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ABSTRACT Knowledge Distillation (KD) is the procedure of extracting useful information from a previ-
ously trained model using an algorithm. The successful distillation pulls up the distilling model accuracy.
In the context of model compression, the teacher model provides softened labels that facilitate distillation.
While some effort has been devoted to progressive training, and a majority of the effort in literature has been
in teacher-student distillation configuration or methodologies, less effort has been spent in non-progressive
training, meta-learning controlled distillation, and progressive training with algorithm-controlled target
distribution. In this paper, we proposed a framework of Teacher-Free Knowledge Distillation (TFKD) based
on non-progressive meta-learned Reinforcement Learning (RL) method. The student model learns from free-
form distribution, which will change during training. In this scenario, the target distribution is varied during
the training epochs, and the variation is not necessarily continuously merging toward the true distribution.
Due to the algorithm-controlled nature of the target distribution variation during KD, the meta-learning KD
is established. We also designed a Multi-Ranking Selection (MRS) procedure to find a more potential model
for continued training. We conducted our experiments using VGG-8 on CIFAR-100, CIFAR-10, and SVHN
datasets. Our method has improved by 1.62% without MRS and 1.97% with MRS compared with the baseline
model on CIFAR-100. Compared to State-Of-The-Art (SOTA) techniques, our approach achieves the highest
accuracy of 72.41%.

INDEX TERMS Teacher-free knowledge distillation, knowledge distillation, reinforcement learning, meta-
learning, model compression.

I. INTRODUCTION [6], [7], [8], [9], [101, [11], [12], [13], and low-rank matrix

The development of deep learning has led to achievements
in several fields of artificial intelligence, such as computer
vision and natural language processing. Most State-Of-The-
Art (SOTA) models become more significant for complicated
calculations to reach a higher accuracy. However, deploying
these high-performance models on edge devices with sparse
resources, €.g., mobile phones and embedded devices, may be
challenging due to the high complexity and the large model
size. Many methods regarding model compression [1], [2]
have been proposed to solve this problem, such as prun-
ing [3], [4], quantization [5], Knowledge Distillation (KD)
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decomposition [14]. Network pruning can reduce the model
size by deleting unnecessary weights or neurons. Parameter
quantization is a method using fewer bits to represent the
same values. On the other hand, inspired by how humans
learn knowledge from the teacher, KD can transfer the knowl-
edge from a vast teacher model to a small student model.
There is also much research combining several model com-
pression methods. For instance, Han et al. [15] use pruning,
quantization, and Huffman coding to reduce the model size
without accuracy reduction. Polino et al. [16] achieve model
compression via distillation and quantization.

KD was first proposed by Bucilua et al. [17] and widely
promoted by Hinton et al. [8]. The student model can learn
the knowledge from the teacher model to improve their

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

79685


https://orcid.org/0000-0003-2049-045X
https://orcid.org/0009-0009-5231-6334
https://orcid.org/0009-0006-2120-5349
https://orcid.org/0000-0001-6104-3360
https://orcid.org/0000-0001-6160-9547

IEEE Access

B.-R. Jiang et al.: TFKD Based on Non-Progressive Meta-Learned Multi Ranking Selection

performance. There are two common types of knowledge
transfer. The first one only transfers the logits of the last
layer [8], [18], [19]. The second method is feature-based
knowledge transfers where not only the last layer but also
the intermediate layers [7], [20], [21] are distilled so that
the student can mimic the feature maps of the teacher. It is
generally believed that the hints of intermediate layers are
also important for student’s learning. For example, Fitnets [7]
is a famous model in this area, using the hidden layers of the
teacher as hints to guide the student’s training process.

The methods of KD above depend on a proper teacher
model since, in traditional concepts, only the high-
performance, properly-tuned teacher model can enhance the
student model significantly. However, this will cause extra
computation for training a cumbersome teacher model. If the
model we want to train is big originally, it will lead to a
problem for us to find another larger model for the training.
Besides, the requirement of teacher models limits the flex-
ibility of using label smoothing in KD. Recently, concepts
such as Teacher-Free Knowledge Distillation (TFKD) [22]
and Self-Knowledge Distillation (Self-KD) [23], [24], [25],
[26], [27] were proposed. The central concept of TFKD
and Self-KD is that the knowledge is not distilled from a
teacher network. While a lot of teacher-based KD effort
has been conducted in the literature, TFKD is worth more
investigation.

In this paper, we proposed a TFKD method by designing
a free-form distribution as the teacher, which will change
during the training process [28], [29]. We use an optimization
algorithm named the non-progressive meta-learned Rein-
forcement Learning (RL) method to optimize the distribution.
Finally, we design a Multi-Ranking Selection (MRS) pro-
cedure to find a more potential model for training. The
flowchart of the whole process is shown in Fig. 1. Unlike
normal KD, we can enhance a model without training another
large model. The free-form distribution can also provide
more possibilities for training without the limitations of the
teacher’s prediction.

The remainder of this paper is organized as follows:
Section II describes the related works. Section III describes
the methodology and the training process we proposed. The
experiment results and discussion are presented in section IV.
In section V, the future work is described. In the end, the
conclusion is given in section VL.

Il. RELATED WORKS

Li [30] proposed a category that the earliest instance of
the teacher-free method can be defined as Dropout [31],
DropBlock [32], and self-attention distillation [33]. These
pioneering contributions established the basis for further
research [22], [30], [34] in this field. Reference [30]
purposed a teacher-free feature distillation framework by
using intra-layer and inter-layer features for distillation. The
intra-layer uses the features in the same layer as knowledge.
The inter-layer uses the features of the deeper layer to guide
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the shallow layer. Some research discusses the relationship
between Label Smoothing Regularization (LSR) and KD.
Yuan et al. [22] have observations that the student model
can enhance the teacher model and a poor teacher can also
improve the student model. Thus, they concluded that the
regularization of soft targets is also an important part of the
success of KD. Based on this idea, they designed a distri-
bution that is similar to LSR with a high probability of the
correct class for the student to learn. Wang et al. [34] decom-
posed TFKD into output smoothing and teacher correction,
demonstrating an intuitive approach to replace the traditional
LSR method.

The results of this paper will be compared to the current
works in the field of teacher-free method [30], [31], [32], [33],
[35], [36] and Self-KD [23], [24], [25] in Table 5. Reference
[23] presented a strategy for one-stage online distillation
which can overcome the need of a strong teacher by training
a single network while the teacher network is established
simultaneously. Reference [24] purposed a framework of
Self-KD by divided the network into several sections that
the shallow sections are trained as the student model by
distilling from the deeper section which is acted as the teacher
model. Reference [25] purposed a regularization method in
the dark knowledge of a single network which is named class-
wise self-knowledge distillation.This work is included in our
student thesis [37], and the related work by our group is [38].

ill. METHODOLOGY

A. FREE FORM-BASED KNOWLEDGE DISTILLATION

The TFKD method proposed by Yuan et al. [22] considers
KD as a type of LSR. The difference is that KD learns
from the teacher’s distribution, and the distribution in LSR
is a pre-defined uniform distribution. Inspired by this, we let
the model learn with the free-form distribution designed as
follows:

zZ, ifk=c
P_vector (k) = 100 —z 100 —z )
d 3 ’ k
ran om( 99 ) ) if k#c
(H

where z is a value randomly chosen from 90 to 99, c is the
correct label. In this formula, we initialize the unnormalized
values rather than directly specify the normalized values in
the vector, which are the probability distribution. The proba-
bility distribution for the student to learn in KD designed in
Eq. (1) and (2) will change during training, which is named
free-form distribution. Thus, we called our KD method a free-
form-based KD.

These numerical values are stored in a list, such as [0.1,
0.15, 0.12, ..., 99]. Initially, these numbers are summed
together (P_vector_sum). Subsequently, they are normalized
to a range between 0 and 1 based on their proportional con-
tributions.

Pk = P_vector (k) @)

P_vector_sum
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FIGURE 1. The illustration of algorithm architecture, including meta-learned free-form non-progressive KD and multi-ranking selection.

Following the initialization practice, the same practice is
used when adjusting the target distribution during RL meta-
learning non-progressive KD. Five classes surrounding the
true class are adjusted while tuning the target distribution, and
re-normalization according to (2) is carried out.

The concept of KD is to minimize the loss between soft
targets and hard targets. Soft targets are the predictions of the
teacher and student. The teacher here is our free-form distri-
bution, and the hard targets correspond to the truth labels. The
loss function of our TFKD method is

L=({0—-a)H(s,t)+ aDgL(s, P;) 3)

where s is the output probability of the model, 7 is the truth
label, H is the cross-entropy loss, Dk is KL divergence, 7 is
the temperature to soften the free-form distribution, and « is
a scaling factor.
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B. DATA PREPROCESS AND STRATIFICATION
In this paper, VGG-8 [39] is used on CIFAR-10 [40], CIFAR-
100 [40], and SVHN [41] datasets. In the field of image
classification, VGG is one of the most commonly used CNN
models. To apply to the framework of KD, we select the
smallest VGG8 model as our student model. It can also be
compared to the results of current papers, which show that
other researchers also use VGGS for their KD experiments.
Taking 5% of the training set into a validation set using
a stratified train-validation method to prevent imbalanced
training and validation sets, where the number of samples
in certain categories is significantly greater than in others.
Taking CIFAR-100, for example, this approach ensures that
25 images are chosen from each class.

After the data split procedure, a series of data augmen-
tations are applied to the training set images, aiming to
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TABLE 1. The configuration of data augmentation.

Data Augmentation Parameters
RandomCrop size = 36, padding = 4
CenterCrop size =32
RandomHorizontalFlip p = 0.5 (default)
RandomGrayscale p=0.1 (default)
RandomAutocontrast p = 0.5 (default)
RandomRotation degrees =0.5, 5, 10
Colotlitter brightness=0, contrast=0,
saturation=0 (default)

enhance the diversity of the dataset. To obtain the best con-
figuration of data augmentation, we conducted experiments
with 32 combinations of 7 data augmentations, as displayed
in Table. 1 by training the baseline model for 120 epochs
on CIFAR-100. The configuration is selected with the best
validation accuracy as our data augmentation, including ran-
dom crop, center crop, random horizontal flipping, random
grayscale, and random auto contrast. Data augmentation used
in CIFAR-10 and SVHN are the same as in CIFAR-100.
Eventually, this image is converted into a tensor, and pixel
values are normalized using precomputed mean and standard
deviation values. By doing the above process, a balanced and
representative distribution of images from each class during
the training process is maintained.

C. NON-PROGRESSIVE METHOD

A non-progressive meta-learned RL algorithm is designed
based on Fig. 2. The algorithm begins by initializing a
model and establishing a free-form loss function tailored for
meta-learning purposes. RL exploration factor [42] varies
throughout the entire RL process, where the exploration is
more likely to occur at the beginning of RL. During training,
the agent selects actions based on Q-network. Our goal is to
optimize the model’s performance over time by adjusting its
actions based on the estimated Q-values.

A strategy is applied, including 33 different actions, each
corresponding to a specific adjustment in the five classes
centering at the true class. The action is a 6-dimensional
vector with the number from 0 to 63, and and only O to 32 is
used in the action representation. The probability distribution
will change when the action number is O to 31 and not when
the action number is 32. Thus, there are a total of 33 possible
actions. For instance: [i, i, ¢, i, i], where ¢ represents the
correct class and i represents the incorrect classes adjacent to
the correct class. Any adjustment will change all five values
in this list where the change of ¢ in one RL step is true
class tuning Ti. whose values range from 0.1-2. Normal-
ization at [i, i, c, i, i] will be carried out after probability
tuning by RL. The decision is whether each value should be
increased or decreased. This leads to 32 different variations in
probability distributions. Considering the original unchanged
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FIGURE 2. The flowchart of the non-progressive meta-learning method
via Reinforcement Learning (RL).

option, there are 33 possible actions in total. The current
state, these 33 actions, and the corresponding rewards are
stored in a Q-table and combined with exploration to select
the next action. Subsequently, the selected probability in these
five classes is used in the continued training afterward. This
method is intended to be applied to adjust the target distribu-
tion in situ with the goal of enhancing KD performance using
a non-progressive strategy where the target distribution does
not necessarily gradually converge to the true distribution.

The training process unfolds iteratively, spanning a prede-
termined number of epochs. During each epoch, the model’s
parameters are optimized using a combination of training
set predictions and a normalized probability vector. Simul-
taneously, validation loss is monitored to assess the model’s
performance. Throughout the training process, the algorithm
precisely records a range of metrics, including the model’s
state, RL input, and rewards obtained from actions.

In a subsequent step, selected model is trained using
the recorded inputs and rewards as the foundation. Using
RL to implement meta-learning non-progressive KD is an
innovation of our approach, as it enhances the model’s perfor-
mance by dynamically adapting the target distribution non-
progressively. The procedure of our non-progressive meta-
learned RL method is summarized in detail in Algorithm 1.

At the training stage, a mechanism is designed for saving
the models as the seeds for the MRS method, as described in
section IL.D. The definition of the model fitness is

fitness

_ bestyce = (1/valacc), if bestyce > (1/valaec) (4)

bestioss = valioss, if bestioss > valjoss

VOLUME 12, 2024
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Model saving

True, if (1/valyc) — bestaee < B

= or valigss — bestipss < :3 ®)
False, else

where valy. is validation accuracy, valjess is validation
loss, B is a range for model saving. If (1/valycc) or valjggs is a
little higher than the fitness, the model will still be saved.
will be increased if there is no model saving after 10 epochs.
Otherwise, 8 will be decreased.

Algorithm 1 Non-Progressive Meta-Learned RL Method
Input:model,, Probability vector P,, Train Dataset Dy,
Validation Dataset D,,;

Output: model;

1: Initialize model weight;

2: freeform-based loss lossy;

3: Val loss loss,;

4. P <« P,/Sum (Py)

5: epsilon < 1

6: a < 0.013

7 for i <— 0 to 240 epochs do

8: reward < modely.predict (state, action)
9: if exploration<epsilon then

10: action < random (0, 32)

11: else if exploration<0.1 then

12: action < argmax (reward)
13: else

14: action < argmin (reward)

15: end if

16: epsilon < epsilon — a

17: if epsilon<0.2 then

18: epsilon < 0.2

19: end if

20: preds <— model.predict (Dy)

21: loss < lossy (Dy, preds, P)

22: Update (model’s weight, loss)
23: val preds < model .predict (D)
24: val loss < loss, (D, val preds)
25: state < record (val loss)

26: RLinput < record (state)

27: All reward < record (reward)
28: Train (modelq, RLinput, All reward)
29:  end for

The exploration in RL is tuned by two parameters, i.e.,
epsilon and a. Epsilon, which is set to 1, is higher at first,
so the random action is chosen with a higher probability for
exploration. Epsilon will decrease by a each epoch, which is
set to 0.013 to decrease the probability of exploration. The
setting of epsilon and a is according to [42]. The model is
trained for 240 epochs via the non-progressive method. First,
a non-p
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D. MULTI-RANKING SELECTION METHOD

First, a non-progressive model is trained for EPyrs = 20
as seed candidates. N = 3 lossweight = [a, b, c] is selected,
where a, b, and c are generated randomly. N [0sSyeight g€n-
erates N groups, and Scorefipess 1S calculated with the
corresponding lossweight for each group. In each group, the
partition is carried out to form a high, medium, and low
sub-group in terms of Scorefimess. Afterward, one model is
selected from each sub-group. Each model is trained for the
additional EPprs = 20 epochs with the previous RL non-
progressive procedure, and Scoreyy) is calculated. Each group
has a score Scoregroup by summing Scorey, of the three mod-
els selected from each sub-group. The lowest Scoregroup 0of N
groups is considered to be the most promising candidate, and
the corresponding lossyeight Will be saved as best [osSweignt-
Then, the model and the corresponding target distribution are
selected with the best Scorey, from this group as the seed.
The seed and the best lossweigne are transferred to the next
round in MRS, and the above process is repeated until the
end of the entire MRS procedure, which is shown in Fig. 3.
Finally, the model is fine-tuned using cross-entropy loss and
the best model weights is restored by assessing the validation
metrics weighted by the best [ossweigh. The scores mentioned
above are defined as

Scorefimess = l0SSweight [0] X trainioss
+ lossweight [1] x (1/frainaect)
+ lossweight [2] X (1/traingccs) (6)
Scoreya) = valioss + (1/valace1) + (1/valaees) @)
Scoregroup = Scorenigh + Scoremedium + Scorelow  (8)

where trainjogs is training loss, traingcc| and trainycs are top-
1 and top-5 training accuracy, valyec; and valyes are top-1
and top-5 validation accuracy, Scorenigh, Scoreémedium, and
Scoreloy are Scorey, of the three models in sub-group.

IV. EXPERIMENT

The experiments are conducted on three datasets for image
classification: CIFAR-100, CIFAR-10, and SVHN. VGG-8
with most settings similar to CRD [43], [44] is used as the
baseline model for all experiments. In this study, python3.7.3,
PyTorch 1.13.1, TorchVision 0.14.1, Numpy 1.21.5, SciPy
1.7.3, Scikit-Learn 1.0.2, pandas 1.3.5, and Matlab R2021a
are used. The GPU Server we used is Intel Core i9-9900k /
Nvidia RTX 2080ti.

A. CIFAR-100

The baseline and non-progressive methods are conducted
for 240 epochs. The baseline is trained with cross-entropy
loss while the non-progrssive methods use the loss specified
in Eq.(3). SGD is used as an optimizer with a momentum
0.9 and weight decay 5 x 10™*. The batch size is set to 64.
The initial learning rate is 0.05, multiplied by 0.1 at 150,
180, and 210 of 240 epochs [43], [44]. Afterward, the model
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FIGURE 3. The flowchart of the Multi-Ranking Selection (MRS) method.

is trained with the MRS method by setting the EPyRs to
20. The process number is set to 3, and each process has
three groups. The temperature t for softening the free-form
distribution is 20 [45]. We try to find the best o from 0.1 to
0.9 with temperature 20 and select « based on the validation
accuracy,which is 0.6.

Table. 2 shows the improvement in top-1 accuracy by
our two methods. For example, the non-progressive method
improves the model accuracy by 1.62%. In addition, the
method with MRS can achieve 1.97% enhancement. It can be
seen that all of the joint non-progressive and MRS results are
better than just using non-progressive RL meta-learning. For
instance, the highest difference between the two methods can
be 0.35% when T is set to 1. The magnitude of changing our
free-form distribution also has a significant influence. It can
be seen that the non-progressive with MRS method, there is
a 0.64% difference when the true class tuning (7i) is set to
0.5 and 2. In Fig. 4, the training accuracy versus the training
epoch is plotted, and it is observed that the training accuracy
rises faster at the beginning and levels off until the learning
rate changes. We can still see a promotion at epoch 150 and
180 when the learning rate becomes smaller.

B. CIFAR-10 AND SVHN

The experimental settings on CIFAR10 and SVHN are
the same as CIFAR-100, except that the training epoch
of the baseline and non-progressive method is set to 100.
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The learning rate is multiplied by 0.1 at the 40" and
80™ epoch during the 100-epoch training.

Table. 3 shows that the performance on CIFAR-10 can also
be improved by 1.31% and 1.62% with the two methods. The
highest accuracy of the two methods is 92.35% and 92.66%,
respectively. It can be seen that the method with MRS is still
better than only using a non-progressive method. Using a
non-progressive method, the difference between different 7.
from 0.1 to 2 can be up to 0.37%.Using joint non-progressive
training and MRS, the difference between different Ty, from
0.1 to 2 can be up to 0.46%. On SVHN in Table. 4, the
non-progressive and non-progressive with MRS are better
than the baseline, with an improvement of 0.87% and 0.69%,
respectively. The difference between different Ty is 0.14%
when the tuning is set from 0.1 to 2 by using a non-progressive
with MRS method. Nevertheless, the MRS method in SVHN
is not as useful as it is in CIFAR-100 and CIFAR-10.

From Fig. 5 and Fig. 6, we can see an obvious promotion
when the learning rate gets lower for the first time at epoch 40.
The training accuracy increases again when the learning
rate decreases for the second time at epoch 80. Except for
these two dramatic increases, train accuracy increases with a
smooth slope.

C. COMPARISON RESULTS

Although there is significant success in KD in improving the
performance of a small model, there is a limitation in that the
student can only mimic the target distribution or the feature
maps of the teacher. Conceptually, TFKD methods have more
flexibility since they do not require a student to match a
teacher. Due to the freedom of learning, TFKD should have
more chances to achieve superior results. However, recent
research shows that the regular teacher-student KD is always
better than TFKD. This result is not in line with our expec-
tations, and a more complex and properly tailored algorithm
is needed to improve the training procedure of TFKD. Thus,
a non-progressive meta-learned method is investigated in this
work to make TFKD comparable to or even exceed teacher-
student KD.

At first, we use the Genetic Algorithm (GA) as an opti-
mizer to control the target distribution. However, the result
will not be satisfactory if the initial population is not large
enough. The large population requires many recalculations
of the individual target distribution accuracy after cross-over.
This somehow reflects the inefficiency of GA in the current
problem of meta-learning model compression. We also tried
Simulated Annealing (SA). While the results and the runtime
using SA are improved over GA, further improvement is
expected when compared to SOTA. This is because SA is a
simple optimization algorithm that is more related to random
search. Therefore, SA does not allow mutations or significant
changes from step to step, which is possible in GA or RL.
As far as RL is concerned, it also constructs the objective
function surface, and thus, the prediction of the unvisited tar-
get distribution becomes possible. Therefore, we change the
algorithm to RL, which decides the change of the distribution
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TABLE 2. Top-1 and top-5 test accuracy (%) on CIFAR-100.

) Training Validation Top-1 Test Top-5 Test
Method True class tuning
Accuracy Accuracy Accuracy Accuracy
Baseline X 98.31 70.96 70.44 90.43
0.1 94.22 71.44 71.59(+1.15) 89.28
Non- 0.5 94.22 72.12 71.58(+1.14) 89.35
progressive 1 94.09 71.68 71.62(+1.18) 89.14
2 94.07 71.60 72.06(+1.62) 89.26
0.1 93.90 71.79(+1.35) 89.48
Non-
0.5 93.96 71.77(+1.33) 89.42
progressive
1 93.83 71.98(+1.54) 89.37
with MRS
2 93.93 72.41(+1.97) 89.20
5 5 5 5
g R g4 g4
E ——train loss Z —train loss E —train loss E —train loss
83 —val loss 83 —valloss 33 ——val loss 03 —val loss
E test loss :E. test loss E test loss :E_ test loss
2 2 2 2
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epochs Epochs Epochs Epochs
100 100 100 100
80 80 80 8
geo - h gso geo gso
2 404 ' —train accuracy 2 40 —train accuracy 2 a0 —train accuracy 2 40 —train accuracy
| —val accuracy [ —val accuracy —val accuracy —val accuracy
| test accuracy | test accuracy | test accuracy test accuracy
20 20 20 20
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epochs Epochs Epochs Epochs
(@) T,,=0.1 (b) ;e =0.5 ©Tc=1 ()T =2

FIGURE 4. The training process on CIFAR-100 with different T..

based on the current Q-table that is only partially trained.
Initially, we also designed a method by selecting a proper
model every 30 epochs, which can be named multi-restart.
Besides, while the RL still selects the best target distribution
using the reward mechanism, the selection at the end of
30 epochs will first choose the moderate target distribution.
During the model training, the selection gradually shifted
toward better individuals at the end of 30 epochs. However,
the results with multi-restart are not comparable to those of
SOTA. The reason is that the non-progressive RL already
has an exploration, especially at the early stage. Difficult
convergence can be observed if a non-progressive training
method with multi-restart is employed. To solve this problem,
we adjust our method by training the model with 240 epochs
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in the beginning, which accelerates the rate of convergence,
and after that, the RL non-progressive training is continued
by selecting a model in every 20 epochs. This method, i.e.,
MRS, is proposed in this paper and achieves higher accuracy.
Finally, our TFKD framework is defined with three methods:
the non-progressive method, RL, and MRS.

In the following section, we analyze our training process
using Fig. 7, Fig. 8, and Fig. 9, and these figures show
the action selected at each epoch during RL meta-learning.
The results of the true class probability change during RL
training in Fig. 10 correspond to Fig. 7, Fig. 8, and Fig. 9.
It can be seen the action variation at the beginning is more
significant than the variation in the later stage of training
because exploration is decreased gradually during RL. The
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TABLE 3. Top-1 and top-5 test accuracy (%) on CIFAR-10.

Training Validation Top-1 Test Top-5 Test
Method True class tuning
Accuracy Accuracy Accuracy Accuracy
Baseline X 99.49 91.64 91.04 99.63
0.1 99.42 92.68 92.35 (+1.31) 99.43
Non- 0.5 99.34 92.88 91.98(+0.94) 99.49
progressive 1 99.40 92.08 92.32(+1.28) 99.48
2 99.41 92.80 92.10(+1.06) 99.49
0.1 99.74 92.48(+1.44) 99.47
Non-
0.5 99.74 92.20(+1.16) 99.52
progressive
) 1 99.74 92.66(+1.62) 99.51
with MRS
2 99.76 92.25(+1.21) 99.49
TABLE 4. Top-1 and top-5 test accuracy (%) on SVHN.
) Training Validation Top-1 Test Top-5 Test
Method True class tuning
Accuracy Accuracy Accuracy Accuracy
Baseline X 99.22 95.11 95.44 99.52
0.1 98.50 95.69 96.29(+0.85) 99.53
Non- 0.5 98.54 95.50 96.26(+0.82) 99.53
progressive 1 98.48 95.63 96.19(+0.75) 99.48
2 98.53 95.66 96.31(+0.87) 99.45
0.1 99.39 96.07(+0.63) 99.46
Non-
) 0.5 99.40 96.03(+0.59) 99.50
progressive
) 1 99.42 96.13(+0.69) 99.49
with MRS
2 99.42 95.99(+0.55) 99.50

RL selects the best action based on the best reward in the later
stage of training. The reason for designing this mechanism
is to reduce the rate of convergence and avoid the local
optima.

The probabilities of the five classes surrounding the true
class are changed during RL. The magnitude of the change
is from 0.1 to 2, as described in the Table. 2, Table. 3, and
Table. 4. Fig. 10 shows that the probability changes randomly
at the beginning and becomes stable at the end, which means
the probability of the true class will continue to become high
or lower after the training epochs are large enough when
the RL Q-Table is adequately filled and when the model
training is close to convergence. The converged true class
probability values are very similar for the four 7i magnitudes
in Fig. 10 using CIFAR-10. On the other hand, CIFAR-100
and SVHN datasets do not show similar true class converged
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probability values. In Fig. 10, it can be seen that the setting
of Tic magnitude has a significant impact on the variation
of the true class probability during training. When T is set
to 2, the true class probability variation is the largest. The true
class probability variation is very smooth when Ty is equal to
0.1 while the variation is increased when T is increased.
From the results on CIFAR-100 in Table. 2 and CIFAR-10
in Table. 3, the lowest accuracy occurs at Ty, = 0.5 for both
the cases w/ or w/o MRS. Unlike CIFAR-100 and CIFAR-10,
the lowest accuracy occurs at Ty, = 2 for the cases w/ MRS
and at Tic = 1 for the cases w/o MRS on SVHN. Regarding
the best performance, T, = 2 leads to the highest accuracy
among all cases on CIFAR-100 using MRS. For CIFAR-10 in
Table. 3, the best result among all cases is generated at Ty = 1
using MRS. For SVHN in Table. 4, the best result among all
cases is generated at Ty, = 2 without using MRS. We can
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FIGURE 7. The selected actions of RL on CIFAR-100.

observe that different Ti. have different influences on each

dataset.
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Our MRS method is visualized in the scatter plot in Fig. 11,
Fig. 12, and Fig. 13. Each process possesses three groups,
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and each group possesses three models. Thus, there are
nine dots in each process. After training for three processes,
we fine-tuned the model. From Fig. 11, it can be seen that
the performances of the models in each process are very
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different. Since the diversity of the models is ensured by
MRS, it has more chances to find the most potential model
for continued training. The final model is selected from all
of the previously trained models at the intermediate steps.
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In CIFAR-100 and CIFAR-10, the models after MRS and
fine-tuning are always the selected final models. On the other
hand, MRS and fine-tuning do not show much strength in
SVHN, and the final selected models are normally from the
first 100 epochs.

In Table. 5, we show various teacher-free or self-KD meth-
ods. Compared to these SOTA methods currently, our method
with both non-progressive and MRS can achieve the highest
accuracy by 72.41% on CIFAR-100, which exceeds other
methods significantly.

D. DISCUSSION

It is worth to mention the definition of the target distribution.
The encoding of the phenol is always a concern in optimiza-
tion problems. In the literature, most of the current efforts
use parameters instead of probability distribution to tune the
target distribution in the KD problems. This work utilizes
a larger searching space, and a freeform target distribution
is made possible with each class probability can be tuned
independently. An overly large optimization space, including
an extensive range and many optimization variables, always
leads to a less converged optimization where the results tend
to be settled in the local extremum. To circumvent this prob-
lem, a reduced class number can be used in the optimization
by selecting fewer key classes to tune their probability in
target softened KD. Here, we choose to vary the probabilities
of the five classes surrounding the true class in each epoch
during KD, while other class probabilities are affected by
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Process number

(©T=1

Process number

(dTe=2

TABLE 5. Comparison of the performance using the VGG-8 model on the
CIFAR-100 dataset against several State-Of-The-Art (SOTA) methods.

Accl
Method %)
Dropout[31] 70.52
DropBlock[32] | 70.76
SAD[33] 70.72
Teacher free
LS[35] 70.87
T{-KD[36] 71.05
T{-FD[30] 71.62
Our method 72.41
CS-KD[25] 71.26
Self-KD BYOT[24] 70.88
ONEJ[23] 72.01

normalization. In addition, the accuracy-1 and accuracy-5 are
used during the selection procedure in the seed model saving
and MRS to amplify the significance of the true class or the
classes surrounding the true one.
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Nowadays, a majority of the effort is in the KD based on
teacher-student configuration. The efforts mainly focus on
looking for a better teacher in terms of the final trained stu-
dent accuracy or a better teacher-student distillation scheme.
The literature has shown that multiple teachers [46], mul-
tiple students [47], and adding teaching assistants [48] that
somehow bring up the idea of progressive KD [49] and tar-
get softened KD, and degraded teachers all contribute to a
better trained student model. On the other hand, the training
procedure in KD is also investigated in the literature, but the
extent seems to be less compared to the effort of forming a
proper teacher-student pair. TFKD or Self-KD is an effort of
this kind. In our perspective, the training procedure should
be further expanded in order to fully utilize the KD strength.
Even with the same teacher, different training paths can lead
to different results. The non-progressive KD seems to make
less sense, but it provides the chance to get around the accu-
racy bottleneck inherited in progressive KD. This is due to
the fact that the complex model and dataset can lead to non-
linear convergence and searching space. Thus, progressive
KD does not always give the best results. An algorithm-
controlled scheme is needed to tackle the problem of low
convergence in non-progressive KD effectively. While many
different optimization algorithms can be used, it is found that
Reinforcement Learning (RL) can be effective, and Genetic
Algorithm (GA) is less effective based on our study. On the
other hand, Simulated Annealing (SA) is moderate. The dif-
ference between RL meta-learning and meta-learning using
conventional optimization algorithms such as GA and SA is
that the conventional algorithms do not require training or
fitting the model. A Q-table is always required in RL, and
the trained network approximating the Q-table is updated
at each step in RL. Essentially, the scheme leads to lower
optimization efficiency at the early stage since the Q-Table
entries are not accurate. Restarting from the RL starting point
in each episode helps overcome the problem. Nevertheless,
we do not employ this scheme in this work. Instead, the
improvement is observed using a large initial stage RL explo-
ration and MRS along the training path. The advantage of
model-based RL-based meta-learning is that it builds a pre-
diction model, i.e., intermediate accuracy surface in KD, and
thus, even for unvisited points in the searching space of the
target distribution, some prediction can be made based on the
previous experience. Comparing GA to SA, the computation
loading is much greater in GA since it requires a tenth of
individuals in each generation. In contrast, SA only steps on
one point in the annealing process, which is more similar
to the direct or pattern search problem. In our numerical
test, SA performs better than GA does. The reason can be
that the overly large non-progressive searching space requires
an even larger population size to see the effect or that the
GA crossover scheme dilutes the valuable information of the
desired intermediate target distribution. A different encoding
scheme in the phenol has to be used to remedy this obstacle
in GA non-progressive KD. Since RL-based meta-learning
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shows a superior result, we do not explore this aspect in GA
further.

V. FUTURE WORK

A future effort can be made in the meta-learn controlled
approximate state in RL and a meta-learn MRS. The key use-
fulness and strength of meta-learning is that controlling the
procedure by humans can be less effective, time-consuming,
and require repeated effort in a new problem. Therefore,
the meat-learning has emerged as a promising new direc-
tion in nearly all machine-learning fields. Specifically, the
approximate state of RL is a key to its success. Essentially,
the need for approximate states is also due to the fact that
overly large search space is highly undesired. In RL model
compression, the RL states representing a model can contain
a large number of variables, including all of the weights
and biases in the model. A reduced set of state variables
is desired, but the control should be made adaptively by
the algorithms in KD. Secondly, the MRS should also be
considered by an algorithm. It can be difficult for humans
to know which partially trained, intermediate student models
have more potential. In this scheme, the meta-learn can be
implemented either in situ or by a further partitioned train
set.

VI. CONCLUSION

In conclusion, a novel, non-progressive, meta-learned, MRS
KD is utilized here to boost the accuracy of the student model.
With proper setup in the RL, the trained accuracy of the
student model is 72.41% in CIFAR-100, VGG-8. To compare
with the SOTA results in the literature, we have to point
out that the highest accuracy achieved to date in TFKD or
Self-KD is 72.01% in CIFAR-100, VGG-8. While most of
the KD efforts in Internet Of Things (IOT) and edge com-
puting model compression are teacher-student configuration
methodologies, in recent years, TFKD has emerged as a
promising alternative by providing more flexibility since no
teacher needs to be formed. The training procedure becomes
the key in TFKD or Self-KD, and a very flexible training
scheme is used where the non-progressiveness of the train-
ing procedure, in terms of the target distribution, is formed.
In fact, the non-progressiveness can be established not only
in the target distribution but also in other aspects of KD,
such as hyperparameters. The method’s effectiveness here
lies in the non-progressive KD exploring a large search space
with a proper algorithm control to balance the accompanied
hazard of less convergent training. The entire target softening
procedure can more effectively pull up the student model
accuracy by adjusting the intermediate model training with an
algorithm-selected intermediate target distribution. In addi-
tion, the saved models using Multi-Ranking Selection (MRS)
can overcome the problem of early convergence or being
trapped in the undesired location in the search space during
KD. The MRS scheme is essential since non-progressiveness
in KD can lead to an elevated risk of converging into
undesired points even if it also provides more chance of
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locating better extrema. We believe the current work con-
tributes to the new knowledge and methodology of KD in
edge computing and model compression.
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