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ABSTRACT In this article, the trajectory planning and high-precision motion control of an excavator based
on the independent hydraulic system of the load port are studied. A trajectory planning algorithm based on
the combination of a quintic non-uniform B-spline curve and improved sparrow algorithm and an oil inlet
flow controller based on the time-varying secant barrier Lyapunov function (TSBLF) are designed. First,
the traditional sparrow algorithm is innovatively improved in trajectory planning to make the generated
trajectory time shorter, more stable and energy better. Then, the secant function and fixed time controller
are first introduced in the design of the oil flow controller to ensure that the system error converges to the
predefined boundary in finite time. At the same time, the RBF neural network is used to approximate the
unmodeled error and disturbance of the system. Finally, the simulation verification is carried out with the
common trenching conditions in the intelligent operation of the excavator. The results show that the generated
trajectory has obvious advantages over the traditional sparrow algorithm. The trajectory tracking error can
converge to the neighborhood near the equilibrium point in a fixed time while satisfying the constraints, and
has high control accuracy.

INDEX TERMS Trajectory optimization, load port independence, neural network, barrier function,
flow/pressure control.

I. INTRODUCTION
Excavators are the ‘‘pearl’’ product with the highest economic
added value and the most abundant functions in engineering
machinery. Excavators are widely used. With the updat-
ing and iterating of excavator design, they have gradually
developed to become green, intelligent, and unmanned. As a
result, excavators have necessary systematic intelligent oper-
ation abilities, including self-perception, self-planning, and
self-execution, thus reducing the dependence on the driver’s
experience [1], [2], which creates higher requirements for
the trajectory planning and motion control of the excavator.
That is, while realizing the optimal trajectory planning of the
bucket tooth tip of an excavator, it is also necessary to over-
come the problems of low control accuracy, poor stability,
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and long times required to reach stable tracking due to
factors such as high nonlinearity and unknown external dis-
turbances in the excavator control system. This would allow
the high-precision progressive tracking of the trajectory to be
realized [3].

Trajectory planning is the basis of the intelligent operation
of excavators. The planned path is related to the energy
consumption, stability, andwork efficiency of excavator oper-
ations. Polynomials are widely used to solve minimum time
problems while maintaining the continuity of the trajectory
motion. Wang et al. [4] selected an appropriate polyno-
mial order as the optimal trajectory planning method by
comparing different orders of polynomials for trajectory
planning methods to plan the energy-optimized trajectory.
Chu et al. [5] determined the continuous smooth trajectory of
the end-effector of the robotic arm by a polynomial interpola-
tion method. However, when the polynomial order becomes
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larger to pursue a higher-precision trajectory, it often leads to
the generation of the Longe phenomenon and also makes the
calculation more difficult.

The use of spline interpolation curves can effectively
solve the above problems. Chen et al. [6] used a two-model
optimization architecture to take into account the normaliza-
tion parameters of the B-spline curve through an improved
quintic B-spline interpolation model to generate a trajec-
tory such that a robotic arm consumed less energy and was
more stable. Huang et al. [7] used a quintic B-spline to
interpolate the trajectory in the joint space and combined
it with a genetic algorithm to obtain a time-impact inte-
grated optimal trajectory planning method for a robotic arm.
This type of method can well maintain the continuity of
trajectory motion and allow various optimization algorithms
to optimize the planning model. The main goal of trajec-
tory optimization lies in the multi-objective optimization of
energy, time, physical constraints, and motion continuity.
Many scholars have adopted mainstreammethods such as the
particle swarm algorithm [8], [9], flocking algorithm [10],
genetic algorithm [11], and ant colony algorithm [12], but
they usually suffer from problems of local optimality, low
search accuracy, complicated algorithms, and long computa-
tion times.

The sparrow algorithm [13], an optimization algorithm
proposed in recent years, has the characteristics of high
search accuracy, fast convergence speed, good stability, and
strong robustness compared with other swarm intelligence
optimization algorithms. Zhang et al. [14] proposed a highly
smooth and time-saving trajectory planning method by intro-
ducing a tent chaotic map and an adaptive step factor to
improve the sparrow algorithm. Huang et al. [15] proposed
an improved sparrow search algorithm combining an elite
strategy and a sine algorithm for the trajectory planning of an
underwater flexible manipulator, which had a good nonlinear
approximation ability.

The execution level of excavator intelligent assistance
requires the control system to perform high-precision asymp-
totic tracking of the planned trajectory. In recent decades,
the asymptotic tracking of the working trajectory of the
excavator has received extensive attention. Due to the large
tonnage of the excavator and the relatively heavy opera-
tion, there are widespread parameter uncertainties caused
by the structural nonlinearity of the governing differential
equations, the nonlinearity of the actuator friction, uncer-
tainties of the structural parameters, such as the load, bulk
modulus of the hydraulic oil, and viscous friction coeffi-
cient, as well as uncertain nonlinearities, such as external
disturbances, oil leakage, and dynamic friction, which are
difficult to model. Therefore, the modeling of the excavator’s
actuator is more complicated, and there are problems such
as difficult parameter identification and large non-modeling
errors. To improve the trajectory control accuracy of exca-
vators, the widely used methods mainly include improved
optimization algorithms to optimize the parameters of

proportional–integral–derivative (PID) controllers [16], [17],
adaptive robust control algorithms [18], [19], use of a
synovial controller [20], and active disturbance rejection
controller [21].

To improve the trajectory tracking accuracy of the excava-
tor, Yang et al. [22] introduced a neural network to establish a
dynamic surface asymptotic tracking controller, which could
not only ensure the transient tracking performance of the
system but also ensure the asymptotic stability of the system.
Feng et al. [23] proposed an adaptive sliding mode control
method based on a radial basis function (RBF) neural network
to further improve the trajectory tracking accuracy of the
excavator. In addition, to further improve the control accuracy
and reduce energy consumption, the idea of an independent
control of the load port has been proposed in recent years.
Lyu et al. [24] proposed a new type of electro-hydraulic
system combining independent metering valves and a vari-
able pump, and they proposed the idea of a pump–valve
combination, which had strong advantages in terms of track-
ing performance and energy consumption. Chen et al. [25]
proposed an integrated double-loop motion control strategy
for electro-hydraulic actuators to achieve accurate trajectory
tracking of electro-hydraulic actuators under constraints.

The above control algorithms mainly focused on non-
linear compensation and steady-state tracking performance
improvements and less on the transient performance of the
control system. To limit the control error, the barrier Lya-
punov function can effectively solve the above problems.
Ilchmann et al. proposed the concept of transient control,
designed a transient variable, and defined a Lyapunov func-
tion of the transient variable to design a controller to achieve
system tracking control without violating the constraints [26].
Subsequently, Tee et al. directly designed a controller by
constructing the obstacle Lyapunov function to realize the
system tracking control, which could ensure that the system
constraints were not violated [27].

In recent years, the controller of the barrier Lyapunov
function (BLF) has received extensive attention from schol-
ars. Dao and Ahn [28] used the combination of the barrier
Lyapunov function (BLF) and the main controller based on
the task coordinate frame (TCF)method in the control design,
and they proposed an active disturbance rejection contour
control scheme. Xu et al. [29] synthesized the prescribed
performance function (PPF) and the barrier Lyapunov func-
tion (BLF). They proposed a novel backstepping controller
for hydraulic systems to deal with the uncertainty of the
systemwithout violating the full state constraint and achieved
the specified performance tracking.

In order to improve the problems of long trajectory plan-
ning time, high energy consumption, unstable motion and
nonlinear dynamics and modeling uncertainty of hydraulic
and mechanical systems during trajectory tracking in intel-
ligent auxiliary operation of excavators. Different from
previous studies, this paper innovatively improves the tradi-
tional sparrow algorithm in trajectory planning, and combines
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it with the five-order non-uniform B-spline curve for trajec-
tory planning. In order to track the planned trajectory, an oil
inlet flow controller based on time-varying secant barrier
Lyapunov function and RBF neural network is designed.
Considering the energy efficiency of the system, the oil return
pressure controller is designed to achieve high-precision and
energy-efficient trajectory tracking control.

The main innovations of this article are as follows:
(1) The improved sparrow algorithm population initializa-
tion adopted a cat map chaotic sequence to improve the
randomness and global distribution ability of the initial popu-
lation. Then, the individual was adjusted by Cauchy mutation
and a tent chaotic disturbance to prevent the population
from becoming too ‘‘concentrated’’ or ‘‘dispersed.’’ Finally,
an adaptive explorer–follower quantity adjustment formula
was introduced to balance the ability to find global and
local optima, so that the planned trajectory was smoother
and more stable, the time was shorter, and the energy was
better. (2) The secant function and the fixed-time controller
are innovatively introduced in the design process of the
inlet flow controller to ensure that the system error con-
verges to the predefined boundary in a limited time, and the
dynamic characteristics of the system were better. At the
same time, RBF neural network was used to approximate
the unmodeled error and disturbance, so as to enhance the
robust performance of the system and simplify the con-
troller design. The transient tracking performance of the
system was guaranteed, as was the asymptotic stability of the
system.

The rest of this article is organized as follows. The physical
model of the hydraulic excavator manipulator is established
considering the unmodeled error and external disturbances
in Section II. Section III introduces the trajectory planning
method of a hydraulic excavator manipulator. Section IV
introduces the construction method and stability analysis of
the oil inlet flow controller and the oil return pressure con-
troller. Section V presents the comparative simulation results
of the mechanical arm of the hydraulic excavator. Section VI
presents the conclusions of this paper.

II. PHYSICAL MODEL OF EXCAVATOR ARM
In this section, the excavator is modeled to provide precondi-
tions for the controller design in Section IV.

The structure of the excavator studied in this paper is shown
in Fig. 1, the driving cylinder is connected to the working
device in a hinged form, and each joint is controlled by the
cylinder to perform a composite motion so that the hydraulic
excavator can complete the specified tasks. The trajectory
planning of this paper does not consider the rotation of the
rotary joint, but only considers the combined motion of the
boom, stick, and bucket joint in a plane.

In this paper, the excavator manipulator shown in Fig. 1 is
studied, and its dynamics equation is described as follows:

M (q)q̈+ C(q, q̇)q̇+ Bq̇+ G(q) + 1C(q, q̇)q̇

+ 1Bq̇+ 1G(q) = Jha(q)(P1A1 − P2A2) + d1 (1)

FIGURE 1. Hydraulic excavator.

where q, q̇, and q̈ are the joint angle, velocity, and acceler-
ation vectors, respectively, M represents the inertia matrix
of the manipulator, C denotes the Coriolis force/centrifugal
force matrix of the manipulator, G denotes the gravity vector
matrix of the manipulator, B denotes the matrix of nodal
viscous friction coefficients, Jha(q)(P1A1 − P2A2) denotes
the vector of moments acting on the joints, where Jha =

∂xha
/
∂q, xha = [x1ha, x2ha, x3ha]T denotes the displace-

ment of the cylinder, d1 denotes the total perturbation vector,
and 1Cq̇, 1Bq̇, and 1G denote the unmodeled parts of the
coupled joint dynamics.

The pressures of the hydraulic cylinder rod cavity and the
rodless cavity are, respectively{

Ṗi1 = βe(−Ai1ẋiha − Di1 + Qi1)/Vi1 + 1i1

Ṗi2 = βe(Ai2ẋiha + Di2 − Qi2)/Vi2 + 1i2
(2)

where βe denotes the oil volume elastic modulus, Vi1 =

Vi01 + Ai1xiha and Vi2 = Vi02 − Ai2xiha (i = 1, 2, 3) are the
volumes of the rodless and rodded cavities of the cylinder,
respectively, Vi01 and Vi02 are the initial volumes of the
rodless and rodded cavities of the cylinder, respectively, Ai1
and Ai2 are the piston areas of the rodless and rodded cavities
of the cylinder, respectively, Qi1 and Qi2 are the inlet flow
rate and the return flow rate, respectively, Di1 and Di2 are the
un-modeled errors, and1i1 and1i2 are the unknown external
perturbations.

Define x1 = q, x2 = q̇, and x3 = P1A1 − P2A2. The
state space equations for the hydraulic excavator arm are
established as follows:

ẋ1 = x2 ẋ2 = M−1[Jhax3 − N1 + N2 + d1]

ẋ3 = g1Q1M + g2 − g3x2 − g4 + d2 (3)

in which

N1 = Cx2 + Bx2 + G N2 = −1Mẋ2 − 1Cx2
− 1Bx2 − 1G

d2 = A111 − A212 g1 = A1βe/V g2 = A2βeQ2M/V2

g3 = βeJha(
A21
V1

+
A22
V2

) g4 = βe(
A1
V1

+
A2
V2

)(D1 − D2) (4)
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FIGURE 2. Trajectory planning process.

III. CONTROLLER DESIGN PROCEDURE
In this section, to address the problems of long trajectory
times, high energy consumption, and unstable motion in the
intelligent auxiliary operation planning of excavators, a tra-
jectory planning algorithm combining the improved sparrow
algorithm and a quintic non-uniform B-spline curve [30] is
designed. The planning process is shown in Fig. 2.
The foraging process of the sparrow can be abstracted as

a discoverer–joiner–alert model. The discoverer has the char-
acteristics of high fitness and a wide search range to guide
the population search and foraging. Participants follow the
discoverer with the highest fitness for foraging. At the same
time, to improve their predation rate, some participants will
monitor the discoverers to compete for food or forage around
them. When the alerter perceives a threat to the population
surface, anti-predation behavior will be carried out. If the
alarm value is greater than the safety threshold, the discoverer
will take all the participants out of the dangerous area. The
literature [31] is the traditional sparrow algorithm process.
This paper improves the traditional sparrow algorithm based
on the traditional sparrow algorithm.

To improve the randomness and ergodicity of the sparrow
individual, the population is initialized by the cat map chaotic
sequence and the reverse solution. The cat map is defined as[

Xs+1
Ws+1

]
=

[
1 a
b ab+ 1

] [
Xs
Ws

]
mod (5)

where a and b are arbitrary real numbers, and mod denotes
the fractional part of the solution to a.
Randomly generate a feasible solution for the current pop-

ulation, denoted as:

{Xs = [Xs1,Xs2, · · · ,Xsd , · · · ,XsD] ;Xsd ∈ [Xmin,Xmax]}

(6)

Then, the reverse solution is{
X ′

= [X ′

1,X
′

2, · · ·X
′
d , · · ·X

′
D]

X ′
sd = q(Xmin − Xmax) − Xsd

(7)

where q denotes a uniformly distributed real number in the
interval [1, 0], and Xmin and Xmax are the boundaries of the
feasible solutions.

To prevent the population from becoming too ‘‘concen-
trated’’ or ‘‘dispersed,’’ the tent chaotic disturbance and
Cauchy mutation are introduced to adjust the individual.
At the same time, to avoid the characteristics of the tent
map itself, prevent the population from falling into a small
periodic point or an unstable periodic point, and not destroy

the three characteristics of the chaotic variable, the random
variable rand(0, 1)/NT is introduced to the original tent map
expression. The tent mapping expression is:

zi+1 =


2zi + rand(0, 1)/NT 0 ≤ z ≤

1
2

2(1 − zi) + rand(0, 1)/NT
1
2

≤ z ≤ 1
(8)

The tent map is expressed by the Bernoulli shift transfor-
mation as follows:

zi+1 = (2zi) mod +rand(0, 1)/NT (9)

where NT denotes the number of particles within the chaotic
sequence, and rand(0, 1) is a random number in the range
of [0, 1].

The chaotic variable Zd is generated according to (9), and
the chaotic variable Zd is introduced into the solution space
of the problem to be solved:

Xdnew = dmin + (dmax − dmin)Zd (10)

where dmin and dmax are the minimum and maximum values,
respectively, of the d th dimensional variable Xdnew.

The chaotic perturbation of pairs of individuals is defined
as follows:

X ′
new = (X ′

+ Xnew)/2 (11)

where X ′ is the individual to be chaotically perturbed, Xnew is
the amount of chaotic perturbation generated, and X ′

new is the
individual after chaotic perturbation.

The Cauchy variant is

mutation(x) = x(1 + tan(π (τ − 0.5))) (12)

where x denotes the original individual position, mutation(x)
denotes the individual position after Cauchy mutation, and τ

denotes a random number in the interval of (0,1).
To improve the working efficiency of the hydraulic excava-

tor and reduce energy consumption, it is generally expected
that the hydraulic excavator should have the shortest move-
ment time, the smoothest trajectory, and the least energy
consumption. Therefore, the following optimization objective
functions are defined:

F1 =

n=1∑
i=1

hi = T , i = 1, 2, · · · , n− 1

F2 =

M∑
m=1

√
1
T

∫ T

0
a2mdt F3 =

M∑
m=1

√
1
T

∫ T

0
j2mdt (13)

where hi denotes the time of the robotic arm along each seg-
ment, n denotes the number of interpolation points, T denotes
the total time of the robotic arm movement, a denotes the
joint acceleration, j denotes the joint pulsation, F1 denotes
the movement time, which represents the efficiency of the
robotic arm movement, F2 denotes the average acceleration
of the joint, which represents the energy consumption of the
robotic arm, F3 denotes the joint pulsation, which represents
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FIGURE 3. Improved sparrow algorithm process.

FIGURE 4. Load-port-independent system controller.

the smoothness of the trajectory, and M denotes the number
of the key points of the trajectory.

The constraints are:∣∣θ̇ ∣∣ ≤ Vmax, |a| ≤ Amax, |j| ≤ Rmax (14)

where θ̇ , a, and j are the angular velocity, angular accelera-
tion, and angular acceleration of the joint, respectively, and
Vmax, Amax, and Rmax are the maximum angular velocity,
maximum angular acceleration, and maximum angular accel-
eration allowed for the joint, respectively. The flowchart of
the improved sparrow algorithm discussed in this subsection
is shown in Fig. 3.

IV. LOAD-PORT-INDEPENDENT CONTROLLER DESIGN
Traditional hydraulic excavators often use proportional
multi-way valves to control the actuator, resulting in
pressure-flow coupling between the two chambers of the
actuator. This approach cannot achieve separate throttling
control and faces problems such as large energy consumption.
The solution to this problem in this section is to use a load-
port-independent system to control the pressure and flow of
the two chambers of the actuator, and the trajectory tracking
function of the cylinder is realized under the combined con-
trol of the flow and pressure. The control process is shown
in Fig. 4.

A. OIL INLET FLOW CONTROLLER
In this section, an inlet flow controller based on a
time-varying secant barrier Lyapunov function is designed,
and the neural network is used to approximate the unmodeled

FIGURE 5. Functions: (a) secant function and (b) boundary function.

error and disturbance, so as to enhance the robust perfor-
mance of the system and simplify the controller design.

The RBF neural network is composed of an input
layer [32], hidden layer, and output layer. The transformation
from the input layer to the hidden layer is nonlinear, the
transformation from the hidden layer to the output layer is
linear, and the neuron activation function of the hidden layer
is an RBF. Any continuous unknown function 4(X ) can be
approximated as

4(X ) = W ∗Tφ(X ) + ε (15)

whereW ∗T
∈ Rc×v denotes the weight vector, c and v are the

number of outputs and the number of neurons in the hidden
layer, respectively, X ∈ Rz×l denotes the input to the neural
network approximation error that satisfies ∥ε∥ ≤ ε̄, and ε̄ is a
positive constant. φ(X ) = [φ1(X ), φ2(X ), · · · , φ1(X )] is the
excitation function, whose expression is

φi(X ) = exp

(
−

(X − µi)
T (X1 − µi)

σ 2
i

)
, i = 1, 2, l (16)

where µi and σi are the center and width of the Gaussian
function of the ith neuron, respectively.

The following secant barrier Lyapunov function is
selected:

V = sec(πe/2F(t)) − 1 (17)

where sec(·) denotes the positive cut function, the image of
which is shown in Fig. 5(a), F(t) denotes the time-varying
boundary with a function value greater than zero, and e
denotes the system tracking error variable.

According to (17), when the error variable e crosses the
time-varying boundary ±F(t), the value of the time-varying
secant barrier Lyapunov function V will approach infinity.
Therefore, as long as the controller is designed to ensure
that V is bounded, it is possible to ensure that the system
error e is always bounded within the time-varying boundary
(−F(t),F(t)). Below, sec(·)i and tan(·)i are used to denote
sec (πei/2Fi(t)) and tan (πei/2Fi(t)) , i = 1, 2, 3, respec-
tively. Fi(t) is given by

Fi(t) = (Fi0 − Fi∞) exp−nit +Fi∞ (18)

where Fi0, Fi∞, and ni are all constants greater than zero and
satisfy 0 < Fi∞ < Fi0 and ∥e1(0)∥ < Fi0. e1(0) represents
the initial value of e1. Its image is shown in Fig. 5(b).
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Lemma 1:

secy1 (·) > (sec(•) − 1)γ2 secy2 (·) − 1 ≥ (sec(·) − 1)γ2

(19)

where γ1 and γ2 are constants greater than zero and satisfy
0 < γ1 < 1 and γ2 > 1.
Lemma 2:

lim
x→0

secγ (x) − 1
tan(x)

= 0 lim
x→0

∂ (secγ (x) − 1) / tan(x)
∂t

=
γ

2
ẋ

(20)

where γ is an arbitrary constant.
Lemma 3:
Let a continuous function V (t) be positive definite and

satisfy the following differential equation:

V̇ (t) ≤ −βV + ξ (21)

where β > 0 and 0 < ξ < 1, at which point V (t) satisfies the
consistent eventual bounded convergence requirement.
Lemma 4 ( [33]):
Suppose there exists a Lyapunov function V (x) with con-

stants α > 0, β > 0, 0 < η0 < ∞, 0 < γ1 < 1, and γ2 > 1 if
the following equation holds:

V̇ (x) ≤ −αV (x)r1 − βV (x)r2 + η0 (22)

Then, V (x) can converge in fixed time to a neighborhood
near the equilibrium point, which can be expressed as{

lim
t→T

x

∣∣∣∣V (x) ≤ min
{(

η0

α(1 − θ )

)r1
,

(
η0

β(1 − θ)

)r2}}
(23)

where θ denotes a constant and satisfies the inequality
0 < θ < 1. The time required for the system variables
to converge into the neighborhood satisfies the following
inequality:

T ≤ 1/αθ (1 − r1) + 1/βθ(r2 − 1) (24)

The error variable e1 and its derivative are, respectively,
as follows:

e1 = x1 − x1d ė1 = ẋ1 − ẋ1d = x2 − ẋ1d (25)

The first Lyapunov function and its derivative are, respec-
tively, as follows:

V1 = sec(πe1/2F1(t)) − 1

V̇1 = sec(·)1 tan(·)1((2πF1ė1 − 2πe1Ḟ)/4F2
1 )

= π sec(·)1 tan(·)1(e2 + α1 − ẋ1d − Ḟe1/F1)/2F1 (26)

where e2 = x2 − α1, and α1 denotes the virtual control.
The virtual control law is designed according to (26) as

follows:

α1 = ẋ1d +
Ḟ1
F1
e1 −

2F1
π sec(·)1

[
k11(sec(·)

r1
1 − 1)

tan(·)1

+
k12(sec(·)

r2
1 − 1)

tan(·)1
] (27)

where γ1, γ2, k11, and k12 are constants greater than zero and
satisfy 0 < γ1 < 1 and γ2 > 1. It follows from Lemma 2
that there is no singular value problem for both α1 and its
derivatives, and substitution yields

V̇1 = −k11(sec(·)
r1
1 − 1) − k12(sec(·)

r2
1 − 1)

+
π sec(·)1 tan(·)1

2F1
e2 (28)

According to (28), as long as e2 is bounded and V1
is uniformly and ultimately bounded, the first subsys-
tem is stable. The boundedness of e2 is proven below.
The error variable and its derivative are, respectively,
as follows:

e2 = x2 − α1 ė2 = ẋ2 − α̇1

= M−1 [Jhax3 − N1 + N2 + d1] − α̇1 (29)

The second Lyapunov function and its derivative are,
respectively, as follows:

V2 = V1 + sec(·)2 − 1 +
1

2ηw1

W̃ T
1 W̃1 +

1
2ηε1

ε̃T1 ε̃1

V̇2 = V̇1 +
π sec(·)2 tan(·)2

2F2
(ė2 −

Ḟ2
F2
e2)

−
1

ηw1

W̃ T
1

˙̂W1 −
1

ηε1

ε̃T1
˙̂ε1

= −k11(sec(·)
r1
1 − 1) − k12(sec(·)

r2
1 − 1)

−
1

ηw1

W̃ T
1

˙̂W1 −
1

ηε1

ε̃T1
˙̂ε1

+
π sec(·)2 tan(·)2

2F2
[M−1(Jhae3 + Jhaα2 − N1)

+ f1 −
Ḟ2
F2
e2] (30)

where ηm1 and ηε1 are constants greater than zero, W̃1 =

W ∗

1 − Ŵ1 , ε̃1 = ε∗

1 − ε̂1 , e3 = x3 − α2 , and
f1 = M−1 (N2 + d1) − α̇1 +

F2 sec(·)1 tan(·)1
F1 sec(·)2

e2
tan(·)2

.
The virtual control is designed according to (30) as

follows:

α2 = Jha−1
(
−Mf̂1 + N1 +MḞe2/F2

)
−

2Jha−1MF2
π sec(·)2

[
k21

(
sec(·)n12 − 1

)
tan(·)2

+
k22

(
sec(·)r22 − 1

)
tan(·)2

]
(31)

Let f̂1 = Ŵ T
1 φ(x1) + ε̂1, and substitute it into (30)

V̇2 =

2∑
i=1

[−ki1(sec(·)
r1
i − 1) − ki2(sec(·)

r2
i − 1)]

+
π sec(·)2 tan(·)2

2F2
[W̃ T

1 φ(x1) + ε̃1] −
1

ηw1

W̃ T
1

˙̂W1

+
π sec(·)2 tan(·)2

2F2
M−1Jhae3 −

1
ηε1

ε̃T1
˙̂ε1 (32)
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According to (32), the neural network weight update rate can
be obtained as

˙̂W1 = ηw1π sec(·)2 tan(·)2φ(x1)/2F2 − σw1Ŵ1 (33)
˙̂ε1 = ηε1π sec(·)2 tan(·)2/2F2 − σε1 ε̂1 (34)

where σw1 and σε1 are constants greater than zero. Substitut-
ing these into (32) yields

V̇2 =

2∑
i=1

[−ki1(sec(·)
r1
i − 1) − ki2(sec(·)

r2
i − 1)]

+
σw1

ηw1

W̃ T
1 Ŵ1 +

σε1

ηε1

ε̃T1ε̂1 +
π sec(·)2 tan(·)2

2F2
M−1Jhae3

(35)

According to Young’s inequality,

W̃ T
1 Ŵ1 = W̃ T

1

(
Ŵ1 −W ∗T

1 +W ∗T
1

)
= −W̃ T

1 W̃1 + W̃ T
1 W

∗T
1

≤ −W̃ T
1 W̃/2 +W ∗T

1 W ∗

1 /2 (36)

Simplification of (35) yields

V̇2 ≤

2∑
i=1

[−ki1 sec(·)
r1
i − ki2 sec(·)

r2
i ]

− σw1W̃
T
1 W̃1/2ηw1 − σε1 ε̃

T
1 ε̃1/2ηε1

+ σw1W
∗T
1 W ∗

1 /2ηw1

+ σε1ε
∗T
1 ε1/2ηε1 + π sec(·)2 tan(·)2M−1Jhae3/2F2

(37)
It can be shown that V2 is guaranteed to be uniformly

bounded eventually as long as e3 converges. The boundedness
of e3 is proven below. The error variables and their derivatives
are defined as follows:

e3 = x3 − α2

ė3 = ẋ3 − α̇2 = g1Q1M + g2 − g3x2 − g4 + d2 − α̇2 (38)

The third Lyapunov function and its derivative are, respec-
tively, as follows:

V3 = V2 + sec(·)3 − 1 +
1

2ηw2

W̃ T
2 W̃2 +

1
2ηε2

ε̃T2 ε̃2

V̇3 = V̇2 +
π sec(·)3 tan(·)3

2F3
(ė3 −

Ḟ3
F3
e3)

−
1

ηw2

W̃ T
2

˙̂W2 −
1

ηε2

ε̃T2
˙̂ε2

≤

2∑
i=1

[−ki1(sec(·)
r1
i − 1) − ki2(sec(·)

r2
i − 1)]

−
σw1

2ηw1

W̃ T
1 W̃1 −

σε1

2ηε1

ε̃T1 ε̃1

+
σw1

2ηw1

W ∗T
1 W ∗

1 +
σε1

2ηε1

ε∗T
1 ε∗

1 −
1

ηw2

W̃ T
2

˙̂W2

−
1

ηε2

ε̃T2
˙̂ε2 +

π sec(·)3 tan(·)3
2F3

(g1Q1M + g2 − g3x2

+ f2 −
Ḟ3
F3
e3) (39)

where f2 = d2 − g4 − α̇2 +
F3 sec(·)2 tan(·)2
F2 sec(·)3 tan(·)3

M−1Jhae3.

The inlet oil flow controller is designed according to (39)
as follows:

Q1M = g−1
1 [−g2 + g3x2 − f̂2 + Ḟe3/F3

−
2F3

π sec(·)3
(
k31(sec(·)

r1
3 − 1)

tan(·)3
+
k32(sec(·)

r2
3 − 1)

tan(·)3
)]

(40)

Substituting f̂2 = Ŵ T
2 φ (x2) + ε̂2 yields

V̇3 ≤

3∑
i=1

[−ki1(sec(·)
r1
i − 1) − ki2(sec(·)

r2
i − 1)]

−
σw1

2ηw1

W̃ T
1 W̃ −

σε1

2ηε1

ε̃T1 ε̃1

+
σw1

2ηw1

W ∗T
1 W ∗

1 +
σε1

2ηε1

ε∗T
1 ε∗

1
−

1
ηw2

W̃ T
2

˙̂W2

−
1

ηε2

ε̃T2
˙̂ε2 +

π sec(·)3 tan(·)3
2F3

(W̃ T
2 φ(x2) + ε̃2)

(41)

According to (41), the neural network weight update rates
are obtained as follows:

˙̂W2 = ηw2π sec(·)3 tan(·)3φ(x2)/2F3 − σw2Ŵ2 (42)
˙̂ε2 = ηε2π sec(·)3 tan(·)3/2F3 − σε2 ε̂2 (43)

Substituting into (41) and simplifying it yields:

V̇3 ≤

3∑
i=1

[−ki1(sec(·)
r1
i − 1) − ki2(sec(·)

r2
i − 1)]

−

2∑
j=1

(
σwj

2ηwj
W̃ T
j W̃j +

σεj

2ηεj

ε̃Tj ε̃j)

+

2∑
j=1

(
σwj

2ηwj
W ∗T
j W ∗

j +
σεj

2ηεj

ε∗T
j ε∗

j ) (44)

Since sec(·)i satisfies the inequality sec(·)2 ≥ 1, a further
simplification of (44) yields the following:

V̇3 ≤ −

3∑
i=1

ki2(sec(·)i − 1) −

2∑
j=1

(
σwj

2ηwj
W̃ T
j W̃j +

σεj

2ηεj

ε̃Tj ε̃j)

+

2∑
j=1

(σwjW
∗T
j W ∗

j /2ηwj + σεjε
∗T
j ε∗

j /2ηεj )

≤ −ρV3 + ξ (45)

where ρ = min {k12, k22, k32, σw1, σw2, σε1, σε2}, and ξ =
2∑(

σwjW
∗T
j W ∗

j /2ηwj + σsε
∗T
j ε∗

j /2ηεj

)
.

By-Lemma 3, the two-sided integral satisfies

0 ≤ V3 ≤ µ(t) = ξ/ρ + [V3(0) − ξ/ρ] e−ρt (46)

When t tends to infinity, 0 ≤ V3 ≤
ξ
ρ
. Because

V3 is bounded, it follows that the tracking error of the sys-
tem is always bounded within the time-varying boundary
(−Fi(t),Fi(t)).
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Since V3 is bounded, the error signals ei, W̃j, and ε̃j are
bounded, i.e., there exist constants W̄j and ε̄j greater than zero
that satisfy W̃j ≤ W̄j and ε̃j ≤ ε̄j, respectively. Hence, the
following inequality holds:

−

(
σwj

2ηwj
Ẇ T
j Ẇj

)n
−

(
σεj

2ηεj

ε̄Tj ε̄j

)n

+

(
σwj

2ηwj
W̄ T
j W̄j

)n
+

(
σεj

2ηεj

ε̄Tj ε̄j

)n
≥ 0

−

(
σwj

2ηwj
W T
j W̄j

)n
−

(
σεj

2ηεj

εTj εj

)n2

+

(
σwj

2ηwj
πT
j ωj

)2

+

(
σεj

2ηεj

εTj εj

)n2
≥ 0 (47)

Substituting (47) into (45) yields

V̇3 ≤

3∑
i=1

[
−ki1

(
sec(·)ni − 1

)
− ki2

(
sec(·)n2i − 1

)]
+

2∑
j=1

(
σwj

2ηwj
W ∗T
j W ∗

j +
σεj

2ηεj

ε∗T
j ε∗

j

)

−

2∑
j=1

((
σwj

2ηwj
W̄ τ
j Ẇj

)n
+

(
σεj

2ηεj

ε̄τ
j ε̄j

)n)

+

2∑
j=1

((
σwj

2ηwj
W̄ τ
j W̄k

)n
+

(
σεj

2ηεj

ε̄τ
j ε̄j

)n)

+

2∑
j=1

( σwj

2ηwj
W̄ T
j W̄j

)2

+

(
σεj

2ηεj

ε̄Tj ε̄j

)2


−

2∑
j=1

((
σwj

2ηwj
W̄ T
j W̄j

)n
+

(
σεj

2ηεj

ε̄Tj ε̄j

)n)
(48)

Because 0 ≤ sec(·)i − 1 < sec(·)i, it can be determined that
sec(·)r1i −1 > (sec(·)i−1)r1 and sec(·)r2i −1 > (sec(·)i−1)r2 .
In addition, (48) can be further simplified as

V̇3 ≤

3∑
i=1

[
−ki1 (sec()i − 1)ri − kij (sec(·)i − 1)r2

]
+

2∑
j=1

(
σwj

2ηwj
W ∗T
j W ∗

j +
σsj

2ηsj
ε∗T
j ε∗

j

)
+ ϑ

−

2∑
j=1

( σwj

2ηwj
W̄ τ
j W̃j

)n2
+

(
σsj

2ηεj

ε̄τ
j ε̄j

)2


+

2∑
j=1

((
σvj

2ηwj
W̄ τ
j W̄j

)τj

+

(
σεj

2ηsj
ε̄rj ε̄j

)n)

+

2∑
j=1

( σwj

2ηwj
W̄ T
j W̄j

)n
+

(
σxj

2ηεj

ε̄Tj ε̄j

)2


−

2∑
j=1

((
σwj

2ηwj
W̄ τ
j W̄j

)n
+

(
σεj

2ηεj

ε̄Tj ε̄j

)n)
(49)

where ϑ =

3∑
i=1

ki1. The following can be obtained using

Lemma 4:

V̇3 ≤ −αV r1
3 − βV r2

3 + η0 (50)

where α, β, and η0 are defined as follows:

α = min
{
ki1, σ

r1
wj , σ

r1
εj

}
β = min

{
(2n)1−r2ki2, (2n)1−r2σ

r2
wj , (2n)

1−r2σ
r2
εj

}
,

i = 1, 2, 3, j = 1, 2

η0 =

2∑
j=1

((
σwj

2ηwj
W̄ T
j W̄j

)r1
+

(
σεj

2ηεj

ε̄Tj ε̄j

)r1

+

(
σwj

2ηwj
W̄ T
j W̄j

)r2)

×

2∑
j=1

((
σεj

2ηεj

ε̄Tj ε̄j

)r2
+

σwj

2ηwj
W ∗T
j W ∗

j +
σεj

2ηεj

ε∗T
j ε∗

j

)
+ ϑ

(51)

Using Lemma 4, we can determine that V3 converges in a
neighborhood near the zero point at a fixed time T . The neigh-
borhood expression is given by (23), and the convergence
time expression is given by (24).

B. OIL RETURN PRESSURE CONTROLLER DESIGN
To determine the unique reference pressure of the two cham-
bers under a given load force, the back pressure side is set at
a lower constant pressure P2d to keep the overall pressure at
a lower level to save energy. According to [34] and [35], the
return pressure control law is obtained as follows:

Q2M = Q2Ma + Q2Ms Q2Ma = A2ẋha − θ̂Q/θ̂β

− V2Ṗ2d /θ̂β

Q2Ms = Q2Ms1 + Q2Ms2 Q2Ms1 = k1V2zp/θβ min

Q2Ms2 = k2V2zp/θβ min (52)

The adaptive law is

θ̂p2 = Pr ojθp2 (0pτp) (53)

V. SIMULATION ANALYSIS
The trajectory planning mentioned above and the flow/
pressure controller based on the load-port-independent
hydraulic system were implemented in simulations, and the
results are compared in this section to verify the feasibility
and superiority of the theory described in this paper. The
dynamics equation of the excavator manipulator was ana-
lyzed. The formulas of the inertia matrixM and gravity vector
matrix G are as follows:

M =

n∑
i=1

(miJ (i)Tv J (i)v + IiJ (i)Tw J (i)w )

Cij =
dMij

dt
−

1
2

n∑
k=1

∂Mjk

∂θi
θ̇k Gi =

∂p
∂θi

=

n∑
j=1

∂pj
∂θi

(54)
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TABLE 1. Excavator manipulator-related parameters.

FIGURE 6. Excavator working conditions: trenching.

TABLE 2. Key points of trenching.

where mi denotes the mass of each rod, Ii denotes the rota-
tional inertia of each rod, and J (i)v and J (i)w denote the velocity
and angular velocity Jacobi matrices of each rod, respectively.
The inertia matrix M , the Coriolis force/centrifugal force
matrix C , and the gravity vector matrix C , are defined as
follows:

M =

M11 M12 M13
M21 M22 M23
M31 M32 M33

 ,C =

C11 C12 C13
C21 C22 C23
C31 C32 C33

 ,

G =

G1
G2
G3

 (55)

The relevant parameter data are shown in Table 1.

A. TRAJECTORY PLANNING SIMULATION ANALYSIS
This section simulates the trenching of the auxiliary working
conditions commonly used in excavators, as shown in Fig. 6.
After setting the key points of TABLE 2 the trajectory for
the trenching target, the optimal joint angles of each joint

FIGURE 7. Ditching condition angle optimization.

FIGURE 8. Optimization of angular velocity under trenching conditions.

at the key points were optimized and inversely solved for.
Then, the trajectory was planned by a five-order non-uniform
B-spline and the improved sparrow algorithm. In this section,
the proposed trajectory planning method is compared with
the trajectories planned using a quintic non-uniform B-spline
but not optimized by the algorithm and optimized using the
unimproved sparrow algorithm to verify the superiority of the
trajectory planning algorithm proposed in this paper.

The sparrow population in the improved sparrow algorithm
was set to 200, the number of iterations was 50, the proportion
of discoverers was 20%, the proportion of early warnings was
20%, and the mutation probability was 35%.

The key points for trenching and slope repair are shown in
Table 2. The trajectories planned by both the ISSA and the
SSA satisfied the requirement that the angular velocity and
angular acceleration were 0 at the beginning and end of the
trajectory. According to Fig. 7, the trajectory time generated
by the improved sparrow algorithm was reduced by 9.1%
compared with that of the sparrow algorithm. According to
Fig. 8, with the ISSA, the amplitude of the moving arm was
reduced by 0.8%, the amplitude of the bucket rodwas reduced
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FIGURE 9. Optimization of angular velocity under trenching conditions.

by 17.9%, and the amplitude of the bucket was reduced
by 13.1% compared with the those obtained by the SSA
optimization, which indicates that the trajectory optimized
by the improved sparrow algorithm could reduce energy con-
sumption of the excavator and make it more energy efficient.
According to Fig. 9, the amplitude of the moving arm was
reduced by 17.5%, the amplitude of the bucket bar was
reduced by 8%, and the amplitude of the bucket was reduced
by 25.2%, which indicated that the trajectory optimized by
the improved sparrow algorithm had lower pulsations, and the
planned trajectory was more stable. The highest peak value
of the improved sparrow algorithm was lower than that of
the sparrow algorithm, and the trajectory fluctuations were
smoother, which would make the service life of the excavator
longer, more stable, and more efficient. To summarize, the
trajectories generated using the improved sparrow algorithm
were significantly shorter and smoother and had lower energy
than the trajectories generated by the sparrow algorithm. This
proved that the trajectory planning algorithm proposed in this
paper has significant superiority over the trajectory planning
by the traditional sparrow algorithm.

B. SIMULATION ANALYSIS OF TRAJECTORY
ASYMPTOTIC TRACKING
The purpose of this section is to verify the tracking effect of
the inlet oil flow controller and the return oil pressure con-
troller designed in this paper for the planned trajectory and to
compare the results with those of the sliding mode controller
and a controller based on the traditional time-varying obstacle
Lyapunov function. The trajectory to be tracked in this section
was given in the trajectory planning section. To verify the
accuracy of the neural network’s estimation of the unmodeled
error of the system, the unmodeled error of the systemwas set
to be 5% of the standard value of the model, that is:

Ni2 = −0.05Mẋ2 − 0.05Cix2 − 0.05Bix2 − 0.05Gi
Di1 = 0.05Ai1ẋiha − 0.05Qi1 Di2 = 0.05Ai2ẋiha − 0.05Qi2

(56)

The perturbations were set to
d11 = 2 × 104 sin t N · m
d12 = 4 × 103 sin t N · m
d13 = 4 × 102 sin t N · m
d2i = 1 × 105 sin t Pa · m2/s

d2i = 2 × 104 sin t Pa · m2/s

d2i = 1 × 104 sin t Pa · m2/s

(57)

The innovation of this paper mainly lies in the design o
the oil flow controller in the control system. Therefore, this
section mainly compares the oil flow controller in the contro
systemwith different controllers to verify the superiority o the
controller in this paper. The unmodeled error of the system
model was set to 5% of its nominal value, and the rele-
vant parameters of the oil pressure controller were designed
as follows: k1 = 30, k2 = 12, ωp = diag(1.2, 3) and
0p = diag

(
1 × 10−8, 2.2 × 10−3

)
.

The results are compared with the following three con-
trollers:

1) Sliding mode control (SMC) [36]: The controller
is a direct adaptive neural network control for a
class of strictly feedback affine nonlinear systems
with unknown nonlinearity. The virtual controller is
designed as

α1 = −k1e1 − Ŵ T
1 φ(X1) α2

= −e1 − k2e2 − Ŵ T
2 φ(X2) (58)

The controller output is defined as

u = −e2 − k3e3 − Ŵ T
3 φ(X3) (59)

The adaptive law is

Ŵi = ηwieiφ(Xi) − σwiŴi, i = 1, 2, 3, 4 (60)

2) Time logarithm barrier Lyapunov function
(TLBLF) [37]: A controller based on the traditional
time-varying barrier Lyapunov function with a virtual
controller design is designed as follows:

α1 = ẋd + k̇a1e1/ka1 − k1e1

α2 = Jha(Mf̂1 + N1 +Mk̇a2e2/ka2 −M (k2a2
− eT2 e2)e1/(k

2
a1 − eT1 e1) −Mk2e2) (61)

The controller output is defined as

u = g−1
1 (f̂2 + g3x2 +

k̇a3
ka3

e3

−
eT2 Jha(k

2
a3 − eT3 e3)

M (k2a2 − eT2 e2)
− k3e3) (62)

The adaptive law is

˙̂Wi = −ηwieTi+1φ(Xi)/(k
2
ai+1 − eTi+1ei+1) − σwiŴi

˙̂εi = −ηεieTi+1/(k
2
ai+1 − eTi+1ei+1) − σεiε̂i (63)
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FIGURE 10. Track following.

FIGURE 11. Back pressure.

3) Time secant barrier Lyapunov function (TSBLF): This
was the controller designed in this paper, and the initial
positions of the system were x10 = 29◦, x20 = −71.6◦,
and x30 = −11◦. The relevant parameter values of the
controller were k11 = k21 = k31 = 9, k12 = k22 =

k32 = 11, r11 = r21 = r31 = 0.8, and r12 = r22 =

r32 = 2. The number of nodes in the hidden layer of the
RBF neural network was set to 32, and the initial values
of the neural network weights were W1i0 = W2i0 =

0.2, i = 1, 2, . . . , 32. Furthermore, ε10 = ε20 = 0,
ηw1 = ηw2 = 1, ηε1 = ηε2 = 200, σw1 = σw2 =

0.15, σε1 = σε2 = 0.12, and the interval of the center
value was [−1.5,1.5]. The boundary functions were set
as follows: F1 = 0.1e−0.8t

+ 0.01, F2 = 0.8e−t + 0.1,
and F3 = 1.2e−0.8t

+ 1.1.

The tracking effect of the controller proposed in this paper
on the boom and bucket is shown in Fig. 10. Fig. 11 shows
the pressure controlled by the oil return pressure controller,
which showed that the steady-state system pressure was
maintained at 2MPa, and thus the controller could effectively
realize the energy saving effect. The tracking errors of each
joint angle of the three controllers are shown in Fig. 12.
According to Fig.12, the error dynamic responses of different
controllers was analyzed. It could be clearly seen that the
error dynamic responses of TSBLF and TLBLF controllers
were better, and the error dynamic response of SMC con-
troller was the worst. Compared with the TLBLF controller,
the error overshoot of the TSBLF controller in the boom, stick
and bucket were reduced by 28.6 %, 93.8 % and 85.7 %,
respectively, and the time to reach stability were reduced by

FIGURE 12. Angle tracking error of each joint.

FIGURE 13. Estimation of each joint controller f1.

28.3 %, 39.4 % and 85.5 %, respectively. This was due to
the introduction of a fixed time controller in the TSBLF con-
troller, and the error dynamic characteristics were better than
the TLBLF controller. The tracking accuracy of different con-
trollers was analyzed. Because the neural networkwas used to
approximate the unmodeled error and disturbance of the sys-
tem, the robustness of the system was enhanced, and the three
controllers had high control accuracy. Under the condition
that the parameters of the neural network were set the same,
both TSBLF and TLBLF controllers could constrain the error
under the prescribed boundary. In the transient phase, the
mean values of the error extremums of TSBLF and TLBLF
controllers (the mean values of the difference between the
maximum and minimum values in the error curves of the
boom, the stick and the bucket) were 0.01 mm and 0.026 mm,
respectively. In the steady-state phase, they were 0.001 mm
and 0.01mm, respectively. This is because the secant function
and the logarithmic function ensured that the system state
constraints were not violated. The mean value of the error
extremum of the SMC controller in the transient phase was
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FIGURE 14. Estimation of each joint controller f2.

0.06 mm, and the steady-state phase was 0.04 mm. This was
due to the lacked of error constraint function, resulted in
the error of the SMC controller crossed the preset boundary.
In summary, the TSBLF controller proposed in this paper had
higher control accuracy and could also make the system error
converge to the predefined boundary in a finite time, and had
better error dynamic response. The neural network estimation
proposed in the paper is shown in Figs. 13 and 14, where it
can be seen that its estimation error for real modeling was
small and the fit was high.

VI. CONCLUSION
In this paper, a control algorithm for optimal trajectory plan-
ning and high-precision tracking of hydraulic manipulator of
excavator bucket tip is proposed. Firstly, a trajectory planning
algorithm based on the combination of quintic non-uniform
B-spline curve and improved sparrow algorithm is designed
to solve the problems of long planning trajectory time, high
energy consumption and unstable motion. The innovation
point is that the improved sparrow algorithm introduces cat
mapping, Cauchy mutation and Tent chaotic disturbance.
By improving the group initialization ability and the opti-
mization ability in the solution process, the planned trajectory
is smoother and more stable, the time is shorter and the
energy is better. Then, in order tomake the excavator track the
planned trajectory, the oil flow controller is designed based on
the time-varying secant barrier Lyapunov function and RBF
neural network, and it is applied to the load port independent
system for the first time. The innovation is that the secant
function and the fixed-time controller are introduced into
the barrier Lyapunov controller, so that the system tracking
error can converge to the neighborhood near the equilibrium
point in a fixed time while satisfying the constraints. Finally,
the stability is proved. The designed controller can not only
ensure the transient tracking performance of the system, but
also ensure the asymptotic stability of the system.

The research in this paper shows that the improved sparrow
algorithm proposed in this paper has obvious advantages
over the traditional sparrow algorithm. The introduction of
secant function and fixed time controller makes the design
of obstacle Lyapunov controller more possible, which can
provide more theoretical basis for the research of excavator
auxiliary intelligence. The deficiency of this paper is that the
existence of obstacles is not considered in this paper. The
future research plan is to improve the optimization algorithm
and controller, and apply it to the actual excavator operation
for verification.
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