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ABSTRACT The use of optoelectronic technology in Optical Transposition Interconnection Systems
(OTIS) offers an effective solution to the ongoing problem of storing and sending data with comprehensive
information. This is due to the reduced power requirements and broad bandwidth capabilities of
optoelectronic systems, which make them well-suited for this task. The integration of radio communication
and electrical technology has transformed OTIS into a highly valued network, enhancing the efficiency of
existing optoelectronic computers. OTIS is characterized by the swapped network that is formed with the help
of path graph 33, and denoted as B(*3,,). This research work focused on certain topological invariants (TIs)
about the number of connections between nodes of the graph B(3,,) and its largest subgraph that preserves
twin nodes (M (B(*B,,))). First Zagreb connection index, geometric-arithmetic connection index, Randic¢
connection index, reduced reciprocal Randi¢ connection index, sum-connectivity connection index, first,
second and third redefined Zagreb connection indices are considered in this work two types of biswapped
and OTIS networks.

INDEX TERMS Biswapped network, maximal twin-preserving subgraph, connection number, topological
indices.

I. INTRODUCTION

An important class of parameters related to graphs is the set
of TIs. Discovering various entities such as the characteristics
of algebraic structures [1], [2], the analysis of chemical
graphs without tentative input [3], [4], [5], and knowing
networks through TIs [6], [7], represents a current focus in
graph theory, in [8]. Over the past decade, the application
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of TIs to study several networks, including the biswapped
network [9], derived network [10], butterfly network [11], and
benes network [12], [13] has grew important attraction. The
last 50 years have observed the numerous TIs introduced [14],
[15], [16].

Researchers of [17] and [18] proposed the concept of atom
bond connectivity index that has been working to examine
the stability of linear alkanes and cycloalkanes, and also the
strain energy. Authors of [19] and [20], introduced the new
TIs with connection-based and determined Zagreb indices
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for wheel-related graphs and dendrimers. Another TT namely,
the harmonic index that was introduced in 2012 by [21],
is associated with the eigenvalues of graphs and remains a
current interest. In 2017 [22], introduced new TIs, named
ev-valency and ve-valency, and later worked by [23]. Some
TIs for algebraic structures [24], frameworks [25], [26], [27]
and M-polynomials are determined in [28]. In 2022 [29],
simplicial networks are studied with the Sombor index, and
general exponential multiplicative ZIs in terms of a unified
approach for its extremal values [30], and the Gaussian-based
indices named by the Estrada, of graphs [31]. For further
progress on the learning of TIs, refer to [32], [33], [34],
and [35].

The concept of system analysis is highly valuable in
various technical sectors today, including the application
of artificial intelligence in the development of sustainable
supply chains [36], community strategy plans via social
networks [38], postoperative health monitoring [37], and
phase change in a storage container [39]. A new direction
of research work in [40] starts a valuable link between
system investigation and TIs using arithmetical apparatus.
In OTIS, processors are interconnected continuously, forming
a graph that represents their connections. From a topological
perspective, an OTIS must possess several graph-theoretic
characteristics. These include a least diameter to facilitate
efficient text routing, a minimum valency to manage
communication costs, a high linked concentration to handle
responsibilities, and the inclusion of paths and cycles of
different orders to streamline simulations and text routing.
Searching connectivity networks requires a multidisciplinary
integration of discrete mathematics, engineering, and, com-
puter science.

Optical transposition interconnection networks (OTISs),
which combine optical and electronic technologies for data
transport, have been designed and developed [41]. The
swapped OTIS is a particular sort of OTIS that is highly
successful in transmitting data via networks. It is constructed
by swapping the components of a base network and consists
of m copies of this network. The biswapped network
discussed in [42] is an alternative version of OTIS, where
the original OTIS has been replaced with a different one.
Consists of a total of 2m replicas of a fundamental network,
each having a unique connectivity pattern as described in
the following section. The idea to use Biswapped networks
is preferable to using swapped networks because of their
modular architecture.

A significant benefit is that if the basic networking is
a Cayley visualization, the swapped structure created from
that base graph is also a Cayley graph. This property
is lacking in the swapped network. Furthermore, multi-
swapped networks exhibit specific attributes that render
them well-suited for application as optoelectronic inter-
connection networks as demonstrated in [43] and [44].
Dynamic graph convolutional network-based prediction of
the urban grid-level taxi demand-supply imbalance using
GPS trajectories [45], [46], [47]. Robust tube-based model
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predictive control with Koopman operators [48], [49], [50].
Unified spatial temporal neighbor attention network for
dynamic traffic prediction [51], [52], [53]. For further study
on this topic see [54], [55], and [56]. On resolvability
and domination related parameters of complete multipartite
graphs [57], [58], [59]. On the fault-tolerant metric dimension
of certain interconnection networks [60], [61].

This article focuses on examining bi-swapped networks
and their subgraphs using connection-based TIs. The result
involves the preservation of twin subgraphs that recall
specific parameters of the original graph. This study estab-
lishes certain connection-based topological invariants (TIs) of
biswapped networks and finds that their Spanning subgraph
that preserves the maximum number of twin vertices exhibits
a high valency of similarity. Hence, the examination of
twin-preserving subgraphs proves to be a helpful approach
in situations where complete data from an intricate network
is unattainable. The sole limitation pertains to the existence of
Twin-Preserving Spanning Subgraphs (TPSS). The structure
of this article is given as In section I, the introduction and
background are discussed. Section II provides definitions
and required formulas for TIs, as well as the structure of
the biswapped OTIS (B(*B3,,)) for the reader’s understanding.
In section III, we introduce novel findings: firstly, we estab-
lish the construction of B(]3,;,) and its maximal subgraph that
preserves twins (M (B(13,,))); Furthermore, we assessed the
outcomes of TIs using connectivity metrics for both families.
In addition, we conducted a comparison of the formulas
for TIs in B(*B,,) and M (B(P,,)) using both numerical and
graphical methods. Section IV is dedicated to the conclusion,
which includes a description of the supply and an appraisal
of the latest findings.

Il. DEFINITIONS AND TERMINOLOGIES

Before presenting the research findings, we will first offer
precise definitions and formulas derived from the domain
of graph theory. Additionally, we will elucidate the notions
of biswapped and swapped OTIS. In addition, we describe
the methodology used to produce the results and the tools
used to enable a comparison of the outcomes. We employ
conventional nomenclature derived from the field of graph
theory. For instance, (V(G), E(G)) or (V, E) represents the
collection of vertices and edges of a graph, respectively.
The distance between o and B is denoted by d(«, B). Two
vertices are considered adjacent if the distance between
them is exactly one unit. The valency of a vertex refers
to the number of nodes that are directly connected to it.
The connection number of a vertex refers to the number
of nodes that are at a distance of two from it. In addition,
the literature often employs the abbreviations of subgraphs
and spanning subgraphs, as evidenced by references such
as [62] and [63].

Let a graph G and a particular subgraph which is called a
spanning subgraph, and we used the notation S¢ are said to
be twin-preserving if the twin vertices of G are also present
in Sg. The statement can be reformulated in the following
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TABLE 1. Some TIs.

Sr. Name of TIs Abbreviation Formula
No.
1 First Zagreb connection index FzCI > (Cu+C)
u€E(G)
2 Second Zagreb connection index SZC1 > (CuxCy)
w€E(G)
3 Geometric arithmetic connection index GACI 2C7 Vg‘iéc‘
w€E(G) e
4 Atom bond connectivity connection index ABCCI \/ %
uw€E(G) e
5 Symmetric Division Connection Index SDCI > (:;r;(((%’?é + r;?ﬁ((g“ ’g")) )
WweE(G) w,Cy w>Cv
6 Harmonic connection index HCI > ¢ i c
weE(G)
3
7 Augmented Zagreb connection index ACI > < Ccfécj2>
u€E(G) e
2
8 Hyper Zagreb connection index HZCI > (Cu + CV)
u€E(G)
9 Randic connection index RCI >/ ﬁ
u€E(G) ey
10 Reciprocal Randi¢ connection index RRCI > VCux Gy
w€E(G)
11 Reduced Reciprocal Randié connection index RRRCI > V(Cu—=1)(C,—1)
w€E(G)
12 variation of the Randic¢ connection index VRCI %
max{Cy,Cv}
13 Sum Connectivity connection index SCCI ﬁ
w€E(G) e
14 Forgotten connection index FCI > ((Cu)2 + (CV)2)
w€E(G)
15 Albertson connection Index ACI > |Cu— Gyl
w€E(G)
16 First Redefined Zagreb Connection Index FRZC %
weE(G) T
17 Second Redefined Zagreb Connection Index SRZC > %
weE(G) "
18 Third Redefined Zagreb Connection Index TRZC > (CuxCy)(Cu+Cy)

w€E(G)

manner: in a subgraph Sg that preserves twins, the vertices
that are twins in the graph G are likewise twins in Sg [64].
Now, we will review the formulas of TIs listed in Table 1.

Recently, researchers introduced indices that depend on the
vertices’” Connection Numbers (CN). The cardinality of the
vertices that are two distances distant from a vertex’s u value
is known as its CN.

Definition 1: For a graph G, the first Zagreb connec-
tion index (ZCI1(G)) and second Zagreb connection index
(ZCIh(G)) are defined as:

ZCh@G) = D (€= D (Cat+Cp) (D)

aeV(G) aBeE(G)
ZCHh(G) = > (Cyx Cp) )
aBEE(G)

Consider the introduction of swapped and biswapped
OTISs in the network context. The swapped OTIS denoted as
SOg, is derived from a base graph G. Its vertex set V(SOg)
and edge set E(SOg) are defined as follows: V(SOg) =
{xrs : xt5 € V(G), t,s € N} and E(SOg) = {(Xr,5, Xu,v) :
(Xt,55 Xu,v) € EG)} U {(xt,s, Xs,1) @ X5, x50 € V(G), 1 # s}.
If|V(G)| = m2, then SO is formed by m copies of G, with
each copy called as a cluster in SOg.
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Vertices in SO are denoted as x; 5, where s signifies the
address of the vertex at position s in cluster 7. In the swapped
OTIS(G), edges between clusters exist between x; ; and x;
when ¢t # s. The vertex x;; points to the processor ¢ in
cluster ¢, and no cluster other than 7 has an edge incident
to x; ; [65].

The ev-valency and the ve-valency-based TIs and entropies
of swapped OTIS for the base graph ‘13, are computed in [66]
and [67]. On the other hand, the biswapped OTIS, denoted
as BOg, is also an OTIS with the following vertex and edge
definitions:

V(BOg) = {(0,x,y),(1,x,y) : x,y € V(G)} and
EBOg) = {((0,x1,y)0,x2,y)), (1, x1, y)(1, x2, y))
(x2,x1) € E(G),y € V(G)} U{(O,x,y(1,x,y) : x
y e V(G)}

In [68], authors established some TIs related to the
path graph and the complete graph as the basis graph
for the biswapped network. The biswapped network BOgs,,
comprises 2m copies of 9B, with 2m? vertices denoted as
Xt.ss V1.5, where 1 < t,s < m. The vertices x; s and y; ¢
represent the upper and lower layers, respectively, in BOg,,,.
Edges among x; ;’s follow the adjacency pattern in the base
graph 3,,. Similarly, y, ;’s are connected by the adjacency
pattern of 3,,,.
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Edges between x; ’s and y; ’s follow the rule that x; g is
adjacent to y, ; for all # # s, and x; ; is adjacent to y; ; for all
1 <t < m. For a more comprehensive understanding of the
construction, refer to [67] and [68].

IIl. RESULTS AND DISCUSSIONS

In this section, we construct a Spanning subgraph that
preserves the maximum number of twin vertices M (B(*3,,))
of a biswapped OTIS over a base graph 3,,,. The construction
of M(B(*3,,)) involves a direct approach, where an edge
is removed, and all the properties of a TPSS are verified.
Afterward, through an examination of the composition
of B(3,,) and the subgraph that was created, specific
quantitative metrics, known as connection number-based
TIs, are calculated. These TIs provide complete structural
specifications of the network through numerical values. The
computation of TIs involves inspecting the subgraph for the
number of edges, vertices, and connectivity patterns among
vertices. The connection numbers-based TIs obtained from
the analysis of the network B(33,,) and M (B(*B3,,)) are listed
in Table 8.

A. BISWAPPED NETWORKS B(3y) AND THEIR
SPANNING SUBGRAPH THAT PRESERVES THE

MAXIMUM NUMBER OF TWIN VERTICES

In this subsection, we choose a spanning subgraph M (B(3,,,))
of B(*B3,,) and prove that this subgraph is twin-preserving and
maximal, which is evident from the construction.

The set V(B(B,,)) can be partitioned as: {x1; : 1 < j <
mpUfxpj: 1 <j<mpU---Ulxp;: 1 <j<mpU{y;:
l<j=m}U{yj:1<j<mpU---Ufyp;:1=<j=m}

The neighborhoods of all vertices of B([3,,) are: N(x;,1) =
rixio © 1 <0 < m}, Nxij) = (Vi Xij—1, Xij+1
2=<j=m-11=i=<m}N&im = {ymiXim-1 :
I <@ = m}, NOoi) = {xiyiz © 1 =0 < m},
N@Gij) = X0 Yij—1,Yij+1 12 <j<m—1,1<i<mj,
N©im) = {xm,i’ Yim—1 : 1 <i=<m}

A keen observation reveals that all vertices of B(J3,,)
possess unique neighborhoods, resulting in the existence of
singleton twins in B(J3,,). By removing the edge x2 1y1.2, a
maximal spanning subgraph M (B(*3,,)) of B(]3,,) is obtained.
The neighborhoods of vertices in M (B(*3,,)) are unaltered,
except for x2 1 and yj 2, whose neighborhoods in M (B(*3,,,))
are N(x2,1) = {x22} and N(y12) = {y1,1,y1,3}. The
neighborhoods of xp 1 and y;2 in B(P,) are N(xz,1) =
{x2,2,y12} and N(y12) = {x2,1,)1,1,y1,3}. From these
neighborhoods, it is clear that M (B(33,,)) also has singleton
twins. Therefore, M(B(*B,,)) is a TPSS of B(B,,) and is
maximal. Similarly, the removal of any other edge of B(33,,)
yields a family of twin-preserving subgraphs.

The following equation is a generalized description or
formula of the topological indices. In this expression ¢(G)
can be any topological descriptor or index and I'(u, v) is the
edge type formula of any topological descriptor or index.

$G) = > Tw).

uveE(G)
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By making a small adjustment to the process of construct-
ing the spanning subgraph (specifically, by eliminating two
or more particular edges), we can generate a diverse range of
subgraphs, which opens up intriguing possibilities for further
investigation.

B. BISWAPPED GRAPH B(Jy)
In this section, we computed main results of the related to the
biswapped graph B(B;;,).

Lemma 1: Let B(B,,) be a biswapped network withm > 6.
Then ¢(BOB,y)) = 3m? (F(6, 6)) +2m (4r(4, 5)42I(5, 5)+

4T(5,6) — 11T(6, 6)) + 4(r(3, 3) + 2I'(3, 4) 4 2I'(4, 4) —

4T(4,5) = 4T'(5,5) = 61(5,6) + 9T'(6,6)).

Proof: Let B(B,,) be a biswapped network has the
maximum valency 3 and maximum connection number 6.
The total number of vertices and edges are: 2m? and 3m?* —
2m, respectively. In the graph of B(}3,,), connection numbers
of vertices are 3, 4, 5 or 6.

Let E,, be the edge partition with end vertices have
connection number # and v. The edge partition function for
the vertices of B(]3,,) based on their connection numbers will
be:

Ezz={uw e ECBy) :u=3,v=3} 3)
Eza={uweECBy) :u=3v=4} @)
Esgn={uw e ECBy) :u=4,v=4} ®)
Ess ={uw e ECBp) :u=4,v=>5} 6)
Ess={uweECBy) :u=5v=>5} @)
Ese={uw e ECBy) :u=5v=06} 8)
Ece ={uv e ECBy) 1 u=06,v =06} &)

Note that E(B(Bp)) = E33 UE34UEs4 UEssUEssU
Es ¢ U Eg 6. The number of edges incident to two vertices
of connection number 3 are 4, so |E3 3| = 4. The number
of edges incident to one vertex of connection number 3 and
other vertex of connection number 4 are 8. So |E3 4| = 8. The
number of edges incident to one vertex of connection number
4 and other vertex of connection number 4, 5 are 4, 8m — 16,
respectively. So |E4 4| = 8 and |E4 5| = 8m—16. The number
of edges incident to one vertex of connection number 5 and
other vertex of connection number 5, 6 are 4m — 16, 8m —
24, respectively. So |E5 5| = 4m — 16, |Es¢| = 8m — 24.
The number of edges incident to two vertices of connection
number 6 are 3m? — 22m + 36, so |E6.6l = 3m? — 22m + 36.
Hence, ¢(B(B)) =

Z I'(u,v)

uveE(Pom)

= > TGE)H+ D> TG.H+ > T4

uveks 3 uveks 4 uveky 4

+ D T@SH+ D TEH+ Y. T(5.6)

uvekEy s uvekEs s uvekEs g

VOLUME 12, 2024



K. Alhulwah et al.: Biswapped Networks and Their Maximal Twin-Preserving Subgraphs

IEEE Access

+ z I'(6,6)

MVEE6_6
=@AHIraG,3)+@)ra,H)+08)ré, 49)+@8m—16)I1'4,5)
+ (4m — 16)T'(5, 5)

+ (8m = 24) (5, 6) + (30 — 22m +36) (6, 6)
After simplification, we get
$(B(Pn) = 30 (I(6,6)) +2m(45 (4, 5) + 20’5, 5)
+4T(5,6) — 11T, 6))
+ 4(1“(3, 3) 4+ 2I'(3, 4) + 2I'(4, 4)
_4T'(4, 5) — 4T'(5, 5) — 6I'(5, 6) + 9T'(6, 6)).

O

So, by using the Lemma 1 and putting different functions
instead of I'(u,v) one can produce different types of
connection-based TIs.

In the following theorems, we determined the connection-
based TIs of Biswapped networks.

Theorem 1: Let B(B,,) be a biswapped network with
m > 6, then the first Zagreb connection index

FZCI(B(B.)) = 36m*> — 64m + 8
the second Zagreb connection index

SZCI(B(B ) = 108m> — 292m + 116.

Proof: From the Definition 1, the first Zagreb connection
index FZCI(B(*B,,)) of B(B,,), we obtain I'(i, v) = (u +v) .
SoI'3,3) =6,13,4) =7,T4,4 =8, T4,5 =9,
rs,5 = 10, 1'(5,6) = 11, and I'(6,6) = 12. Thus by
Lemma 1,

FZCI(B(Pm)) = 36m> — 64m + 8.

From the Definition 1, the first Zagreb connection index
SZCI(B(B,,)) of B(B,,), we obtain I'(u,v) = (u xv). So
'3,3) =9, 3,4 =12, I'4,4) = 16, '4,5) = 20,
'(5,5) = 25, I'(5,6) = 30, and I'(6,6) = 36. Thus by
Lemma I,

SZCI(B(Bm)) = 108m? — 292m + 116.

O
Theorem 2: Let B(B,,) be a biswapped network with
m > 6, then the geometric arithmetic connection index

32 164/30
GACI(B(P)) = 3 m® + (—\/_ 18+ I/l_)m
324/3 6445 48430
+32+ V3 — V5 —

7 9 11

the atom bond connectivity connection index

ABCCI(B(Bm))

V10m?
2
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+ ( + 4\/_ 11\/1_0) m
5 3
§ 4¢T 2\/‘_8*/_ 32V2 12430 6O
3 5 5
the symmetric dlwszon connection index
10 14
the harmonic connection index
HCI(B 1 181 1732
(B(Bw)) = m +E +%
the augmented Zagreb connection index
17496 2 62452697407 8784103777
AZCIBRn) = 125 148176000 mt 37044000

the hyper Zagreb connection index

HZCI(B(B)) = 432m* — 1152m + 432.
Proof: By using the Lemma 1 and Table 2 in the formula
that are given in Table 1, we get the required results.
O
Theorem 3: Let B(B,,) be a biswapped network with
m > 6, then the Randic connection index

2 (45 43 430
RCIB(Pn) = = + (Tf - ‘1/—5_);"

92 43 85 4430

573 5 5

the Reciprocal Randic connection index
RRCI(B(B,n)) = 18m + (16~/§ 112+ 8\/30) m
+ 180 4 16v/3 — 324/5 — 244/30

the Reduced Reciprocal Randic connection index
RRRCI(B(P,)) = 15m* + (16J§ 1 16v5 — 94) m
+ 148 + 86 — 324/3 — 4845

variation of the Randic connection index

VRCI(B(Bp)) = ! + ! + 1
RS AT
Proof: By using the Lemma 1 and Table 3 in the formula
that are given in Table 1, we get the required results.
|
Theorem 4: Let B(B,,) be a biswapped network with

m > 6, then the Sum Connectivity connection index

SCCI(B(Bm))

V3 m? 8 210 8J/11 113
= +{ =+ — m
2 3 5 11 3
2/6 87 16 8410 24411
+T‘/_+%—+2f—?—7— T +ov3

the Forgotten connection index

FCI(B(B.)) = 216m* — 568m + 200
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TABLE 2. Values of I'(u, v) with respect to Connection numbers for Theorem 2.

T(u,v) (3.3) (3.4) 4.4) 4.5) (5,5) (5.6) (6,6)
2/ uxv 43 45 2130
ViR 1 =2 1 Yo 1 1
u+v 7 9 11
utv—2 2 V15 V6 V35 2v2 /30 V10
uUxv 3 6 4 10 5 10 6
min (u,v) max (u,v) 25 41 61
max(u,v) + min(u,v) 2 12 2 20 2 31 2
2 1 2 1 2 1 2 1
u+v 3 7 1 9 5 11 6
( uxv )3 729 1728 512 8000 15625 1000 5832
ufv—2 64 125 27 343 512 27 125
2
(u + v) 36 49 64 81 100 121 144
TABLE 3. Values of I'(u, v) with respect to Connection numbers for Theorem 3.
T'(u,v) (3.3) (3.4) 44) “4,5) (5,5) (5,6) (6,6)
1 1 1 1 1 1 1 1
uxv 3 V12 P V20 5 V30 6
Vu xXv 3 V12 4 V20 5 V30 6
-1 xHv-1) 2 V6 3 V12 4 V20 5
1 1 1 1 1 1 1 1
max{u,v} 3 4 4 5 5 6 6

the Albertson connection Index

ACI(B(Pm)) = 16m — 32

for the vertices of M(B(3,,)) based on their connection
numbers will be:

Eys={uweECB,) : :u=2v=>5} (10)
the first redefined Zagreb connection index Essy={uv e ERn):u=3v=23) (11)
3 = m) - U=23,V=
4 14 — cu= =
FRZC(B(P,)) = e Ezs={uw e ECBy) :u=3v=4} (12)
5 15 E3s={uw e E(Pp):u=3,v=>5} (13)
the second redefined Zagreb connection index Esja={uw e E(Bp) :u=4,v=4} (14)
SRZC(BEB,y)) = 9 1624 1874 Eqs ={uv € E(Pp) :u=4,v =75} (15)
=P T g9 T 603 Ess={uv € EPn) :u=5v=>5) (16)
the third redefined Zagreb connection index Ese={uv € E(Bn) :u=5,v=>06} a7
Ese ={uv e ECBy) :u=06,v=06} (18)

TRZC(B(P,n)) = 1296m> — 4424m + 2664.
Proof: By using the Lemma 1 and Table 4 in the formula
that are given in Table 1, we get the required results. g

C. SPANNING SUBGRAPH THAT PRESERVES THE
MAXIMUM NUMBER OF TWIN VERTICES
(M(B(*Bm))) OF B(Bm)

Lemma 2: Let M(B(*B,,)) be a Spanning subgraph that
preserves the maximum number of twin vertices of B(Bn)

with m > 6. Then T(M(B(Bm))) 3m2(r(6, 6)) n

2mg4r(4, 5)4+2I'(5, 5)+4T(5, 6)— 1116, 6)) n (r(z, 5)+
5I'@3,3) + 7I'(3,4) + I'@3,5) + 7I'4,4) — 18I'4,5) —
16I'(5, 5) — 24I°(5, 6) + 36I°(6, 6)).

Proof: Let M(B(*B,,)) be a Spanning subgraph that
preserves the maximum number of twin vertices of B(]3,;,) has
the minimum valency 1 and maximum connection number 6.
The total number of vertices and edges are: 2m? and 3m?> —
2m — 1, respectively. In the graph of M (B(*3,,)), connection
numbers of vertices are 2, 3, 4, 5 and 6 and their cardinalities

Note that E(M(B(Bn))) = E2 s UE3 3 UE3 4 UE3 s UE44 U
E45UEs s UEs ¢ UEg 6. The number of edges incident to one
vertex of connection number 2 and other vertex of connection
number 5 are 1. So |E3 5| = 1. The number of edges incident
to two vertices of connection number 3 are 5, so |E3 3| = 5.
The number of edges incident to one vertex of connection
number 3 and other vertex of connection number 4 and 5 are
7 and 1, respectively. So |E34| = 7 and |E3 5| = 1. The
number of edges incident to one vertex of connection number
4 and other vertex of connection number 4, 5 are 7, 8m — 18,
respectively. So |E4 4| = 7 and |E4 5| = 8m—18. The number
of edges incident to one vertex of connection number 5 and
other vertex of connection number 5, 6 are 4m — 16, 8m —
24, respectively. So |Es 5| = 4m — 16, |Es¢| = 8m — 24.
The number of edges incident to two vertices of connection
number 6 are 3m?> — 22m + 36, so |Eg 6| = 3m*> — 22m + 36.
Hence, Y (M(B(Bn))) =

> L.

are: 1, 9, 4m — 2, 8m — 24 and 2m®> — 12m + 16, ueE(Pm)
respectively. Let E, , be the edge partition with end vertices = Z re,s + Z ra,3)+ Z I'a,4)
have connection number # and v. The edge partition function uveEs s uveEs 3 uveEs 4

79230
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TABLE 4. Values of I'(u, v) with respect to Connection numbers for Theorem 4.

T, v) (3.3) G.4) @ @5) G.5) (.6) (6,6)
T T T T T T T T

Vit G V7 e 3 v Vit iz

Ju — v 0 1 0 1 0 1 0

u? 412 18 25 32 41 50 61 72

utv 2 z 2 2 2 u 1

u+tv 2 T 9 2 11

(u+v) (u x ) 54 84 128 180 250 330 432

+ D> TGS+ > 4.4 3,5 = 15, [4,4) = 16, ['4,5) = 20, I'(5,5) = 25,
uveEs s uveEy 4 I'(5,6) =30, and I'(6, 6) = 36. Thus by Lemma 1,

+ > T@4.5) SZCIM(B(Bm))) = 108m> — 292m + 82.

uveky s 0

+ Z LG, 5+ Z G, 6)+ Z ['(6,6) Theorem 6: Let M(B(B3,,)) be a Spanning subgraph that
uvekEs s uveFEs ¢ uveke ¢

=HIre,5+0)ra,3)+{@ra,4)
+(MIG,5+ M4, 4
+@8m—18)I'4,5) + (4m —16)I'(5,5)

+ (8m —24)T'(5,6) + (3m2 —2om+ 36) I'(6, 6)
After simplification, we get

Y(M(B(Bm)))
- 3m2(r‘(6, 6)) + 2m(4r(4, 5)+ 215, 5)
4TS, 6)— 11T, 6))+ (r@.5)+57G,3)+71G, 4)
+T(3,5 + 704, 4) — 18T(4, 5)
—16°(5, 5) — 24T°(5, 6) + 36'(6, 6)).

O

In the following theorems, we determined the connection-based

TIs of Spanning subgraph that preserves the maximum
number of twin vertices of B(3,,).

Theorem 5: Let M(B(B3,,)) be a Spanning subgraph that
preserves the maximum number of twin vertices of B(Bm)
withm > 6. Then

the first Zagreb connection index

FZCI(M (B(B.))) = 36m*> — 64m — 4
the second Zagreb connection index

SZCI(M (B(B.))) = 108m> — 292m + 82.

Proof: From the Definition 1, the first Zagreb connection
index FZCI(M (B(3,»))) of M(B(*B,,)), we obtain I'(u, v) =
(u+v).S0I'(2,5=7,T(3,3)=6,I'3,4) =7,I'(3,5) =
8, I'4,4) =8,T4,5 =9,I'5,5 =10, T'(5,6) = 11,
and I'(6, 6) = 12. Thus by Lemma 1,

FZCI(M(B(B.))) = 36m> — 64m — 4.

From the Definition 1, the first Zagreb connection index
SZCI(M(B(B,))) of M(B(B,)), we obtain I'(u,v) =
(uxv).SoI'2,5) = 10, I'3,3) = 9, I'3,4) = 12,
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preserves the maximum number of twin vertices of B(B,)
withm > 6. Then
the geometric arithmetic connection index

32./5 16@)
m
11

GACI(M (B(B.))) = 3m* + (T — 18+

2410
+ o 32+

15 4830
4\/§+4—8\/_— o

the atom bond connectivity connection index

ABCCI(M(B(Bw))) =
\/1—0m2+ 435 82 4430 114/10
— m
2 5 5 5 3
592 N 10 N 715 N 31/10
10 3 6 5

776 9v35 12430

T T s T

the symmetric division connection index

_eo 1039
SDCI(M (B(B.»))) = 6m 3 m 20

the harmonic connection index
HCIM BB = m? 4 2L, 2
m)) =M T 495" T 1155

the augmented Zagreb connection index

17496 , 62452697407

m m
125 148176000
14277324667

74088000
the hyper Zagreb connection index

HZCI(M(B(Bn))) = 432m> — 1152m + 306.
Proof: By using the Lemma 2 and Table 5 in the formula
that are given in Table 1, we get the required results. ]
Theorem 7: Let M(B(B,)) be a Spanning subgraph that
preserves the maximum number of twin vertices of B(Bn)
with m > 6. Then the Randic connection index

RCI(M (B(Bm)))

AZCI(M (B(Bm))) =
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TABLE 5. Values of I'(u, v) with respect to Connection numbers for Theorem 6.

I'(u,v) 2,5 (3,3) (34 (3.,5) “4) 4.5 (5,5) (5,0) (6,6
2 /uxv 2+/10 43 V15 45 24/30
u+tv 7 1 7 4 1 9 1 11 1
utv—2 V2 2 V15 V10 V6 V35 2v2 /30 V10
uUxv 2 3 6 5 1 10 5 10 6
min(u,v) max (u,v) 29 25 34 41 61
max(u,v) + min(u,v) 10 2 12 15 2 20 2 31 2
2 2 1 2 1 1 2 1 2 1
utv 7 3 7 1 1 9 5 T 6
< uxvy 23 8 729 1728 125 512 8000 15625 1000 5832
utv—2 64 125 8 27 343 512 27 125
<u + v) 49 36 49 64 64 81 100 121 144
TABLE 6. Values of I'(u, v) with respect to Connection numbers for Theorem 7.
I'(u,v) (2,5) (3,3) (€X)) (3.5 4.4 4.5) (5,5) (5,6) (6,6)
1 1 1 1 1 1 1 1 1 1
uxv V10 3 Vi2 Vi5 1 V20 5 30 6
Vuxv V10 3 V12 V15 4 V20 5 V30 6
-1 x@v-1) 2 2 V6 V8 3 V12 4 V20 5
1 1 1 1 1 1 1 1 1 1
max{u,v} 5 3 4 5 4 5 5 6 6

T'(u,v) 2,5 3,3) (3.4) 3.5) (4.,4) (4,5) (5,5) (5,6) (6,6)
T T T T T T T T T T
Vv V7 V6 V7 VB V8 3 V10 V11 Viz
lu—v]| 3 0 1 2 0 1 0 1 0
u? +172 29 18 25 34 32 41 50 61 72
utv k4 2 T 8 2 5 2 u 1
u+v 7 2 7 8 9 2 11
(1 +v) (u  v) 70 54 84 120 128 180 250 330 432
m> (45 43 4430 V3m?* (8 2J/10 8JI1 113
=—+\—-—"—=+—)m = +{ 5+ + — m
2 5 15 15 2 3 5 11 3
V10 373 743 15 95 4430 8V7 546 8v10 24411
L Y10 373 V3 _5_ LTV e IO +6v3
10 60 6 15 5 5 7 6 5 11
the Reciprocal Randic connection index the Albertson connection Index
RRCIM(B(Rm)) ACH BT = 16m — 30
= m —
= 18m? + (16v/5 = 112 + 8v/30) m "
£ V10 4+ 179 4+ 1443 + V15 — 36+/5 — 24430 the Forgotten connection index
the Reduced Reciprocal Randic connection index FCI(M(B(Bm)) = 216m* — 568m + 142
RRRCI(M (B(Pm))) the first redefined Zagreb connection index
= 150% + (16v/3 + 16v/5 — 94) m s b
FRZC(M (B =m* 4 —m+ —
+ 149 + 7v6 + 272 — 36v/3 — 48v/5 (MBEPu)) = m™+ 5m+ 55
variation of the Randic connection index the second redefined Zagreb connection index
b, 1 23 1624 401
Proof: By using the Lemma 2 and Table 6 in the formula ) i o
that are given in Table 1, we get the required results. O the third redefined Zagreb connection index

Theorem 8: Let M(B(B,)) be a Spanning subgraph that
preserves the maximum number of twin vertices of B(Bm)
with m > 6. Then the Sum Connectivity connection index

TRZC(M(B(P ) = 1296m* — 4424m + 2336.

Proof: By using the Lemma 2 and Table 7 in the formula
SCCI(M(B(Bn)) that are given in Table 1, we get the required results. O
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TABLE 8. Comparison of TIs of biswapped graph B(3m) and its TPSS M(B(3m)) with respect to Connection numbers.

Abbreviation of  TIs values of B(3,) TIs values of M (B(%m)) Difference
TIs
FZCI 36m? — 64m + 8 36m? — 64m — 4 12
SZCI 108m? — 292m + 116 108m? — 292m + 82 34
GACI 3m2 4 (325 184 16330y 1 394 325 32 4 (32f 18+ 16\ﬁ)er 2710 1374 43 4 BE _
645 48\/% 210 15
o T AT 4B+ V32— 85— T a1
2
ABCCI @+(@+8W+4\/ﬁ 11\/ﬁ?m+ @+(¥+%+£,ngﬁ?m, ,%+%+{T6+
%+4\éﬁ+2fisfiszfi12\5/%+ 5915/5+1370+7\éﬁ+31\5/ﬁ+%79\é£7 %7§731\5/E
6/10 12g?
2 _ 10 14 3 _ 10 39 61
SDCI 6m* — 3Mm— 15 6m* — 3Mm— 55 0
181 1732 181 449 1
HCI *m + 295" T 3465 ’m + 295™M t 1155 9
17496 2 _ 62452697407 8784103777 17496 2 _ 62452697407 14277324667 3290882887
ACI 125 ™"~ Tiasireooo " T “37044000 125 ™" — T1asiveoo0 " T 71088000 74088000
HZCI 432m2 — 1152m + 432 432m2 — 1152m + 306 126
RCI (A58 80y, 92 4 w4543 480y, VIO 378, 1 B VE
Sf 44/30 77\/§+@_M_4f V1o _ V15
5 5 6 15 5 10 15
RRCI 18m2 +(16+/5—1124+8+/30)m+180+16v/3—  18m? 4 (16v/5—1124+8v30)m++v10+179+ 14+ 2v3 + 45 —
32/5 — 24/30 14v/3 + /15 — 36v/5 — 24+/30 V10 — /15
RRRCI 15m2 + (16V/3+16vV5—94)m+ 148 +8v6 —  15m? +(16V/34+16V/5—94)m+149+7v6+ —1+v6+4/3 —
32\f 485 2\f 363 — 48V/5 2v2
VRCI ﬂn —i——m—&—& 7m +—m+§ é
scer RS S v Vs ST RS S SN IR vV ST RN SR
8f+2f———@—241{ﬁ+6¢§ 36 492 —6— 810 _ 2111 4 6/3
ACI 16m — 32 16m — 30 —2
FCI 216m2 — 568m + 200 216m? — 568m + 142 58
4 14 4 17 1
FRZC m2—|—7m—l-1—5 m2+§m+% 5
2 1624 1874 2 1624 401 1691
SRZC 9m” — Zg5=m + “go3° 9m” — Zg5=m — gy 504
TRZC 1296m? — 4424m + 2664 1296m? — 4424m + 2336 328
TABLE 9. Numerical values of TIS for biswapped graph B("3m).
m FZCI SZCI GACI ABCCI SDCI HCI AZCI HZCI
6 920 2252 95.620 55.657 195.07 20.694 27471 9072
7 1324 3364 132.54 75.993 269.73 27.559 4145.2 13536
8 1800 4692 175.45 99.494 356.40 35.425 5823.3 18864
9 2348 6236 224.37 126.16 455.07 44.291 7781.2 25056
10 2968 7996 279.29 155.98 565.73 54.156 10019 32112
11 3660 9972 340.21 188.96 688.40 65.022 12537 40032
12 4424 12164 407.13 225.12 823.07 76.888 15335 48816
13 5260 14572 480.05 264.42 969.73 89.753 18413 58464
TABLE 10. Numerical values of TIS for biswapped graph B(B3m).
m RCI RRCI RRRCI VRCI SCCI FCI ACI FRZC SRZC TRZC
6 20.780 458.27 361.78 19.333 31.382 4568 64 41.733 228.28 22776
7 27.663 659.87 526.28 25.900 42.633 6808 80 55.533 328.88 35200
8 35.545 897.47 720.77 33.467 55.617 9480 96 71.333 447.47 50216
9 44.427 1171.1 945.27 42.033 70.332 12584 112 89.133 584.07 67824
10 54.311 1480.6 1199.8 51.600 86.779 16120 128 108.93 738.66 88024
11 65.194 1826.2 1484.2 62.167 104.96 20088 144 130.73 911.26 110820
12 77.076 2207.9 1798.7 73.733 124.87 24488 160 154.53 1101.9 136200
13 89.960 2625.5 2143.2 86.300 146.50 29320 176 180.33 1310.5 164180

D. COMPARISON OF TIS OF B(3,;) AND M(B(T))

This section provides a comparison between the computed
topological invariants (TIs) for the maximal twin-preserving
subgraph M (B(3,,)) and B(B3,,) with connection number.
The comparisons are presented in Table 8. The values
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corresponding to the various TIs for B(3,,) are displayed in
the first column of Table 8. The values for M (B(3,,)) and the
discrepancy are presented in the second and third columns,
respectively. The third column of Table 8 demonstrates that
the TIs only vary by a constant.
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TABLE 11. Numerical values of TIS for Spanning subgraph that preserves the maximum number of twin vertices M(B(*3m)).

m FZCI SZCI1 GACI ABCCI SDCI HCI AZCI HZCI
6 908 2218 94.514 55.222 20.583 20.583 2702.7 8946

7 1312 3330 131.43 75.559 27.448 27.448 4100.8 13410
8 1788 4658 174.35 99.059 35.314 35314 5778.8 18738
9 2336 6202 223.27 125.72 44.180 44.180 7736.8 24930
10 2956 7962 278.19 155.54 54.045 54.045 9974.7 31986
11 3648 9938 339.10 188.53 64.911 64.911 12493 39906
12 4412 12130 406.02 224.69 76.777 76.777 15290 48690
13 5248 14538 478.94 263.99 89.642 89.642 18368 58338

TABLE 12. Numerical values of TIS for Spanning subgraph that preserves the maximum number of twin vertices M(B(*3m)).

m RCI RRCI RRRCI VRCI SCCI ACI FCI FRZC SRZC TRZC
6 20.702 451.9 356.24 19.167 31.123 66 4510 41.65 224.92 22448
7 27.585 653.49 520.73 25.733 42.375 82 6750 55.45 325.52 34872
8 35.467 891.09 715.22 333 55.358 98 9422 71.25 444.12 49888
9 44.351 1164.7 939.72 41.867 70.073 114 12526 89.05 580.71 67496
10 54.233 1474.3 1194.1 51.433 86.521 130 16062 108.85 735.31 87696
11 65.116 1819.8 1478.6 62 104.7 146 20030  130.65 907.9 110490
12 76.999 2201.5 1793.1 73.567 124.61 162 24430 154.45 1098.5 135870
13 89.881 2619.1 2137.6 86.133 146.25 178 29262 180.25 1307.1 163850
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FIGURE 1. Graphical representation of Theorem 1 and Theorem 5.
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FIGURE 2. Graphical representation of Theorem 2 and Theorem 6.

Furthermore, we have opted to include graphical trends
to illustrate the distinction across the calculated TIs of the
B(B,,) and M (B(*B,,)). The numerical values of TIS for the
biswapped graph B(]3,,) are shown in Table 9 and Table 10,
while numerical values of TIS for the spanning subgraph that
preserves the maximum number of twin vertices M (B(*B,,))

79234

are shown in Table 11 and Table 12. The left side figure
of Figure 1 gives values of TIs in Theorem 2 for B(3,,),
and the right side figure of Figure 1 gives values of TIs in
Theorem 6 for M(B(3,,)) by graphical way. Both graphs
exhibit comparable patterns, except one graph is positioned
above/below the other.
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FIGURE 3. Graphical representation of Theorem 3 and Theorem 7.
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FIGURE 4. Graphical representation of Theorem 4 and Theorem 8.

Similarly, Figures 2, 3, and 4 are used to show the trends
and comparisons of the other TIs.

IV. CONCLUSION

Various techniques are available for streamlining complex
networks, and one significant strategy involves employing
twin nodes that replicate the connectivity pattern of the entire
network. This concept has been expanded by selecting a
TPSS from a fundamental graph, allowing for the examina-
tion of specific graph-related properties that are maintained
by the subgraph. Twin nodes are essential for calculating
various TIs. One motivation for constructing a TPSS of a
simple graph is to reduce the intricacy of a network. More
precisely, twin nodes can remain unaltered when the size
of the network is decreased. The calculation of TIs based
on connection counts is also contingent upon the presence
of twin nodes. Hence, investigating the correlation between
these topological invariants (TIs) for graphs and their TPSS
is intriguing.

One further advantage of studying TPSS is their capacity to
preserve specific graph parameters. Examining this particular
subgraph is advantageous in situations where analysing
the full graph or network is impractical, or when there is
incomplete data, such as lacking information about specific
nodes or edges. The TPSS are valued in engineering for
molecular analysis in such situations [69].
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This work examines a subgraph of B([3,,) that preserves
twins to the maximum extent possible. We then determine
its topological invariants along with their corresponding
connection numbers. By comparing the TIs of B(]3,,) and
its maximal twin-preserving subgraphs, we find that the TIs
differ only by a constant term. A comparitive study presented
in this work are derived using analytical equations, graphs and
tables. Our study distinguishes itself from most current works
on TIs by incorporating two key elements: the objective is to
construct a subgraph that preserves the maximum number of
twin vertices, and then compare the TIs between the original
graph and this subgraph.
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