IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

IEEE Reliability Society Section

Received 19 April 2024, accepted 30 May 2024, date of publication 4 June 2024, date of current version 11 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3409425

== RESEARCH ARTICLE
Unsupervised Log Sequence Segmentation

WOIJCIECH DOBROWOLSKI“1-2, MIKOLAJ LIBURA"“1, MACIEJ NIKODEM 2,
AND OLGIERD UNOLD "2

INokia, 02-685 Warszawa, Poland
2Wroclaw University of Science and Technology, 50-370 Wroctaw, Poland

Corresponding author: Wojciech Dobrowolski (wojciech.dobrowolski @pwr.edu.pl)

This work was supported by the Polish Ministry of Education and Science, funds were allocated from the ‘“Implementation Doctorate”
Program.

ABSTRACT The log sequence is often referred to as a language in automated log analysis. The natural
consequence of this is that the log sequence should have a structure consisting of words and sentences.
However, the word definitions in the log sequence are not uniform in the literature. The first approach splits
line-by-line, and the second retrieves word-like structures from the log sequence. The main challenge in the
second approach is the measurement of results. There are approaches for constructing unsupervised metrics;
however, we found them to be inconsistent. Other methods rely on manually prepared golden standards;
however, a benchmark for golden segmentation is not available for any set of logs. To overcome this problem,
we created a benchmark of preprocessed log event IDs gathered from the open-source CloudStack log and
commercial Nokia software execution. We created a gold segmentation standard with the help of a human
expert, and made it publicly available. We then tested known unsupervised segmentation methods used for
log sequence segmentation and adapted the Nested Pitman-Yor Language Model. We found that the results
of log segmentation performed by these methods vary significantly between the natural language domain
and the log domain. VotingExperts achieved the best F-score, recording 97.3% for CloudStack and 44.1%
for Nokia logs. The results are related to the uni-gram entropy of the log sequence, which differs across
software platforms.

INDEX TERMS Automated log analysis, language abstraction, unsupervised sequence segmentation,
software log segmentation, natural language processing, problem-solving, software reliability.

I. INTRODUCTION
Logs are the primary source of information about software

simplifies the analysis by dividing it into blocks that are easier
for humans to understand.

failure. Engineers spend hours analyzing them, retrieving the
execution flow, and looking for the root cause. However, log
sequences are difficult to read, especially for inexperienced
developers. Building a higher level of abstraction is one of
the most desired functionalities of log analysis tools [1]. One
way of doing this is to extract key logs and build a graph of
communication [2]. However, this approach is limited to logs
where such communication occurs. A more general system
treats the entire sequence as a natural language and retrieves
word-like segments. Fig. 1 shows that such segmentation

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhaojun Steven Li

A log sequence is often regarded as a natural language in
log anomaly detection methods [3], [4], [5], [6]. Language
consists of a sequence of log events. The meaning, in terms of
what happened during execution, is the relationship between
the log lines, not its actual content. Therefore, without losing
precision, we can abstract the exact log text with log events
that the IDs can identify.

In terms of language, the log event ID is treated as a
word [3], [4], [6] or letter [7], [8]. We follow the latter
approach, as log events have more in common with letters
than with words. Considering these quantities, the size of the
log events is much closer to the size of the alphabet than
that of a dictionary. For example, the number of characters
in natural language is relatively small, from 26 in English

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by/4.0/

79003

https://orcid.org/0000-0002-2555-7871
https://orcid.org/0009-0006-3011-1133
https://orcid.org/0000-0002-9242-2029
https://orcid.org/0000-0003-4722-176X
https://orcid.org/0000-0002-2673-9909

IEEE Access

W. Dobrowolski et al.: Unsupervised Log Sequence Segmentation

INF/DirtyRf2/DPD, [DPD1:Engine] enable IF PFIR filter
INF/DirtyRf2/DPD, [DPD1:Engine] enable PFIR filter

INF/DirtyRf2/DPD, [DPD1:Engine] i InParest, iirid3. , 15
INF/DirtyRf2/DPD, [DPD1:Engine] it InParest, iirid4. ;16
INF/DirtyRf2/DPD, [DPD1:Engine] it InParest, iirid7

/BB, e oG] (5o DL A rcedo) e sqFb=1 sqFd=3

INF/DirtyRI2/DPD, [DPD1:Engine] Delay sot for inPath=1, bdre=0, valio—6e8 625000
INF/DirtyRf2/Service, [DirtyRf] Msg received: GetVswrStatusReqld (id:38064)
INF/DirtyRf2/Service, [DirtyRf] Msg sent: GetVswrStatusReqld

e A i [] G B e Gl (e ER el o)

INF/pDPDO/VSWR, [pDPDO][| vswr(: antenna3a): 1.071796
INF/pDPDO/VSWR, [prDo][Fwezeam\/swr] Reported TxPower(antennasa): 44. PEEEA (dBm)
INF/pDPDO/Default, Response to Get Vswr Status sent

INF/DirtyRf2/Service, [DirtyRf] Msg received: GetVswrStatusReqld (id:38064)
INF/DirtyRf2/Service, [DirtyRf] Msg sent: Ge[\/swrStatusReql

INF/DirtyRf2/Service, [DirtyRf] based ms. g (msg

INF/pDPDO/VSWR, [pDPDO][wr(. Atennasa): 1.071796
INF/BDPDO/VSWR, [pDPDO][Firateamyawr] Reported TxPowar(antannasay: 44, 130212 (dBm)
INF/pDPDO/Default, Response to Get Vswr Status sent

INF/DirtyRf2/Service, [DirtyRf] Msg received: GetVswrStatusReqld (id:38064)
INF/DirtyRf2/Service, [DirtyRf] Msg sent: Get\lswrStatusReq]d

INF/DirtyRf2/Service, [DirtyRf] PathName based g (msg:

INF/pDPD1/VSWR, [pDPD1]L| 1 S vewr 3): 1.116599
INF/pDPD1/VSWR, [pDPD1](i 1 Rep TxPower(): 46.619508 (dBm)

N 2\ 2

INF/DirtyRf2/DPD, [DPD1:Engine] enable IF PFIR filter
INF/DirtyRf2/DPD, [DPD1:Engine] enable PFIR filter

INF/DirtyRf2/DPD, [DPD1:Engine] initializelirinParest, iirid3 discarded, 15
INF/DirtyRf2/DPD, [DPD1:Engine] initializelirinParest, iirid4 discarded, 16
INF/DirtyRf2/DPD, [DPD1:Engine] initializelirinParest, iirid7 discarded, 19
INF/DirtyRf2/DPD, [DPD1:Engine] [SQs] initializeParest() path=1 sqFb=1 sqFd=3
INF/DirtyRf2/DPD, [DPD1:Engine] Delay set for inPath=1, pdrx=0, value=670.000000
INF/DirtyRf2/DPD, [DPD1:Engine] Delay set for inPath=1, pdrx=1, value=670.000000
INF/DirtyRf2/DPD, [DPD1:Engine] Delay set for inPath=1, pdrx=0, value=668.625000

Sl Sy, (B 02 (el EoienSmeeye) (ekSERe)
INF/DirtyRf2/Service, [DirtyRf] Msg sent: GetVswrStatusReql

INF/DirtyRI2/Service, [DirtyRH PathName based mag fanwarding (msg: EENUTS R
INF/pDPDO/VSWR, [pDPDO][FireteamVswr] Reported vswr(antenna: antenna3a): 1.071796
INF/pDPDO/VSWR, [pDPDO][FireteamVswr] Reported TxPower(antenna3a): 44.330212 (dBm)
INF/pDPDO/Default, Response to Get Vswr Status sent

INF/DIrtyRr2/Service, [DIrtyR1] Msg recelved: GetvswrStatusReqld (id:38064)
INF/DirtyRf2/Service, [DirtyRf] Msg sent: GetVswrStatusReqld

INF/DirtyRf2/Service, [DirtyRf] PathName based msg forwarding (msg: GetVswrStatusReqld)
INF/pDPDO/VSWR, [pDPDO][Fi 1 vswr(antenna3a): 1.071796
INF/PDPDO/VSWR, [pDPDO][Fireteamvewr] Reported TxPower(antennasa): 44.330212 (dBm)
INF/pDPDO/Default, Response to Get Vswr Status sent

INF/DirtyRf2/Service, [DirtyRf] Msg received: GetVswrStatusReqld (id:38064)
INF/DirtyRf2/Service, [DirtyRf] Msg sent: GetVswrStatusReqld
INF/DirtyRf2/Service, [DirtyRf] PathName bascd msg forwarding (msg: GetVswrStatusReqld)
INF/pDPD1/VSWR, [pPDPD1][1 vswr(g a): 1.116599

INF/pDPD1/VSWR, [pPDPD1][1 Rep TxPower(): 46.619508 (dBm)

FIGURE 1. Segmentation results in log analysis. Coloured lines indicate
repeated log segments for enhanced readability.

to more than tens of thousands of characters in Chinese [9].
At the same time, the English dictionary contains 470,000
words. Typically, tens of thousands of log events occur. Thus,
it is more natural to treat a sequence of log events as a
sequence of letters from a large alphabet than as a sequence of
words from a small dictionary. It is also common to encounter
the same sequence of log events in different places in the log
file. If we treat log sequence as a sentence, it would mean
that we encounter the same sentence in the text many times,
in different locations, and there are many such sentences.
However, encountering the same word at various locations in
a text is normal.

Logs as a result of program execution are a subset of the
execution path. This subset is designed to be sufficiently
small, not to flood the user with useless information and large
enough to provide all the information required to deduce the
most important parts. Thus, the logs, reflect the structure
of the execution path, revealing the software architecture.
Using probabilistic relations between log lines to segment
log sequences can help in understanding the execution in the
same way that word segmentation helps understand the text.

In the literature, log segmentation can be found under
different names, such as trace extraction [10], segmentation
of discrete events [8], segmentation of categorical time
series [7], log key separation [3], or log event grouping [11].
Segmenting the log sequence in log anomaly detection
methods [3], [4], [6], [12] is trivial because it divides
the log line by line. Voting Experts [7] and the Nested
Pitman-Yor Language Model [13] methods attempt more
sophisticated segmentation and divide the log into longer,
word-like structures composed of several log lines. Another
method is to use the source code to build an execution graph

79004

and discover separate traces. A trace is a sequence of logs
where it is possible to traverse from the first log statement to
the last in the reachability tree created based on the source
code and execution [10]. However, this method requires a
powerful code parser aware of all possible log printing source
code statements, and many executions to build an execution
graph. Even when all elements are correctly performed, there
are known flaws in this approach [14]. The challenge with
such a segmentation is to assess the quality and correctness of
the resulting segments. One approach is to define a so-called
golden standard [7], also pointed out in our previous field
review [15], and to compare the segmentation output with
this standard using F-score. Creating a gold standard requires
human experts to segment the log. This is time consuming and
may lead to arbitrary and suboptimal results [13]. However,
with the help of a human expert, segments can be beneficial
to humans, which is the primary purpose of segmentation.
There are also methods to measure quality without knowing
the golden segmentation — quality can be estimated through
character-level perplexity [13] or conditional entropy [8].
Contribution of this article includes:

1) created the first golden standard benchmark for log
segmentation based on CloudStack logs and Nokia’s
Component X logs;

2) adapting existing Nested Pitman-Yor language model
for log sequence segmentation;

3) using Bayes optimization for hyper-parameter tuning
for VotingExperts.

The remainder of this paper is organized as follows. First,
we describe the probabilistic algorithms for log sequence
segmentation (Section III). We compared two methods,
VotingExperts and the Nested Pitman-Yor Language Model
(NPYLM), on the benchmark. Next (Section III), we describe
a series of experiments on the application of segmentation
methods to log sequences from the selected datasets.
We analyze the results and discuss their impact (Section V).
Finally, we conclude the paper and propose future work
(Section VI).

Il. MOTIVATING EXAMPLE

Our motivation comes from the real-world problems encoun-
tered when dealing with the Nokia component X and
CloudStack logs. Unlike logs from HDFS [16] and many
other open-source software packages, logs from Nokia and
CloudStack are much longer. They can be split by thread ID;
however, a single thread can contain thousands of lines. The
HDFS log sequence has tens of logs after segmentation by
block ID. Thus, finding an anomalous HDFS sequence using
any known method [3], [6], [17] is equivalent to locating the
erroneous part of the source code. The process of determining
the root cause begins immediately. However, the journey
only begins with Nokia and CloudStack logs. Segmentation
can be crucial for reducing the number of logs for analysis,
such as segmentation into log traces to obtain more precise
anomalous log sequences [10].

VOLUME 12, 2024

W. Dobrowolski et al.: Unsupervised Log Sequence Segmentation

IEEE Access

Thousands of logs in a possibly anomalous thread
are challenging to read, and require further processing.
However, they are well-structured because they reflect the
object-oriented implementation of the code. Logs form
patterns related to their functionality. For example, if classes
A, B, and C realize carrier configuration functionality, then
logs from those classes will appear successively with some
moderate permutations related to different input parameters.
Segmenting these moderately changed patterns will allow
humans to see the execution from a bird’s-eye view and ease
the process of understanding the system’s behavior, resulting
in a faster fault analysis. Such segments are more easily
assigned functional or test labels [18]. We follow the intuition
of previous researchers that log patterns will have similar
properties to words, and that word segmenting methods can
be used successfully.

lIl. MATERIALS AND METHODS
Let S represent the set of all sequences of discrete events, that
is, all sequences from the available log files.

S=1{...,e"M (N

A single sequence & from S contains a sequence of discrete
events e; (log events or letters):

27:<eo,...,en>)

Each ¢; belongs to a finite, known alphabet A, called the
closed alphabet. Segment sy is a sequence of discrete events
from ¢&.

Sk =< Cjpy s €y > 3)

where iy >= 0 and iy < n, and e;, is included in segment,
while ¢;, ,, is not. A single sequence ¢/ may contain a number
of segments 52 (k =0,1,2,...) such that no two segments
share common events e;. By segmentation w we call sequence
of indexes expressed as follows:

wW=<1ig,...,0 > 4)

where ¢ is the number of segment indexes. Beginning of the
sequence and end of the sequence are always incorporated to
the segmentation. The lexicon L is a set of all segments found
in sequences & of set S.

L={s)} (5)

where j iterates over all sequences ¢ and k iterates over all
segments within ¢/. Lexicon is equivalent to a dictionary.
There are known segmentation approaches based on the
frequency of log events [19], in which the most frequent
subsequences are used. However, measuring frequencies
alone is vulnerable to moderate sequence changes, similar
to word declination. This approach disregards the tight
internal correlation between letters in words and leads to
overly segmented text, where, for example, each prefix and
suffix are separated. VotingExperts and Nested Pitman-Yor
Language Model(NPYLM), more advanced probabilistic

VOLUME 12, 2024

approaches based on n-grams, are inspired by natural
language segmentation and apply unsupervised probabilistic
methods to extract words from the sequences. A known
approach uses a Control Flow and Reachability Graph to
segment logs into traces. However, extracting printing log
statements from the source code and building control and
reachability graphs is complex and tightly coupled to the
given software. However, they cannot be easily ported to
different software platforms or programming languages. Such
a complex process is usually error-prone. There are also
known flaws in source code analysis that are crucial for
complete and exact log template extraction [14]. Thus,
we concentrate our efforts on probabilistic methods as they
are not dependent on the software platform or programming
language and require less effort for software companies to
implement, maintain and port on many products.

Intuitively, segmentation is challenging for datasets with
considerable uncertainty and is accessible to well-structured
and predictable sequences. The method to measure this is
to calculate the entropy [20]. This study uses the uni-gram
entropy (6) and relates it to the segmentation quality. Uni-
gram entropy was calculated using the following formula:

H=-2 plogp(x) 6)

where p(x) is the probability of character x in given dataset.

A. ASSUMPTIONS

We outline the key assumptions underlying our study. Due
to the lack of any benchmark in the field, we aim to
start a broader discussion by providing a reasonably good
starting point. Although we are not CloudStack experts and
do not claim that the segments we created are complete,
we believe that our segmentation helps visualize and
understand execution, even for someone unfamiliar with the
code. Gold segmentations were prepared based on full log
lines, while the segmentation methods used event log IDs.
These IDs were collected from the Drain algorithm, which is
based on carefully designed regular expressions and has its
own imprecision. As a consequence, it is possible that some
templates are not precise. Preparing and applying regular
expressions for Drain are the most time-consuming and error-
prone tasks. They were used to extract log events from the log
lines. They require considerable testing, careful tuning, and
constant maintenance, as the log lines often change owing to
the normal software development and maintenance process.

B. DATASETS

The experiments were conducted using three datasets. One
text dataset and two log datasets. The information regarding
the datasets is presented in Table 1. It contains the name
of the dataset, number of sentences (or threads), number of
letters, maximum, minimum and average sentence length,
and uni-gram entropy of the corpus. The table is ordered in
descending order of value uni-gram entropy (Entropy).

79005

IEEE Access

W. Dobrowolski et al.: Unsupervised Log Sequence Segmentation

TABLE 1. Parameters of the datasets used: Nokia 100 - a collection of 100 unsegmented Nokia log files; Nokia golden - selected Nokia log file; PTB - a

well-known text dataset, and open-source CloudStack.

Size Sentences/ Max Min Avg
Dataset (MB) Threads Letters sentence sentence sentence Entropy
Nokia 100 228 47171 1979593 6670 1 41 6.15
Nokia golden 2 44 15833 5096 1 359 4.9
PTB 5.7 49199 4816367 439 2 97 3.04
CloudStack 186 105 391262 25690 21 3726 1.31

The first dataset consists of the CloudStack logs used
in [10]. These consist of 1009280 lines from 279553 threads.
We removed all short threads consisting of less than 20 lines,
as they are not required to be segmented, are often treated as
one segment for most segmentation methods, and present no
challenge for humans to understand. Because our main focus
was to improve our understanding of logs, we decided not to
consider them. There were 105 threads longer than 20 lines,
resulting in 391262 lines. The longest thread consists of
25690 log lines, and the average thread length was 3726 lines.
These threads were segmented into 217297 segments. It is
worth mentioning that threads shorter than five constituted
more than half of the log content. The logs were preprocessed
in a standard manner, as described below. The log format is:

<timestamp> <level> <location> <thread_id> <log_text>

where <level> is logging level, <location> is the name of
the module, <thread_id> is the number of the thread, and
<log_text> is the text of the printed log.

The second dataset consisted of logs collected from
101 normal and abnormal executions of Nokia software.
We split this into Nokia 100 for training purposes, leaving
out one file for the gold standard. The thread ID split
the log. The total number of log lines in the training set
is 1979593 in 47171 threads, and in the golden standard,
there are 15833 lines in 44 threads. We treated the thread
content as a sentence and the log event ID as a letter.
Thus, sentences are significantly longer than the usual natural
language sentences. The longest sentence in the gold standard
had 5096 letters, with an average of 359. For Nokia 100, the
maximal sentence length was 6670, but on average, sentences
were 41, shorter than the gold standard. Our main goal was
to determine the best algorithm for log segmentation in terms
of F-score. We semi-automatically created a gold standard
for Nokia logs using the VotingExperts algorithm and expert
knowledge. The implementation and datasets are available
online [21]. Log files are in the following format:

<component_id> <timestamp> <thread_id> <level> <log_text>

where <component_id> is the name of the component;
<thread_id> is the number of the thread, <level> is logging
level Info, Debug, Warning or Error, and <log_text> is the
text of the printed log. The logs were preprocessed in the
following manner (Fig. 2):

« select logs with the above log format,

79006

1. fs.defaultFS is hdfs://127.0.0.1:0

2. No KeyProvider found. |_
3. fsLock is fair:true

4. fs.defaultFS is hdfs://192.168.0.1:0

1. fs.defaultFS is hdfs://<:IP:>, [127.0.0.1]

2. No KeyProvider found., []

3. fsLock is fair:<:BOOL:>, [true]

4. fs.defaultFS is hdfs://<:IP:>, [192.168.0.1]

N
E1, E2, E3, E1 ... O

FIGURE 2. Drain log processing workflow. The process begins with log
event extraction, followed by conversion of the log sequence into log
event ID sequences.

Oct 920:40:16 INFO- [model.impl DefaultModuleDefinitionSet] (main:) Loaded madule context [core] in 70180 ms

(Oct 920:40:16 INFO [medel.impl DefaultModuleDefinitionSet] (main:) Loading medule context [allocator] from URL [jarfile:
(Oct 9 20:40:16 INFO [medel.impl DefaultModuleDefinitionSet] (main:) Loading module context [sllocator] from URL [jarfile
(Oct 920:40:16 INFO [medel.impl DefaultModuleDefinitionSet] (main:) Loading module context [sllocator] from URL [jarfile
Oct 920:40:16 INFO [model.impl DefaultModuleDefinitionSet] (main:) Loading module context [allocator] from URL [arfile
(Oct 920:40:16 INFO [model.impl.DefaultModuleDefinitionSet] (main:) Loading module context [allocator] from URL [jarfile:
(Oct 9 20:40:16 INFO [model.impl.DefaultModuleDefinitionSet] (main:) Loading module context [allocator] from URL [jarfile:/usr/share/cloudst
(Oct 9 20:40:16 INFO [springdlifecycle.CloudStackExtendedLifeCycle] (main:) Configuring CloudStack Components

sr/share/cloudst

Oct 9.20:40:16 INFO [spring.lifecycle.CloudStackExtendedLifeCycle] (main:) Done Configuring CloudStack Components
Oct 9.20:40:16 INFO' [modelimpl.DefaultModuleDefinitionSet] (main:) Loaded module context [allocator] in 217 ms

(Oct 9.20:40:16 INFO [modlel.impl.DefaultModuleDefinitionSet] (main:) Loading module context [host-allocator-random] from URL [jarfile:/usr
Oct 9.20:40:16 INFO [modelimpl.DefaultModuleDefinitionSet] (main:) Loading module context [host-allocator-random] from URL [jarfile:/usr
(Oct 9.20:40:16 INFO [modelimpl.DefaultModuleDefinitionSet] (main:) Loading module context [host-allocator-random] from URL [jarfile:/usr
(Oct 9.20:40:16 INFO [modelimpl.DefaultModuleDefinitionSet] (main:) Loading module context [host-allocator-random] from URL [jarfile:/usr
(Oct 9.20:40:16 INFO [modelimpl.DefaultModuleDefinitionSet] (main:) Loading module context [host-allocater-random] from URL [jarfile:/usr
(Oct §.20:40:16 INFO [modelimpl.DefaultModuleDefinitionSet] (main:) Loading module context [host-allocater-random] from URL [jarfile:/usr
Oct 9.20:40:17 INFO [spring.fifecycle.Clo ifeCycle] (main:) Configuring CloudSteck C

Oct 920:40:17 INFO [spring lifecycle.CloudStackExtendedLifeCycle] (main:) Done Configuring CloudStack Compenents
Oct 9 20:40:17 INFO [model.impl.DefaultModuleDefinitionSet] (main:) Loaded module context [host-allocator-random] in 358 ms
Oct 920:40:17 INFO [model.impl.DefaultModuleDefinitionSet] (main:) Loading module context [planner] from URL [jarfile:/usr/share/cloudsta
(Oct 9 20:40:17 INFO [model.impl.DefaultModuleDefinitionSet] (main:) Loading module context [planner] from URL [jarfile:/ are/cloudsta
(Oct 9 20:40:17 INFO [model.impl DefaulthModuleDefinitionSet] (main:) Loading module context [planner] from URL [jarfile: are/cloudsta
Oct 9 20:40:17 INFO [model.impl DefaultModuleDefinitionSet] (main:) Loading module context [planner] from URL [jarifile:/usr/share/cloudsta
Oct 9.20:40:17 INFO [modelimpl.DefaultModuleDefinitionSet] (main:) Loading module context [planner] from URL [jarfile:/ust/share/cloudsta
Oct 9.20:40:17 INFO [modelimpl.DefaultModuleDefinitionSet] (main:) Loading module context [planner] from URL [jarfile:/ust/share/cloudsta
Oct 920:40:17 INFO [springdlifecycle.CloudStackExtendedLifeCycle] (main:) Configuring CloudStack Components

Oct 9.20:40:17 INFO [spring.lifecycle.CloudStackExtendedLifeCycle] (main:) Done Configuring CloudStack Components
Oct §.20:40:17 INFO [modelimpl.DefeultModuleDefinitionSet] (main:) Loaded module context [planner] in 274 ms

FIGURE 3. Failure to segment periodic patterns in CloudStack Logs - no
discernible segments were identified, significantly impeding analysis.

« remove <component_id> and <timestamp> from every
log line to speed up the next Drain step because these
columns do not influence the content of retrieved log
events, whereas they significantly slow the process,

« retrieve log events with Drain [22],

« separate lines from different threads,

« substitute log lines with corresponding log event ID,

« concatenate all threads from all files into one dataset.

VOLUME 12, 2024

W. Dobrowolski et al.: Unsupervised Log Sequence Segmentation

IEEE Access

Oct 19 20:40:48 INFO 7 Found 2y
Oct19 text] etup psudo job for the executing thread
Oct 19 2 » Stuppzd e on WU 1 bt the stote s Eter

Oct19 {cloud.capacity.C ror to Expunging .

Oct19 7 Deﬂvyng v VM [Userfa11]

oct18 g e i NCS

Oct19

Oct 19 {network. eoat 0 , 192.166.0.240

Oct19 {network. » 784) remove nic

Oct19 Removed nic id2106

Oct 19 » Revoving nic

Oct19 g 7845) Clearing up hypenisor data ruciures (e, S in XenServr) for managed storage
Oct19 c s

Oct18 g Expunged VM[Userla11]

Oct19 7Tt tarting ceaing up m VMIUsea!] esurces

Oct 19 20:40:48 INFO from uservm 45

Oct18 7 id=45
Oct19 7846) No firewall rules 45

Oct19 g Firewall rul d successfully o5 a part of vm id=45 expunge

Oct19 networkul » 7 id=d5

Oct19 7 rules are removed successfully as a part of v id=45 expunge
Oct18 g Removed all load balancers as 2 part of expunge process

Oct19 7 VM[Userla11] resources as a part of expunge process
Oct19 7 Stopped called on VM[Userla12] but the state s Error

Oct18 {cloud.capacity W Error to Expunging with event:

Oct19 7 g vm VM

Oct 19 g Cleaning up NICS

Oct19 NetworkOrchestrator] : ca7

Oct19 network networkid: 204, ip: 192.168.0.243

Oct18 {network. » 784) remove nic

Oct19 NetworkOrchestrator] » Removed nic id2109

oct19 784b) Revoving nic secondary ip entry

Oct18 g Cleingup ypenicor datasncres (. S i XenSere fo managed storage
Oct19 c

Oct 19 g 7 Expunged VM[Userla12]

Oct19 Tt trting ceaing up m VMIUsea12) resurces

Oct 19 20:40:49 INFO from usenm 47

Oct19 7 id=47
Oct19 Nofirewall =47

oct19 7 Firewall ol d successfully as a part of vm id=47 expunge

Oct18 networkrul » 7 vmid=47

Oct19 % I d successfull as 2 part of vm id=47 expunge
Oct 19 g Removed vm id=47 from ollload balencers o5 a part of expunge process.

Oct1e 7 p v VM[Userlz12] resources as a part of expunge process

FIGURE 4. Incorrect segmentation of CloudStack logs exceeding length
limit. Lengthy sequence hinders readability.

Oct 9204014 INFO [cloud.server.ConfigurationServerimpl] (main:) Processing updateSSLKeyStore
Oct 92040:14 INFO [cloud.server.ConfigurationServerimpl] (main:) SSL keystore located at /
Oct 9 20:40:14 DEBUG [util.eript.Seript] (main) Executing: sudo keytool -genkey -keystore /etc/ eeystore -+
Oct 9 20:40:14 DEBUG [utils.script.Script] (main) Exit value s 1

Oct 9204014 DEBUG [utils.script. Script] (main) sudo - BAZREE , BRIEE askposs BF

Oct 92040:14 WARN [cloud.server.ConfigurationServerlmpl] (mair:) Would use fail-safe keystore to continue,

Oct 9204014 127.0.0.1 javaiio.|OException: Fail to generate certificatel: sudo : REEFEE , BRI askpass BF

Oct 920:40:14127.00.1 at com cloud.server.C 577)
Oct 920:40:14127.00.1 at com clouduserver. dateSSLKeystore 598)

Oct 9204014127001 at loud.server. 208)
Oct 920:40:14127.00.1 at com cloud.server.C nfigure(C 1152)

Oct 920:40:14127.00.1 at org apache cloudstack spring.lifecycle.Cl ifeCyclejava:117)

Oct 920:40:14 127001t org.apache.cloudstack.spring fifecycle.CI ifeCyclemith(C ifeCycle javar156)
Oct 9204014127001 at he.cloudstack. lifecycle.C ifeCyclejavai113)
Oct 0204014127001 at he.cloudstack. lifecycle.C ifeCycle.start(CI ifeCycle javais9)

Oct 920:40:14 127001 at itext. rt.DefaultLifecyclePro doStart(DefaultLifecycleProcessor java:167)

Oct 9204014127001 at wext. support DefaultL fecycleProcessor.accessS200(DefautLifecycleP 51)

Oct 9204074127001 atargspringfameworkcontestsupport DefautlfeycleProcesorSLfecyceGroupstartDefaukLifcycleProcessorjovs39)
Oct 920:40:14 127001 at text. rt.Defaultl 143

Oct 920:40:14127.0.0.1 at text. rt.Defaultl \fE(y(\EPm Refresh(Defaultl lfenydepm(:108)

Oct 920:40:14 12700.1 at org springframework context.support AbstractApplication ation 5)

Oct 920404127001 atorgspingfameworkcontet support AbstractAppliationContext raﬁesh(AbSlra(LAppl\(a(mnCnntextjava 462

Oct 92040114 127.0.0.1 he.cloudstack. itionSet javai141)
Oct 920:40:14127.0.0.1 at he.cloudstack. 1l 2.with(D: Definiti et. :119)

Oct 920:40:14127.00.1 at he.cloudstack. 1l Definiti et.)

FIGURE 5. Incorrect segmentation of exception in CloudStack logs:
sequence erroneously split in the middle of exception stack.

The third one is the Penn Treebank (PTB) [23], consisting
of 49199 English sentences, 4816367 letters in total, with a
maximum sentence length of 439 and 97 on average (Table 1).
The text was preprocessed by removing spaces, punctuation
marks, new lines, and special characters.

C. GOLD SEGMENTATION PREPARATION FOR LOGS

All examples utilized in this study are sourced from
CloudStack, as logs from Nokia are proprietary. For each
log dataset, we conducted gold segmentation. Initially, the
VotingExperts algorithm was applied with default settings,
followed by the manual application of specific rules to refine
the automatic segmentation. Refinement was conducted by
an expert engineer experienced in log analysis. We have pre-
sented a few instances of incorrect segmentations produced
by the VotingExperts algorithm in Figures 3, 4, and 5, along
with their respective corrections achieved by applying the
rules outlined in Figures 6, 7, and 8 To identify incorrect
segments we have used the following assumptions:

« Inconsistent Functionality: An incorrect segment may
contain log lines that do not pertain to the single
functionality like starting virtual machine.

o Misalignment with Keywords: If a segment lacks
coherence or relevance to the keywords, meaning

VOLUME 12, 2024

9204022 NFO 3240
smaziro) .

2j0r

32jar/METAINF/«

FIGURE 6. Correct segmentation of CloudStack logs based on keywords
signifying start and end of functionality: utilizing ‘Loading’ and ‘Loaded’
to capture periodic patterns in logs.

(Oct 19 20:40:48 DEBUG [cloud. Stopped called on VM[User|a11] but the state s Error
(Oct 19 20:40:48 DEBUG [cloud.capacity wm rror to Expunging with event: ExpungeOperationvim's origir
(Oct 19 20:40:48 DEBUG [cloud. g vm VM{Userla 1]

(Oct 19 20:40:48 DEBUG [cloud. Cleaning up NICS

(Oct 19 20:40:48 DEBUG NetworkOrchestrator] Cleaning

(Oct 19 20:40:48 DEBUG [network. 73247846) Deallocate network: networkid: zm ip: 192.168.0.240

(Oct 19 20:40:48 DEBUG [network. 73247845) remove nic 106 secondary ip

(Oct 19 20:40:48 DEBUG NetworkOrchestrator] Removed nic id=106

/Oct 19 20:40:48 DEBUG NetworkOrchestrator] (U Tictx-732d784b) Revoving nic secondary ip entry

(Oct 19 20:40:48 DEBUG [cloud. Cleaning up hypervisor data structures (ex. SRs in XenServer) for managed storage.
(Oct 19 20:40:48 DEBUG lumeOrchestrator] Cleaning 5

(Oct 19 20:40:48 DEBUG [cloud,
(Oct 19 20:40:48 DEBUG [cloud,

Expunged VM[Userja11]
Starting cleaning up vm VM[Usela'1] resources.

(Ot 19 20:40:48INFO Disassociated 1 from uservm 45
(Oct 19 20:40:48 DEBUG Security group d successfull for vm id=45

(Oct 19 20:40:48 DEBUG { 1:¢tr-T32d784b) No firewll rul forvm id=45

(Oct 19 20:40:48 DEBUG [cloud. Firewell rules are removed successfully as a part of vm id=45 expunge

(Oct 19 20:40:48 DEBUG [network.ul (User No I

(Oct 19 20:40:48 DEBUG [cloud. I d successfully as o part of vm id=45 expunge

Oct 19 [cloud. Removed v id=45 from al load balancers e a part of xpunge process

Oct 19 [cloud. Successfully cleaned up vm VM[Userla1 1] resources as a part of expunge process

(0ct 19 20:40: [cloud. ger-Tctx-7324784b) Stopped called on VM[Userlal2] but the state is Error

Oct 18 [cloud.capacity M rror to Expunging with event: ExpungeOperationvim's origir
Oct 19 [cloud. g vm VM{Userla12]

Oct 19 [cloud. Cleaning up NICS

Oct 19 NetworkOrchestrator] Cleanin

Oct 19 [network. 73247846) Deallocate network: networkid: zm ip: 192.168.0243

Oct 19 [network. 732017845 remove nic 109 secondary ip
Oct 19 NetworkOrchestrator] Removed nic id=109

Oct 19 NetworkOrchestrator] Revoving nic secondary ip entry.

Oct 19 [cloud. Cleaning up hypervisor data structures (ex. SR in XenServer) for managed storage:
Oct 19 JumeOrchestrator] Cleaning a7

Oct 19 [cloud. Expunged VM[User(a12]

Oct 19 [cloud. Starting cleaning up vim VM[User|a12] resources.

(Oct 19 20:40:49 INFO Disassociated 1 from uservm 47

Oct 19 Security group q successfully for vm id=47

Oct 19 No firewallrul id=a7

Oct 19 [cloud. Firewall rules are removed successfuly as a part of vm id=47 expunge

Oct 19 [networkrul (User No I forvm id=47

Oct 19 [cloud. I 4 successfully as a part of vm id=47 expunge

Oct 19 [cloud. Removed vm id=47 from allload balancers as a part of expunge process

Oct 19 [cloud. Successfully cleaned up vm VM[User|a12] resources as a part of expunge process

FIGURE 7. Correct segmentation of CloudStack logs exceeding length
limit: enhanced readability achieved through accurate period
identification.

starting and ending some functionality, it could be con-
sidered incorrect. Like Loading can be considered the
beginning of the block and Loaded the end (Figure 3).

o Misinterpretation of Patterns: Segments should accu-
rately represent visible periods. Incorrect segments
might arise if the patterns are misinterpreted or if
unrelated patterns are mistakenly included (Figure 4).

« Mismatched Object Identifier: Segmentation must
accurately capture logs related to the specific instance.
If logs from unrelated instances are included in the
segment, it could be deemed incorrect.

« Exceptions Mishandling: If the exceptions stack is split
into many segments, they could be considered incorrect
(Figure 5).

« Length Exceedance: Segments exceeding the defined
length criterion (e.g., more than 60 lines) might contain
excessive information, leading to potential confusion
and incorrect interpretation (Figure 4).

By adhering to these conditions and assumptions, one can
identify segments within the log dataset that deviate from the
expected criteria, indicating potential inaccuracies or errors.
Correct segmentation was achieved through the utilization of
the following assumptions:

79007

IEEE Access

W. Dobrowolski et al.: Unsupervised Log Sequence Segmentation

Joct 9204014 INFO (cloud.
lOct 9 2040:14INFO [cloud,

joe com “eyaly
(0ct 92014014 DEBUG [util criptSerip] (maim) Exitvalue i 1
joct ERERRE BRAT wkprss B

clouderver.C
DERRFE , AR askpass B

at

12700
loct 92040:14127.00.1
loct 9204014127.00.1

fig jovar10a1)
figjavai96d)

loct 920401412
loct 9204014 127.001
loct 92040:14127.00.1
(Oct 92040:14127.001 at orgapache.catainastartup Catalina.st

art(Catalina java:ss3)

FIGURE 8. Correct segmentation of CloudStack logs for exceptions:
ensuring uninterrupted exception stack within a single segment.

« Keyword-based segmentation: Segments were extracted
based on specific keywords, such as injectkeys.sh.

« Utilization of keywords signifying the beginning and
end, such as ‘Loading’ and ‘Loaded’ (as illustrated in
Figure 6).

o Extraction of periodic patterns to ensure the accurate
capture of true periods (as depicted in Figure 7).

« Segmentation based on the identifier of the object
instance under processing (as demonstrated in Figure 6).

o Consistent treatment of exceptions within a single
segment (as shown in Figure 8).

Our objective was to delineate segments corresponding to
distinct functionalities — sufficiently lengthy to facilitate log
comprehension yet concise enough to remain manageable for
human analysis. Through experimentation, we determined
that segments comprising up to 60 lines were most conducive
to our analysis.

D. ALGORITHMS

This chapter delves into the theoretical underpinnings of
two algorithms: VotingExperts and the Nested Pitman-Yor
Language Model. Rather than providing exhaustive details,
we focus on familiarizing the reader with the core concepts
and theoretical aspects that form the basis of these algorithms.

1) VOTINGEXPERTS
VotingExperts [7] collects information about the boundary
entropy and frequency of every n-gram. These measures are
stored in a tree, where the root is an empty node, 1-level
nodes represent 1-grams, 2-level nodes represent bi-grams,
etc., up to n-grams. As a result, the tree has n + 1 depth. The
frequency of a n-gram is straightforward to calculate.

The boundary entropy (BE) is calculated as the entropy of
the distribution of tokens that can extend the n-gram [7].

BE(n) = — > p(x)logp(x))

xeX,

79008

freq T
itwa :

entropy 4 L

[0110000...] [0310000...]

FIGURE 9. Visualization of two iterations of the VotingExperts algorithm
on two consecutive sliding windows.

twas .

where X, is the set of child nodes of a fixed node n, thus, the
probability p(x) is the conditional probability

-y en—1). ®)

With both types of information stored, text is processed
sequentially from the beginning with a sliding window.
For every window, one vote is determined by a boundary
entropy expert and the second is determined by a frequency
expert. The first aims to minimize entropy, and the second
to maximize frequency. Each expert votes only once for
each n-gram (Fig. 9). This approach is fast, considering
only k — 1 voting instead of 2!, However, it cannot
deal with a situation in which a specific n-gram from the
test set is not observed during the training. It also has
the disadvantage of considering only one-word boundaries
at the time; it leverages only bi-gram word dependencies,
a limitation addressed by the NPYLM language model.

pn) = plenleo, ..

2) NESTED PITMAN-YOR LANGUAGE MODEL

This Bayesian approach segments words in an unsupervised
manner using the Nested Pitman-Yor Language Model
(NPYLM) [13]. This is performed by maximizing the
probability of word segmentation w for a given string s.

W = argmax,,p(w|s) 9

In terms of discrete events, it is the maximization of j — th
segmentation of word w, given a previous event sequence.

W:argmaxjp(<ifq...i{1+, > | <ep...ej >) (10)

-1
To calculate p(wl|s) (9), the NPYLM uses Kneser-Ney
smoothing of n-grams, where crucial novelty includes
embedding a character n-gram into a word n-gram. The
character n-gram allows the model to have no ‘unknown
word’ problem, as in VotingExperts. NPYLM also has
another advantage over VotingExperts by leveraging the
n-gram word dependencies; in practice, 3-grams are used as
4-grams are too computationally expensive.

E. EVALUATION METRIC
To compare methods, we use the F-score metric calculated as
follows:

2 x precission * recall

F = . 11
seore precision + recall (i

VOLUME 12, 2024

W. Dobrowolski et al.: Unsupervised Log Sequence Segmentation

IEEE Access

To calculate this metric, we constructed two arrays, each of
length equal to the number of non-space characters in the text.
The first array corresponds to the original segmentation, and
the second to the retrieved segmentation. The arrays are first
filled with zeros. Next, the value is changed to one for each
position, after which the word is separated into corresponding
segments. Then, to calculate the precision and recall, we used
the following formulas:

o true_positives
precision = — — (12)
true_positives + false_positives

true_positives

recall =

(13)

true_positives + false_negatives

True_positives are indices from the retrieved array, where the
value is one in both arrays. False_positives are indices in
which the value is set to one in the retrieved array but not
in the original array. False_negatives are indices from the
original array, which are set to one and zero in the retrieved
array.

F. HYPER-PARAMETER TUNING FOR VOTINGEXPERTS

The selection of the best hyper-parameter set for a model is
not trivial. For example, the most popular technique is grid
search [5]. However, a more efficient method for this task is to
use a Gaussian Process (GP). The performance can be treated
as a sample from the GP. Previous results reduce the range of
uncertainty and allow us to choose the next hyper-parameter.
It was shown that GP can find better hyper-parameters than a
grid search with a fraction of the number of experiments [24].

IV. RESULTS

We analyzed the results generated from the algorithms
running on the gold standard as the input data. We checked
the segmentation quality first on the CloudStack and Nokia
logs and then on the English Text. In English Text, NPYLM
achieved significantly better results than VotingExperts.
However, for CloudStack and Nokia’s golden segmentation,
VotingExperts performed better.

A. CLOUDSTACK

First, we evaluated the methods using open-source logs.
We assessed the quality compared to the gold standard we cre-
ated based on VotingExperts’ segmentation. The CloudStack
gold standard consists of 223030 segments. The threads used
for segmentation were longer than 20 lines. An experiment
was performed for each segmentation method. The training
and testing sets consisted of full logs. VotingExperts achieved
the best result with 97% of F-score.

The results are presented in Table 2 and the confusion
matrices are shown in Fig. 10. We found that VotingExperts
achieved very good results for segmenting CloudStack logs,
with a 97% of F-score. NPYLM scores were significantly
worse, at 42%, mostly because the recall for this method was
very low, 27%. In terms of precision, the NPYLM scores were
somewhat higher at 98.9%, whereas for VotingExperts, it
was 97,3%.

VOLUME 12, 2024

TABLE 2. Comparative F-score analysis of CloudStack log segmentation
using VotingExperts and NPYLM methods.

Algorithm F-score (%) Precision (%) Recall (%)
VotingExperts 97,3 97,7 96,8
NPYLM 425 98,9 27,0

TABLE 3. F-score comparison of segmentation algorithms applied to
Nokia logs across three experiments using varying training data: golden
standard, 100 historical files, and a combination of golden standard and
100 historical files.

Algorithm F-score | Precision| Recall
(%) (%) (%)
VotingExperts expl 44,1 40,7 48,1
VotingExperts exp2 n/a n/a n/a
VotingExperts exp3 38,1 349 42,1
NPYLM expl 225 16,3 36,0
NPYLM exp2 22,5 14,6 45,8
NPYLM exp3 23,6 16,1 44,2

B. NOKIA LOGS

The Nokia logs were used as the primary target. We verified
the results of the algorithms compared to the golden segmen-
tation prepared by human experts (see Subsection III-B for
more details). Our experiments showed a clear advantage of
VotingExperts over NMLP.

Three experiments were performed. The first had the
golden standard file as the training and testing set, the
second had 100 historical files as training and golden
standard for testing, and the third had 100 historical files
and golden standard as the training and golden standard
as the testing dataset. In the first experiment, VotingExpert
achieved the best segmentation with 44,1% of a maximal
word length of seven and a threshold of four. The average
segment length was 8.3. NPYLM performed the second-best
segmentation with 22,5% after 100 epochs and an average
segment length of 4.9. The recall for VotingExperts was 48%
and for NPYLM, it was 36%. In the second experiment,
VotingExpert could not perform any segmentation owing to
the lack of testing n-grams in the training dataset. NPYLM
achieved a 22% F-score, with 45% recall and an average
segment length of 3.1. In the third experiment, VotingExperts
performed 38,1% of F-score (window 17, and threshold 4),
average 8.1 segment length, and NPYLM 23% and average
3.6 segment length. In this case, the recall was 42,1% for
VotingExperts and 44,2% for NPYLM.

The results are presented in Table 3, the confusion matrices
for VotingExperts are shown in Fig. 11, and those for NPYLM
are shown in Fig. 12. We found that VotingExperts achieved
better results in Nokia log segmentation. Regarding precision,
VotingExperts was always better than NPYLM, and for recall,
this was also the case, except for Experiment 3, where
NPYLM had a 2% advantage over VotingExperts. We can
see a significant discrepancy between the precision and recall
for NPYLM. For NPYLM, a growing amount of data to
learn improved recall but had little impact on precision. For
VotingExperts, an increase in the training data reduced the
overall F-score. From the average segment length, NPYLM
introduced smaller segments than VotingExperts.

79009

IEEE Access

W. Dobrowolski et al.: Unsupervised Log Sequence Segmentation

163273

True label

215808

0 1
Predicted label

(a)

167618 614
]
Qa
o
]
2
162563 60362
0 1

Predicted label

(b)

FIGURE 10. Confusion matrices of word boundaries introduced by VotingExperts (a) and NPYLM (b),

of CloudStack logs.

1098
]
a
)
]
2
(=

1 811 754

0 1

Predicted label
(a)

1229
]
Q
©
[
2
|_

1 906 659

0 1
Predicted label

(b)

FIGURE 11. Confusion matrices of word boundaries introduced by VotingExperts of Nokia logs after
training on golden standard (a), and 100 files plus golden standard (b).

TABLE 4. Comparative analysis of results from the original study versus
Bayesian optimization hyper-parameter tuning.

Algorithm parameters | F-score Precision Recall

(%) (%) (%)
VotingExperts | w:7,t:4 74.9 85,7 70,4
VotingExperts | w:9,t:3 80,7 82,7 78,7
improved

C. ENGLISH TEXT
Finally, we evaluated two algorithms, VotingExperts and
NPYLM, on PTB [23] text.

We evaluated the task of identifying word boundaries using
an F-score. The segmentation of a single sentence is stored in
an array of zeros of a length equal to the number of letters.
The values of the indices of letters, after which space was
present, were set to one.

NPYLM, with an 86,3% of F-score, achieved the best
segmentation. VotingExperts achieved 80,7% of the F-score.
It is worth mentioning that with the unsupervised hyper-
parameter tuning, we found better hyper-parameters than in
the original paper [7] for word length nine and threshold
three (Table 4). The results of both methods are presented in
Table 5, and the confusion matrix is shown in Fig. 13. The

79010

TABLE 5. F-Score comparison of PTB segmentation Using NPYLM and
VotingExperts.

Algorithm F-score (%)
NPYLM 86,3
VotingExperts 783

average length of the segment introduced by the NPYLM is
5.1, whereas for VotingExperts, it is 3.7.

V. DISCUSSION
We obtained the gold standard for log sequence segmenta-
tion using a semi-automated algorithm. We first used the
VotingExperts algorithm with hyper parameters obtained
from the original study [7]. Then, using our best knowledge,
we corrected the segments that appeared incorrect to us. This
is, thus, subjective segmentation. This problem resembles
that in Chinese Word Segmentation, in which different
segmentation guidelines promote different algorithms [25].
Nevertheless, no benchmark has been published, and such
segmentation is required in the field. We hope that this will
open the discussion and help develop a standard for log
segmentation.

VotingExperts is a computationally cheap algorithm (k — 1
operations for text of length k). However, it has no smoothing

VOLUME 12, 2024

W. Dobrowolski et al.: Unsupervised Log Sequence Segmentation

IEEE Access

2884
]]
Qa Qo
o o
[]
= =
1 1001 564 1 847
0 1 0

Predicted label
(a)

Predicted label

4189 2361
]
Qa
o
]
2
718 1 909 656
1 0 1

Predicted label

(b) (c)

FIGURE 12. Confusion matrices of word boundaries introduced by NPYLM of Nokia logs after training on golden standard (a), 100 files (b),

and 100 files plus golden standard (c).

53996 3617885 161902 3664394 115393
] © ©
Q Q Q
© © ©
() (] [
2 2 2
= = =
1 195482 791899 1 209798 777583 1 291562 695819
0 1 0 0

Predicted label
(a)

1
Predicted label

1
Predicted label

(b) (©)

FIGURE 13. Confusion matrices of word boundaries introduced by VotingExperts of PTB English text by NPYLM (a), VotingExperts with

hyperparameters (9,3) (b) and (7,4) (c).

mechanism, making it vulnerable to unseen n-grams. Owing
to this limitation, we could not segment the logs of Nokia
using VotingExperts trained on a relatively large training
set. The NPYLM could not obtain a high F-score on the
CloudStack and Nokia logs; however, the larger the training
dataset, the better the recall. In the Nokia experiment, with
the largest training dataset, the NPYLM recall was better
than that of VotingExperts. With low precision on Nokia
logs, NPYLM introduced more segments than expected
by the expert. This is supported by the average length
of the introduced segments, which was 3.8 on average
across experiments, whereas for VotingExperts, it was 8.
For CloudStack, NPYLM achieved better precision than
VotingExperts but had a very low recall. This shows that the
segments proposed by NPYLM are very good, but they miss
many of the proposed golden segments.

We also observed an interesting and intuitive relationship
between entropy and segmentation results. This pattern
indicates that lower entropy is associated with better
segmentation results. This is intuitive because one can
expect sequences with a rich alphabet and considerable
uncertainty to be challenging for the segmentation algorithm.
CloudStack has an extended part of a sequence with a simple

VOLUME 12, 2024

TABLE 6. F-score, precision, and recall of segmentation performance on
CloudStack, Nokia, and PTB datasets.

Dataset Algorithm F-score | Precision | Recall | Entropy
(%) (%) (%)

CloudStack | VotingExperts | 97,3 97,7 96,8 2.1

CloudStack | NPYLM 42,5 98,9 27,0

PTB NPYLM 86,3 93,6 80,2 8.01

PTB VotingExperts | 80,7 82,7 78,7

Nokia NPYLM exp3 |23,6 16,1 44,2 10.22

Nokia VotingExperts | 44,1 40,7 48,1

expl

request-response pattern. It is also CloudStack, in which the
segmentation result is the highest.

The Drain algorithm is the main choke point for applying
the log segmentation algorithm. Its operation depends on
regular expressions and thus requires a domain expert effort to
carefully fine-tune before use. The quality of log parsing per-
formed by Drain directly impacts subsequent algorithms [26],
and is not different in the case of log sequence segmentation.
We expect that using the full potential of Deep Learning
by learning the embedding of direct log lines will solve
this problem and render the algorithm more robust and less
dependent on human effort.

79011

IEEE Access

W. Dobrowolski et al.: Unsupervised Log Sequence Segmentation

VI. CONCLUSION

We compared unsupervised probabilistic segmentation meth-
ods for log sequences. We used two methods: VotingExperts,
used for text and log segmentation, and NPYLM, a language
segmentation method. We adapted the NPYLM to the domain
of log segmentation. We found that VotingExperts achieved
the best results in terms of F-score in log segmentation (97%
and 43%), whereas NPYLM achieved the best results in
text segmentation (86%). Increasing the size of the training
set was not advantageous for VotingExperts; however, for
NPYLM, it significantly improved recall (Table 6). The
NPYLM creates many more log segments than those
expected by human experts. For a segmentation method to
be useful for long log sequences, as in the case of Nokia’s
logs, the segmentation method should introduce relatively
large segments to create a helpful bird’s-eye view of the
execution path. The solution might be to apply the technique
recurrently or allow the user to specify the expected segment
length.

The second conclusion is that log segmentation is not a
uniform problem but differs significantly between platforms.
In the case of CloudStack, a large number of short segments
in the gold standard (lengths of 1 and 2) with low entropy
allowed segmentation methods to achieve an F-score above
97%. Nokia’s gold standard contains longer segments and
high entropy. Consequently, segmentation is considerably
more challenging, and the results are worse.

Third, unsupervised measures of log segmentation may
be affected by log-parsing noise(Section III-A). It is shown
that methods based on logs are affected by the quality of
log parsing methods. To ensure the usefulness of the log
segmentation method, the original logs must be considered.
Log-parsing procedures, such as Drain, which is based on
regular expression, may introduce noise which misleads
the subsequent methods to solve different problems than
expected. Therefore, we attempted to create log segments of
the original log file, the quality of which was ensured by
a human expert. We share gold segmentation in the public
repository.

Log segmentation presents a promising avenue for
future research in more accurately pinpointing software
failures. Conventional detection methods primarily focus
on thread-level analysis or a sliding window technique.
However, our hypothesis suggests that segment-based meth-
ods might outperform those relying on sliding windows.
This concept parallels the language processing field, where
analyzing unsegmented text through a sliding window is
generally less effective in identifying grammatical errors
compared to analyses conducted on distinctly segmented
text. The success of segment-based methods in log analysis,
nevertheless, hinges on the quality of the segmentation
process.

Labelling a segment as anomalous instead of a
full-thread log sequence would also immediately benefit the
user(Section II and Section III-A). The question is how to
identify anomalous segments, preferably in an unsupervised

79012

manner. Another direction could be to label segments with
the names of functionality to which they are related. This
provides a better overview of the executed scenario. This
requires the embedding of segments in the vector space. The
question is whether embeddings would behave similarly to
word embeddings while maintaining semantic and syntactic
relationships.

REFERENCES

[1] N. Yang, P. Cuijpers, R. Schiffelers, J. Lukkien, and A. Serebrenik,
“An interview study of how developers use execution logs in embedded
software engineering,” in Proc. IEEE/ACM 43rd Int. Conf. Softw. Eng.,
Softw. Eng. Pract. (ICSE-SEIP), May 2021, pp. 61-70.

I. Beschastnikh, P. Wang, Y. Brun, and M. D. Ernst, “Debugging

distributed systems: Challenges and options for validation and debugging,”

Commun. ACM, vol. 59, no. 8, pp. 32-37, Aug. 2016.

[3] M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur. New York, NY, USA:
Association for Computing Machinery, Oct. 2017, pp. 1285-1298, doi:
10.1145/3133956.3134015.

[4] H. Guo, S. Yuan, and X. Wu, “LogBERT: Log anomaly detection via

BERT,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2021, pp. 1-8.

L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong, and W. Zhang,

“Semi-supervised log-based anomaly detection via probabilistic label

estimation,” in Proc. IEEE/ACM 43rd Int. Conf. Softw. Eng. (ICSE),

May 2021, pp. 1448-1460.

[6] X.Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,

Q. Cheng, Z. Li, J. Chen, X. He, R. Yao, J.-G. Lou, M. Chintalapati,

F. Shen, and D. Zhang, “Robust log-based anomaly detection on unstable

log data,” in Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp.

Found. Softw. Eng., Aug. 2019, pp. 807-817.

P. Cohen, B. Heeringa, and N. M. Adams, “An unsupervised algorithm

for segmenting categorical timeseries into episodes,” in Proc. ESF Explor.

Workshop. London, U.K.: Springer, Sep. 2002, pp. 49-62.

[8] G. Shani, C. Meek, and A. Gunawardana, ‘‘Hierarchical probabilistic
segmentation of discrete events,” in Proc. 9th IEEE Int. Conf. Data Mining,
Dec. 2009, pp. 974-979.

[9] X.-Y. Zhang, F. Yin, Y.-M. Zhang, C.-L. Liu, and Y. Bengio, “Drawing
and recognizing Chinese characters with recurrent neural network,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 849-862, Apr. 2018.

[10] L.Bao, Q. Li, P. Lu, J. Lu, T. Ruan, and K. Zhang, “Execution anomaly
detection in large-scale systems through console log analysis,” J. Syst.
Softw., vol. 143, pp. 172-186, Sep. 2018.

[11] X. Zhao, Z. Jiang, and J. Ma, “A survey of deep anomaly detection for
system logs,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2022,
pp. 1-8.

[12] Z. Chen, J. Liu, W. Gu, Y. Su, and M. R. Lyu, “Experience report:
Deep learning-based system log analysis for anomaly detection,” 2021,
arXiv:2107.05908.

[13] D. Mochihashi, T. Yamada, and N. Ueda, “Bayesian unsupervised word
segmentation with nested Pitman—Yor language modeling,” in Proc. Joint
Conf. 47th Annu. Meeting ACL 4th Int. Joint Conf. Natural Lang. Process.,
2009, pp. 100-108.

[14] W. Xu, System Problem Detection by Mining Console Logs. Berkeley, CA,
USA: University of California, Berkeley, 2010.

[15] W. Dobrowolski, M. Nikodem, and O. Unold, “Software failure log
analysis for engineers—Review,” Electronics, vol. 12, no. 10, p. 2260,
May 2023.

[16] J.Zhu, S. He, P. He, J. Liu, and M. R. Lyu, “Loghub: A large collection of
system log datasets for Al-driven log analytics,” 2020, arXiv:2008.06448.

[17] Y. Chen, N. Luktarhan, and D. Lv, “LogLS: Research on system log
anomaly detection method based on dual LSTM,” Symmetry, vol. 14, no. 3,
p. 454, Feb. 2022.

[18] W.Dobrowolski, M. Nikodem, M. Zawistowski, and O. Unold, “‘Improved
software reliability through failure diagnosis based on clues from test and
production logs,” in Proc. Int. Conf. Dependability Complex Syst. Springer,
2022, pp. 42-49.

[19] A. Zaidman and S. Demeyer, ‘“Managing trace data volume through a
heuristical clustering process based on event execution frequency,” in Proc.
8th Eur. Conf. Softw. Maintenance Reeng., Mar. 2004, pp. 329-338.

2

—

[5

—

[7

—

VOLUME 12, 2024

http://dx.doi.org/10.1145/3133956.3134015

W. Dobrowolski et al.: Unsupervised Log Sequence Segmentation

IEEE Access

[20]

[21]

[22]

[23]

[24]

[25]

[26]

C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379-423, Jul. 1948.

W. Dobrowolski. (2024). Unsupervised Log Segmentation. Accessed:
Apr. 18, 2024. [Online]. Available: https://github.com/dobrowol/
unsupervised_log_segmentation

P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in Proc. IEEE Int. Conf. Web Services
(ICWS), Jun. 2017, pp. 33-40.

T. Mikolov, M. Karafiat, L. Burget, J. (fernocky, and S. Khudanpur,
“Recurrent neural network based language model,” in Proc. Interspeech,
Sep. 2010, pp. 1045-1048.

J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimiza-
tion of machine learning algorithms,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 25, 2012.

Z. Sun and Z.-H. Deng, “Unsupervised neural word segmentation for
Chinese via segmental language modeling,” 2018, arXiv:1810.03167.

Y. Fu, M. Yan, Z. Xu, X. Xia, X. Zhang, and D. Yang, “An empirical
study of the impact of log parsers on the performance of log-based anomaly
detection,” Empirical Softw. Eng., vol. 28, no. 1, p. 6, Jan. 2023.

WOJCIECH DOBROWOLSKI received the M.Sc.
degree in mathematics from the John Paul II
Catholic University of Lublin, in 2008. He is
currently pursuing the Ph.D. degree with Wroctaw
University of Science and Technology. He is
currently leading a research project at Nokia. His
research interests include artificial intelligence,
natural language processing, and their application
to software logs analysis.

MIKOLAJ LIBURA received the B.Sc. degree in
applied computer science from Wroctaw Univer-
sity of Science and Technology, in 2023, where
he is currently pursuing the master’s degree in
artificial intelligence. He is also employed with
Nokia, working on a research project to apply
natural language processing pipelines to software
logs.

VOLUME 12, 2024

MACIEJ NIKODEM received the M.Sc. and Ph.D.
degrees in computer engineering from Wroctaw
University of Science and Technology, Wroctaw,
Poland, in 2003 and 2008, respectively.

Since 2008, he has been an Assistant Professor
with the Faculty of Information and Communica-
tion Technologies, Wroctaw University of Science
and Technology. His research interests include
low-power wireless networks, dependable, reliable
and secure communication protocols, and indoor
localization.

OLGIERD UNOLD received the M.Sc. degree in
automation systems, the M.Sc. degree in infor-
mation science, and the Ph.D. and D.Sc. degrees
in computer science, in 1989, 1991, 1994, and
2011, respectively. He is currently a Full Professor
with the Department of Computer Engineering,
Wroctaw University of Science and Technology.
His research interest includes adaptive machine
learning methods.

79013

