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ABSTRACT This paper presents an efficient deep neural network (DNN) accelerator designed for radio
frequency (RF) signal modulation recognition. A novel DNN design optimized for mobile applications is
demonstrated by combining MobileNetV3-based DNN with a ternary weight quantization. We also propose
a new training method called decaying weight training to overcome the performance degradation due
to quantization. The effect of the ternary weight quantization is demonstrated with a co-analysis of the
classification accuracy and the physical design. The physical design analysis is based on the Application
Specific Integrated Circuit (ASIC), and the results show that the ternary weight quantization with the
proposed training method minimizes the impact of the quantization while increasing the allowable clock
frequency and reducing hardware cost significantly. We also implement the hardware design dedicated to the
ternary weight networks to reduce the required number of the multiply and accumulate (MAC) engines. The
hardware design is verified on FPGA and the ternary weight-based DNN shows the feasibility of reducing
the hardware cost significantly.

INDEX TERMS Radio frequency, modulation recognition, machine learning, deep neural network (DNN),
MobileNet, quantization, accelerator, ternary weight.

I. INTRODUCTION
Cognitive radio is the emerging platform for multiband
multimode communication systems [1], [2]. The spectrum
sensing in the cognitive radio detects the primary/secondary
user and utilizes available resources such as communication
channels efficiently according to the user type [3]. Modula-
tion recognition is the key spectrum sensing mechanism to
determine the user type, therefore the modulation classifi-
cation accuracy directly affects the performance of the cog-
nitive radio. Traditional automatic modulation classification
(AMC) can be mainly categorized into likelihood-based (LB)
or feature-based (FB) methods, and these methods require
prior information or expert knowledge to build the efficient
classification algorithm [4], [5], [6], [7]. Considering the
massive multiple-in multiple-out (MIMO) systems, the AMC
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mechanism employing deep neural networks (DNNs) has
advantages over the traditional methods due to availability
of the limited vision recognition, which does not rely
on prior knowledge or information. The DNN-based RF
signal modulation classification such as convolutional neural
networks (CNNs) has shown promising performance [8].
In a typical receiver, the radio frequency machine learning
(RFML) module which classifies the modulation of the
received RF signal is the sequential module placed after
down-conversion and digitization. Since the DNN processing
block typically requires heavy computational demand, the
DNN processing block design often determines the overall
receiver performance such as sampling rate and allowable
bandwidth. With the increased BW requirements of the
incoming RF signals, the software-based deep learning
implementation for modulation recognition is not enough for
real-time operation, which arouses the need for hardware
acceleration. Therefore, a novel comprehensive hardware
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FIGURE 1. An illustrative RF receiver architecture with an on-chip
accelerator for detection of RF signal modulation.

design with optimal DNN implementation should be further
considered.

This paper presents a hardware design methodology for
the acceleration of signal modulation detection to enable
higher bandwidth with efficient hardware cost and excellent
performance (Fig. 1). The key contributions of this paper are:

• We design a DNN optimized for mobile applications
by combining MobileNetV3-based DNN with ternary
weight quantization.

• We propose a new trainingmethod for the ternary weight
quantization to minimize the impact of the quantization
on the classification accuracy.

• We apply a Common Subexpression Elimination (CSE)
algorithm to ternary weight networks to improve the
efficiency of the design.

• We implement hardware design dedicated to ternary
weight quantization to reduce hardware costs.

In the previous work, we first designed a computationally
efficient low-complexity CNN model with quantized (half-
precision floating-point to ternary) weights, and the physical
hardware designs operating at different precision levels were
synthesized [9]. Based on the previous work, we integrate
the ternary weight quantization into the MobileNetV3-based
DNN, which is known to be designed for mobile applications
along with excellent performance. We also propose a new
training algorithm for the ternary weight quantization to
improve the performance of the quantized DNN model fur-
ther. In order to design the proposed architecture efficiently,
the CSE algorithm is applied prior to the hardware design and
the number of MAC operations is reduced significantly. The
ASIC design is evaluated by the co-analysis on the system-
on-chip level considering throughput, area, power-efficiency
of the hardware, themaximum allowable bandwidth of the RF
signals, and the classification accuracy of the DNN model.
Our analysis shows that the ternary weight quantization
with the proposed training method minimizes the impact on
classification accuracy while reducing the hardware design
cost significantly. Also, the reduced hardware utilization and
the improvement in performance is observed in the dedicated
hardware design on FPGA.

II. RELATED WORKS
Timothy and Nathan introduced an RML2016 dataset for
RFML and first showed the basic performance of the
visual tree convolution neural network (VT-CNN) based

modulation recognition task [10]. Based on CNN, Various
approaches were made to increase the performance of
the DNN-based modulation classification. Jdid et al. [11]
proposed a robust AMR leveraging the benefits of both
contextual features (CFs) and hand-crafted features (HCFs)
with a signal-to-noise ratio (SNR) splitter. In [12], the author
built a deep hierarchical network (DHN) based CNN which
combined the shallow features with high-level features. The
pre-processing of the input signal was also considered, such
as the logarithmic constellationmapping ([13]) and short-time
Fourier transform (STFT) ([14]). In addition to CNN, the
other types of DNN such as recurrent neural network (RNN)
and long short-term memory (LSTM) have been introduced
for modulation recognition [15], [16], [17], [18], [19], [20].

Since the DNN-based modulation recognition requires
more computation resources than the traditional LB or FB
method, several works have been implemented to reduce
the computational complexity or the latency. Fu et al. [21]
applied separable convolutional neural network (S-CNN)
to reduce the complexity of the CNN layers. Also, the
training efficiency is improved by applying joint training
of the multiple edge devices, with a slight degradation of
accuracy. Huynh-The et. al. [22] proposed the MCNet to
improve the latency. The M-block in MCnet consists of
3 asymmetric convolutional kernels organized in parallel to
analyze the multi-scale spatiotemporal signal correlations
simultaneously. In [23], the author used a less complex
DNN model while improving the classification accuracy
by taking advantage of the STFT transform of the input
signal. A lightweight AMC model employing exploiting the
multi-layer perceptrons (MLP) has been also proposed [24].
The proposedmodel consists of threemodules: the spatiotem-
poral feature segmentation module, the local multi-scale
temporal feature fusion module, and the Patches-Mixer
module. This model showed a relatively small number of
parameters, but the small observation window by splitting
the original sequence caused miss-classification of analog-
modulated signal. Building a compressed model exploiting
quantization or pruning has been the conventional method
for hardware acceleration [25]. Tridgell et. al. [26] applied
ternary weight quantization to the visual geometry group
(VGG) net to reduce the hardware resources and the
classification accuracy degradation from 90.9% to 82.1%
was observed. Kumar et al. [27] proposed a QMCNet which
quantized the input, weight, and activation to 4bit, 5bit,
and 6bit respectively, and a RUNet which utilized the 6-bit
quantization and the residual unit. Also, the iterative weight
pruning is implemented to increase the sparsity of the network
and showed the best accuracy of 90.59% (QMCNet) and
94.46% (RUNet).

Several attempts to reduce the hardware cost often suffer
from the degradation of the performance or additional
iterative steps to increase the sparsity of the networks are
required. The motivation of this study is to overcome the
challenges of acceleration of the DNN-based modulation
recognition while minimizing the impact on the perfor-
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mance and eliminating additional pre-processing or iterative
methods.

III. DNN DESIGN FOR MODULATION CLASSIFICATION
A. WEIGHT QUANTIZATION
The major operation of each hidden layer in neural networks
is to calculate the weighted sum of the input. This operation
is implemented by the array of the MAC engines in
hardware. Mostly the bottleneck of the MAC engine is
multiplier, and the low-precision parameters can simplify
the multiplication. If the parameters can be binarized,
it can simplify the multiplication dramatically since the real
multiplier circuit is no longer required [28], [29]. In this work,
we consider ternary weight quantization instead of binary
weight to improve expressive ability while still not requiring
a multiplier circuit [30].

1) TERNARY WEIGHT QUANTIZATION
Ternary weight networks are similar to Binary weight
networks. However, the weights are constrained to −1,0, and
+1, whereas the binary weight networks use −1/+1 weights.
As shown in Fig. 2, the weight conversion to ternary weights
is computed to minimize the Euclidean distance between the
original weight and the ternary-valued weight (1). ternary
weight conversionwith scaling factor is also used tominimize
the Euclidean distance further. In this case, the weight values
after conversion are −α, 0, and +α (2).

W t
= argmin(|| W −W t

||)22 (1)

W t
= argmin(|| W − αW t

||)22 (2)

The ternary weight conversion is the function with the
1 parameter, which is the boundary condition for the
conversion(Fig. 2b). The original weights are compared with
1, −1 to determine the value after the conversion (3).

Wi
t
= ft (Wi | 1) =


+1(α), if Wi > 1

0, if | Wi |≤ 1

−1(−α), if Wi < −1

(3)

Based on the conversion above, (2) can be represented as:

argmin1>0(
n∑
i=1

| Wi |
2

−2α
∑
i∈I1

| Wi | +α2
| I1 |) (4)

n is the number of the weights for the current channel and
| I1 | denotes the number of I1 elements where I1 = {i ||

Wi |> 1}. The optimal scaling factor α is the expected
magnitude of the weights which are larger than 1, as shown
in (5). By substituting α into 4, 1 is computed by (6).

α∗
1 =

1
| I1 |

∑
i∈I1

| Wi | (5)

1∗
= argmax1>0

1
| I1 |

(
∑
i∈I1

| Wi |)2 (6)

It is hard to apply these computation methods to the
software or hardware implementation since there is no

straightforward solution. If there is an assumption in the
distribution of the weights, it can simplify the computation.
If the weights follow the normal distribution, the delta can be
simply computed using the expectation of the absolute value
of the weight (7).

1∗
≈

0.7
n

n∑
i=1

| Wi | (7)

In this task, we convert the ternary weights based on
the assumption above and exclude the scaling factor in
the conversion to maximize the simplicity of the hardware
design.

2) TRAINING WITH TERNARY WEIGHT QUANTIZATION
The software-based DNN model trains the model and infer-
ences with the 32-bit floating-point type of the weight [31].
For the application of the ternary weight quantization to
the training, DNN should implement forward propagation
with ternary weight but the gradient descent from backward
propagation updates the weights as floating point type.
Therefore, an additional conversion step is required. The
ternary weight conversion step is located between the forward
propagation and the backward propagation (Fig. 3). In the
loop, the weights are updated by gradient at backward
propagation. These updated weights are used to update the1,
andweights are also updated by the ternaryweight conversion
with updated 1.

The gradient descent updates the weights in the neural
network by computing the derivative from the calculated loss.
(8) shows the gradient of the weight Wi in the convolution
layer used for the update.

∂L
∂Wi

=

M∑
k=1

∂L
∂Ok

∗
∂Ok
∂Wi

(8)

where L is the calculated loss and O is the output of the
current layer. Since the partial derivative of the current layer
output with respect to the weight is equal to the input, the
gradient is computed as shown in (9).

∂L
∂Wi

=

M∑
k=1

∂L
∂Ok

∗ Xk (9)

If the weight used in the forward propagation is zero, the
network blocks the propagation of that neuron and the partial
derivative of the current layer output with respect to the
weight is not equal to the input. Therefore, the gradient
can not be computed properly. Conventional ternary weight
quantization in neural networks converts a large number of
weights (> 50% of the total weights) to zero. The large
number of the zero weights from the beginning of the training
can cause performance degradation during the training.

3) PROPOSED TRAINING METHOD
In order to overcome the training performance degradation
due to the ternary weight quantization, we propose the
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FIGURE 2. Ternary weight networks (a) The Euclidean distance between the original weight and the ternary weight.
(b) Ternary weight conversion.

FIGURE 3. Training process with ternary weight quantization.

training with the decaying weight. During training, this
method converts the weights to {−1,− 1

2j ,
1
2j , 1} as shown

in (10), instead of {−1, 0, 1}.

Wi
t
= ft (Wi | 1) =



+1, if Wi > 1
1
2j

, if 0 < Wi ≤ 1

−
1
2j

, if − 1 ≤ Wi ≤ 0

−1, if Wi < −1

(10)

The parameter j increases as the iteration increases, making
{− 1

2j ,
1
2j } close to zero. Algorithm 1 shows the process of

the proposedmethod. The proposedmethod has the following
characteristics.

• All the weights have non-zero values so that the DNN
can compute gradient descent properly.

• By decaying mechanism, 1
2j becomes a very small value

at the end of the training, enabling the conventional
ternary weight conversion during the inference.

• The proposed method has 4 types of weight. Therefore,
the bit width for the weight remains the same as the
ternaryweight(2-bit) and the additionalmemory for only
one global parameter (j) is required.

• The multiplier inside the MAC engine remains simple
since the multiplication/division by a power of 2 can be
easily implemented by adding/subtracting the exponent
bit.

B. DNN MODEL FOR MODULATION RECOGNITION
The modulation recognition task is implemented by using
the MobileNetV3-Small architecture, considering the mobile

Algorithm 1 Training With Decaying Weight
Parameter j:power of the initial weight value

Parameter k:weight decaying
period
1: n=1
2: for Training do
3: if mod(n,k) == 0 then
4: j=j+1
5: end if
6: convert weights to {−1,− 1

2j ,
1
2j , 1}

7: Implement forward propagation
8: Compute Gradient Descent
9: Update Weights

10: n=n+1
11: end for
12: convert weights to −1, 0, 1

FIGURE 4. Inverted residual bottleneck.

application. MobileNetV3 was introduced by Google as an
efficient DNN architecture with excellent performance [32].
MobilenetV1 utilizes depth-wise separable convolution
which implements simple convolution operation through the
depth-wise convolution, followed by point-wise convolu-
tion to transform the channel [33]. MobilenetV2 proposed
a bottleneck depth-separable convolution block (Fig. 4)
with residuals that transforms channels with point-wise
convolution, performs depth-wise convolution with the
expanded channels, and adds input (residual block) [34].
The inverted residual bottleneck layers enable memory-
efficient implementation, which makes MobileNetV2 faster
than V1. MobileNetV3 includes a squeeze and excite
(SE) block (Fig. 5) between the depth-wise convolution
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TABLE 1. DNN for modulation recognition.

FIGURE 5. Squeeze and excite block.

layer and the projection layer to squeeze from the largest
representation inside the bottleneck block. This SE block
helps MobileNetV3 to provide faster and more accurate
operation. MobileNetV3 also uses hard-swish non-linearity
for certain bottleneck layers, which is a modified version
of swish non-linearity by replacing the sigmoid function
with the equation including ReLU6 non-linearity to reduce
computational cost (11). From the baseline MobileNetV3
architecture, we modified some channels to reduce the
hardware cost with negligible effect on the classification
accuracy. Table 1 shows the DNN model used for this
modulation recognition task.

Hard − swish(x) = x
ReLU6(x + 3)

6
(11)

IV. MODULATION CLASSIFICATION RESULTS
A. DATASET
The RadioML2018.01a dataset created by O’Shea et al.
is used to train and evaluate the DNN model [18]. The sam-
ples are captured through over-the-air transmission channels.
Each sample is an I/Q pair complex time-domain 1,024 data
vector. The number of modulation classes is 24 and each
modulated signal was recorded at various signal-to-noise
ratio (SNR) levels. The total size of the dataset is 2,555,904
labeled samples with 4,096 samples for each modulation
and SNR pair. The 24 modulation classes of the signals are:
OOK, 4ASK, 8ASK, BPSK, QPSK, 8PSK, 16PSK, 32PSK,

FIGURE 6. RadioML2018.01a dataset.

16APSK, 32APSK, 64APSK, 128APSK, 16QAM, 32QAM,
64QAM, 128QAM, 256QAM, AM-SSBWC, AM-SSB-SC,
AM-DSB-WC, AM-DSB-SC, FM, GMSK, and OQPSK.
Fig 6 shows the I/Q stream of the dataset at 10dB SNR.

B. CLASSIFICATION ACCURACY WITH PROPOSED
METHOD
Fig. 7 shows the classification accuracy of the baseline and
quantized models. The proposed work uses a 16-bit floating
point as the input and the activation. The training epoch is
200 and the learning rate is 0.001. The proposed decaying
weight training starts with the initial value of 1/22 and
reduces the weight magnitude by half after 20 iterations,
making the magnitude 1/211 at the end of the training.
The MobileNetV3-based modulation task shows excellent
performance with the signal over 6dB SNR, showing 92.1%
average accuracy. The quantization to a 16-bit floating point
barely affects the performance of the DNN showing identical
classification accuracy. When the parameters are quantized
to ternary weights, the average classification accuracy drops
to 87.8%(4.3% lower than the reference) due to the limited
capability of weight representation and training. When the
decaying weight training was applied, the DNN is fitted
to the designated modulation classification task better than
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FIGURE 7. Classification accuracy.

FIGURE 8. Loss curve with validation data.

the conventional method, showing the reduced loss with the
validation set (Fig. 8). As a result, the proposed training
method improved the classification accuracy to 90.1% even
with the ternary weight representation. The improvement of
the classification accuracy with the proposed training method
is also observed in VTCNN model, which is used in previous
work (76.2% → 78.0%).

Fig. 9 and Fig. 10 show the confusion matrix with the
received signal above 6dB SNRwith the conventional and the
proposed training method, respectively. The distribution in
the confusion matrix shows that the modulation classification
mechanism has difficulty in discriminating between the
high-order modulation schemes. The dataset used in this task
includes M-ary PSK and QAM modulations and most of the
miss-classification comes from the confusion between them.
Also, the confusion between the Suppressed Carrier (SC)
and the Without Carrier (WC) signals in AM modulation
is observed due to their similarity. The proposed training
method helps the model to classify these difficult cases better
than the conventional training.

C. COMPARISON WITH PRIOR WORKS
We also compared the classification accuracy of the proposed
method with the prior work including our previous work.
The models named T-CNN [9], STFT-CNN [23], CLDNN
[19], MCLDNN [20], MCNet [22], VGG10 [26], and QMC-
Net/RUNet [27] are selected for the performance comparison.
Fig. 11 shows the classification accuracy comparison and
the Table 2 summarizes the complexity, quantization type,
and classification accuracy at 30dB SNR. Since [9], [23],

FIGURE 9. Confusion matrix of ternary weight model.

FIGURE 10. Confusion matrix of ternary weight model with proposed
training.

[26], [27] and our work use the lower precision type than
32-bit floating point, the bit-level operation per second
(BOPs) which means the number of bit-level arithmetic
operations per second is also calculated to estimate the real
circuit size required for each model. Since the multiplication
with the ternary weights reduces the required number of
the logic circuits significantly, the proposed method shows
the excellent performance even with the lowest number of
bit-level arithmetic operations per second.

D. APPLICATION TO IMAGE CLASSIFICATION
The proposed training method is also applied to the image
classification task to evaluate the proposed model with the
image dataset. The CIFAR-100 and tiny-ImageNet are used
as a dataset for image classification tasks. The proposed
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TABLE 2. Accuracy comparison with prior works.

FIGURE 11. Accuracy comparison with prior works.

TABLE 3. Image classification results.

trainingmethod slightly reduces the validation loss during the
training, but the improvement in the classification accuracy is
negligible (Table 3). The proposed training method is suitable
for the modulation classification of the RF signal, which
incorporates the data with the various noise levels including
low SNR.

V. PHYSICAL DESIGN OF THE ACCELERATOR
A. DNN ACCELERATOR DESIGN
The neural network (NN) such as CNN and dense connection
consume the most computations in the entire DNN operation,
and the output of each NN is the weighted sum of the input.
Therefore the DNN accelerator architecture mainly consists
of the processing element (PE) array, and each PE implements
the MAC operation [35], [36], [37]. The MAC engine
includes a complex multiplication that utilizes element-wise
multiplication of the real and imaginary parts (Fig. 12) and
accumulation. Fig. 13 shows the DNN accelerator structure.
At the beginning of the operation, all weights are stored
in memory. During the process, the input streams and the

TABLE 4. Number of MAC operations.

TABLE 5. Number of MAC operations before/after CSE.

weights are transferred to the global buffer and assigned to PE
according to the network structure. The results of the PE are
then transferred to the global buffer to store the partial sums.
Since this process continues until the PE array completes all
the MAC operations of DNN, the number of required MAC
operations mainly affects the hardware design such as the PE
array size and the throughput.

B. COMMON SUBEXPRESSION ELIMINATION
Even though the MobileNetV3-based architecture shows an
efficient network by taking advantage of the depth-wise
separable convolution, it still suffers from the extensive
computation implementing the point-wise convolution in the
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TABLE 6. Synthesis results.

TABLE 7. DNN design comparison.

FIGURE 12. Complex multiplier architecture.

FIGURE 13. The CNN accelerator.

expansion/projection layer and the dense connection in SE
block (Table 4). In order to take advantage of the ternary
weight quantization, we applied CSE to reduce the required
number of PEs further. The CSE was introduced by Hsiao
et al. [38] to reduce area cost in bit-level equations. This
CSE also can be applied to the ternary weight networks
if the flipped sign bit value due to the −1 weight is
also considered [39]. Fig. 14 and Algorithm 2 show how
the CSE is implemented in the ternary weight networks.
This algorithm finds the most frequent subexpression and
changes it to a new variable repeatedly. In each iteration,

FIGURE 14. CSE description.

the most frequent subexpression is removed and only one
adder/subtractor is added to make the new variable.

Algorithm 2 CSE
1: while do
2: Build N (i) array which lists two-term subexpressions.

3: Store the frequency of the ith expression to N[i].
4: if allN [i] == 1 then
5: break
6: end if
7: Find the most frequent subexpression N [i∗]
8: Replace all subexpression N [i∗] with new variable x∗

9: end while

The sparsity through CSE increases significantly as
the number of expressions increases. Considering this,
we applied CSE algorithm to the design of the point-wise
convolution layers in the inverted residual bottleneck
block and the dense layers in the squeeze and excite
block.

VI. HARDWARE IMPLEMENTATION RESULTS
A. APPLICATION OF CSE TO TERNARY WEIGHT DNN
In order to reduce the number of MAC engines, we export
the parameters from the trained model and apply the
CSE algorithm before building Register Transfer Level
(RTL). Table 5 shows the number of MAC opera-
tions of each block after excluding the operations with
zero weight. The CSE algorithm reduced the required
number of MAC operations in each block to 40 ∼ 60%,
making the total number of MAC operations reduced
to 48.7%.
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TABLE 8. FPGA implementation comparison.

B. ASIC DESIGN RESULTS
The RTL for the DNN implementation is generated using
Verilog language. The ASIC design is synthesized with
TSMC 28nm standard cell library and Synopsis Design
Compiler tool (Version 2022.12).

1) PERFORMANCE OF MAC ENGINE WITH QUANTIZED
WEIGHT
Table 6 shows the synthesis results. In the synthesis, the
primary bottleneck of theMAC engine is the multiplier. Since
the converted ternary weights have only 1-bit magnitude
(−1, 0, and +1), the multiplication with the ternary weight
can be implemented simply by flipping the sign bit or
returning the 0 value. The ternary weight quantization makes
the multiplication simpler, and the maximum frequency is
increased by 88% compared to the reference MAC unit (32-
bit floating-point as multiplicand). Other than the training
with the conventional ternary weight, the training with
the decaying weight uses 1/(power of 2) value as weight.
The division by power of 2 can be simply implemented
by increasing or decreasing the exponent in floating point
representation. Therefore, the area/power increase due to the
decaying weight is negligible.

2) MEMORY USAGE
The impact of the quantization on the design of the on-chip
SRAM for the CNN layers is estimated with the 28nm SRAM
compiler to generate the total SRAM array using a 16KB sub-
bank operating at 1.96GHz maximum frequency. The total
SRAM power is estimated assuming all sub-banks are active.
Since the SRAM is mainly used to store the weights, the
required capacity, area, and power are proportional to the bit
width of the weight, showing ∼15x decrease in the ternary
weight case. Since the decaying weight training only requires
one more parameter compared with the conventional ternary
weight, which is the decaying parameter, memory usage is
almost the same as the conventional ternary weight case.

3) DNN DESIGN
From the CSE algorithm result and the MAC engine with
quantized weight, we build RTL for the entire DNN. Table 7
shows the hardware design results and the comparison with
prior works about on-chip acceleration. The baseline model
used in [9], and [23] is VTCNN and our MobileNetV3-
based DNN with the proposed training method shows better
accuracy even with the 16-bit quantized input/activation
and the ternary weight. Therefore, our work shows better
performance along with the lower area and power than the
previous work, showing 35.8 TOPS/W and 42.0 TOPS/mm2.

C. FPGA IMPLEMENTATION
We implemented the DNN model on the Xilinx ZCU102
evaluation board for verification. We use Vivado 2022.1 to
synthesize designs, and the PYNQ framework to verify the
functionality of the design. From the RTL generated after
CSE, we generate the bitstream to implement this DNN on
ZCU102 FPGA with a clocking frequency of 250MHz, 497k
throughput, and 7us latency. Table 8 shows the resource
utilization of the proposed work and the comparison with
the prior work which includes quantization. The comparison
with theVTCNN-based previouswork ([9], [23]) shows better
resource utilization and the performance (62.7 GOPS/W and
1.6GOPS/DSP), which are similar to theASIC design results.
Tridgell et al. [26] implemented a modulation classification
task with VGG10 [18]-based ternary weight network and
achieved the best accuracy of 82.1 % which is better than the
VTCNN-based modulation recognition, but the accuracy is
still lower than our work (91.3% at 30dB SNR) and resource
utilization is larger. Kumar et al. [27] proposed quantized
QMCnet and RUnet with iterative pruning-based training
to increase the sparsity of the network. The RUNet in this
work showed superior classification accuracy (94.5% at 30dB
SNR), but the iterative pruning method is applied to increase
the sparsity of the network and this makes the training take
significantly longer than our work (25 Hrs. and 27 min
vs 2 Hrs. and 18 min).
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VII. CONCLUSION
In this paper, we present the efficient DNN-based modulation
classification by combining the MobileNetV3 architecture
with ternary weight quantization. The ternary weight quan-
tization in the MobileNetV3 architecture shows significant
improvement in hardware design such as operating frequency,
power, and area with a 4.3% accuracy degradation of the
signal above 6dB SNR. We also propose a new training
method called decaying weight training to compensate for
the limited model-fitting capability under ternary weight
networks. The proposed method can improve the clas-
sification accuracy by 2.3% with negligible impact on
the memory or the computational demand. The ASIC
design results show that the MobileNetV3-based DNN
with the proposed training method has lower power/area
and better performance(35.8 TOPS/W, 42.0 TOPS/mm2)
than the previous work, along with much better accuracy.
The FPGA implementation with the dedicated hardware
design also shows excellent performance (62.7 GOPS/W and
1.6 GOPS/DSP) and proves that the proposed design has the
advantage over the prior works considering the classification
accuracy, the resource utilization, the performance, and the
intensity of the training.
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