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ABSTRACT High-performance computing (HPC) systems need to handle ever-increasing data sizes for fast
processing and quick response times. However, modern processors’ caches are unable to handle massive
amounts of data, leading to significant cache miss penalties that affect performance. In this context, selecting
an effective cache replacement policy is crucial to improving HPC performance. Existing cache replacement
policies fall short of Bélády’s optimal algorithm, andwe propose a new approach that leverages the coherence
state and sharers’ bit-vector of a cache block to make better decisions. We suggest a reinforcement learning-
based strategy that learns from past eviction decisions and applies this knowledge to make better decisions in
the future. Our approach uses a next-attemptmethod that combines the results from classic cache replacement
algorithms with reinforcement learning. We evaluated our approach using the Sniper simulator and seven
kernels from CAP Benchmarks. Our results show that our approach can significantly reduce the cache miss
rate by 41.20% and 27.30% in L1 and L2 caches, respectively. In addition, our approach can improve the IPC
by 27.33% in the best case and reduce energy consumption by 20.36% compared to an unmodified policy.

INDEX TERMS Cache replacement, coherence, multicore, reinforcement learning.

I. INTRODUCTION
Over the past decades, advancements inmemory technologies
for computer systems have not kept pace with processor
improvements. This has widened the gap between CPU cycle
time capabilities and memory access latency [1]. To address
this issue, modern processors rely on memory hierarchies
with caches as primary components.

The introduction of memory hierarchies has presented
new challenges and research opportunities. A primary goal
of this research is to explore how to use caches more
efficiently. To minimize cache misses, systems must place
relevant data in levels closer to the processor. Although cache
misses are inevitable in memory hierarchies, strategies can
be employed to optimize system performance. For instance,
Bélády’s optimal replacement policy for standard caches
achieves the highest possible hit rates [2], [3]. However, as an
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offline algorithm that requires future knowledge, it cannot be
implemented.

Cache replacement has been a critical research topic
over the years, resulting in a variety of replacement
policies and optimizations to accommodate hardware con-
straints, such as area and power. Well-known heuristic-based
algorithms include Least Recently Used, Most Recently
Used, Least Frequently Used, and random selection of
ways. However, these algorithms may not be suitable
for certain memory access patterns. In parallel computing
scenarios that rely on caches, cache coherence becomes
a concern [4]. Cache coherence transitions may force the
eviction of blocks, interfering with local cache replacement
policies.

In recent decades, research on cache replacement policies
has evolved to incorporate modern techniques. There is a
growing trend towards using prediction models to select
blocks for eviction in various scenarios [5], [6], [7], [8]. These
models use inputs such as frequency, reuse distance, memory
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access patterns, and instructions to make predictions, fitting
cache replacement policies that involve decision-making
processes.

This paper aims to propose new strategies for improving
cache replacement policies. As future computer architectures
continue to employ parallelism and shared memory hierar-
chies, they will still grapple with cache coherence. Thus,
leveraging coherence-related behavior presents opportunities
for better decision-making in cache data manipulation. For
instance, consider an hypothetical scenario where two pro-
cessor cores simultaneously access andmodify a cache block,
rendering it in a ‘shared’ state. Replacement policies that
incorporate coherence state data can discern this contention
and recognize the potential performance implications of
evicting such a block. In such cases, we may prioritize
the retention of ‘shared’ blocks to prevent performance
bottlenecks stemming from frequent data transfers between
cores.

Our proposed strategies focus on cache replacement
policies that use the coherence state and sharing set of a cache
block to make more informed eviction decisions in architec-
tures that utilize the directory-based MESI coherence proto-
col at the L1 and L2 cache levels. Moreover, Reinforcement
Learning (RL) has the potential to enhance cache replacement
processes [9]. RL models a system with two entities–an agent
and an environment–to optimize decision-making based on
observed actions and environmental feedback. Our goal is to
propose and evaluate algorithms that can be integrated with
existing cache replacement policies to achieve better eviction
decisions. Machine Learning techniques have increasingly
been applied to improve computer architecture in recent
years [10], [11], [12], [13].

We offer several modified versions of traditional
cache replacement algorithms, employing a second-chance
approach and Reinforcement Learning. We then conduct a
comparative analysis of our proposals against unmodified
versions of the following policies: Least Frequently Used
(LFU), Least Recently Used (LRU), Most Recently Used
(MRU), Not Recently Used (NRU), Pseudo-LRU (PLRU),
and Static Re-Reference Interval Prediction (SRRIP).

We emphasize our main contribution: a suite of Reinforce-
ment Learning (RL)-based eviction strategies that consider
the coherence state of cache blocks and the number
of cores sharing specific data. Integrating the coherence
state and sharers’ bit-vector into the replacement decision
process is the main novelty. The RL-scheme observes past
eviction decisions and leverages this information to guide
future decisions while taking coherence-related behavior into
account.

We outline the following contributions of our work:

• We formulate the strategy with the presence of multiple
cores sharing data within the architecture.

• We adapt six well-known cache replacement policies,
maintaining their core principles while incorporating our
proposed modifications.

FIGURE 1. A cache reinforcement learning system.

• Our approach accounts for the cache coherence mecha-
nism and its impact on cache accesses and misses.

• Lastly, we employ Machine Learning techniques to
enhance the cache replacement policies mentioned
above while ensuring hardware overhead remains
acceptable.

We organized the remainder of this paper as follows.
Section II describes our cache replacement strategy in
detail. Section III shows our experimental setup. Section IV
presents the results. Section V places our work in contrast
with previous ones. Finally, in Section VI, we present our
conclusions.

II. COHERENCE AWARE REINFORCEMENT
LEARNING-BASED CACHE REPLACEMENT
While numerous works have enhanced replacement algo-
rithms, only a few have specifically focused on coher-
ence [14]. Moreover, none have addressed this concern using
machine learning. In this section, we discuss the novelties of
our work and our contributions to the state of the art.

A. REINFORCEMENT LEARNING MODEL
Our approach utilizes Reinforcement Learning to decide
whether a chosen cache block should be evicted or not.
A Reinforcement Learning system consists of an agent,
an environment, a policy, a reward signal, and a value
function. Thus, we present our strategy formulated as a
Reinforcement Learning problem. This formulation can be
implemented in various ways, as RL and cache replacement
share compatible theoretical principles.

Figure 1 provides an overview of our Reinforcement
Learning system. The agent in our system, responsible
for deciding whether to evict a cache block, is the cache
controller. The environment consists of information from
caches, specifically an eviction history that includes coher-
ence and sharing information from evicted cache blocks. This
environment communicates its state to the replacement agent,
allowing the latter to decide which action a from the action
space A = evict, do_not_evict will be followed.

The state content comprises information from cache
coherence and the sharing state of cache blocks.We formulate
a vector of weights, wM ,wE ,wS ,wAT ,wBT ∈ R, which
forms our value function V π (s). Here,M , E , and S represent
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Modified, Exclusive, and Shared, corresponding to different
coherence states. Additionally, AT and BT refer to ‘above the
threshold’ and ‘below the threshold,’ respectively.

The threshold is a binary value indicating whether a block
is shared by more than a specific number of cores. In our
experiment, we set the threshold to half of the total number
of cores. For instance, in a 16-core processor, if a block’s
bit vector is set to 9 or more cores, it is considered above
the threshold; otherwise, it is considered below. We further
explain how we update and utilize these values. While the
weights are real numbers (R), future improvements may
consider the use of natural numbers (N) for potentially better
performance.

The environment reacts to the chosen action with a reward
signal R ∈ R and an updated state s ∈ S, which will only
be processed in the future. In fact, our reward design follows
a binary approach: a negative reward (−1) is assigned when
a cache miss occurs for a block that was previously evicted
and recorded in the eviction history, indicating a poor eviction
decision; and a positive reward (+1) is granted when a cache
miss occurs for a block not in the eviction history, suggesting
the past eviction decisions were effective. Our policy π (s)
postpones the use of states by at least one unit of time t . The
main drawback of this decision-making process relies on the
fact that we can only determine whether a block should be
evicted or not when we need it again in the future.

B. THE EVICTION HISTORY TABLE AND COHERENCE
WEIGHTS
The vector of weights of our approach is updated concerning
an eviction history that is part of the policy in the
Reinforcement Learning system. Figure 2 depicts the entities
involved in this process and provides an overview of the
strategy’s operation. There are three starting points which
triggers important steps of our approach, such as the history
and weight’s update phases.

When an eviction occurs (the 1st starting point), informa-
tion from the evicted block is added to the eviction history
of each set. If the new cache block has a corresponding tag
in the history, that entry is removed. The eviction history
table keeps track of the eviction decisions made by the cache
replacement policy. Each entry contains the cache block’s tag;
a bit indicating if it was above (0) or below (1) the threshold;
and two bits representing the coherence state. The table is
used to update the weight vector during the learning process,
allowing the policy to make better eviction decisions in the
future. To update the weights of our learning-based cache
replacement model, we store the memory tag to ensure the
uniqueness of the entries in the history. If the history is full,
we remove the least recently updated entry.

Whenever a cache access occurs (the 2nd starting point),
we update the weights based on whether the requested block
is in the table or not. If the accessed cache block is not found
in the eviction history table, this indicates a favorable eviction
decision thus, the reward is positive. Conversely, if the block
is found, indicating a suboptimal eviction previously, the

FIGURE 2. The reinforcement learning-based eviction strategy.

reward is negative. The reward is determined by the presence
or absence of the cache block in the eviction history table,
influencing future weight adjustments that guide the eviction
policy. The first distribution represents the coherence state,
with the highest probability of being a good eviction decision
(wM ,wE ,wS ). In this case, each weight is a ratio of the
number of entries in this state in the table to the total number
of entries. Thus, the sum of these weights always equals 1.
The second distribution indicates which direction to observe
(above or below) concerning the given threshold for the
number of sharers (wAT ,wBT ). It is also a ratio of the number
of entries above or below the threshold.

In our work, during the initial stages of computation
when no probability distribution exists, we set the Exclusive
coherence state as the most likely candidate for eviction. This
approach results in reduced coherence traffic. We applied
the same principle of minimizing traffic when initializing
the algorithm by evicting blocks with a sharers bit-vector
count below the threshold. Consequently, the exploration-
exploitation trade-off is naturally resolved during computa-
tion, as this information changes independently of the reward.

A larger table size increases accuracy but also increases
hardware space overhead and vice-versa. We chose a
relatively small table size – twice the associativity – to
reduce hardware space overhead while still providing enough
information to make accurate eviction decisions. The table is
partitioned into sets, with each set corresponding to a set in
the cache. This allows for local information to be used in the
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eviction decision, as the coherence state and sharer count are
likely to be similar within a cache set. Then, to execute the
strategy, we need 2 · K · N entries in the entire cache, where
K is the associativity and N is the number of sets the cache
contains.

C. THE REPLACEMENT STRATEGY
The replacement process of a cache block begins with a
cache miss (the 3rd starting point), followed by the cache
mapping, as depicted in Figure 2. Then, a candidate way
and its block are chosen, and we decide whether to evict by
comparing the vector of weights to the cache block. If the
block information corresponds to high-probability elements
in the vector, the block is evicted; otherwise, the block is given
a second chance. For instance, the LRU selected a block in
the Modified coherence state. However, the wM value is the
highest in the vector. Thus, this block is kept in the cache, and
the second LRU block is chosen.

D. A NEXT-ATTEMPT APPROACH
Our primary goal is not to devise an entirely new cache
replacement algorithm. Instead, we assert that the sharing
state or the number of sharers of a cache block can be used
to enhance existing algorithms. Our proposal is to evaluate
whether the choice made by already known algorithms meets
specific criteria. To achieve this, we employ an approach
called the next-attempt. This approach is similar to the
one employed in the Second-Chance Page Replacement
algorithm. However, we do not use a reference bit to
determine if the block or page should be given a second
chance.

The idea begins with the traditional algorithm running
unaltered to select a cache block.We then examine the chosen
block using our heuristics. If it satisfies a specific condition,
the strategy evicts it. Otherwise, the algorithm retains this
block in the cache and selects the second option provided by
the traditional algorithm.

For instance, LRU and PLRU algorithms select the least
recently used block within the cache set. If this block does
not meet a given condition from our strategy, we retain it
in the cache. Consequently, the algorithm selects the second
least recently used cache block. Similarly, the next-attempt
chooses the second most recently used block when using
MRU.

For LFU, the next-attempt selects the cache block with
the second lowest frequency of use. The cost of this strategy
in these algorithms relies on tracking the first and second
victims at each iteration. The original algorithm already
maintains this information since it must select the next
candidate when an eviction occurs.

NRU and SRRIP use the Re-Reference Interval Prediction;
thus, they do not track a sequence of accesses or frequencies
that can be properly sorted. However, remember that they
employ a bit-wise strategy to select the victim. Therefore,
we address this issue by altering the NRU-Bit or the RRPV
to a value that ensures the algorithm runs another iteration

without selecting this cache block. In these two algorithms,
the added cost is the need to rerun an iteration of the algorithm
in the worst-case scenario.

III. EXPERIMENTAL METHODOLOGY
In this section we present the experimental methodology
employed to evaluate our strategies.We focus on the selection
of tools, workloads, and evaluation criteria used to assess the
performance and effectiveness of the proposed strategies.

A. SIMULATOR AND TOOLS
To effectively assess our cache replacement strategies,
we need an environment that offers a flexible computer
architecture capable of modeling a multicore system with
multiple cache levels and support for cache coherence
protocols. Moreover, the environment should enable the
execution of various applications and collect a wide range of
metrics to analyze the behavior of the strategies in diverse
parallel workloads.

Considering these requirements, we have chosen the
Sniper simulator [15] for conducting our experiments. Sniper
is an execution-driven multicore simulator that is built upon
the interval core model. This model allows for individual
clock and timing management while maintaining a window
of instructions for each simulated core, providing a realistic
representation of a multicore system.

The simulator leverages the Pin dynamic instrumentation
framework [16] to collect execution traces from multi-
threaded applications, effectively filtering out irrelevant
traces and focusing on regions of interest. This capability
allows for more accurate analysis of the cache replacement
strategies.

Additionally, Sniper incorporates the McPAT frame-
work [17] into its core, which we utilize for measuring
power and energy consumption. This integration offers
valuable insights into the energy efficiency of the cache
replacement strategies under investigation, contributing to a
more comprehensive evaluation of their overall performance.

B. SIMULATED ARCHITECTURE DESIGN
We evaluate our proposed strategies using a simulated 16-
core processor based on the x86 micro-architecture, with
each core operating at a frequency of 2.66 GHz. The cache
hierarchy consists of three levels. The Last Level Cache
(LLC) is the L3 cache, which is a shared 16MB, 16-way set-
associative cache. As we do not evaluate the L3 cache in our
experiments, we configure the LLC to satisfy all data requests
at this level. The second level comprises private 8-way set-
associative L2 caches, each with a capacity of 256kB. Finally,
the first level consists of private L1 caches, with separate
32kB caches for data and instructions. Both the L1 and L2
caches are 8-way set-associative. We set the cache block size
to 64 bits, maintaining consistency across the cache hierarchy.
We did not use a prefetcher in our evaluation to isolate the
effects of our proposed approach on cache replacement policy
and to provide a fair comparison with the baseline policies.
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TABLE 1. Comparison of cache replacement policies.

The simulated architecture employs the Modified, Exclu-
sive, Shared, Invalid (MESI) directory-based cache coher-
ence protocol. Since the protocol uses only four states,
we require two bits per cache entry to represent them in the
directory. Although one could use the MOESI or MESIF
protocols, they would necessitate three bits per cache entry
due to the additional states. In this work, we exclusively
investigate the MESI protocol.

We consider the following well-known cache replacement
policies for evaluation: LFU, LRU, MRU, NRU, PLRU,
and SRRIP. To assess the complexity of each algorithm,
we examine the number of bits required in the cache and
the operations executed during cache accesses. Table 1
presents a modified version of the comparison made by Al-
Zoubi et al. [18], with the addition of MRU, LFU, NRU, and
SRRIP algorithms.

We adapt the comparison to reflect our implementations,
detailing storage costs and actions executed during cache
accesses for each algorithm. The number of bits required for
each policy is calculated as a function of the number of sets
(N ) and the cache associativity (K ).

We apply each of our cache replacement strategies
simultaneously to both L1 and L2 caches. For example, if L1
caches utilize the SRRIP strategy, L2 caches will also employ
SRRIP. This approach is implemented to mitigate the local
replacement hazard [19].

C. WORKLOADS
A primary objective of our work is to assess the perfor-
mance of our proposed strategies when executing parallel
applications on the modified architecture. These applications
must generate workloads that produce cache accesses and
misses within the cache hierarchy. Additionally, they should
involve parallel workloads with inter-thread communication,
which necessitates memory usage and generates coherence
operations.

We use the seven kernels from theCAPBench suite [20] for
our experiments. CAP Bench is a benchmark suite designed
to serve as a baseline for designing, programming, evaluating,
and learning about low-power manycore architectures. The
benchmark suite also offers a version for x86 architectures,
implemented in OpenMP, and has been slightly adapted for
use with the Sniper simulator – we delimited the region of
interest, speeding up simulations..

The CAP Bench kernels encompass various applica-
tion design aspects, such as parallel patterns, with a

TABLE 2. Kernels available in CAP bench.

focus on manycore architectures even in their OpenMP
version. Consequently, the benchmark and the work-
loads it generates are well-suited for our simulation
methodology.

Table 2 provides an overview of the characteristics
of all CAP Bench kernels. The parallel pattern column
indicates the parallel programming strategy employed by
each kernel. The job type categorizes the kernel based on
the resource predominantly required during its execution.
Memory access intensity reflects the frequency of memory
access events. Finally, the task load is considered reg-
ular if there is a balanced workload distribution among
threads.

• FAST is an image corner detection method implemented
following the Stencil parallel pattern. The workload
input we use is an image of 8192 × 8192 pixels.

• FN computes the abundancy of numbers in an interval,
which is a mathematical property. The interval used in
our experiments is 8 × 106 + 1 to 8 × 106 + 214.

• GF is a filter algorithm that also deals with images
using matrix convolution. The input image has
8192 × 8192 pixels, and the algorithm uses masks of
11 × 11 pixels.

• IS is an algorithm to sort a certain amount of integer
numbers using the bucket sort strategy. In our experi-
ments, we set an amount of 225 integer numbers as input
size.

• KM is awell-known clustering algorithm. The input data
is 214R16 points and 512 centroids.

• LU is a matrix decomposition algorithm, which follows
the Workpool parallel pattern. The workload in our
experiments consists of a 1536 × 1536 matrix.

• Finally, the TSP solves the Traveling-Salesman Problem
in a traveling scenario with 17 towns.

D. PERFORMANCE METRICS
We use various metrics to evaluate the behavior and effective-
ness of our cache replacement approaches. We decided to use
IPC and cachemiss rates due to their common usage in related
works, although these works also use speedup and MPKI.
The primary metric we consider is the cache miss rate from
data caches, as the replacement algorithms directly impact
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FIGURE 3. L1 cache miss rate.

the cache’s block presence. For our experiments, we do not
consider the misses from instruction caches.

Additionally, we measure the coherence traffic by com-
paring the number of invalidates and write-backs between
different replacement strategies. The coherence protocol
can impact performance. Thus, reducing the drawbacks of
coherence while favoring its benefits is crucial. Therefore,
we assess our strategies’ performance based on coherence
traffic.

Another metric we consider is the instructions per cycle
(IPC). IPC is a general metric and corresponds to the
instruction throughput in the processor. Since memory
access instructions take longer to execute than processor
instructions, and cache levels farther from the processor are
even slower, the IPC will vary significantly depending on
the cache miss rates. Thus, IPC is an important metric for
measuring the performance of our strategies.

Lastly, we measure energy consumption, which is the
product of time to solution and power consumed dur-
ing kernel execution. An improvement in cache usage
leads to less computing time and reduced use of cache
elements that consume more power. Therefore, we con-
sider energy consumption as a crucial metric in our
experiments.

IV. RESULTS
In this section, we present the results obtained after simulat-
ing our Reinforcement Learning strategies.

To evaluate these strategies, we followed a two-step
process. In the first step, we used the coherence state and
the sharer’s count as information for the Reinforcement
Learning algorithm. We refer to these strategies as RL-State
and RL-Bitset, respectively. In the second step, we evaluated

the use of both types of information simultaneously
(RL-Both).

To establish a baseline, we compared the performance of
our proposed policies against unmodified policies. There-
fore, except for cache miss, our charts present results in
terms of gains or losses (increase or decrease) against
the respective unmodified algorithm. We compare each
policy using our three strategies, and we present one kernel
per chart.

We evaluated our policies using several metrics. First,
we analyzed the cache miss rate. Next, we measured
the coherence write-backs and invalidates caused during
computation. Finally, we present the instructions per cycle
and energy results.

A. CACHE MISS RATE
Figure 3 presents the overall comparison between strategies
concerning the decrease in L1 cache miss rate. We observe
that our Reinforcement Learning-based strategies outperform
unmodified policies in most cases. With FAST, the RL-Bitset
yields up to a 12.91% decrease in miss rate when using the
LRU policy.

For FN, GF, and TSP, our approaches exhibit fewer
improvements with the MRU policy, occasionally presenting
higher miss rates. The most significant L1 miss rate
improvement for FN is 11.69% using the PLRU/RL-Bitset
strategy. For GF, the best result is a 41.2% improvement with
the RL-Bitset approach and LRU policy. Lastly, an 11.73%
reduction in miss rate is observed for TSP using the LRU/RL-
Bitset strategy.

Despite minor differences, our strategies also reduce miss
rates for KM, with the exception of the RL-State approach
with LFU. The best L1 miss rate improvement for this kernel
is 22.88% using the SRRIP policy and RL-Bitset technique.

For the LU kernel, the PLRU policy stands out, as our
strategies reducemiss rates more significantly than with other
policies. For example, the PLRU/RL-State approach achieves
a 10.18% reduction in miss rate for this kernel.

IS exhibits different behavior compared to other kernels.
For this kernel, only the RL-Bitset strategy yields any
improvement – the miss rate with LFU and RL-Bitset
is reduced by 2.07%. Our Reinforcement Learning-based
strategies fail to improve the other policies. We hypothesize
that our strategy might be prematurely evicting shared cache
blocks that are unmodified but expected to be modified in the
near future. This is supported by an increase in invalidation
coherence traffic, as illustrated in Figure 5 from Section IV-B.
Such inefficiencies in predicting the lifespan of cache blocks
within the IS kernel exacerbate performance issues, leading
to suboptimal cache management.

Figure 4 provides an overview of the decrease in L2 cache
miss rates. Miss rate variations for FAST and GF at this cache
level areminimal. Nevertheless, themost substantial miss rate
reduction for FAST is 0.37% using the RL-Bitset strategy and
LFU policy. For GF, we observe negative results for LRUwith
the same strategy, which is 0.68% worse than the baseline.
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FIGURE 4. L2 cache miss rate.

Referring to Figure 4, FN, GF, and TSP show almost
no miss rate reductions in L2 cache, regardless of the
applied strategies. This pattern is consistent with previous
observations, where improvements in L1 cache miss rates
lead to fewer L2 cache accesses, thus increasing the rate at
this level. Nonetheless, the RL-State approach yields the best
L2 miss rate reductions for the SRRIP policy when running
GF (0.15%). Additionally, with TSP, the RL-Bitset improves
the LFU policy by reducing the L2 miss rate by 5.24

For IS, we highlight the LFU, LRU, and SRRIP policies,
in which our RL-Bitset approach attains better results than
the baseline. Specifically, for SRRIP, all Reinforcement
Learning-based approaches outperform the original SRRIP.
The RL-Both strategy is the best, reducing the miss rate by
13.63%.

With the KM kernel, the most significant variations occur
with LFU. The RL-State and RL-Both strategies achieve
around 16.2% miss rate reductions over the baseline with
this policy. However, no improvements are observed for this
kernel using the MRU policy.

Conversely, our techniques reduce the L2 miss rates with
MRU and SRRIP for the LU kernel. The SRRIP/RL-Bitset
approach reduces the miss rate by 17.09% compared to the
unmodified policy. The MRU/RL-State approach achieved
27.30% of miss rate reduction.

B. COHERENCE OPERATIONS
We collected the invalidates from the RL-based approaches
and depicted these values in Figure 5.
FAST, FN, GF, KM, and TSP present substantial improve-

ments when our Reinforcement Learning-based techniques
are employed. This indicates that our strategies more
effectively determine which blocks to keep in the cache,

FIGURE 5. Coherence invalidates decrease.

consequently reducing the need to invalidate blocks that may
be present in other caches. However, such improvements are
not observed with the MRU policy.

More specifically, RL-Bitset performs best for FAST,
regardless of the policy it is employed in. In this kernel,
this approach improves the NRU policy, resulting in 41.85%
fewer invalidates. For FN, the most significant improvement
is a decrease of 34.01% with the LRU/RL-State. GF is the
kernel with the highest reduction, achieving up to 57.77%
fewer invalidates than the baseline with the LRU policy using
the RL-Bitset strategy.

The RL-Bitset strategy is also the best for KM and
TSP. We observe 27.16% fewer invalidates with SRRIP and
37.96% with LFU for these kernels, respectively. We also
see some improvements in LU, with up to 47.03% fewer
invalidates when using the SRRIP policy with the RL-Bitset
strategy.

Figure 6 displays the improvements concerning coher-
ence write-backs. Most of the kernels exhibit favorable
results, although they are relatively smaller than those
of invalidates. The best results for each kernel, detailed
below, are observed with the RL-Bitset approach. Firstly,
for FAST with the LRU policy, we achieve 12.57% fewer
write-backs than the unmodified policy. The best case
for FN is 6.52% with PLRU, as well as for GF, which
demonstrates 20.98% fewer operations than the unmodified
PLRU. IS exhibits the most significant decrease among all
kernels, at 35.56% when using the LRU with the RL-Bitset
approach.

Continuing with the RL-Bitset approach, the coherence
write-backs are reduced by 27.16% using the SRRIP policy
for the KM kernel. For LU, the LFU policy shows the
most significant decrease, at 17.87% over the baseline.
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FIGURE 6. Coherence write-backs decrease.

Lastly, the TSP kernel, when run in the architecture with
the NRU policy, displays 21.24% fewer write-backs than the
baseline.

C. INSTRUCTIONS PER CYCLE
To evaluate the performance of our Reinforcement Learning-
based approaches, we present their observed IPC in Figure 7.
FN and TSP show less significant variations in IPC than other
kernels when with our strategies. Nonetheless, the IPC for
these kernels follows the cycles spent behavior. Since TSP
is compute-bound, the main computational workload focuses
more on processing rather than frequent memory accesses.
The slight decrease in IPC could indeed be attributed to
the minor overhead incurred from the RL strategy’s ‘check
weights’ phase. In compute-bound scenarios, the relative
impact of cache management on performance is often less
pronounced because the CPU spends more time calculating
than fetching data from memory.

FAST and GF kernels demonstrate notable improvements
over the baseline with all Reinforcement Learning-based
strategies, except for the MRU policy. The best result for
FAST is observed with the NRU policy using the RL-Bitset
approach, which has a 1.68% higher IPC than the baseline.
For GF, the LRU policy is where our RL-Bitset strategy can
achieve the most significant IPC improvement, reaching up
to a 27.33% increase. These IPC improvements also follow
the decrease in the number of cycles. Likewise, the reduced
cycles spent are due to the improvements in miss rates and
coherence operations for these kernels. Moreover, FAST and
GF deal with the same input type and follow the same
parallel pattern, though they are different. GF performs fewer
memory accesses and takes longer to execute than FAST [20].

FIGURE 7. Instructions per Cycle (IPC) increase.

Consequently, the impact of our strategies on GF is more
significant, resulting in higher IPC gains.

Concerning the IS kernel, the best results are obtained with
SRRIP, owing to the cycles spent with each strategy. This
policy shows up to 11.22% higher IPC than the baseline when
the RL-Both strategy is employed. However, we also observe
some IPC decreases in this kernel using the PLRU policy,
which is around 14.8%. PLRU dynamically approximates
LRU behavior without tracking the exact order of cache lines.
Misguided evictions due to inaccurate RL predictions about
coherence states can disrupt PLRU’s tree balance. A similar
issue applies to NRU, which relies on binary markers to
identify blocks that have not been recently used. This also
applies to NRU when trying to mark the blocks that have
not been recently used, and our strategy ignores this binary
information. Such evictions may remove blocks that are not
the least recently used but still hold future value. Therefore,
employing the RL-Bitset approach in this scenario could yield
better results.

Similar to TSP, KM exhibits more pronounced decreases
than increases. For example, the IPC when using LFU is
reduced by 3.7% with the RL-State technique compared
to the baseline. Focusing on the eviction of MRU or
LFU blocks is suboptimal in scenarios where data points
accessed recently still hold significant value for upcoming
computations, such as recalculating centroids. There is also
a rise in invalidation traffic, indicating frequent invalidation
of cache lines still needed by other cores or threads. This
could be due to the dynamic relocation of centroids in KM,
which affects the coherence protocol and results in higher
synchronization overhead. Thus, our strategy exacerbates
existing problems in this MRU and LFU scenario for KM,
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FIGURE 8. Energy consumption decrease.

contributing to minor processing overhead that adversely
impacts IPC.

In contrast to other kernels, with LU, the MRU policy
demonstrates the best improvements in IPC. We observe
a 1.9% higher IPC with this policy using the RL-Bitset
approach. However, as in KM, we cannot improve the LFU
policy using our Reinforcement Learning-based strategies.
Furthermore, we notice the opposite behavior when using the
MRU policy.

D. ENERGY CONSUMPTION
Figure 8 presents the decrease in energy consumption that
our strategies can achieve. Consistently, FAST, FN, and TSP
do not exhibit significant changes in energy consumption,
as their IPC and cache miss results also do not vary much
when we modify the cache replacement strategy. We have
alreadymentioned that higher IPC values correspond to lower
energy consumption. For these kernels, as well as for GF and
IS, the energy results exhibit a behavior similar to the IPC.

FAST demonstrates up to 1.11% less energy consumed
than the baseline, using the RL-Bitset approach. For FN, the
best result is with RL-State applied to LRU, which is 0.1%
lower than the unmodified policy. GF shows almost equal
results for all policies and strategies, which is around 20.1%.
The best result for IS is observed in the LFU/RL-Bitset
configuration, with 15.09% less energy consumed. We also
highlight the SRRIP policy for IS, which can be improved
by all of our Reinforcement Learning-based strategies.
Finally, TSP displays almost no improvements in energy
consumption, being worse by a margin of approximately
0.23% than the baseline.

Regarding KM and LU, we find that the IPC decrease
is not sufficient to negatively impact energy consumption.

FIGURE 9. Bits added to the cache architecture.

Generally speaking, the improvements for KM are minimal
(3.48% using MRU and the RL-Bitset approach). For LU, the
best result is 4.35% less energy consumed with the LFU/RL-
State strategy.

E. HARDWARE OVERHEAD
To discuss our strategies’ hardware overhead, let us recall
that we used the directory-based protocol. Figure 9 displays
the entities with additional bits to enable our strategy. First,
consider the per-block directory entry. Each one contains a
16-bit vector to track sharers, one bit to identify if the block
has surpassed the threshold of sharers, and two bits for the
coherence state. As a result, each directory entry has at least
19 bits in our 16-core processor experiment.

Now, consider the eviction history table. There is one table
for each cache set, and each table contains a number of
entries equal to twice the associativity denoted by K . The
number of sets is denoted by N , which varies according to
the cache size. T is the number of bits required for the tag,
present in each cache block. Consequently, all the eviction
histories occupy a total of 2KN entries in the cache. Each
history entry contains the tag T , which we use to make them
unique. Additionally, they have the past evictions threshold
and state information. Considering these bits, we have at
most 2KN (T + 3) bits to implement the eviction histories in
the cache.

Lastly, the vector of weights comprises five real numbers
(R). To implement this in real hardware, we should use
natural numbers (N) for better performance and occupation.
A simpler strategy would be to use a single bit that indicates
if blocks in that state or threshold should be kept in
the cache.

We emphasize that we can reduce this space overhead
according to the cache configuration. For instance, if we
increase the block size, the cache will have fewer sets,
reducing the number of eviction history tables. As a
last resort, we could also explore a global strategy, i.e.,
a single eviction history and vector of weights for all
sets. This approach would significantly reduce the space
overhead.
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TABLE 3. Comparison between related work on ML-based cache replacement.

In terms of processing overhead, we assess the core
operations of our strategy, depicted in Figure 2. The ‘Update
history’ operation transfers T + 3 bits – tag and state
information of the cache block – to the eviction history
upon every eviction. The ‘Update weights’ operation adjusts
the values in the weight vector to rebalance the decision-
making environment. Our method is tailored to asynchronous
hardware architectures, which mitigates potential processing
delays, ensuring these updates occur seamlessly without
impacting the way selection.

Furthermore, the ‘Check weights’ phase incurs minimal
processing overhead. This phase involves a rapid compar-
ison of stored weights against the current cache block’s
coherence state and sharing threshold to determine eviction
suitability. These factors collectively ensure that our RL
scheme enhances cache performance without significant
computational cost, making it suitable for high-performance
computing environments.

V. RELATED WORK
This section presents related work in cache replacement
that somehow applies Machine Learning-based strategies.
For example, the Economic Value Added (EVA) is the
strategy proposed by Beckmann et al. [21] The authors
claimed that cache replacement could be modeled as a
Markov Decision Process due to how it works. They adopted
the idea and proposed using the EVA of cache blocks,
which is the difference between the number of hits a
cache block should yield and its average hit count and
occupancy.

Hawkeye is the policy proposed by Jain and Lin [22]. The
authors used Bélády’s algorithm to learn the optimal solution
from past accesses. The strategy uses a trainer that receives
cache access history and computes the optimal algorithm.
Next, the predictor uses this information and the PC to
classify cache blocks into cache-friendly or cache-averse.
The policy consults the predictor in every cache insertion and
promotion.

The Multiperspective Placement, Promotion, and Bypass
(MPPPB) [23] technique use a multiperspective reuse pre-
dictor. The MPPPB predictor captures several characteristics
from the application in execution, producing many perspec-

tives. Furthermore, the predictor also uses information from
the LRU stack to perform the training steps, besides the
program counter (PC) information. Thus, with those inputs,
the predictor produces highly accurate results for eviction
decisions.

Machine Learning-based cache replacement can also use
an Imitation Learning approach [7]. The main idea is to
mimic some behavior from examples. This work consisted
of a model to learn cache access patterns using Bélády’s
algorithm.

Another work also proposed an offline tool using Rein-
forcement Learning to learn access patterns [8]. It evaluated
the learned model and implemented the cache replacement
strategy focusing on specific features. The main goal was to
check the reuse distance, predicted based on the distance of
the cache blocks used in the past. When the predicted reuse
distance was higher than the reuse distance of a cache block,
the policy kept this block in the cache.

Similarly, we can mention the Long Short-Term Memory
(LSTM) approach [6]. This work trained an LSTM model
to extract patterns from the program counters (PC) of
load and store instructions. The model is trained offline
using Bélády’s algorithm and then used to build an
online SVM-based hardware predictor to perform the cache
replacement.

LeCaR is a general framework that uses the regret
minimization technique [5]. It uses two data structures
for each cache block to track their frequency (LFU) and
recency (LRU) of use. Then, it chooses which strategy
to follow based on what it has learned from the data
structures.

Last but not least, theCatcher framework was built to learn
the relationship between different replacement policies [24].
This work evaluated the probability distribution of several
replacement algorithms and workload distributions using
Deep Reinforcement Learning. The framework trains an
end-to-end cache replacement policy based on requested
addresses concerning recency (LRU) and frequency (LFU).
It learns from LRU and LFU results and applies these
approaches.

Table 3 shows characteristics of past work on these
Machine Learning-based cache replacement policies, posi-
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tioning ours against them in the state of the art. Our work
is complementary to the previous work. First, we observe a
predominant use of recency and frequency information on
them, which is naturally used in ours, as shown in Section II.
Next, none of them are aware of cache coherence in the
replacement policy, which is relevant information to the
eviction decision. In addition, most of them are different
in terms of Machine Learning techniques. One work used
Reinforcement Learning with an offline approach [8], which
might be a paradox considering the learning purposes. Thus,
there are gaps to explore in this state of the art, which we do
in our paper.

In terms of results, the works have reported improvements
in IPC of 14.7% [6], 4.86% [8], and 9.1% [23]. Also,
an 8.9% reduction in cache miss [6] and 1% energy
overhead [22]. These results are shown here to position
ours against related work. Table 3 presents the ‘‘Mean
miss decrease vs. LRU’’ and ‘‘Mean speedup vs. LRU.’’
These metrics, reflecting averages from various applica-
tions used in related work, provide broader context while
acknowledging the methodological differences. However, the
direct comparison against related work is challenging due
to significant methodological differences - the number of
workloads and their types, architectures, and experimental
setups. It is important to note that most of these studies did not
consider multicore architectures or coherence traffic, which
are central to our approach. Additionally, the predominance
of offline learning methods in previous works contrasts with
our online learning approach, which integrates coherence
information - a crucial aspect they lack. Nevertheless, the
potential for integrating our strategy with others in future
research could enhance the effectiveness of cache replace-
ment policies. Our results affirm the benefits of incorpo-
rating coherence information and employing a next-attempt
strategy, underscoring the robustness and applicability of
our method.

VI. CONCLUSION
Caches are critical components for the performance of mod-
ern processors, and the replacement policy they implement
is essential. With the coherence problem affecting most
modern multicore processors, finding a replacement policy
that considers information about the sharing state of a cache
block is crucial. In this paper, we presented a Reinforcement
Learning approach that uses the sharing state and the number
of cores that share a cache block to improve the cache
replacement.

We implemented our approach on three well-known
replacement policies, namely LFU, LRU, MRU, NRU,
PLRU, and SRRIP, and observed significant improvements
in cache miss rates, instructions per cycle, and energy
consumption. Our RL-Bitset approach, which considers the
number of cores that share a cache block, achieved up to
41.20% reduction in L1 cache miss rate and up to 17.09%
reduction in L2 cache miss rate, leading to up to 27.33%
IPC gains and 20.10% energy consumption reduction over the

baseline. Overall, our work demonstrates that a reinforcement
learning-based approach that considers the coherence state
and sharers’ bit-vector of a cache block can significantly
improve HPC performance.

While our approach used information from coherence
and the sharer’s bitset locally within cache sets, future
research could explore using this information globally.
Additionally, we suggest exploring the use of our strategies
in other memory environments, such as virtual memory page
replacement. Then, it would be interesting to investigate how
our approach performs on applications such as web servers
and big data, which run codes repeatedly on different data
sets, and whether knowledge learned could be sustained
between each run.
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