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ABSTRACT Thanks to advanced audio editing software, speech recordings can be tampered with very
quickly. If the speech recordings are used as forensic evidence, adding the audio recordings together, cutting
them, and changing their content are legally unacceptable and constitute a crime. Audio copy-move forgery
is the most common forgery to change the content of the speech. Audio copy-move forgery is performed by
copying a segment in the audio and pasting it anywhere in the same audio. This study proposes a robust and
new method based on cochleagram images to detect audio copy-move forgery. The proposed method uses
cochleagram images of the voiced parts of the audio to detect forgery clues in the input audio file. For this
purpose, the audio file is first split into voiced parts using a pitch-based Voice Activity Detection (VAD)
method. Each audio part is then converted into a cochleagram image. Structural similarity index measure
(SSIM) is used to calculate the similarity between cochleagram images. After calculating the SSIM values
between the cochleagram images, the proposed forgery localization algorithm is performed. In this algorithm,
the SSIM values among the cochleagram images are first sorted in descending order. The length ratio between
these pairs of segments is calculated to determine which values in this descending order are duplicated
segment pairs. If this ratio exceeds the specified percentage rate, these segment pairs are marked as forged
segments. Finally, the proposed audio copy-move forgery detection method is evaluated against the state-of-
the-art approaches with two Copy-Move Forgery Detection (CMFD) database and forged databases created
from TIMIT and the Arabic Speech Corpus database. For Copy-Move Forged Datasets, 95% Precision,
98% Recall and 97% F-score were obtained. The experimental results show that the proposed method is
significantly more robust against post-processing operations than other studies.

INDEX TERMS Cochleagram, forgery detection, copy-move forgery, SSIM.

I. INTRODUCTION

The rapid developments in audio technology allow the pro-
duction, processing, storage, and distribution of audio data
very quickly. In this case, it brings some concerns and some-
times problems. The most important of these problems is
the reliability of the audio file. The integrity of the audio
data ensures reliability. Integrity is protecting the content of
information against threats of unauthorized alteration, dele-
tion, or destruction in any way. Thanks to the ease of use of
advanced audio editing software, audio files’ integrity can be
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damaged, and attackers can perform audio forgery quite eas-
ily. For instance, a speech recording with the content ““Paul
was there the night of the incident, but Nick was not there”
can be faked by an attacker before being presented to the court
as evidence in a criminal case. For this, the word ‘“‘not” in this
record is pasted between “was” and “there” in the sentence.
Thus, the content of the audio recording is changed to ‘“Paul
was not there the night of the incident, but Nick was there”
and the meaning of the sentence is entirely different, and
forged audio recordings are created. In this case, this forged
record could ultimately reverse the course of the case. From
this point of view, it is essential to research the authenticity
of the speech recordings, especially in judicial cases. In this
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way, audio copy-move forgery is generated by copying one or
more segments in the audio and pasting them into another part
of the same audio. An instance of audio copy-move forgery is
presented in Figure 1. Figure 1(a) shows the audio taken from
the TIMIT database (“‘sal.wav’’), while Figure 1(b) shows
the forged audio obtained by copying the second segment
of this audio and pasting it on the first segment. Red frames
indicate the copied and pasted segments.
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FIGURE 1. a) Original audio (b) forged audio obtained with copy-move
forgery.

It is challenging to detect forgery because the duplicated
segments are taken from the same speech. This is because the
basic speech-related features such as amplitude, length, noise,
and frequency will not change for the duplicate segments of
the same speech. Another challenge arises when duplicated
segments are selected from short-time segments. Most audio
forgery detection methods split the speech into voiced parts
with VAD-based methods. However, many proposed VAD
methods cannot obtain accurate results if the segment is of
short time. In addition, the attackers apply post-processing
operations such as median filtering, compression, and noise
addition to the forged audio after generating the forged audio
to remove clues of forgery.

Digital audio authentication methods can be broadly cat-
egorized into two types: Active authentication and passive
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authentication methods. Active methods [1], [2], [3], [4]
necessitate additional information such as watermark and
signature. In contrast, passive methods, which are more
prevalent, can detect audio forgery by utilizing the features
extracted from the audio files without any supplementary
information. This is why we focus on the pertinent passive
methods to detect audio copy-move forgeries. Passive meth-
ods can be further classified into two categories as depicted
in Table 1: Methods to detect Audio copy move forgery and
Audio splicing forgery.

Audio splicing is a widely used method of forgery, involv-
ing the use of two or more recordings to create forged audio.
Pan et al. [31] detected audio splicing forgery by identifying
anomalous differences in local noise levels in audio. Chen et
al. used discrete wavelet packet decomposition and analyzed
the singular points of audio to detect audio forgery operations
over time, such as delete, insert, replace, and splice [32].
Gupta et al. [33] proposed a content-based audio copy detec-
tion method, where they compared the query fingerprints and
the test fingerprints to detect the copies based on the number
of matching fingerprints. Several other studies have also been
conducted to detect splicing in audio, including the identifica-
tion of different environments [34], [35], microphone classi-
fication [36], [37], and speaker identification [38], [39], [40].

Audio copy-move forgery detection methods can be split
into Window-based, VAD-based, and Spectrogram-based.

In Window-based methods, the speech file is divided into
non-overlapping or overlapping windows of equal length.
Then, robust audio features are obtained from the windows
of the audio. Similarity computations are realized between
the obtained features of the windows. The windows that are
the most similar are marked as duplicated windows. The
first study in this area was proposed by Xiao et al. [5].
In their proposed study, the audio file is split into T-period
windows. Fast convolutional algorithms are used to calculate
the similarity between windows. The windows with similarity
above a certain threshold are marked as duplicated windows.
Su et al. [6] suggested two Sliding Window (SW) strategies
to detect the audio copy-move forgeries within and between
voiced segments. They extracted features from the windows
with the Constant Q Cepstral Coefficients (CQCC) feature.
The similarity between different short windows was calcu-
lated using Pearson correlation coefficients. Su et al. [7] used
constant Q spectral sketches (CQSS) and the combination
of a customized genetic algorithm (GA) and support vector
machine to detect duplicated segments. For this purpose,
they first averaged the logarithm of the squared-magnitude
constant Q transform to extract the CQSS features.

Afterward, they used GA to optimize the extracted CQSS
features. In the final stage, they classified the features opti-
mized with SVM and marked the forged segments.

In VAD-based methods, voiced parts of the speech file
are extracted using VAD or YAAPT methods. The similarities
of the features obtained from the voiced parts are calculated.
Voiced parts with high similarity are detected as duplicated
segments. Yan et al. [8] extracted the pitch sequence from

82661



IEEE Access

B. Ustubioglu: Attack-Independent Audio Forgery Detection Technique

the speech file. Average difference (AD) and Pearson corre-
lation coefficient (PCC) methods were used to compute the
similarity of the pitch sequence. Wang et al. [9] presented a
method to detect audio copy-move forgery with the singular
value decomposition (SVD) transform and the discrete cosine
transform (DCT). In their method, after the speech file was
split into voiced parts with a VAD method, DCT coefficients
were obtained from each voice part. Afterward, they obtained
eigenvectors by applying the SVD to the square matrix of
these coefficients. They used the Euclidean distance (ED) in
the similarity calculation. Imran et al. [10] suggested an audio
copy-move forgery detection method with the local binary
pattern (LBP) method.

In this method, like other VAD-based methods, they first
extract the voiced parts from the speech file with their VAD
method. Next, they generated the feature vector by gen-
erating LBP histograms from each voiced part. Similarity
calculation of features was performed with Mean Squared
Error (MSE) and Energy Ratio (ER) metrics. Xie et al. [11]
extracted four separate features, such as pitch, Discrete
Fourier transform coefficients (DFT), Mel frequency cep-
stral coefficients (MFCCs), and gamma tones from each
voiced part, to detect copy-move forgery. They evaluated
the similarities of these features using PCC and AD meth-
ods. The detection results obtained from four features were
combined with the C4 decision tree to obtain the final deci-
sion. Anh et al. [12] present an approach based on phonetic
sequence. Their method obtains phonetic sequences from
extracted voiced parts. They calculated the similarity between
the different phonetic sequences with the most minor devia-
tions. Huang et al. [13] extracted the DFT coefficients from
the voiced parts. They sorted these features in the proposed
method to reduce the computational cost. They performed the
PCC method to calculate the similarity between the voiced
parts. Yan et al. [14] extracted the voiced parts of the speech
file with a normalized low-frequency energy ratio. After pitch
and formant sequences from the voiced parts were extracted,
similarity calculation was performed with the dynamic time
warping (DTW) method. Mannepalli et al. [15] extracted the
MFCC features of each voice part after obtaining voiced
parts from audio. They evaluated the similarity of MFCC
features by the Dynamic Time Warping (DTW) distance.
Ustubioglu et al. [16] split the audio into voiced parts with
the YAAPT method. They obtained Modified Discrete Cosine
Transform (MDCT) coefficients from these voiced parts and
took the mean of the transpose of the coefficient matrix as the
feature. ED was applied to measure the similarities between
the features of voiced parts.

In Spectrogram-based methods, audio data is con-
verted into a spectrogram image. In the feature extraction
phase, unlike VAD and window-based methods, since the
input data is image instead of audio, these methods use
image feature extraction methods instead of audio feature
extraction methods. After feature extraction, the markings
obtained on the spectrogram image are projected into the
audio, and duplicated segments are marked on the audio.
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Ustubioglu et al. used deep learning with the Mel spec-
trogram to detect forged segments for the first time in
the literature [17]. Their proposed Convolutional Neu-
ral Network (CNN) architecture classified the suspicious
Mel spectrogram images into original and forged classes.
Ustubioglu et al. [18] used the Scale-invariant feature
transform (SIFT) method to extract key points on the Mel-
spectrogram. The obtained key points from each channel
were matched via feature vectors and the image sub-blocks
whose key points are determined to be the center were labeled
as forged blocks. Ustubioglu et al. [19] used super-resolution
spectrogram images to visualize the suspicious audio. They
extracted key points and their feature from the spectrogram
image with the Binary Robust Independent Elementary Fea-
tures (BRIEF) method. The Ordering Points To Identify the
Clustering Structure (OPTICS) method was used to match
the corresponding descriptors with the clustering approach.
Then, the method marks the corresponding duplicated seg-
ments in the speech file based on the location of the key points
in these clusters on the spectrogram image.

This article proposes a new attack-independent audio
forgery detection method. The proposed method uses
cochleagram images of the voiced parts of the audio to detect
forgery clues in the suspicious audio file. For this purpose, the
audio file is first split into voiced parts using a pitch-based
VAD method. Each audio part is then converted into a
cochleagram image. SSIM method is used to calculate the
similarity between cochleagram images. After calculating the
SSIM values between the cochleagram images, the proposed
forgery localization algorithm is performed. In this algorithm,
the SSIM values among the cochleagram images are first
sorted in descending order. The length ratio between these
pairs of segments is calculated to determine which values in
this descending order are duplicated segment pairs. If this
ratio exceeds the specified percentage rate, these segment
pairs are marked as forged segments. In experimental studies,
comparisons were made with the state-of-the-art methods in
the literature. Since there is no common audio copy-move
forgery dataset in the literature, two new datasets created by
us have been used.

The remainder of the article is arranged as follows: The
contribution of our study is presented in Our Motivation.
The details of the proposed audio copy-move forgery method
are given in Materials & Methods. Results illustrate the pre-
sentation and analysis of the experimental methodology and
results. Last, the study is concluded in the Conclusion section,
after the Discussion section.

Il. OUR MOTIVATION

As is common in the detection of audio copy-move forgery
in the literature, the speech file is first split into windows or
voice parts. Robust features are then obtained from these win-
dows or voiced parts with audio feature extraction methods
to generate an approach robust to post-processing operations.
The copied and pasted segments are marked according to the
similarity of the obtained features. Each method determines

VOLUME 12, 2024



B. Ustubioglu: Attack-Independent Audio Forgery Detection Technique

IEEE Access

TABLE 1. Summary of research differences between the existing work and this study.

Authors Input

Similartiy method and Threshold

Database

Su et al. (2020) [6] Audio

Huang et al. (2020) Audio
[13] static threshold

MSE compared with the static threshold, PCCs

Their own dataset :CMFD dataset, 500
authentic recordings and 500 forged
recordings for testing.

Compared of each segment Compared with the

Yan et al. (2019) [14]  Audio Dynamic time warping Compared with the static Their own dataset: 4000 different
threshold words from the TIMIT dataset and the
WSJ audio database
Xie et al. (2018) [11] Audio C4.5, decision tree, PCCs, and AD Compared with  Their own dataset: 1000 copy-move
the static threshold forgery and 1000 audio files
Imran et al. (2017) Audio MSE compared with each other Energy ratioused to  Their own dataset: created from King
[10] compare histograms with the static threshold Saud  University Arabic Speech
Database
Wang et al. (2017)[9] Audio Distance between two singular vectors Their own dataset: 100 normal and
calculated and compared with the static threshold 100 copy-move audio files
Yan et al. (2015) [8] Audio PCCs and AD compared with the static threshold Their own dataset: 1000 tampered
audios
This study Spectogram SSIM compared with the dynamic threshold Their own dataset: TIMIT and Arabic

image of segment

Speech Corpus and CMFD dataset
[30]

a static threshold according to its database in the similarity
calculation. If their method is given an audio outside their
database as an input file, it will fail. For this reason, these
studies reported the results of their proposed methods in their
databases. Table 1 summarizes research differences between
the existing works and this study.

In our previous studies Ustubioglu et al. [17], [18], [19],
unlike these studies in the literature, audio data was converted
to an image (Mel-spectrogram, High-resolution spectro-
gram), and the image was taken as input data instead of audio.
Since audio is represented by an image, unlike other studies,
image feature extraction methods were used instead of audio
feature extraction methods. In this proposed study, unlike
our previous studies, the spectrogram image was not created
from the entire audio, the voiced parts obtained from the
audio were converted into spectrogram images. Thus, a more
detailed image is obtained by extracting the spectrogram
image corresponding to each voiced part instead of extracting
the spectrogram image corresponding to the entire audio.

Our motivation can be summarized as follows:

e For the first time in the literature, the possible clues of
audio copy-move forgery were investigated using cochlea-
gram images obtained from the voiced parts of the audio file.

e Thanks to the robustness of the cochleagram images
extracted from the audio parts against attacks, the proposed
audio copy-move forgery detection method is an attack-
independent method.

e With the proposed forgery localization algorithm,
instead of the static threshold used in similarity calculations,
a dynamic threshold was obtained by using the length ratio
information between the voiced parts in the audio.

e Experimental results prove that the proposed method
shows superior performance in the detection of audio
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copy-move forgery compared to other studies in the literature
on the audio forgery dataset created from TIMIT and Arabic
Speech Corpus dataset and CMFD dataset.

IIl. MATERIALS & METHODS

We propose a robust audio copy-move forgery method in
this study. This section presents all the details of the pro-
posed method as shown in Fig 2. As seen in the Fig. 2,
the proposed method consists of 4 phases: Separating all
the voiced segments, Extraction of cochleagram images from
voiced segments, Similarity calculation between cochlea-
gram images, and Forgery localization. In the first step,
we use the pitch-based VAD technique [16] to extract all
the voiced segments roughly. Next, each voiced segment is
converted to a cochleagram image. Then, we calculate the
similarity of two cochleagram images with SSIM. SSIM
values calculated between all images are saved. At the forgery
localization stage, we mark the location of the duplicated
segments according to the SSIM values with our proposed
localization algorithm. The recorded SSIM values are sorted
in descending order in the proposed localization algorithm
and kept in a matrix. Starting from the matrix’s first value,
the largest SSIM value, the length ratio between the segment
pairs giving this value is checked because the length of the
copied and pasted segment will be mainly preserved during
the forged audio creation phase. Finally, all pairs of segments
preserved in the length ratio are marked on the audio as
duplicated segments. The following subsections will detail
each step of the proposed audio copy-move forgery method.

A. SEPARATING ALL THE VOICED SEGMENTS

The pitch-based Vad algorithm proposed in [16] is used to
separate the voiced segments of the audio file. Pitch is a
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FIGURE 2. The framework of the proposed audio copy-move forgery method.

concept that mentions to the fundamental frequency and gives
the vibration frequency of the vocal utterance. Even if a
person tells the same voiced parts twice, the pitch sequences
of the voiced parts will be different from each other [20].
YAAPT is a popular pitch-tracking method. The main phases
of this method are preprocessing, pitch track estimation
using spectral information, pitch candidate estimation, and
final pitch determination using dynamic programming. After
obtaining the pitch sequence with YAAPT, the frequency
values greater than zero are saved as voiced segments in
the speech. Figure 3(a) shows a sample forged speech file.
Duplicated segments in the forged audio are shown in red.
The pitch sequence extracted from the speech in Fig. 3(a)
is given in Fig. 3(b). The blue lines in Fig. 3(c) represent
the voice segment boundaries obtained according to pitch
sequences in the audio. As can be seen from the figure, the
forged speech is divided into five voiced segments according
to the pitch sequence obtained. The second and fifth segments
are copy-pasted forged segments.

B. EXTRACTION COCHLEAGRAM IMAGES FROM VOICED
SEGMENTS

After the speech file is divided into voiced segments,
each voiced part will be represented by a cochleagram.
The cochleagram representation of a speech corresponds
to the frequency components in the time-frequency image of
the speech. These frequency components are based on the
frequency selectivity of the human cochlea and are modeled
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with a gammaton filter as given in equation (1) [21]

h(t) = AP e 2Bl cos2nfot + 6) 1)

where A is the amplitude, j is the order of the filter, B is the
band-with of the filter, f; is the center frequency of the filter,
0 is the phase, and ¢ is the time.

The equivalent rectangular bandwidth (ERB), a psychoa-
coustic measure of the auditory filter width at each point
along the cochlea, is used to identify the bandwidth of each
cochlea filter in [21]. The proposed method uses the ERB
filter model as given in [22], which was shown to generate
the best results in [23]. After filtering the signal with the
gamma tone filter, the implementation of which can be given
in [23] and [24], a representation similar to the spectrogram
is obtained by adding the energy in the windowed signal for
each frequency channel as:

N-1
Zn:O
where % (g, n) is the gammotone filtered signal, C (r) is the
g™ harmonic corresponding to the center frequency Jeg for the
r' frame, and G is the number of gammatone filters.

With the cochleagram representation, the proposed
algorithm uses a 64-channel gamma tone filter bank with
center frequencies distributed from 50 to 8000 Hz. This
filter bank is a standard cochlear filtering model obtained
from psychophysical studies of the auditory periphery. Each

audio segment is passed through a 64-channel gammaton
filter bank. The short-term energy of each vocal segment is

C(g,r)= x@gnwn, g¢g=12,....G (2
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FIGURE 3. (a)The waveform of the forged audio (b)The pitch sequence of
the forged audio (c)The voiced segment boundaries of the forged audio.

then calculated to obtain the cochleagram. Figure 4 presents
cochleagram images obtained from the five segments sepa-
rated by blue given in Fig. 3(c). As can be seen in the figure,
the cochleagram images corresponding to the 2nd and 5th
segments are also similar. In the VAD and window-based
methods suggested in the literature to detect audio copy-
move forgery, after the audio file is divided into voiced
parts or windows, 1-D features are extracted from the voiced
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FIGURE 4. Cochleagram images obtained from the voiced parts.

parts or windows. Unlike these studies, the proposed method
extracted images from each voiced part instead of 1-D feature
extraction. An experimental study has been carried out to
show that image extraction is a more efficient method instead
of the 1-D feature from each voiced part. For this, both 1-D
and 2-D cochleagram features were extracted from the 2nd
and 5th segments, which are the duplicated segments, and
the similarity between these two segments was calculated
by correlation. In this similarity calculation, post-processing
operations were also applied to the segments. Table 2 gives
the correlation results obtained between the 2nd and Sth
segments.

TABLE 2. Correlation values obtained according to the feature size
between the 2nd and 5th segments.

No Median Noise Compression
attack filtering Addition
1D 0.9286 0.9299 0.9723 0.9596
feature
2D
0.9706 0.9714 0.9879 0.9817
feature

As evidenced by the data in Table 2, even when
post-processing operations are applied to the 2nd and Sth
segments, the correlation value between the 2-D cochlea-
gram features extracted from these segments remains higher
than the correlation value between the 1-D cochleagram
features. This robustness to post-processing operations is a
key strength of the proposed method. In this method, the
cochleagram image is extracted from the voiced parts of
the speech, further enhancing its resilience. Figure 5 vividly
demonstrates the method’s effectiveness, showing the images
obtained after post-processing operations such as median
filtering, noise addition with 20db, and 32-bit compression
to the cochleagram images given in Fig. 4.

As seen in Fig. 5, there is no difference between the
no-attack cochleagram images of the segments and the
cochleagram images with compression, noise addition, and
median filtering. These images show that the cochleagram
feature is very robust to post-processing operations.
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FIGURE 5. Images created as a result of post-processing operations applied to (a) Segment 2 (b) Segment 5.

C. SIMILARITY CALCULATION BETWEEN COCHLEAGRAM
IMAGES

The proposed method uses the SSIM metric to calculate the
similarity between cochleagram images. SSIM, first intro-
duced in [25], is a perceptual metric used to calculate the
similarity of two images. The SSIM extracts three features
from an image: luminance, contrast, and structure. It uses
as visual information the combination of these features. The
SSIM value calculated between the two images ranges from
—1to 1. A value of 1 indicates that the two images whose
similarity is calculated are the same, and a value of —1 indi-
cates that these images are very different. Basically, between
two images X and y, the structural similarity index identifies
a measurement of distance.

SSIM (x.yy = 1 (x, ) ¢ (x, y)Ps(x, y)” A3)

where «, 8, and y are constants to weights [, ¢, and s. The
latter weights are functions of mean, variance, and covariance
of intensities:

2ppy + 1
[(x,y) = ;sz,uz—y—l-cl “)
Xy
200y + 2
c,y)=-—F5—"- Q)
oxzayz +c
s(x,y) = 2oyt (6)
Y= 200y + 2

The values of the constants ¢; and ¢, are commonly set to
0.01 and 0.03 to continue numerical stability. By substituting
Equations (4)-(6) in Equation (3),

(2/Lx“y + Cl)(zo'xy +c2)

SSIM (x,y) =
C = i+ enelo? + )

)
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Voiced
Segments

Segment I  Segment2 Segment3 Segment4 Segment 5

0 0.7416 0.7655 0.7411 0.8046
Segment 1
0.7416 0 0.8046 0.7939 0.9486
Segment 2
0.7655 0.8046 0 0.8457 0.8006
0.7411 0.7939 0.8457 0 0.7954
Segment 4
0.8046 0.9486 0.8006 0.7954 0
Segment 5

FIGURE 6. SSIM values among the cochleagram images.

In this way, the similarity between the cochleagram images
extracted from the speech was calculated. Figure 6 shows the
SSIM values among the cochleagram images given in Fig. 4.
These SSIM values will form the input for the next stage, the
Forgery localization stage.

D. FORGERY LOCALIZATION
In the proposed method, the localization of the forged speech
segments will be determined at this stage. In addition to
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the SSIM values obtained between the cochleagram images
in the previous stage, the length information of the speech
segments is also considered. The ratio between the lengths of
the segment pairs was used in the localization phase since the
size of the copied and pasted segment pairs will be preserved
to a certain extent, even if post-processing operations are
applied to the speech during the forged audio creation.

Algorithm 1 Forgery Localization

Input: SSIM values between the cochleagram images, the
size of segments

Output: Dup_Seg_Pairs

1. Sort the SSIM values in the S vector in descending
order

2. Create the SD vector based on the SSIM values in
descending order.

3. SD ={SSIM; SSIMa, ...SSIM, }

4. Save segment pairs giving SSIM values in SD as SP
vector.

5. SP ={Segi1,Segi2, ...Segxy }

4. for each segment pairs in SP do

5. Rxy = size(segment x)/size(segment y)

6 if Ryy > percentage_rate
7. Dup_Seg_Pairs = [X, y]
8. end if
9. end for

For this purpose, in the algorithm given in Algorithm 1,
Similarity vector S ={SSIMj, SSIMj2, ... SSIM;, } shows
the SSIM values obtained between the cochleagram images in
the previous step, where n is the number of voiced segments
in the speech. Then the elements of the S are sorted in
descending order. SD denotes S sorted in descending order.
Thus, the first element in SD will be the element that gives
the highest SSIM value among the segment pairs. The length
ratio Ryy given in Eq. (8) is calculated for the pair of segments
from which each SSIM value in SD is obtained. If Rxy is
greater than percentage_rate the segment pair is marked as
a copy-pasted segment. This process is continued until the
ratio between the sizes of the segments falls below percent-
age_rate. In the study, the percentage_rate was determined as
80%. All segments before the element that does not satisfy
the condition are marked as forged segments.

size(Segment x)
Y= e (®)
size(Segment y)
In Table 3, an example is given for the proposed localization
algorithm using the SSIM values given in Fig. 7. After the
SSIM values were sorted in descending order as SD, only
segment 2 and segment 5 were marked as forged segments,
since the ratio of segment 3’s size to segment 4’s size (37.97)
remained below 80%. Thus, with the proposed localization
algorithm, unlike the studies in the literature, for the first time,
a static value was not determined for the threshold; a per-
centage rate was used by using the length information of the
segments. When creating forged audio, the segment copied
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TABLE 3. The SSIM values and the ratio of the sizes of the segments.

Segment pairs SD Ryy
Segment 2 and 5 0.9486 86.67
Segment 3 and 4 0.8457 37.97
Segment 2 and 3 0.8046 43.34
Segment 3 and 5 0.8006 50.01
Segment 4 and 5 0.7954 18.99
Segment 2 and 4 0.7939 16.46
Segment 1 and 3 0.7655 76.67
Segment 1 and 4 0.75645 29.11
Segment 1 and 2 0.7416 56.53
Segment 1 and 5 0.7411 65.22

by the attackers can be pasted into multiple audio parts. This
forgery is multiple audio copy-move forgery. Moreover, using
adynamic threshold, the proposed method can detect multiple
copy-move forgery.

IV. RESULTS

This section will first present the audio copy-move forgery
dataset and performance metrics used in the proposed
method. After that, effectiveness and robustness tests will
be performed to show the effectiveness and robustness of
the proposed method. Various experiments will then be per-
formed to demonstrate the effect of cochleagram images
extracted from voiced segments on audio copy-move forgery.
In the next section, experiments on the determination of
the percentage rate used as the dynamic threshold in the
forgery localization phase will be given. Another section
presents the visual results obtained with the proposed method
for the speech recordings from the databases. Finally, the
performance evaluation of the proposed and state-of-the-art
methods will be given.

A. FORGED AUDIO DATASET

In order to show the results of the proposed copy-move
detection method, two databases based on the TIMIT speech
database [28] and the Arabic speech corpus database [29]
are used. TIMIT speech database contains English-language
speeches ranging from two to six seconds in length. The
speech format is WAV, with a sample rate of 16 kHz. Arabic
Speech Corpus contains spoken utterances. The format of the
speech also is WAV. While creating the forged audio file from
these databases, the speech was first split into voiced parts
(segments) using the proposed VAD method [16]. Afterward,
a random voiced part was copied in the speech, and this
voiced part was pasted at a random position in the same
speech. Each forgery segment is between 0.2 and 0.6 s long.
The first created audio copy-move forgery database [16] con-
sists of 368 forged audio files based on the TIMIT database,
and the second created forgery database [17] consists of
715 forged audio files based on Arabic Speech Corpus. The

82667



IEEE Access

B. Ustubioglu: Attack-Independent Audio Forgery Detection Technique

forged databases were created using the public TIMIT and
Arabic Speech Corpus databases. TIMIT and Arabic Speech
Corpus databases are widely used speech datasets primarily
for phoneme recognition and other speech-processing tasks.
Since these databases do not contain personal data, they are
not directly subject to the General Data Protection Regulation
(GDPR), primarily concerned with protecting personal data
within the European Union. We also tested the proposed
method with the CMFD dataset [30]. This forgery dataset
contains 500 authentic recordings and 500 forged recordings
for testing.

B. PERFORMANCE METRICS
Accuracy, Precision, Recall (TPR, true-positive rate), and
F-score metrics were used in this study to comprehensively
compare the proposed method with other methods. Accuracy
is the ratio of both the correctly detected forged audios and
the correctly detected authentic audios to the total audios.
Accuracy is calculated according to the Eq. (9).

Accuracy = P + IN ©)]

TP+ TN + FP + FN

where TP is the number of forged audios that are detected as
forged audios; TN is the number of authentic audios that are
detected as authentic audios; FP is the number of authentic
audios that are detected as forged audios; FN is the number
of forged audios that are detected as authentic audios.

While precision shows the ratio of correctly detected
forged audios to the total detected forged audios: recall
shows the ratio of correctly detected forged audios to all the
forged audios. F-score is the weighted average of precision
and recall. Precision, Recall, and F-score metrics are given
in Eq. (10), (11), and (12), respectively.

. TP
Precision = —— (10)
TP 4+ FP
TP
Recall = —— (1D
TP 4+ FN
F score — 2xPrecisionxRecall (12)

Precision + Recall

Accuracy, Recall, F-score and, Precision € [0,1]. A higher
F-score shows better overall performance in terms of preci-
sion and recall.

C. EFFECTIVENESS AND ROBUSTNESS TEST

After the attackers create the forged audio, the post-processing
operations can be applied to the forged audio to remove the
clues of forgery. For this reason, audio forgery detection
methods must be robust against post-processing operations.
In this experiment, five attacks were applied to the forged
databases based on TIMIT and Arabic Speech Corpus to show
the robustness of the proposed method to post-processing
operations. These attack types are compression at 32 kbps
and 64 kbps, noise addition at 30 dB and 20 dB, and median
filtering. There are 368 forged audio for each of the five
different attack types. As a result, 1840 forged audios were
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TABLE 4. The result of the proposed method with post-processing terms
of accuracy, precision, recall, and F1 score on forged database generated
from TIMIT.

Attack Types Accuracy Precision Recall F-score
No attack 0.9476 0.9548 0.9755 0.9651
Noise addition with 30 dB  0.9456 0.9547  0.9728 0.9637
Noise addition with 20 dB  0.9375 0.9542  0.9620 0.9581
Median filtering 0.9496 0.9549  0.9783 0.9664
32-bit compression 0.9214 0.9466  0.9532 0.9402
64-bit compression 0.9274 0.9536 0.9484 0.9510

created from the TIMIT database. The other dataset from
Arabic Speech Corpus, also contains forged audios with addi-
tional attacks: median filter, 32 kbps and 64 kbps, 30dB and
20 dB white Gaussian noise. Therefore, this dataset contains
30 x 5 =150 forged audios. These post-processing operations
will make it more difficult for audio forensic experts to detect
audio copy-move forgery. Table 4 presents the Accuracy,
Recall, F-score, and Precision values obtained by our method
on the forgery dataset based on TIMIT under five attacks.
As can be seen from Table 4, the proposed method is highly
robust to compression, median filtering, and noise addition
post-processing operations. When the F-score values of the
proposed method are examined, they are 0.94 and above.
Moreover, the Fl-score values obtained under five attacks
are quite close. This result shows that the proposed method is
an attack-independent method.

The same experiment was carried out in the other forged
database generated from the Arabic Speech Corpus database.
The average results for Accuracy, Recall, F-score and, Pre-
cision values of the proposed method on this database are
given in Table 5. As can be seen from the table, accuracy
and F1-score values over 0.91 were obtained from the pro-
posed method. In addition to the fact that the F1-score values
obtained for each attack are quite close, the values obtained
as a result of the noise attack are almost equal to the no attack
situation. This proves that the proposed method is also quite
robust to noise attack.

TABLE 5. The result of the proposed method with post-processing terms
of accuracy, precision, recall, and F1 score on forged database generated
from arabic speech corpus.

Attack Types Accuracy Precision Recall F-score
No attack 0.9386 0.8749 1 0.9351
Noise addition with 30 dB  0.9356 0.8746 1 0.9327
Noise addition with 20 dB  0.9412 0.8822 1 0.9425
Median filtering 0.9160 0.8743  0.9312 0.9432
32-bit compression 09112 0.8842 0.9434 09132
64-bit compression 0.9182 0.8942  0.9334 0.9232

VOLUME 12, 2024



B. Ustubioglu: Attack-Independent Audio Forgery Detection Technique

IEEE Access

The same experiment was also carried out in the CMFD
database. The average results for Accuracy, Recall, F-score,
and Precision values of the proposed method on this database
are presented in Table 6. As can be seen from the table,
the highest accuracy and Fl-score value is 0.96 with the
proposed method in the CMFD database. However, even
if post-processing operations are applied to the speech
recordings, the lowest F1-score value is 0.92. These results
show that the proposed method is also quite robust to
post-processing operations on the speech recordings in the
CMFD database.

TABLE 6. The result of the proposed method with post-processing terms
of accuracy, precision, recall, and F1 score on the CMFD database.

Attack Types Accuracy Precision Recall F-score
No attack 0.96 0.97 0.95 0.96
Noise addition with 30 dB 0.95 0.96 0.93 0.94
Noise addition with 20 dB 0.94 0.96 0.91 0.93
Compression 0.936 0.96 0.90 0.92

D. EFFECT OF COCHLEAGRAM IMAGES ON AUDIO
COPY-MOVE FORGERY DETECTION

We compared the cochleagram features with the state-of-the-
art speech features used in speech recognition to analyze the
effect of cochleagram features on audio copy-move forgery
detection as a first experiment. These features are spectro-
gram (Sgram) [27] and Constant Q Transform (CQT) [26].
Table 7 shows the Accuracy, Precision, Recall, and F-score
values obtained by our method with the Sgram feature instead
of the cochleagram on the forgery database based on TIMIT.

TABLE 7. The accuracy, precision, recall, and F-score values obtained by
the proposed method with Sgram feature instead of cochleagram on the
forgery database based on TIMIT.

Attack Types Accuracy  Precision  Recall F-score
No attack 0.9335 0.9467 0.9647 0.9556
Noise addition with 0.8770 0.9424 0.8886 0.9147
30db

Noise addition with 0.8569 0.9407 0.8614 0.8993
20db

Median filtering 0.8246 0.9377 0.8179 0.8737
32-bit compression 0.8952 0.9438 0.9130 0.9282
64-bit compresiion 0.9133 0.9452 0.9375 0.9413

As seen from Table 7, using the Sgram feature, the min-
imum accuracy value was 0.82, and the minimum F-score
value was 0.87. These minimum values were obtained in
the median filtering attack. At the same time, it is seen
that the difference between the minimum values and the
no-attack state is significant. These results show that the
Sgram feature is not robust to the median filtering attack.
As another experiment, the results of the proposed method
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obtained by using CQT instead of cochleagram with these
four metrics are shown in Table 8. When the results in Table 8
are examined, it is seen that there is not much difference
between both accuracy and F1-score values in cases with and
without attacks. For example, while the accuracy value of the
proposed method is 0.89 in the no-attack situation, it is 0.88 in
the case of adding 20db noise. Although this indicates that the
CQT feature is attack-independent, it is not a highly accurate
feature as these values remain below 0.90.

TABLE 8. The accuracy, precision, recall, and F-score values obtained by
the proposed method with the CQT feature instead of cochleagram on the
forgery database based on TIMIT.

Attack Types Accuracy  Precision  Recall  F-score
No attack 0.8992 0.9569 0.9049  0.9302
Noise addition with 0.873 0.9552 0.8696  0.9104
30dB

Noise addition with 0.8831 0.9559 0.8832  0.9181
20dB

Median filtering 0.8609 0.9544 0.8533 0.901
32 bit compression 0.879 0.9556 0.8777 0915
64 bit compression 0.879 0.9556 0.8777 0915

As a final experiment, Fl-score and Accuracy values
obtained using Cochleagram, Sgram, and CQT features are
given in Table 9 to show the superiority of the Cochlea-
gram feature. The better result between the three features is
highlighted in boldface. As can be seen from Table 9, using
the Cochleagram feature yielded the highest results in both
F-score and accuracy when compared to CQT and Sgram
features. The cochleagram feature is superior, especially in
median filtering and noise addition. For example, in the
median filtering attack, the F-score values obtained from
CQT and Spectogram are 0.90 and 0.87, respectively, while
the F-score value obtained with the Cochleagram feature
is 0.96.

TABLE 9. The accuracy, and F-score values obtained by the proposed
method with CQT, Sgram, and Cohle feature on the forgery database
based on TIMIT.

F-score Accuracy
Attack Types CQT Sgram Cohle CQT Sgram Cohle
No attack 0.9302 0.9556 0.9651 0.8992 0.9335 0.9476

Noise addition with 30dB  0.9104 0.9147 0.9637 0.873 0.8770 0.9456
0.9181 0.8993 0.9581 0.8831 0.8569 0.9375

0.901 0.8737 0.9664 0.8609 0.8246 0.9496

Noise addition with 20dB
Median filtering

0.915 0.9282 0.9402 0.879 0.8952 0.9214
0.915 0.9413 0.951 0.879 0.9133 0.9274

32-bit compression

64-bit compression

Our research involved testing a variety of features. For
instance, in the case of noise addition with 20db, the F-score
value obtained with the Sgram feature is 0.89, while the
F-score value of cochleagram feature is 0.95. As the table
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shows, the highest Fl-score value with the Cochleagram
feature was obtained as 0.96 in the no attack, noise addition
with 30db and median filtering, while the lowest was 0.94 in
the 32-bit compression attack. When the Accuracy values are
examined, as with the F-score values, Cohle features gave
higher accuracy than CQT and Speg features for all attacks.
This comprehensive testing demonstrates the robustness of
the cochleagram feature against attacks.

These experiments, which were carried out in the database
generated from the TIMIT database, to measure the perfor-
mance of the proposed method for different features, were
also carried out on the forged database generated from the
Arabic Speech Corpus database and the CMFD database.
Table 10 shows TPR values obtained by using Cochleagram,
Sgram, and CQT features.

TABLE 10. The TPR result of the proposed method on forged database
generated from the arabic speech corpus.

CQT  Sgram  Cochleagram

TPR 09832 0.9455 0.9985

As can be seen from Table 10, the highest TPR value in the
forged database generated from the Arabic speech database,
as in the forged database generated from the TIMIT database,
was obtained from the cochleagram feature. Table 11 shows
the F-scores and accuracy values obtained using the Cochlea-
gram, Sgram, and CQT features from the CMFD database.
The highest score between the three features is highlighted
in bold. As shown in Table 11, using the cochleagram fea-
ture gave the highest results for both F1 score and accuracy
compared to the CQT and Sgram features. The CMFD
database also shows that cochlear features are remarkably
robust to noise attacks compared to other features. This
result is similar to the results from the TIMIT database. For
example, a 20db noise addition resulted in an F-score of
0.93 for the cochleagram features, 0.88 for the CQT feature,
and 0.86 for the Sgram feature. As with the F- scores, the
Cohle features were better than the CQT and Speg features
for all attacks in terms of accuracy values in the CMFD
database. In the proposed audio copy-move forgery detec-
tion method, cochleagram images were extracted from the

TABLE 11. The accuracy, and F-score values obtained by the proposed
method with CQT, Sgram, and Cohle feature on the CMFD database.

F-score Accuracy

Attack Types CQT  Sgram Cohle CQT  Sgram Cohle

No attack 0.9202 09456 096 0.8892 0.9435 0.96
Noise addition
with 30dB 0.8904 0.8947  0.94 0.853  0.8670  0.95
Noise addition
with 20dB 0.8881 0.8693 093 0.8931 0.8479 0.94

Compression 0.89 0.90 0.92 0.878 0.92 0.936
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segments because the cochleagram feature is robust against
attacks and gives high accuracy.

E. DETERMINATION OF PERCENTAGE RATE IN
LOCALIZATION

In the proposed method, the length information of the speech
segments is also considered in addition to the SSIM values
obtained between the cochleagram images. We experimented
with this subsection to determine the percentage_rate value.
For this purpose, 2208 forged audios, with and without
attacks, were taken in the dataset. The length ratio between
the duplicated segments, percentage_rate, and copy-paste
segments in these forged audios was calculated. Figure 7
shows the percentage_rate numbers of audios from the
dataset. As shown in Fig.7, the number of audios with a 70%
percentage is 8, 50 with 75%, 500 with 80%, 950 with 85%,
and 750 with 90%, respectively. Because more than 95% of
the audio recordings in the dataset have a percentage_rate of
80% or more, the percentage_rate is determined as 80% in the
proposed method. Thus, segment pairs with a percentage_rate
value above 80% are marked as forged segments.

The number of audio

1000 950
800 700
600 500
400
200
50
90% 85% 80% 75% 70%

FIGURE 7. The percentage_rate numbers of audios from the dataset.

F. VISUAL RESULTS OBTAINED WITH THE PROPOSED
METHOD

Although the proposed method is an audio forgery detection
method, it is image-based. The proposed method first divides
the audio recording into words, and images are created from
each word. Then, the forged audio segments are detected
according to the similarity of the word images. The word
images obtained from the proposed method are shown in
Fig. 8 for audio files from databases used. The 93_6-7.wav
file given in the figure is taken from the CMFD database, the
si456_1-7.wav file is taken from the forged audio database
created from the TIMIT database, and the ARA NORM
0004_7-3.wav file is taken from the forged audio database
created from the Arabic Speech Corpus database. The audio
file names give information about the segment numbers
repeated in the audio. The bolded segments in Fig. 9 display
the copy-pasted segment pairs obtained using the proposed
method. As seen in Fig. 8, the number of segment images
obtained from the given forged audio is 8 for 93.wav, 8 for
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Segment 1 Segment 2

Segment 5

93 6-7.wav
A

Segment 2

i

Segment 5 Segment 6

si456 1-7.wav

FIGURE 8. The visual results of the proposed method.

si456.wav, and 7 for ARA NORM 0004.wav. The segment
numbers found due to detection, and those given in the file-
name are the same.

The word images were obtained with all three methods for
segment 1 and segment 7, which are duplicated words of the
si456.wav audio file, to show that Cohleagram word images
are a more effective visual representation than spectrogram
and CQT word images as another visual result. Figure 9
shows the CQT, Sgram, and Cochleagram images of seg-
ments 1 and 7. As seen from Fig. 9, although Segment 1 and
Segment 7 are the same segments, color and shape differences
are seen in the CQT and Sgram images created for these
words. However, the Cohleagram images are almost identical.
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G. PERFORMANCE EVALUATION OF THE PROPOSED
METHOD

The comparison of the proposed audio copy-move forgery
detection method with other studies in the literature is pre-
sented in this part. These other studies are labeled as Lbp [10],
Dft [13], Formant [14], DCT-SVD [9], MelSIFT [18], SW-
CQCC [6], and CQSS [7]. The codes of all the compared
methods except the CQSS method were written in Matlab
because only the authors who proposed the CQSS method
shared its codes in their study. CQSS method All the tests
were done on a personal computer with Intel(R) Core(TM)
i7-1165G7 CPU @2.80 GHz, 16 GB of DDR4 RAM, and
Windows 10 operating system. The parameters of compared
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FIGURE 9. CQT, Sgram, Cochleagram Images of duplicated segments.

No attack
III il In I|| I III III |||
& &
@ N N3 <<0"& y C\b ‘$\’(’0 (Jo Q@Qo%

M Precision M Recall ™ F-measure

FIGURE 10. Detection results using Precision, Recall, and F-score on
audios without additional attacks.

methods are empirically set as below after a series of exper-
iments. In DFT the threshold of PCCs is 0.90. For LBP,
the threshold of MSE is 50. In Formant, the threshold for
DTW distance is 700. For SW-CQCC, the thresholds are 0.90.
This part is split into subparts according to the results of
the proposed method obtained with no attack types and each
attack type.

H. COMPARISON OF THE PROPOSED METHOD AND
OTHER STUDIES WITH NO-ATTACK AUDIOS

In the first experiment, the proposed audio copy-move
forgery method was compared with other studies in the litera-
ture in case of not applying any attack to the audios. Figure 10
shows the average Precision, Recall, and F-score results from
MelSIFT, Lbp, Dft, Formant, DCT-SVD, SW-CQCC, CQSS,
and the proposed method. As can be seen Fig. 10, the pro-
posed method is significantly better than MelSIFT, Lbp, Dft,
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FIGURE 11. Detection results using Precision, Recall, and F-score on
audios under median filtering attacks.

Formant, DCT-SVD, SW-CQCC and CQSS methods. While
the F-score value of 0.96 was obtained from the proposed
method, the closest F-score value to the proposed method was
obtained by the MelSIFT method. The performance of the
methods other than the MelSIFT method is quite low.

I. COMPARISON OF THE PROPOSED METHOD AND
OTHER STUDIES WITH AUDIOS UNDER MEDIAN
FILTERING ATTACKS

As a second experiment, the audios with the median filtering
attack applied were analysed. For this purpose, precision,
recall and F-score values were calculated for median filtered
audios of both the proposed method and other studies in
the literature. The average Precision, Recall, and F-score
results from MelSIFT, Lbp, Dft, Formant, DCT-SVD, SW-
CQCC, CQSS, and the proposed method are given in Fig. 11.
When the results given in Fig. 11 are examined, the proposed
method gives the highest F-score value as 0.96, while the
DFT method gives the lowest value as 0.28. In this result,
it is seen that the proposed method is much more robust to
median filtering attack compared to other methods.

J. COMPARISON OF THE PROPOSED METHOD AND
OTHER STUDIES IN AUDIOS UNDER NOISE ADDITION
ATTACK

In this subsection, an experiment was conducted to show the
robustness of the proposed method to noise addition attacks.
In this experiment, the audios under noise addition with 20db
and 30db were used in the dataset. Precision, Recall, and
F-score metrics for the proposed method and other studies
were obtained with the audio under noise addition. The per-
formance metric results are shown in Fig.12 (a) for 20db
noise and in Fig. 12(b) for 30db noise. As seen from Fig. 12,
the Precision, Recall, and F-score values obtained for the
proposed method due to adding 30db noise are 0.95, 0.97, and
0.96, respectively. These values are pretty high. Precision,
Recall, and F-score values obtained for 20 dB noise addition
are 0.95, 0.96, and 0.95, respectively. Although the amount
of noise increases, it is seen that the values do not change and
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FIGURE 12. Detection results using Precision, Recall and F-score on
audios under noise addition attacks (a) Under noise addition with 20 dB
(b) Under noise addition with 30 dB.

are very high. Besides, apart from the proposed method, the
highest F-score values obtained for 20db and 30db noise were
0.75 and 0.79, respectively, obtained by the MelSIFT method.
The results obtained from this experiment, the proposed audio
copy-move forgery detection method is quite robust against
noise and gives high accuracy.

K. COMPARISON OF THE PROPOSED METHOD AND
OTHER STUDIES WITH AUDIOS UNDER COMPRESSION
ATTACK

This experiment analyzed the robustness of the proposed
method and other methods in the literature against compres-
sion attacks. For this purpose, 32kbps and 64kbps compressed
audios were used in the dataset. The proposed method and
other methods have been tested with these audios. As a
result of testing the methods with compressed audios, pre-
cision, recall and F-meausure metrics were obtained for each
method. The performance metrics obtained from the methods
are given in Fig. 13 (a) for 32 kbps compression and in
Fig. 13 (b) for 64 kbps.

As shown in Fig. 13, while the Lbp method gives the
lowest average values, the proposed method gives the highest
average values for both 32kbps compression and 64kbps
compression. The proposed method obtained the F-score
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FIGURE 13. Detection results using Precision, Recall, and F-score without
post-processing audios. (a) Under 32 kbps compression attack (b) Under
64 kbps compression attacks.

values as 0.94 for 32kbps compression and 0.97 for 64kbps
compression, respectively. The CQSS method gave the clos-
est Fl-measure value to the proposed method. When all the
analysis results are evaluated, even if various attacks are
applied to the audio files, the proposed method shows a
very high performance when compared to other methods in
the literature. The forgery detection method is quite robust
against noise and gives high accuracy.

L. GENERAL PERFORMANCE OF THE PROPOSED
METHOD AND OTHER STUDIES
As a final experiment, the average results of the proposed
method and other studies in the literature were analyzed.
Table 12 shows the average precision, recall, and F-score
values obtained by different CMFD methods, regarding all
post-processing operations. The better result between the nine
CMFD methods for each metric is highlighted in boldface.
It can be found that for each metric, the proposed method
always outperforms the existing methods.

V. DISCUSSION
In this section, we review what the results of the above
experiments tell us and further discuss the possible reasons
for effectiveness.
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TABLE 12. Average metric values (%) obtained by different CMFD
methods on the copy-move forged datasets.

Methods Precision Recall F-score
Mel-SIFT 0.84 0.75 0.79
LBP 0.43 0.32 0.34
DFT 0.37 0.25 0.32
Formant 0.40 0.35 0.38
DCT-SVD 0.40 0.32 0.36
SW-CQCC 0.79 0.77 0.78
CQsS 0.80 0.78 0.77
Proposed 0.95 0.98 0.97

Initially, five attacks were applied to the forged databases
based on the TIMIT, Arabic Speech Corpus, and CMFD
datasets to show the robustness of the proposed method for
post-processing operations. The accuracy, Precision, Recall,
and F-score values obtained by the proposed method are more
significant than 0.92 on the forged database generated from
TIMIT, 0.87 on the forged database generated from Arabic
Speech Corpus, and 0.90 on the forged database CMFD,
respectively. This result shows that the proposed method is
quite robust to post-processing operations. At the same time,
these high results are preserved in the CMFD database. This
result is due to using a dynamic threshold in the proposed
method instead of choosing a static threshold specific to our
database.

The second experiment concerned the effect of cochlea-
gram images on forgery detection. For this purpose, the
cochleagram features were compared with the state-of-the-
art speech features (spectrogram (Sgram) and Constant Q
Transform (CQT)) used in speech recognition. According to
experimental results, using the Cochleagram feature yielded
the highest results in both F-score and accuracy when com-
pared to CQT and Sgram features. The superiority of the
cochleagram feature is seen especially in median filtering and
noise addition. For example, in the median filtering attack,
the F-score values obtained from CQT and Spectogram are
0.90 and 0.87, respectively, while the F-score value obtained
with the Cochleagram feature is 0.96 on the forgery database
based on TIMIT. The highest TPR value, 0.99 in the forged
database generated from the Arabic speech database, was
obtained from the cochleagram feature. Compared to other
features, the CMFD database also shows that cochlear fea-
tures are remarkably robust to noise attacks. This result is
similar to the results obtained from the TIMIT database.
For example, the F-score for the cochleagram features was
0.93, the CQT feature was 0.88 and the Sgram feature was
0.86 when 20 db of noise was added. As with the F-scores,
the cochleogram traits outperformed the CQT and Speg traits
in the CMFD database for all attacks. This result shows how
robust the cochleagram feature is to attacks on all databases.

The third experiment was the determination of the percent-
age_rate value. To do this, 2208 fake audios, with and without
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attacks, were taken from the dataset. The percentage_rate,
i.e., the proportion of copied and pasted segments in these
fake audio files, was computed. In the proposed method, the
percentage_rate is set at 80%. Because more than 95% of
the audio recordings in the dataset have a percentage of 80%
or more. This way, pairs of segments with a percentage_rate
value of more than 80% are marked as fake.

The last experiment concerns the proposed method’s supe-
riority over other methods. Surprisingly, under five types
of commonly used post-processing operations, the proposed
method significantly outperforms the state-of-the-art CMFD
methods on three datasets with post-processing operations.
In general, the experimental results demonstrate that the pro-
posed method’s average metric values are over 0.95.

The above improvements are due to the fact that the
extracted cochleagram features are robust to post-processing
operations. Furthermore, in the proposed forgery localization
algorithm, a dynamic threshold was obtained using the inter-
segment length ratio information. In conclusion, the proposed
method seems more accessible and applicable in practice than
the existing CMFD methods. However, since the method is
segment-based, the proposed method will not give accurate
results due to copying and pasting a syllable in a segment.
Although it is not a meaningful forgery, it is possible to adapt
the proposed method to be syllable-based instead of segment-
based, but this would require much processing time. For this
reason, improvements in the proposed method are aimed to be
made effectively so that forged syllables can also be found.

Improvements to make higher-performance detection of
audio copy move forgery possible create the basis of our
future studies. To succeed in this aim, approaches that gener-
ate a problem-specific deep learning-based network will also
be investigated. In addition, other new attack types that can
be applied to the speech file are evaluated to aim to be robust
to these attack types.

VI. CONCLUSION

This study suggests a new approach to detecting audio copy-
move forgery. We observed that 1-D feature extraction and
similarity calculation methods are used in the methods sug-
gested in this field because the input data is an audio file.
Considering the diversity of 2-D feature extraction and sim-
ilarity calculation methods, this limits the field of voice
forgery detection. On the other hand, a static threshold is
used for the similarity threshold in all of the proposed
methods. In this case, determining this threshold for each
data set requires great experimental effort. For this purpose,
we extracted cochleagram images from each audio part in
the audio file. We used SSIM to calculate the similarity of
cochleagram images. We obtained a dynamic threshold using
the length ratio between segment pairs with the proposed
forgery localization algorithm to locate the duplicated seg-
ments. Finally, we analyzed our method through extensive
experiments against the state-of-the-art methods with three
datasets. Experimental results show that our audio copy-move
forgery detection method gives superior performance in
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CMFD and is effective and attack-independent. In the pro-
posed method, the VAD method may incorrectly detect
segment boundaries in other data sets. Deep learning-based
networks that can localize duplicated segments will be inves-
tigated to avoid these false detections.
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