaches reflects the perfect
discrimination.

C. CLASSIFICATION REPORT

A classification report is a valuable tool for model evalu-
ation. It helps guide adjustments to the model parameters
to improve performance, especially for imbalanced datasets
where one class dominates the other, which becomes crucial
for assessing the model’s performance. FIGURE 7 shows
that the classification report clearly indicated the precision,
recall, and fl-score of epileptic and non-epileptic seizures
individually. It also shows the effective results of accu-
racy, macro average, and weighted average of the proposed
approach.
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D. CSI, MCC AND COHEN'S KAPPA

Additional metrics like the Critical Success Index (CSI),
Mathews Correlation Coefficient (MCC), and Cohen’s Kappa
gave additional insights into the classifiers and 1D-CNN
model performance. For the XGBoost classifier, the results
achieved for the CSI, MCC, and Cohen’s Kappa are 0.88,
0.92, and 0.92, respectively. For the TabNet classifier, the
results were 0.80, 0.86, and 0.86, respectively. For the Ran-
dom Forest classifier, the results were 0.90, 0.93, and 0.93,
respectively, and for the 1D-CNN model, the results achieved
were 0.94, 0.96, and 0.96, respectively.

Table 2 provides a comprehensive overview of the exper-
imental outcomes derived from the proposed approach. The
table encapsulates the achieved accuracies of the employed
classifiers, namely XGBoost, TabNet, Random Forest, and
1D CNN, which achieved 98%, 96%, 98%, and 99% accu-
racies, respectively. In this analysis, we opted for weighted
average values for Precision, Recall, and F1 score calcu-
lations due to the imbalance class distribution within the
dataset. Weighted average metrics consider the class imbal-
ances, providing a more representative evaluation of the
model’s performance. The values in Table 2 were obtained
from FIGURE 7. The validation loss values were high-
lighted for additional insight into the model’s generalization.
Specifically, the validation loss of the XGBoost classifier
is 0.06, the tabNet classifier is 0.13, and the 1D- CNN
model showcased a notably lower validation loss of 0.02.
These loss values indicate how well each classifier in our
proposed approach generalizes to unseen data. Numerous
studies have delved into Epileptic Seizure detection using
EEG signals, achieving encouraging results. The efficacy
of the models has consistently hinged on the characteristics
of the datasets, each with its unique set of features. While
some studies use 1D-CNN models, as shown in Table.3,
additional layers were added to make the model more effi-
cient and accurate. In our proposed 1D-CNN model, only
convolutional, pooling, and classification layers show similar
outcomes concerning accuracy. Still, our investigation stands
out by achieving the highest sensitivity, precision, and recall
values.

V. CONCLUSION

This research used machine learning and deep learning
algorithms to classify epileptic seizures effectively within
the EEG signals. We meticulously tuned the parameters of
classifiers, namely XGBoost, TabNet, Random Forest and
developed a 1D CNN architecture. Our primary innova-
tion lies in creating a best model that not only predicts
epileptic and non-epileptic seizures with high accuracies
but places a special emphasis on metrics such as preci-
sion, recall, and f1 score, which are crucial in the medical
field but may have been overlooked in previous studies.
By focusing on these metrics, we have highlighted the impor-
tance of correctly identifying positive cases (seizure events)
and negative cases (non-seizure events) in the context of
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medical diagnosis. By incorporating these additional metrics,
we have introduced a comprehensive evaluation framework
that captures various aspects of the model’s effectiveness.
Despite similar accuracies achieved in previous studies using
comparable classifiers, our research demonstrates superior
precision, recall and fl-score performance. This comparison
highlights the novelty and significance of our findings, indi-
cating a substantial improvement over existing approaches.
Accurate and reliable seizure detection is essential for
timely intervention and personalized treatment planning in
epilepsy patients, and our findings contribute to advanc-
ing the state-of-the-art in this domain in Epileptic Seizure
Detection.

A. LIMITATIONS AND CHALLENGES

Our study used the UCI epileptic seizure recognition dataset,
consisting of extracted data from the Bonn University dataset
stored in.csv format rather than raw signal data; nuances and
features may be lost during the extraction process. Relying
on the preprocessed data means that the model’s perfor-
mance highly depends on the quality of the preprocessing
steps applied to the original EEG signals. If the prepro-
cessing steps do not adequately capture relevant features or
introduce biases, it could affect the accuracy and reliability
of the classification model. While tuning parameters may
have led to the acquisition of the best results, there may
still be unexplored areas of the feature space that could
potentially improve the model’s performance. There may
be a gap between its performance in a controlled exper-
imental setting and its practical applicability in real-time
seizure detection scenarios since the model’s performance
is evaluated using preprocessed data (UCI epileptic seizure
detection).

Despite the progress presented in this paper, Epileptic
seizure detection poses several challenges, ranging from
the complexity of EEG signals to the need for real-time
monitoring. Some key challenges include variability in
seizure patterns. Epileptic seizures can manifest in vari-
ous patterns, making it challenging to develop a universal
algorithm that can accurately detect all types of seizures.
Another challenge is that EEG signals vary significantly
between individuals. Creating a personalized model for
each patient to improve accuracy is a challenge, especially
considering the diversity of seizure presentations. Address-
ing these challenges requires interdisciplinary collaboration
between neuroscientists, clinicians, and machine learning
experts.

B. FUTURE DIRECTIONS
Integrating data from multiple sources, such as EEG, elec-
trocardiography (ECG), accelerometry, and other physio-
logical signals, provides a more comprehensive view of a
patient’s condition. Multimodal approaches can improve the
specificity and sensitivity of seizure detection.

Deep Learning and domain adaptation techniques can
leverage information from related tasks to enhance model
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generalization. Exploring explainable AI methods will
contribute to the interpretability of these models in a
clinical setting. As technology continues to evolve and
interdisciplinary collaborations flourish, the future of
epileptic seizure detection holds the promise of more effec-
tive, personalized, and accessible solutions that positively
impact the lives of individuals with epilepsy and their
caregivers.
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