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ABSTRACT This paper proposes an unmanned combat decision-making algorithm based on PPO and expert
systems. The experimental results show that the algorithm has good decision-making ability. A strategy
optimization method based on a self-encoding neural network is proposed, which greatly improves the
effective decision-making rate of the original algorithm. In view of the opaque problem of the unmanned
combat decision-making model obtained by the above deep reinforcement learning algorithm, a local
interpretability algorithm GLIME based on Generative Adversarial Network (GAN) and Local interpretable
model-agnostic explanations (LIME) is proposed, which improves the stability of the LIME algorithm.
Finally, combined with the global interpretability algorithm, Permutation Feature Importance (PFI), the
decision-making samples are analyzed from both local and global perspectives, providing comprehensive and
stable explanations for the decision-making algorithm, thereby improving the transparency of the decision-
making algorithm.

INDEX TERMS Generative adversarial network (GAN), local interpretable model-agnostic explanations
(LIME), interpretability, permutation feature importance (PFI), unmanned combat decision-making
algorithm.

I. INTRODUCTION
In recent years, based on the good nonlinear fitting ability of
deep neural networks, the trained deep neural network can be
used as a nonlinear expression of the commander’s combat
decision-making knowledge [1]. Relevant researchers have
applied deep reinforcement learning algorithms such as Deep
QNetwork (DQN), Soft Actor-Critic (SAC), Proximal Policy
Optimization (PPO), Twin Delayed Deep Deterministic
Policy Gradient (TD3) to problems such as air combat
games, submarine training confrontation, and drone decision-
making [2], [3], [4]. However, current research in this area is
still in the exploratory stage. The learning method of deep
learning algorithm architecture, which optimizes parameters
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through backpropagation by labeling a large amount of data,
is compared to a ‘‘black box’’ in the ‘‘end-to-end’’ model.
People cannot understand the mechanism of decision-making
in this ‘‘end-to-end’’ model and cannot judge whether the
decision is reliable, that is, the model lacks interpretability,
which poses many potential dangers. On the one hand, it will
reduce the credibility of the model and it will be difficult
to establish trust between humans and machines; on the
other hand, it will also bring difficult security problems [5].
There are many studies on the interpretability of artificial
intelligence currently. The categories and interpretation
angles of interpretability methods are diverse. According
to whether it is related to the model, it can be divided
into relevant model interpretability algorithms and unrelated
model interpretability algorithms; according to the time
to obtain interpretability, it can be divided into intrinsic
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interpretability methods and post-hoc interpretability meth-
ods; according to the scope of interpretation, it can be divided
into global interpretability methods and local interpretability
methods [6]. Now summarize the explainability methods at
home and abroad into five aspects.

A. SELF-EXPLAINING ALGORITHMS
They are inherently explainable, usually have simple struc-
tures, and are easy to implement. People can easily under-
stand their decision-making process. Linear regression [7],
naive Bayes [7], decision tree [8],and XGBoost algorithm [9]
are typical representatives of this type of model. Generally,
there is a balance between the embedded explainability and
accuracy of self-explaining models. If the self-explaining
algorithm has a simple structure and good interpretability,
then the fitting ability of the model will be limited, resulting
in low prediction accuracy and restricting the application
scenarios of these algorithms.

B. EXPLAINABLE ALGORITHMS FOR UNRELATED MODELS
These algorithms do not modify the model, but explain
the model by analyzing the impact of input features on
the prediction results. They are flexible and applicable to
any type of model. Important knowledge can be extracted
directly from the prediction process, and the complexity
of model operation can be reduced through model proxy
methods. Typical representatives include Partial Dependence
Plot (PDP) [10], Feature Contribution Individual Conditional
Expectation (ICE) [11], Local Interpretable Model-agnostic
explanations (LIME) [12], Permutation Feature Importance
(PFI) [13], Accumulated Local Effects (ALE) [14],and
Shapley Additive Explanations (SHAP) [15].

C. EXPLAINABILITY ALGORITHMS BASED ON EXAMPLES
They explain the behavior of machine learning models or
interpret the underlying data distribution by selecting specific
instances of a data set. Most of these methods are model-
independent. Only when we can represent data instances in
a way that is understandable do explainability algorithms
based on examples make sense. Typical representative
algorithms include the K-nearest neighbor algorithm [7], and
counterfactual instances [16].

D. MODEL-BASED EXPLANATIONS
This type of algorithm is used by many researchers to explain
a black box model through their own specific methods. The
proposed method is based on this black box model or specific
usage scenario. For example, Krakovna combines RNN
with a simpler and more transparent hidden Markov model
(HMM). The process is to train HMM, then add HMM state
probability to the output layer of LSTM. LSTM model can
leverage information from HMM and fill in gaps when HMM
runs poorly, resulting in fewer components in LSTM and
allowing it to be explained separately [17]; Quanshi Zhang
defines the filter in the specific transformation layer of CNN

as a specific object part, which allows the transformation
layer to be explained. The modified CNN does not change
the loss function at the top layer and uses the same training
samples as the original CNN [18].

E. VISUAL-BASED EXPLAINABLE ALGORITHMS
Visual-based explanation methods adopt an explanation
approach based on feature importance, searching for correla-
tions between input variables, feature encodings, and output
results, and presenting them visually. It is a relatively direct
and effective way to understand neural networks, with typical
representative algorithms including activation maximization
[19], backpropagation [19], class activation mapping [19],
Grad-CAM [20], and so on.
From the current research status, researchers generally rec-

ognize the importance of explainability in machine learning
and have conducted many very meaningful studies. However,
the current research on explainability in machine learning
is still in its infancy, and there is no unified understanding
of the nature of explainability and research methods. The
current explainable methods also have limitations such as
limited application scenarios and insufficient stability, and
there is still a longway to go before practical application. This
paper proposes a local explainability algorithmGLIME based
on Generative Adversarial Networks (GANs) and Local
Interpretable Model-agnostic Explanations (LIME), which
combines with the global explainability algorithm Permuta-
tion Feature Importance (PFI) to provide comprehensive and
stable explanations for the decision-making algorithms from
both local and global perspectives. The above models and
algorithms are validated.

II. DESIGN AND OPTIMIZATION OF A BATTLE
DECISION-MAKING ALGORITHM BASED ON DEEP
REINFORCEMENT LEARNING AND EXPERT SYSTEMS
The decision algorithm based on deep reinforcement learning
and an expert system can simultaneously take into account the
machine learning advantages of deep reinforcement learning
and the human experience knowledge of expert system,
making the strategy progressiveness while maintaining a
certain stability. At the same time, applying human domain
knowledge and implicit experience to reinforcement learning
can reduce its learning difficulty and improve learning
efficiency. The principle of combination is to layer the
decision instructions of deep reinforcement learning into
campaign-level decision instructions and tactical-level deci-
sion instructions [21]. Campaign-level decision instructions
are macro-level operational instructions aimed at global
combat situation information, and their content is specific
action rules formed based on expert experience. Tactical level
decision instructions are conditional judgments of action
rules based on defined rules, in order to parse out action
instructions that can be directly executed in the environment.
The decision-making process is shown in Figure 1, and the
description of the decision-making process is as follows:
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FIGURE 1. Schematic diagram of decision-making process based on deep
reinforcement learning and expert system versus decision-making
algorithm.

(1) Based on the battlefield environment, the current
battlefield situation is input into the deep reinforcement
learning algorithm in the form of a one-dimensional
matrix.

(2) The deep reinforcement learning algorithm makes
decisions based on the situational approach, and its output is
a certain type of campaign-level decision-making instruction.

(3) Parsing the campaign-level decision-making instruc-
tions selected by deep reinforcement learning into tactical-
level decision-making instructions according to the rules
required.

(4) In the battlefield environment, directly executing
tactical-level decision-making instructions, generating new
battlefield situations, and turning to step (1).

The expert system knowledge base describes decision-
making action rules for unmanned combat scenarios, and
the database is used to store battlefield situations. The
reasoning machine combines the knowledge base and
database to output specific combat instructions. Based
on experiments, the specific action rules are designed as
follows:

(1) Action rule 1: Dispatch unmanned aerial vehicles
without tasks to attack enemy warning radar.

(2) Action rule 2: Dispatching unmanned aerial vehicles
without tasks to attack enemy ground-based missiles.

(3) Action rule 3: Dispatch unmanned aerial vehicles
withoutmissions to attack enemy unmanned combat vehicles.

(4) Action rule 4: Dispatch unmanned aerial vehicles
without tasks to support friendly forces.

(5) Action rule 5: Dispatch a task-specific UAV to abandon
its mission and turn to attack the enemy’s surface-to-air
missile defense system.

(6) Action rule 6: Dispatching a task-specific UAV to
abandon its mission and turn to attack the enemy’s warning
radar.

(7) Action rule 7: Dispatch a task-specific drone to
abandon its mission and turn to attack the enemy unmanned
combat vehicle.

This section uses PPO as a deep reinforcement learning
algorithm.

TABLE 1. State space collection.

A. STATE SPACE
The state space of the PPO algorithm is defined as shown
in Table 1, where the first 72 situational features are those
that have not been fused, and the remaining features are
those generated through situational fusion. Considering the
impact of feature interactions on interpretable methods,
we reduce the correlation between all features to make them
as independent as possible. There are a total of 88 features
in the state space. If a situational feature is not observed, its
default value is 0. The content includes information about
the location, survival status, task situation, and battlefield
situation of all combat units. The comprehensive and effective
information can fully demonstrate the situation on the
battlefield, providing a reasonable and effective state space
for the training of the PPO algorithm.

B. ACTION SPACE
The action space is the output space of the reinforcement
learning algorithm. Its design firstly ensures the possibility
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of achieving the expected goal, avoiding the blind spots that
cannot be reached in the task solution space. This requires
that the action space should be fully functional. At the same
time, the action space should be as simple and efficient as
possible, so as to effectively reduce the difficulty of training
and improve the performance of the algorithm. The action
space of the PPO algorithm used in this paper is seven
action rules designed based on the expert system. In order
to ensure the completeness of the strategy, non-strategy
execution actions are added to meet the need of selecting
decision-making actions when there is no task to perform.
In summary, there are a total of eight action spaces, including
attacks on enemywarning radar, ground defensemissiles, and
unmanned combat vehicles, as well as instructions such as
collaborative attacks and task switching. The action space has
low dimensionality and completeness.

C. REWARD FUNCTION
The reward function is a direct indicator for evaluating
the quality of current behavior in reinforcement learning
algorithms, and it is also a key factor guiding the iterative
optimization direction of the strategy. The design of the
reward function directly affects the learning efficiency
and final strategy of the reinforcement learning algorithm.
To avoid the occurrence of sparse reward problems, this paper
adopts a design principle combining auxiliary rewards and
settlement rewards. The auxiliary rewards appear at each step
to guide the agent to continuously approach the final goal,
while the settlement rewards are directly given to the agent
after the game is completed based on the outcome of the
game. This design method can more comprehensively guide
the agent to achieve its goal. The reward content includes the
final result, decision-making times, instruction situation, and
scoring situation. The specific design is as follows:

(1) Assistant reward: Red’s new score for this step - Blue’s
new score for this step + command reward (±0.01).
(2) Settlement reward: the win/loss is the sum of±200 and

the reward for the final decision number.
Among them, the threshold for the number of decisions is

2000, and the reward value increases with the decrease in the
number of decisions.

D. TRAINING AND TESTING ANALYSIS OF BATTLE
DECISION-MAKING ALGORITHM
Based on the design of the PPO algorithm in the previous
section, it was trained in the use scenario of this paper. In the
PPO algorithm, a BP network was used to represent the
Actor and Critic networks. The two networks had the same
structure, including two hidden layers, with 88, 128, 64, and
8 neurons per layer. The Relu activation function was used
between the input layer and hidden layer, and between the
output layer and hidden layer. The network optimizer used
Adam, and all hyperparameters in the PPO algorithmwere set
according to experimental testing and experience as shown in
Table 2 [22].

TABLE 2. PPO hyperarameter setting.

FIGURE 2. Win rate curve.

FIGURE 3. Reward value curve.

A simulation environment for unmanned combat was
built in the unmanned combat attack and defense deduction
software. The blue strategy used the platform’s own strategy,
and the red strategy used the PPO algorithm. The training
results are as follows. The number of training games was
12,000, with each 50 games as a node. The winning rate
and average reward value within the node were calculated,
as shown in Figures 2 and 3 respectively. It can be seen
that the PPO algorithm can maintain a final winning rate of
about 100%, and the reward value per game is maintained
at about 430. From the winning rate and positive reward,
it can be seen that with the increase in training times, the PPO
algorithm gradually converges and stabilizes, and has been
able to completely defeat the blue strategy. Experiments have
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proved that the decision-making algorithm based on the PPO
algorithm has good decision-making ability.

E. OPTIMIZATION OF DEEP LEARNING-BASED BATTLE
DECISION-MAKING ALGORITHM
Although the decision-making algorithm based on the PPO
algorithm and expert system has good decision-making abil-
ity, its effective decision-making rate is very low and needs
to be optimized and improved. The optimization idea is to
obtain a better new strategy by performing secondary fitting
on the decision samples of the original strategy to achieve
the purpose of optimization. Due to the good fitting ability
of deep learning, the decision-making algorithm based on
deep learning is optimized. The optimization scheme process
is shown in Figure 4. The trained decision-making model is
used for combat in an unmanned combat environment. Each
decision-making collects battlefield situation information
and decision-making action information as a sample and
stores the samples in the decision-making sample library.
Then, the sample library is optimized and screened to obtain
an optimized sample set, and the deep learning algorithm is
used for offline training to fit this optimized sample set, thus
forming an optimized strategy.

FIGURE 4. Flow chart of optimization scheme.

Optimizing the construction of the sample set is to select
high-quality decision samples from the decision sample
library. The sample selection is mainly carried out from
two aspects. On the one hand, samples from winning games
are selected. On the other hand, samples from games with
relatively few decisions based on winning are selected. In the
experimental process, a total of 2000 games were played to
construct the total decision sample library. The distribution
of decision times per game is shown in Figure 5. It can
be seen from the figure that most of the decision times for
each game are between 600-800 and 1400-1600. Among
the 2000 games, 24 games were lost. The screening and
optimization rules for constructing the optimized sample set
are as follows:

(1) Extract the winning game samples.
(2) Extract the game data with less than 1000 decision-

making times.
(3) Modify the samples of invalid decisions to have

the label ‘‘no task execution action’’, making them valid
decisions.

To sum up, matching the extraction rules with the decision
sample library, the optimized sample set constructed contains
a total of 1157 games with a total of 61499 decision
samples.

FIGURE 5. Distribution of decision times.

TABLE 3. Strategy comparison.

The strategy of fitting the self-encoding neural network
is selected as the final optimization decision strategy.
To verify the effectiveness of the optimization strategy, the
decision-making algorithms based on PPO and expert system
are tested in the same scenario for 100 games before and
after optimization, and the average values of each comparison
index are taken. The results are shown in Table 3. The
data comparison shows that the optimized strategy has been
improved in various indicators, especially in the effective
decision-making rate, which proves the effectiveness of
the optimization method for the decision-making algorithm
based on self-encoding neural network proposed in this
paper.

III. RESEARCH ON THE INTERPRETABILITY METHOD OF
DECISION-MAKING ACTIONS
This paper provides explanatory information for the decision-
making actions made by the established decision-making
model based on two explanation methods: Local interpretable
model-agnostic explanations (LIME) and Permutation Fea-
ture Importance (PFI), thereby improving the transparency
and trustworthiness of the decision-making model. At the
same time, it improves the instability of the LIME algorithm
to achieve a safe and stable explanation effect.

A. LIME INTERPRETABILITY METHOD
Local interpretable model-agnostic explanations (LIME) is
an interpretable method that is independent of the model
and can be used to individually explain the predictions of
any opaque model. Its greatest advantage is its flexibility
and accuracy, which can provide precise explanations for
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FIGURE 6. LIME frame diagram.

any decision made by any model [10]. The main idea is
to use an interpretable model (such as a linear model) to
locally fit the predictions of the target black box model.
This method does not change the model, but by perturbing
the explanation instance, it detects changes in the output of
the black box model, and then trains an interpretable model
on the explanation instance based on these changes. Figure 6
shows the training flowchart of LIME, and its calculation
process is as follows:

Step 1: Select the sample instance that needs to be
explained;

Step 2: Generate new data by randomly perturbing this
instance and obtain predictions for these samples;

Step 3: Calculate the distance based on the similarity
between the new sample and the target instance;

Step 4: We weigh the new dataset based on distance, and
then train it using an interpretable model;

Step 5: Explain this instance through the interpretation
results of the interpretable model.

In mathematics, LIME can be represented as shown in
formula (1) [12].

explanantion(x) = argminL(f , g, πx) + �(g) (1)

where x is the explanatory instance, g is the interpretable
model, minimizing loss L (such as mean square error)
represents the closeness of the interpretation g to the
prediction of the original model f , � (g)is model complexity
(such as the feature number), and G is the set of possible
interpretable models. The closeness πx defines the size of
the neighborhood around the explanatory instance x during
interpretation, which is calculated by a kernel function. Its
formula is shown in equation (2).

πx = exp

(
−D(x, z)2

σ 2

)
(2)

where, D is the distance between the target sample and the
perturbed sample (usually taken as the cosine function), z
is the new sample generated by perturbation and σ is the
hyperparameter of the kernel function.

The main drawback of LIME is the ‘‘instability’’ of the
explanations due to the sampling process. Due to randomness,
when the sampling process is repeated multiple times, the
results of LIME are different. The process of randomly
perturbing these points makes LIME an uncertain method,
which lacks ‘‘stability’’. Instability means that it is difficult
to trust these explanations, so this needs to be addressed in
applications.

B. PFI EXPLAINABLE METHODS
The importance of permutation features(Permutation Feature
Importance, PFI) is also an explanation method unrelated
to the model, providing a global explanation for black box
models. Its principle is to randomly rearrange or shuffle
specific data columns in the sample while leaving the
remaining columns unchanged. If the prediction accuracy of
the model significantly decreases, it is considered that the
feature is important. Conversely, if rearranging and shuffling
the features in this column has no effect on the accuracy
of the model, the features corresponding to this column are
considered to be unimportant [10]. Its calculation process is
as follows:

Step 1: Estimate the error of the original model,
e−origin = L (y, f (X)), where f is the black box model, X is
the input feature matrix, y is the target vector, and L (y, f (X))

is the error metric function;
Step 2: Loop N times: Loop over each feature:

1) Generate a feature matrix by replacing the column
containing the feature X in the data X−permj.

2) The prediction error based on permutation data,
e−perm = L (y,X−permj).

3) Calculate feature importance, FI−j = e−perm −

je−origin or FI−j = e−perm/e−origin.

Step 3: Sort the variables in descending order by FI.
To eliminate randomness, step 2 will be repeated N times,
and the average value will be taken as the final result.

C. SELECTION PRINCIPLES AND APPLICATION PROCESS
OF INTERPRETABLE METHODS
Due to the different perspectives of different researchers,
they have different definitions of interpretability, and there is
currently no unified definition of interpretability. This paper
explores and applies two algorithms, LIME and PFI, with the
following principles:

(1) Both LIME and PFI separate interpretation from
machine learning models, that is, they are not related to
model interpretation methods. Compared to model-specific
interpretation methods, their biggest advantage is their
flexibility. Users can apply interpretation methods to any
machine learning model they need without damaging the
model’s predictive ability;

(2) LIME is one of the few methods that can be applied
to tabular data, text, and images. Its interpretation method
analyzes a single sample to explain the prediction, enabling
fast and accurate interpretation of a single sample. The
interpretation format calculates and arranges the contribution
of all feature variables to the prediction result, visually
showing the reasons for making decisions, and providing a
very friendly and accurate explanation for users.

(3) The PFI input sample is all the samples in the global
range, providing a highly compressed and global explanation
of the model action. At the same time, by replacing features,
it can also destroy the interactive effects with other features,
which means that it considers both the main feature effects
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FIGURE 7. Flowchart of the application of the interpretability algorithm.

and interactive effects. The explanation principle is that
when the feature information is destroyed, the model error
increases. The larger the error, the more important the feature.
The explanation principle is simple and easy to understand,
and it makes up for the shortcoming that the LIME algorithm
cannot consider the global range.

(4) According to the scope of interpretability, we can
divide it into global interpretability and local interpretabil-
ity. Global interpretability is based on understanding the
decision-making of the model based on the relationship
between the dependent variable and the predictive variable
in the entire dataset, that is, establishing the relationship
between the output and input of the model. Local inter-
pretability is an explanation of the decision-making of a
single data point, usually focusing on the local subregion
of the feature space around the data point and attempting
to understand the model decision-making of the point
based on this local region. Local interpretability and global
interpretability are often used in combination to jointly
explain the decision-making results of deep models [5], [23].

In summary, applying the LIME and PFI two interpretation
methods can explain the decision-making algorithm from
both global and local perspectives. Due to the different
interpretation ranges of the two algorithms, their specific
application locations in the interpretation process are dif-
ferent, as shown in Figure 7. When the unmanned combat
confrontation scenario starts, the combat process can be
abstracted into four stages of OODA. When each situation is
passed, the decision-making algorithm will make a decision
based on the situation information. At this time, situation
information S and decision information D can form a
single decision sample. The LIME algorithm explains the
decision-making action of this local single sample. If the
game is not over, the OODA process will continue to cycle,

FIGURE 8. GLIME frame diagram.

FIGURE 9. GAN structure diagram.

and each decision sample will be stored in the sample library.
When the game ends, the PFI algorithm will interpret the
entire sample library, thus achieving a global explanation of
the decision-making algorithm.

D. IMPROVED ALGORITHM GLIME BASED ON THE LIME
ALGORITHM
The main disadvantage of the LIME is its lack of ‘‘stability’’.
Unstable interpretation results are difficult to gain the trust
of users, and cannot be applied to the unmanned combat
research scenario in this paper. Therefore, this paper proposes
a local interpretable algorithm (GLIME) based on generative
adversarial networks (GAN) and theLIME, which aims to
generate stable explanations for test instances. Figure 8 shows
the GLIME framework. Compared to the LIME, GLIME
modifies the generation method of new samples by replacing
the random perturbation method of the original algorithm
with GAN generation. During training, due to the inability of
a single explanation sample to ensure stable data generation
by GAN, data augmentation is used to expand the sample set
to ensure normal training of GAN.

1) GENERATING DECISION SAMPLES BASED ON GAN
GAN is a deep learning model, and its basic idea comes
from the zero-sum game of game theory [24]. Its network
model is shown in Figure 9. GAN consists of a generator (G)
and a discriminator (D). The main functions of G and D are
as follows: G: Generative neural network, which receives a
random noise and generates data from it; D: Discriminative
neural network, which distinguishes between real and fake
data. If the output is 1, it represents real data, while an output
of 0 represents data generated by G; During the training
process, G and D form a dynamic ‘‘game process’’, which
can estimate the potential distribution of data samples and
generate new data samples through adversarial learning [25].
When GAN converges, the generated data has the same
distribution as the real data. Therefore, this paper uses GAN
to generate new samples to provide data for the new sample
generation step in the GLIME algorithm.
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TABLE 4. Sample situation eigenvalues.

FIGURE 10. GAN training curve.

To ensure stable training of GANs, data augmentation
is used to expand individual interpretable samples. In this
paper, noise is added to data augmentation. A randomly
selected decision sample is taken as an example. Its specific
situational characteristics are shown in Table 4. The meaning
of specific information values is shown in Table 1. The
decision label is decision action one. The GAN training
result is shown in Figure 10. Both G and D are fitted
using multilayer neural networks, with network structures of
100-128-128-64-88 and 88-64-32-1, respectively. The size of
random noise is 100. From the figure, it can be seen that after
600 iterations, the accuracy of the discriminator stabilizes
at around 50%, indicating that the generator can generate
effective new samples stably, which can meet the use of the
GLIME algorithm in this paper.

2) GLIME ALGORITHM EXPERIMENTAL RESULTS AND
ANALYSIS
To verify the effectiveness of the GLIME algorithm,
a randomly selected sample of decision-making during the
game was interpreted using a strategy optimized by a
self-encoding neural network, and compared with the original

FIGURE 11. LIME and GLIME algorithms to interpret results.

LIME algorithm for stability. The selected sample had a
decision behavior of 1, and its specific decision instruction
was: dispatching a non-mission UAV to attack the blue
warning radar. The top 20 features in the interpretation
were selected for comparison, as shown in Figure 11. In all
the interpretation graphs, the green progress bar represents
a positive contribution to the decision, and the length
represents the magnitude of the contribution. Conversely,
the red progress bar represents a negative contribution to
the decision, with the ordinate representing the name of the
feature and the abscissa representing the magnitude of the
contribution. Below, two sets of explanations were conducted
on this sample using LIME and GLIME, respectively.
Figure (a) and Figure (b) are LIME explanation result graphs,
while Figure (c) and Figure (d) are GLIME explanation result
graphs. The differences between the two sets of explanations
are highlighted in yellow. It is clear from these two graphs that
the GLIME algorithm has significantly better explanatory
power than the LIME algorithm, and its stability has been
significantly improved, verifying the effectiveness of the
improved algorithm GLIME in this paper.

To further quantify the stability of the interpretation, the
Jaccard coefficient is used to show the stability of the
algorithm’s interpretation results. The Jaccard coefficient is
a measure of similarity and diversity between finite sets [26].
It calculates the similarity between two sets of data points
by calculating the ratio of the number of elements in the
intersection to the number of elements in the union. The
Jaccard coefficient calculation is shown in formula (3).

J (S1, S2) =

∣∣∣∣S1 ∩ S2
S1 ∪ S2

∣∣∣∣ (3)

where, S1 and S2 are two sets of interpretations based on
the same sample, and the result indicates that S1 and S2 are
highly similar sets.When S1 and S2 are very different sets, the
Jaccard distance formula is based on the Jaccard coefficient,
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FIGURE 12. LIME and GLIME algorithm stability matrix diagram.

as shown in formula (4).

Jdistance = 1 − J (S1, S2) (4)

Select 10 sets of explanations for this sample, calculate the
Jaccard distance in the generated explanations, and generate
a Jaccard stability matrix graph using the Jaccard distance.
As shown in Figure 12, Figure (a) is the LIME stability
matrix graph, and Figure (b) is the LIME stability matrix
graph. According to the principle of Jaccard distance, the
color scale in the stability graph tends to 0 (i.e., the darker
the color), indicating that the explanation is more stable.
As shown in the figure, GLIME’s stability is higher than
LIME, once again verifying the effectiveness of GLIME
algorithm improvement.

E. EXPLAINABLE ANALYSIS OF DECISION-MAKING
ACTIONS
The PFI algorithm and GLIME algorithm are used to
explain the decision-making algorithm used in this paper. PFI
explains how the decision-making algorithmmakes decisions
as a whole, while GLIME provides local explanations for
individual decision-making actions of the decision-making
algorithm from local interpretability. To fully understand
the reasons for making decisions using the decision-making
model used in this paper, a 25-round match data analysis
with a total of 22,096 samples was conducted. In the PFI
algorithm, the error function L is selected as the neural
network accuracy calculation function accuracy score() with
a value of N of 5. Take all features with an 80% importance
level for display. There are 28 features in total. The
interpretation results are shown in Table 5. PFI calculates the
importance of each feature by evaluating the performance
of the model. The plus and minus values after the feature
importance in the table represent the difference between
multiple random rearrangements, which is the standard
deviation of the feature importance after 5 rearrangements.
The greater the importance, the more important the feature
is to the model decision-making. It can be seen from
this that the features that have the greatest impact on
the decision-making process in this paper based on PPO
and expert system are ranked in order of importance as
notask plane, ack radar num, etc.

TABLE 5. PFI interpretation results.

The GLIME algorithm is used to interpret the seven action
spaces based on expert systems in this paper. The samples
are randomly selected from a situation, and the features that
cover 80% of the positive contribution are displayed (the
negative contribution features are not displayed). At the same
time, considering from a practical perspective, the LIME
interpretation process fits the contribution of all features into
a linear model. When the actual value of a feature in the
sample is 0, even if it has a contribution, the actual calculated
contribution value is still 0. Therefore, based on this previous
foundation, features with a value of 0 are removed, and the
final interpretation result is shown in Figure 13. From the
figure, it can be seen that the interpretation results of each
action under a specific situation in the selected sample are:

(1) The factors that have the greatest impact on decision-
making action 1 (sending unmanned aerial vehicles without
missions to attack enemy warning radars) The order of
importance ismisslie life, noack plane, etc.;

(2) The factors that have the greatest impact on decision
action 2 (sending unmanned aerial vehicles without missions
to attack enemy surface-to-air missiles) are ranked in order of
importance as destroy car num, ack missile num, etc.;
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FIGURE 13. Interpretation results of GLIME algorithm.

(3) The factors that have the greatest impact on decision
action 3 (sending a non-mission drone to attack the enemy
unmanned combat vehicle) are ranked in order of importance
as noack plane, notask plane, and so on;

(4) The factors that have the greatest impact on decision
row 4 (sending unmanned aerial vehicles without tasks to
support friendly forces) are ranked in order of importance as
car ack num, ack plane rader, and so on;

(5) The factors that have the greatest impact on decision-
making action 5 (sending a tasked drone to abort its mission
and turn to attack enemy surface-to-air missiles) are ranked
in order of importance as misslie life, ack rader num, and so
on;

(6) The factors that have the greatest impact on decision-
making action 6 (sending a tasked drone to abort its mission
and turn to attack enemy warning radar) are ranked in order
of importance as ack rader num, noack plane, and so on;

(7) The factors that have the greatest impact on decision
action 7 (choosing a tasked drone to abandon the mission and

turn to attack the enemy unmanned combat vehicle) are in
order of importance: ack plane rader, misslie life, and so on.
To sum up, by combining global and local interpretabil-

ity techniques, we have increased our understanding of
decision-making algorithms based on PPO and expert
systems from both the overall and individual decision-making
actions. Overall, the situation factors that the algorithm
focuses on most when making decisions are notask plane,
ack radar num, and destroy car num. However, in some local-
specific decision-making actions, the situation factors of
concern will add other features, such as misslie life. The
specific interpretation results can be found in the above
analysis. Analyzing the interpretation results of the GLIME
algorithm for 7 decision-making actions, we found that
the situation characteristics that the algorithm focuses on
most when selecting these 7 decision-making actions are all
reflected in the interpretation results of the PFI algorithm,
and they are also the top-ranked situation characteristics.
This indicates that the interpretation results of the two
interpretation methods can complement each other, providing
a very stable and comprehensive interpretation result for the
decision-making algorithm in this paper.

IV. CONCLUSION
This paper proposes an unmanned combat decision-making
algorithm based on PPO and expert systems. Based on
the expert system, action rules are formulated, and the
state space, action space, and reward function of the PPO
algorithm in this task scenario are designed. The experi-
mental results show that the algorithm has good decision-
making capabilities. A strategy optimization method based
on self-encoding neural networks is proposed. Through
secondary strategy fitting on screened decision samples,
the effective decision-making rate and other indicators
of the original algorithm are greatly improved. In view
of the opacity of deep reinforcement learning decision-
making algorithms, an interpretability algorithm is designed.
Firstly, it introduces the interpretability algorithms LIME and
PFI and their selection reasons and application processes.
Subsequently, in view of the instability of the LIME
algorithm, an interpretability algorithm GLIME based on
LIME and GAN is proposed, and the effectiveness of
the improved algorithm is verified in test cases. Finally,
GLIME and PFI are used to conduct explainable analysis on
the decision-making actions made by the decision-making
algorithm based on the PPO and expert systems from
both global and local perspectives and provide stable and
comprehensive explanation results for it. In the future, the
GAN network will be improved to enhance the stability of
its explanation results.
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