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ABSTRACT The use of optoelectronic technology in Optical Transposition Interconnection Systems
(OTIS) offers an effective solution to the ongoing problem of storing and sending data with comprehensive
information. This is due to the reduced power requirements and broad bandwidth capabilities of
optoelectronic systems, which make them well-suited for this task. The integration of radio communication
and electrical technology has transformed OTIS into a highly valued network, enhancing the efficiency of
existing optoelectronic computers. OTIS is characterized by the swapped network that is formedwith the help
of path graph Pm and denoted as B(Pm). This research work focused on certain topological invariants (TIs)
about the number of connections between nodes of the graph B(Pm) and its largest subgraph that preserves
twin nodes (M (B(Pm))). First Zagreb connection index, geometric-arithmetic connection index, Randić
connection index, reduced reciprocal Randić connection index, sum-connectivity connection index, first,
second and third redefined Zagreb connection indices are considered in this work two types of biswapped
and OTIS networks.

INDEX TERMS Biswapped network, maximal twin-preserving subgraph, connection number, topological
indices.

I. INTRODUCTION
An important class of parameters related to graphs is the set
of TIs. Discovering various entities such as the characteristics
of algebraic structures [1], [2], the analysis of chemical
graphs without tentative input [3], [4], [5], and knowing
networks through TIs [6], [7], represents a current focus in
graph theory, in [8]. Over the past decade, the application
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of TIs to study several networks, including the biswapped
network [9], derived network [10], butterfly network [11], and
benes network [12], [13] has grew important attraction. The
last 50 years have observed the numerous TIs introduced [14],
[15], [16].

Researchers of [17] and [18] proposed the concept of atom
bond connectivity index that has been working to examine
the stability of linear alkanes and cycloalkanes, and also the
strain energy. Authors of [19] and [20], introduced the new
TIs with connection-based and determined Zagreb indices
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for wheel-related graphs and dendrimers. Another TI namely,
the harmonic index that was introduced in 2012 by [21],
is associated with the eigenvalues of graphs and remains a
current interest. In 2017 [22], introduced new TIs, named
ev-valency and ve-valency, and later worked by [23]. Some
TIs for algebraic structures [24], frameworks [25], [26], [27]
and M-polynomials are determined in [28]. In 2022 [29],
simplicial networks are studied with the Sombor index, and
general exponential multiplicative ZIs in terms of a unified
approach for its extremal values [30], and the Gaussian-based
indices named by the Estrada, of graphs [31]. For further
progress on the learning of TIs, refer to [32], [33], [34],
and [35].
The concept of system analysis is highly valuable in

various technical sectors today, including the application
of artificial intelligence in the development of sustainable
supply chains [36], community strategy plans via social
networks [38], postoperative health monitoring [37], and
phase change in a storage container [39]. A new direction
of research work in [40] starts a valuable link between
system investigation and TIs using arithmetical apparatus.
In OTIS, processors are interconnected continuously, forming
a graph that represents their connections. From a topological
perspective, an OTIS must possess several graph-theoretic
characteristics. These include a least diameter to facilitate
efficient text routing, a minimum valency to manage
communication costs, a high linked concentration to handle
responsibilities, and the inclusion of paths and cycles of
different orders to streamline simulations and text routing.
Searching connectivity networks requires a multidisciplinary
integration of discrete mathematics, engineering, and, com-
puter science.

Optical transposition interconnection networks (OTISs),
which combine optical and electronic technologies for data
transport, have been designed and developed [41]. The
swapped OTIS is a particular sort of OTIS that is highly
successful in transmitting data via networks. It is constructed
by swapping the components of a base network and consists
of m copies of this network. The biswapped network
discussed in [42] is an alternative version of OTIS, where
the original OTIS has been replaced with a different one.
Consists of a total of 2m replicas of a fundamental network,
each having a unique connectivity pattern as described in
the following section. The idea to use Biswapped networks
is preferable to using swapped networks because of their
modular architecture.

A significant benefit is that if the basic networking is
a Cayley visualization, the swapped structure created from
that base graph is also a Cayley graph. This property
is lacking in the swapped network. Furthermore, multi-
swapped networks exhibit specific attributes that render
them well-suited for application as optoelectronic inter-
connection networks as demonstrated in [43] and [44].
Dynamic graph convolutional network-based prediction of
the urban grid-level taxi demand-supply imbalance using
GPS trajectories [45], [46], [47]. Robust tube-based model

predictive control with Koopman operators [48], [49], [50].
Unified spatial temporal neighbor attention network for
dynamic traffic prediction [51], [52], [53]. For further study
on this topic see [54], [55], and [56]. On resolvability
and domination related parameters of complete multipartite
graphs [57], [58], [59]. On the fault-tolerant metric dimension
of certain interconnection networks [60], [61].

This article focuses on examining bi-swapped networks
and their subgraphs using connection-based TIs. The result
involves the preservation of twin subgraphs that recall
specific parameters of the original graph. This study estab-
lishes certain connection-based topological invariants (TIs) of
biswapped networks and finds that their Spanning subgraph
that preserves the maximum number of twin vertices exhibits
a high valency of similarity. Hence, the examination of
twin-preserving subgraphs proves to be a helpful approach
in situations where complete data from an intricate network
is unattainable. The sole limitation pertains to the existence of
Twin-Preserving Spanning Subgraphs (TPSS). The structure
of this article is given as In section I, the introduction and
background are discussed. Section II provides definitions
and required formulas for TIs, as well as the structure of
the biswapped OTIS (B(Pm)) for the reader’s understanding.
In section III, we introduce novel findings: firstly, we estab-
lish the construction of B(Pm) and its maximal subgraph that
preserves twins (M (B(Pm))); Furthermore, we assessed the
outcomes of TIs using connectivity metrics for both families.
In addition, we conducted a comparison of the formulas
for TIs in B(Pm) and M (B(Pm)) using both numerical and
graphical methods. Section IV is dedicated to the conclusion,
which includes a description of the supply and an appraisal
of the latest findings.

II. DEFINITIONS AND TERMINOLOGIES
Before presenting the research findings, we will first offer
precise definitions and formulas derived from the domain
of graph theory. Additionally, we will elucidate the notions
of biswapped and swapped OTIS. In addition, we describe
the methodology used to produce the results and the tools
used to enable a comparison of the outcomes. We employ
conventional nomenclature derived from the field of graph
theory. For instance, (V (G),E(G)) or (V ,E) represents the
collection of vertices and edges of a graph, respectively.
The distance between α and β is denoted by d(α, β). Two
vertices are considered adjacent if the distance between
them is exactly one unit. The valency of a vertex refers
to the number of nodes that are directly connected to it.
The connection number of a vertex refers to the number
of nodes that are at a distance of two from it. In addition,
the literature often employs the abbreviations of subgraphs
and spanning subgraphs, as evidenced by references such
as [62] and [63].

Let a graph G and a particular subgraph which is called a
spanning subgraph, and we used the notation SG are said to
be twin-preserving if the twin vertices of G are also present
in SG. The statement can be reformulated in the following
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TABLE 1. Some TIs.

manner: in a subgraph SG that preserves twins, the vertices
that are twins in the graph G are likewise twins in SG [64].
Now, we will review the formulas of TIs listed in Table 1.
Recently, researchers introduced indices that depend on the

vertices’ Connection Numbers (CN). The cardinality of the
vertices that are two distances distant from a vertex’s u value
is known as its CN.
Definition 1: For a graph G, the first Zagreb connec-

tion index (ZCI1(G)) and second Zagreb connection index
(ZCI2(G)) are defined as:

ZCI1(G) =

∑
α∈V (G)

(Cα)2 =

∑
αβ∈E(G)

(
Cα + Cβ

)
(1)

ZCI2(G) =

∑
αβ∈E(G)

(
Cα × Cβ

)
(2)

Consider the introduction of swapped and biswapped
OTISs in the network context. The swapped OTIS denoted as
SOG, is derived from a base graph G. Its vertex set V (SOG)
and edge set E(SOG) are defined as follows: V (SOG) =

{xt,s : xt,s ∈ V (G), t, s ∈ N} and E(SOG) = {(xt,s, xu,v) :

(xt,s, xu,v) ∈ E(G)} ∪ {(xt,s, xs,t ) : xt,s, xs,t ∈ V (G), t ̸= s}.
If |V (G)| = m2, then SOG is formed by m copies of G, with
each copy called as a cluster in SOG.

Vertices in SOG are denoted as xt,s, where ts signifies the
address of the vertex at position s in cluster t. In the swapped
OTIS(G), edges between clusters exist between xt,s and xs,t
when t ̸= s. The vertex xt,t points to the processor t in
cluster t, and no cluster other than t has an edge incident
to xt,t [65].
The ev-valency and the ve-valency-based TIs and entropies

of swapped OTIS for the base graphPm are computed in [66]
and [67]. On the other hand, the biswapped OTIS, denoted
as BOG, is also an OTIS with the following vertex and edge
definitions:
V (BOG) = {(0, x, y), (1, x, y) : x, y ∈ V (G)} and

E(BOG) = {((0, x1, y)(0, x2, y)) , ((1, x1, y)(1, x2, y)) :

(x2, x1) ∈ E(G), y ∈ V (G)} ∪ {((0, x, y)(1, x, y)) : x,
y ∈ V (G)}.

In [68], authors established some TIs related to the
path graph and the complete graph as the basis graph
for the biswapped network. The biswapped network BOPm

comprises 2m copies of Pm, with 2m2 vertices denoted as
xt,s, yt,s, where 1 ≤ t, s ≤ m. The vertices xt,s and yt,s
represent the upper and lower layers, respectively, in BOPm .

Edges among xt,s’s follow the adjacency pattern in the base
graph Pm. Similarly, yt,s’s are connected by the adjacency
pattern of Pm.
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Edges between xt,s’s and yt,s’s follow the rule that xt,s is
adjacent to ys,t for all t ̸= s, and xt,t is adjacent to yt,t for all
1 ≤ t ≤ m. For a more comprehensive understanding of the
construction, refer to [67] and [68].

III. RESULTS AND DISCUSSIONS
In this section, we construct a Spanning subgraph that
preserves the maximum number of twin vertices M (B(Pm))
of a biswapped OTIS over a base graphPm. The construction
of M (B(Pm)) involves a direct approach, where an edge
is removed, and all the properties of a TPSS are verified.
Afterward, through an examination of the composition
of B(Pm) and the subgraph that was created, specific
quantitative metrics, known as connection number-based
TIs, are calculated. These TIs provide complete structural
specifications of the network through numerical values. The
computation of TIs involves inspecting the subgraph for the
number of edges, vertices, and connectivity patterns among
vertices. The connection numbers-based TIs obtained from
the analysis of the network B(Pm) and M (B(Pm)) are listed
in Table 8.

A. BISWAPPED NETWORKS B(PM ) AND THEIR
SPANNING SUBGRAPH THAT PRESERVES THE
MAXIMUM NUMBER OF TWIN VERTICES
In this subsection, we choose a spanning subgraphM (B(Pm))
of B(Pm) and prove that this subgraph is twin-preserving and
maximal, which is evident from the construction.

The set V (B(Pm)) can be partitioned as: {x1,j : 1 ≤ j ≤

m} ∪ {x2,j : 1 ≤ j ≤ m} ∪ · · · ∪ {xm,j : 1 ≤ j ≤ m} ∪ {y1,j :

1 ≤ j ≤ m} ∪ {y2,j : 1 ≤ j ≤ m} ∪ · · · ∪ {ym,j : 1 ≤ j ≤ m}.

The neighborhoods of all vertices of B(Pm) are: N (xi,1) =

{y1,i, xi,2 : 1 ≤ i ≤ m}, N (xi,j) = {yj,i, xi,j−1, xi,j+1 :

2 ≤ j ≤ m − 1, 1 ≤ i ≤ m}, N (xi,m) = {ym,i, xi,m−1 :

1 ≤ i ≤ m}, N (yi,1) = {x1,i, yi,2 : 1 ≤ i ≤ m},

N (yi,j) = {xj,i, yi,j−1, yi,j+1 : 2 ≤ j ≤ m − 1, 1 ≤ i ≤ m},

N (yi,m) = {xm,i, yi,m−1 : 1 ≤ i ≤ m}.

A keen observation reveals that all vertices of B(Pm)
possess unique neighborhoods, resulting in the existence of
singleton twins in B(Pm). By removing the edge x2,1y1,2, a
maximal spanning subgraphM (B(Pm)) ofB(Pm) is obtained.
The neighborhoods of vertices in M (B(Pm)) are unaltered,
except for x2,1 and y1,2, whose neighborhoods in M (B(Pm))
are N (x2,1) = {x2,2} and N (y1,2) = {y1,1, y1,3}. The
neighborhoods of x2,1 and y1,2 in B(Pm) are N (x2,1) =

{x2,2, y1,2} and N (y1,2) = {x2,1, y1,1, y1,3}. From these
neighborhoods, it is clear that M (B(Pm)) also has singleton
twins. Therefore, M (B(Pm)) is a TPSS of B(Pm) and is
maximal. Similarly, the removal of any other edge of B(Pm)
yields a family of twin-preserving subgraphs.

The following equation is a generalized description or
formula of the topological indices. In this expression φ(G)
can be any topological descriptor or index and 0(u, v) is the
edge type formula of any topological descriptor or index.

φ(G) =

∑
uv∈E(G)

0(u, v).

By making a small adjustment to the process of construct-
ing the spanning subgraph (specifically, by eliminating two
or more particular edges), we can generate a diverse range of
subgraphs, which opens up intriguing possibilities for further
investigation.

B. BISWAPPED GRAPH B(PM )
In this section, we computed main results of the related to the
biswapped graph B(Pm).
Lemma 1: Let B(Pm) be a biswapped network with m ≥ 6.

Then φ(B(Pm)) = 3m2
(
0(6, 6)

)
+2m

(
40(4, 5)+20(5, 5)+

40(5, 6) − 110(6, 6)
)

+ 4
(
0(3, 3) + 20(3, 4) + 20(4, 4) −

40(4, 5) − 40(5, 5) − 60(5, 6) + 90(6, 6)
)
.

Proof: Let B(Pm) be a biswapped network has the
maximum valency 3 and maximum connection number 6.
The total number of vertices and edges are: 2m2 and 3m2

−

2m, respectively. In the graph of B(Pm), connection numbers
of vertices are 3, 4, 5 or 6.
Let Eu,v be the edge partition with end vertices have

connection number u and v. The edge partition function for
the vertices of B(Pm) based on their connection numbers will
be:

E3,3 = {uv ∈ E(Pm) : u = 3, v = 3} (3)

E3,4 = {uv ∈ E(Pm) : u = 3, v = 4} (4)

E4,4 = {uv ∈ E(Pm) : u = 4, v = 4} (5)

E4,5 = {uv ∈ E(Pm) : u = 4, v = 5} (6)

E5,5 = {uv ∈ E(Pm) : u = 5, v = 5} (7)

E5,6 = {uv ∈ E(Pm) : u = 5, v = 6} (8)

E6,6 = {uv ∈ E(Pm) : u = 6, v = 6} (9)

Note that E(B(Pm)) = E3,3 ∪ E3,4 ∪ E4,4 ∪ E4,5 ∪ E5,5 ∪

E5,6 ∪ E6,6. The number of edges incident to two vertices
of connection number 3 are 4, so |E3,3| = 4. The number
of edges incident to one vertex of connection number 3 and
other vertex of connection number 4 are 8. So |E3,4| = 8. The
number of edges incident to one vertex of connection number
4 and other vertex of connection number 4, 5 are 4, 8m− 16,
respectively. So |E4,4| = 8 and |E4,5| = 8m−16.The number
of edges incident to one vertex of connection number 5 and
other vertex of connection number 5, 6 are 4m − 16, 8m −

24, respectively. So |E5,5| = 4m − 16, |E5,6| = 8m − 24.
The number of edges incident to two vertices of connection
number 6 are 3m2

− 22m+ 36, so |E6,6| = 3m2
− 22m+ 36.

Hence, φ(B(Pm)) =∑
uv∈E(Pm)

0(u, v)

=

∑
uv∈E3,3

0(3, 3) +

∑
uv∈E3,4

0(3, 4) +

∑
uv∈E4,4

0(4, 4)

+

∑
uv∈E4,5

0(4, 5) +

∑
uv∈E5,5

0(5, 5) +

∑
uv∈E5,6

0(5, 6)
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+

∑
uv∈E6,6

0(6, 6)

= (4) 0(3, 3)+(8) 0(3, 4)+(8) 0(4, 4)+(8m−16) 0(4, 5)

+ (4m− 16) 0(5, 5)

+ (8m− 24) 0(5, 6) +

(
3m2

− 22m+ 36
)
0(6, 6)

After simplification, we get

φ(B(Pm)) = 3m2
(
0(6, 6)

)
+ 2m

(
40(4, 5) + 20(5, 5)

+ 40(5, 6) − 110(6, 6)
)

+ 4
(
0(3, 3) + 20(3, 4) + 20(4, 4)

− 40(4, 5) − 40(5, 5) − 60(5, 6) + 90(6, 6)
)
.

□
So, by using the Lemma 1 and putting different functions

instead of 0(u, v) one can produce different types of
connection-based TIs.

In the following theorems, we determined the connection-
based TIs of Biswapped networks.
Theorem 1: Let B(Pm) be a biswapped network with

m ≥ 6, then the first Zagreb connection index

FZCI (B(Pm)) = 36m2
− 64m+ 8

the second Zagreb connection index

SZCI (B(Pm)) = 108m2
− 292m+ 116.

Proof: From theDefinition 1, the first Zagreb connection
index FZCI (B(Pm)) of B(Pm), we obtain 0(u, v) = (u+ v) .
So 0(3, 3) = 6, 0(3, 4) = 7, 0(4, 4) = 8, 0(4, 5) = 9,
0(5, 5) = 10, 0(5, 6) = 11, and 0(6, 6) = 12. Thus by
Lemma 1,

FZCI (B(Pm)) = 36m2
− 64m+ 8.

From the Definition 1, the first Zagreb connection index
SZCI (B(Pm)) of B(Pm), we obtain 0(u, v) = (u× v) . So
0(3, 3) = 9, 0(3, 4) = 12, 0(4, 4) = 16, 0(4, 5) = 20,
0(5, 5) = 25, 0(5, 6) = 30, and 0(6, 6) = 36. Thus by
Lemma 1,

SZCI (B(Pm)) = 108m2
− 292m+ 116.

□
Theorem 2: Let B(Pm) be a biswapped network with

m ≥ 6, then the geometric arithmetic connection index

GACI (B(Pm)) = 3 m2
+

(
32

√
5

9
− 18 +

16
√
30

11

)
m

+ 32 +
32

√
3

7
−

64
√
5

9
−

48
√
30

11
the atom bond connectivity connection index

ABCCI (B(Pm))

=

√
10m2

2

+

(
4
√
35
5

+
8
√
2

5
+

4
√
30
5

−
11

√
10

3

)
m

+
8
3

+
4
√
15
3

+2
√
6−

8
√
35
5

−
32

√
2

5
−
12

√
30

5
+6

√
10

the symmetric division connection index

SDCI (B(Pm)) = 6m2
−

10
3
m−

14
15

the harmonic connection index

HCI (B(Pm)) =
1
2
m2

+
181
495

m+
1732
3465

the augmented Zagreb connection index

AZCI (B(Pm))=
17496
125

m2
−
62452697407
148176000

m+
8784103777
37044000

the hyper Zagreb connection index

HZCI (B(Pm)) = 432m2
− 1152m+ 432.

Proof: By using the Lemma 1 and Table 2 in the formula
that are given in Table 1, we get the required results.

□
Theorem 3: Let B(Pm) be a biswapped network with

m ≥ 6, then the Randić connection index

RCI (B(Pm)) =
m2

2
+

(
4
√
5

5
−

43
15

+
4
√
30

15

)
m

+
92
15

+
4
√
3

3
−

8
√
5

5
−

4
√
30
5

the Reciprocal Randić connection index

RRCI (B(Pm)) = 18m2
+

(
16

√
5 − 112 + 8

√
30
)
m

+ 180 + 16
√
3 − 32

√
5 − 24

√
30

the Reduced Reciprocal Randić connection index

RRRCI (B(Pm)) = 15m2
+

(
16

√
3 + 16

√
5 − 94

)
m

+ 148 + 8
√
6 − 32

√
3 − 48

√
5

variation of the Randić connection index

VRCI (B(Pm)) =
1
2
m2

+
1
15
m+

14
15
.

Proof:By using the Lemma 1 and Table 3 in the formula
that are given in Table 1, we get the required results.

□
Theorem 4: Let B(Pm) be a biswapped network with

m ≥ 6, then the Sum Connectivity connection index

SCCI (B(Pm))

=

√
3m2

2
+

(
8
3

+
2
√
10
5

+
8
√
11

11
−

11
√
3

3

)
m

+
2
√
6

3
+
8
√
7

7
+2

√
2−

16
3

−
8
√
10
5

−
24

√
11

11
+ 6

√
3

the Forgotten connection index

FCI (B(Pm)) = 216m2
− 568m+ 200
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TABLE 2. Values of 0(u, v ) with respect to Connection numbers for Theorem 2.

TABLE 3. Values of 0(u, v ) with respect to Connection numbers for Theorem 3.

the Albertson connection Index

ACI (B(Pm)) = 16m− 32

the first redefined Zagreb connection index

FRZC(B(Pm)) = m2
+

4
5
m+

14
15

the second redefined Zagreb connection index

SRZC(B(Pm)) = 9m2
−

1624
99

m+
1874
693

the third redefined Zagreb connection index

TRZC(B(Pm)) = 1296m2
− 4424m+ 2664.

Proof: By using the Lemma 1 and Table 4 in the formula
that are given in Table 1, we get the required results. □

C. SPANNING SUBGRAPH THAT PRESERVES THE
MAXIMUM NUMBER OF TWIN VERTICES
(M(B(PM ))) OF B(PM )
Lemma 2: Let M (B(Pm)) be a Spanning subgraph that

preserves the maximum number of twin vertices of B(Pm)
with m ≥ 6. Then T (M (B(Pm))) = 3m2

(
0(6, 6)

)
+

2m
(
40(4, 5)+20(5, 5)+40(5, 6)−110(6, 6)

)
+

(
0(2, 5)+

50(3, 3) + 70(3, 4) + 0(3, 5) + 70(4, 4) − 180(4, 5) −

160(5, 5) − 240(5, 6) + 360(6, 6)
)
.

Proof: Let M (B(Pm)) be a Spanning subgraph that
preserves themaximumnumber of twin vertices ofB(Pm) has
the minimum valency 1 and maximum connection number 6.
The total number of vertices and edges are: 2m2 and 3m2

−

2m− 1, respectively. In the graph of M (B(Pm)), connection
numbers of vertices are 2, 3, 4, 5 and 6 and their cardinalities
are: 1, 9, 4m − 2, 8m − 24 and 2m2

− 12m + 16,
respectively. Let Eu,v be the edge partition with end vertices
have connection number u and v. The edge partition function

for the vertices of M (B(Pm)) based on their connection
numbers will be:

E2,5 = {uv ∈ E(Pm) : u = 2, v = 5} (10)

E3,3 = {uv ∈ E(Pm) : u = 3, v = 3} (11)

E3,4 = {uv ∈ E(Pm) : u = 3, v = 4} (12)

E3,5 = {uv ∈ E(Pm) : u = 3, v = 5} (13)

E4,4 = {uv ∈ E(Pm) : u = 4, v = 4} (14)

E4,5 = {uv ∈ E(Pm) : u = 4, v = 5} (15)

E5,5 = {uv ∈ E(Pm) : u = 5, v = 5} (16)

E5,6 = {uv ∈ E(Pm) : u = 5, v = 6} (17)

E6,6 = {uv ∈ E(Pm) : u = 6, v = 6} (18)

Note that E(M (B(Pm))) = E2,5 ∪E3,3 ∪E3,4 ∪E3,5 ∪E4,4 ∪

E4,5∪E5,5∪E5,6∪E6,6. The number of edges incident to one
vertex of connection number 2 and other vertex of connection
number 5 are 1. So |E2,5| = 1. The number of edges incident
to two vertices of connection number 3 are 5, so |E3,3| = 5.
The number of edges incident to one vertex of connection
number 3 and other vertex of connection number 4 and 5 are
7 and 1, respectively. So |E3,4| = 7 and |E3,5| = 1. The
number of edges incident to one vertex of connection number
4 and other vertex of connection number 4, 5 are 7, 8m− 18,
respectively. So |E4,4| = 7 and |E4,5| = 8m−18.The number
of edges incident to one vertex of connection number 5 and
other vertex of connection number 5, 6 are 4m − 16, 8m −

24, respectively. So |E5,5| = 4m − 16, |E5,6| = 8m − 24.
The number of edges incident to two vertices of connection
number 6 are 3m2

− 22m+ 36, so |E6,6| = 3m2
− 22m+ 36.

Hence, ψ(M (B(Pm))) =∑
uv∈E(Pm)

0(u, v)

=

∑
uv∈E2,5

0(2, 5) +

∑
uv∈E3,3

0(3, 3) +

∑
uv∈E3,4

0(3, 4)
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TABLE 4. Values of 0(u, v ) with respect to Connection numbers for Theorem 4.

+

∑
uv∈E3,5

0(3, 5) +

∑
uv∈E4,4

0(4, 4)

+

∑
uv∈E4,5

0(4, 5)

+

∑
uv∈E5,5

0(5, 5) +

∑
uv∈E5,6

0(5, 6) +

∑
uv∈E6,6

0(6, 6)

= (1) 0(2, 5) + (5) 0(3, 3) + (7) 0(3, 4)

+ (1) 0(3, 5) + (7) 0(4, 4)

+ (8m− 18) 0(4, 5) + (4m− 16) 0(5, 5)

+ (8m− 24) 0(5, 6) +

(
3m2

− 22m+ 36
)
0(6, 6)

After simplification, we get

ψ(M (B(Pm)))

= 3m2
(
0(6, 6)

)
+ 2m

(
40(4, 5) + 20(5, 5)

+ 40(5, 6)−110(6, 6)
)
+

(
0(2, 5)+50(3, 3)+70(3, 4)

+ 0(3, 5) + 70(4, 4) − 180(4, 5)

− 160(5, 5) − 240(5, 6) + 360(6, 6)
)
.

□
In the following theorems, we determined the connection-based

TIs of Spanning subgraph that preserves the maximum
number of twin vertices of B(Pm).
Theorem 5: Let M (B(Pm)) be a Spanning subgraph that

preserves the maximum number of twin vertices of B(Pm)
with m ≥ 6. Then
the first Zagreb connection index

FZCI (M (B(Pm))) = 36m2
− 64m− 4

the second Zagreb connection index

SZCI (M (B(Pm))) = 108m2
− 292m+ 82.

Proof: From theDefinition 1, the first Zagreb connection
index FZCI (M (B(Pm))) of M (B(Pm)), we obtain 0(u, v) =

(u+ v) . So0(2, 5) = 7, 0(3, 3) = 6, 0(3, 4) = 7, 0(3, 5) =

8, 0(4, 4) = 8, 0(4, 5) = 9, 0(5, 5) = 10, 0(5, 6) = 11,
and 0(6, 6) = 12. Thus by Lemma 1,

FZCI (M (B(Pm))) = 36m2
− 64m− 4.

From the Definition 1, the first Zagreb connection index
SZCI (M (B(Pm))) of M (B(Pm)), we obtain 0(u, v) =

(u× v) . So 0(2, 5) = 10, 0(3, 3) = 9, 0(3, 4) = 12,

0(3, 5) = 15, 0(4, 4) = 16, 0(4, 5) = 20, 0(5, 5) = 25,
0(5, 6) = 30, and 0(6, 6) = 36. Thus by Lemma 1,

SZCI (M (B(Pm))) = 108m2
− 292m+ 82.

□
Theorem 6: Let M (B(Pm)) be a Spanning subgraph that

preserves the maximum number of twin vertices of B(Pm)
with m ≥ 6. Then
the geometric arithmetic connection index

GACI (M (B(Pm))) = 3m2
+

(
32

√
5

9
− 18 +

16
√
30

11

)
m

+
2
√
10
7

+ 32 + 4
√
3 +

√
15
4

− 8
√
5 −

48
√
30

11
the atom bond connectivity connection index
ABCCI (M (B(Pm))) =

√
10m2

2
+

(
4
√
35
5

+
8
√
2

5
+

4
√
30
5

−
11

√
10

3

)
m

−
59

√
2

10
+

10
3

+
7
√
15
6

+
31

√
10

5

+
7
√
6

4
−

9
√
35
5

−
12

√
30

5
the symmetric division connection index

SDCI (M (B(Pm))) = 6m2
−

10
3
m−

39
20

the harmonic connection index

HCI (M (B(Pm))) =
1
2
m2

+
181
495

m+
449
1155

the augmented Zagreb connection index

AZCI (M (B(Pm))) =
17496
125

m2
−

62452697407
148176000

m

+
14277324667
74088000

the hyper Zagreb connection index

HZCI (M (B(Pm))) = 432m2
− 1152m+ 306.

Proof: By using the Lemma 2 and Table 5 in the formula
that are given in Table 1, we get the required results. □
Theorem 7: Let M (B(Pm)) be a Spanning subgraph that

preserves the maximum number of twin vertices of B(Pm)
with m ≥ 6. Then the Randić connection index

RCI (M (B(Pm)))
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TABLE 5. Values of 0(u, v ) with respect to Connection numbers for Theorem 6.

TABLE 6. Values of 0(u, v ) with respect to Connection numbers for Theorem 7.

TABLE 7. Values of 0(u, v ) with respect to Connection numbers for Theorem 8.

=
m2

2
+

(
4
√
5

5
−

43
15

+
4
√
30

15

)
m

+

√
10
10

+
373
60

+
7
√
3

6
+

√
15
15

−
9
√
5

5
−

4
√
30
5

the Reciprocal Randić connection index

RRCI (M (B(Pm)))

= 18m2
+

(
16

√
5 − 112 + 8

√
30
)
m

+
√
10 + 179 + 14

√
3 +

√
15 − 36

√
5 − 24

√
30

the Reduced Reciprocal Randić connection index

RRRCI (M (B(Pm)))

= 15m2
+

(
16

√
3 + 16

√
5 − 94

)
m

+ 149 + 7
√
6 + 2

√
2 − 36

√
3 − 48

√
5

variation of the Randić connection index

VRCI (M (B(Pm))) =
1
2
m2

+
1
15
m+

23
30
.

Proof: By using the Lemma 2 and Table 6 in the formula
that are given in Table 1, we get the required results. □
Theorem 8: Let M (B(Pm)) be a Spanning subgraph that

preserves the maximum number of twin vertices of B(Pm)
with m ≥ 6. Then the Sum Connectivity connection index

SCCI (M (B(Pm)))

=

√
3m2

2
+

(
8
3

+
2
√
10
5

+
8
√
11

11
−

11
√
3

3

)
m

+
8
√
7

7
+

5
√
6

6
+ 2

√
2 − 6 −

8
√
10
5

−
24

√
11

11
+ 6

√
3

the Albertson connection Index

ACI (M (B(Pm))) = 16m− 30

the Forgotten connection index

FCI (M (B(Pm))) = 216m2
− 568m+ 142

the first redefined Zagreb connection index

FRZC(M (B(Pm))) = m2
+

4
5
m+

17
20

the second redefined Zagreb connection index

SRZC(M (B(Pm))) = 9m2
−

1624
99

m−
401
616

the third redefined Zagreb connection index

TRZC(M (B(Pm))) = 1296m2
− 4424m+ 2336.

Proof: By using the Lemma 2 and Table 7 in the formula
that are given in Table 1, we get the required results. □
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TABLE 8. Comparison of TIs of biswapped graph B(Pm) and its TPSS M(B(Pm)) with respect to Connection numbers.

TABLE 9. Numerical values of TIS for biswapped graph B(Pm).

TABLE 10. Numerical values of TIS for biswapped graph B(Pm).

D. COMPARISON OF TIS OF B(PM ) AND M(B(PM ))
This section provides a comparison between the computed
topological invariants (TIs) for the maximal twin-preserving
subgraph M (B(Pm)) and B(Pm) with connection number.
The comparisons are presented in Table 8. The values

corresponding to the various TIs for B(Pm) are displayed in
the first column of Table 8. The values forM (B(Pm)) and the
discrepancy are presented in the second and third columns,
respectively. The third column of Table 8 demonstrates that
the TIs only vary by a constant.
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TABLE 11. Numerical values of TIS for Spanning subgraph that preserves the maximum number of twin vertices M(B(Pm)).

TABLE 12. Numerical values of TIS for Spanning subgraph that preserves the maximum number of twin vertices M(B(Pm)).

FIGURE 1. Graphical representation of Theorem 1 and Theorem 5.

FIGURE 2. Graphical representation of Theorem 2 and Theorem 6.

Furthermore, we have opted to include graphical trends
to illustrate the distinction across the calculated TIs of the
B(Pm) and M (B(Pm)). The numerical values of TIS for the
biswapped graph B(Pm) are shown in Table 9 and Table 10,
while numerical values of TIS for the spanning subgraph that
preserves the maximum number of twin vertices M (B(Pm))

are shown in Table 11 and Table 12. The left side figure
of Figure 1 gives values of TIs in Theorem 2 for B(Pm),
and the right side figure of Figure 1 gives values of TIs in
Theorem 6 for M (B(Pm)) by graphical way. Both graphs
exhibit comparable patterns, except one graph is positioned
above/below the other.
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FIGURE 3. Graphical representation of Theorem 3 and Theorem 7.

FIGURE 4. Graphical representation of Theorem 4 and Theorem 8.

Similarly, Figures 2, 3, and 4 are used to show the trends
and comparisons of the other TIs.

IV. CONCLUSION
Various techniques are available for streamlining complex
networks, and one significant strategy involves employing
twin nodes that replicate the connectivity pattern of the entire
network. This concept has been expanded by selecting a
TPSS from a fundamental graph, allowing for the examina-
tion of specific graph-related properties that are maintained
by the subgraph. Twin nodes are essential for calculating
various TIs. One motivation for constructing a TPSS of a
simple graph is to reduce the intricacy of a network. More
precisely, twin nodes can remain unaltered when the size
of the network is decreased. The calculation of TIs based
on connection counts is also contingent upon the presence
of twin nodes. Hence, investigating the correlation between
these topological invariants (TIs) for graphs and their TPSS
is intriguing.

One further advantage of studying TPSS is their capacity to
preserve specific graph parameters. Examining this particular
subgraph is advantageous in situations where analysing
the full graph or network is impractical, or when there is
incomplete data, such as lacking information about specific
nodes or edges. The TPSS are valued in engineering for
molecular analysis in such situations [69].

This work examines a subgraph of B(Pm) that preserves
twins to the maximum extent possible. We then determine
its topological invariants along with their corresponding
connection numbers. By comparing the TIs of B(Pm) and
its maximal twin-preserving subgraphs, we find that the TIs
differ only by a constant term. A comparitive study presented
in this work are derived using analytical equations, graphs and
tables. Our study distinguishes itself frommost current works
on TIs by incorporating two key elements: the objective is to
construct a subgraph that preserves the maximum number of
twin vertices, and then compare the TIs between the original
graph and this subgraph.
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