IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 13 May 2024, accepted 30 May 2024, date of publication 3 June 2024, date of current version 11 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3409076

== RESEARCH ARTICLE

Multiagent Hierarchical Reinforcement Learning
With Asynchronous Termination Applied to

Robotic Pick and Place

XI LAN", YUANSONG QIAO *, (Member, IEEE), AND BRIAN LEE

Software Research Institute, Technological University of the Shannon, Athlone, N37 HD68 Ireland

Corresponding author: Xi Lan (xi.lan@tus.ie)

This work was supported in part by the Confirm Centre for Smart Manufacturing funded by the Science Foundation Ireland (SFI) under

Grant SFI/16/RC/3918, and in part by European Regional Development Fund.

ABSTRACT Recent breakthroughs in hierarchical multi-agent deep reinforcement learning (HMADRL)
are propelling the development of sophisticated multi-robot systems, particularly in the realm of complex
coordination tasks. These advancements hold significant potential for addressing the intricate challenges
inherent in fast-evolving sectors such as intelligent manufacturing. In this study, we introduce an innovative
simulator tailored for a multi-robot pick-and-place (PnP) operation, built upon the OpenAl Gym framework.
Our aim is to demonstrate the efficacy of HMADRL algorithms for multi robot coordination in a
manufacturing setting, concentrating on their influence on the gripping rate, a crucial indicator for gauging

system performance and operational efficiency.

INDEX TERMS Multi-agent system, pick and place, multi-agent-hierarchical reinforcement learning, multi-

robot system, asynchronous termination.

I. INTRODUCTION

Over the past decade, manufacturing systems have undergone
a significant evolution, becoming more intelligent and
automated. This transformation has been driven by advance-
ments in hardware and software technologies, including
the Industrial Internet of Things (IIoT), which has led to
increased productivity and reduced operating costs. A notable
trend in this evolution is the increasing use of robotics,
particularly in response to challenges such as the need to
adapt or re-purpose production lines to meet shifting market
demands or the introduction of new product types. In this
context, teams of robots, often referred to as multi-robot
systems (MRS), are being more and more deployed. The
primary challenge in an MRS lies in coordinating the actions
of individual robots to optimize overall team performance
[1]. Multi-robot systems, a subset of Multi-Agent Systems
(MAS), consist of multiple autonomous agents that interact
with one another and their environment to achieve shared
or individual objectives [2]. These systems often integrate
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with Reinforcement Learning (RL) to form multi-agent
reinforcement learning (MARL) frameworks, or multi-agent
deep reinforcement learning (MADRL) when employing
deep RL (DRL), such as the implementation of Deep Q
Networks (DQN) highlighted by Mnih et al. [3].

One prominent application of multi-robot teams in modern
manufacturing is in Pick and Place (PnP) tasks, characterized
by simple, repetitive, and monotonous actions. The PnP pro-
cess involves two sub-processes: sensing (visual perception
and classification of parts) and gripping (efficient separation
of parts) [4]. Dimensioning a PnP system appropriately to
optimize gripping performance when multiple robots are
involved presents a significant challenge. Commonly, field
experiences are used for sizing, but this may not be optimal
for some PnP scenario’s where robots act concurrently with
possibly different pick action time lengths for each robot that
could lead to uneven workload distribution among robots.

Hierarchical reinforcement learning (HRL) [5] has been
proposed as an approach to dealing with the problem of
learning concurrent actions for multi agent systems [6].
HRL introduces a hierarchical structure in the learning
process, allowing agents to learn at different abstraction
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FIGURE 1. Top view of multi-robot system based on [8].

levels. This methodology is effective in complex tasks with
long-term dependencies and is instrumental in making deci-
sions across multiple temporal scales [7]. Integrating these
concepts, researchers are exploring the use of multi-agent
deep reinforcement learning and hierarchical reinforcement
learning in multi-robot systems. This integration promises to
significantly enhance the autonomy, efficiency, and decision-
making capabilities of robotic teams.

This paper presents a novel method that employs hier-
archical multi-agent deep reinforcement learning to tackle
the coordination challenges in multi-robot PnP systems.
This initial work seeks to assess the viability of this
approach. To the best of our knowledge, this study is a
first attempt at applying HMADRL for multi-robot PnP
coordination. The structure of the paper is as follows:
Section II offers an overview of PnP operations and discusses
the optimization techniques that have been utilized up to this
point. Section III descibe related work. Section IV describes
concurrent multi agents systems including hierarchical RL.
Section V describes the methodology implemented in our
study including the design of our bespoke PnP simulator.
In Section VI, we elaborate on the experiments conducted and
their corresponding results. Finally, Section VII concludes
the paper with a summary of our findings and an outline of
prospective future research directions.

Il. PICK AND PLACE BACKGROUND

A. PICK AND PLACE DESCRIPTION

An overview of a generalised multi-robot pick and place
system is given in Fig.1. It is composed of multiple identical
robots, a part feed device, a moving conveyor, multiple
packaging boxes, and a return conveyor. Each robot has
its own non-overlapping workspace on the conveyor and a
packaging box on the other side of the conveyor. Each robot
picks up parts moving through its workspace and places them
into packaging boxes as optimally as possible. A part feeder
feeds parts onto one end of the conveyor belt following some
probability distribution [8]. Parts move along the conveyor
belt with a fixed flow while the parts remaining at the
other end typically return back to the conveyor via a return
CONveyor.

B. SIZING OF INDUSTRY APPLICATION
In most PnP tasks on a moving conveyor, there is no workflow
optimization and the sizing of the PnP system is done
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empirically. The flow of parts can be controlled, and the
system parameters tuned to achieve the maximum throughput
for the conveyor system. The parameters of interest include:

o part flow rate f, i.e. number of parts fed onto conveyor
per time unit, [8], [9]. High part flow can improve
the productivity but will have more parts left on the
conveyor. On the contrary low part flow will reduce the
productivity.

« the average time for a robot to perform a pick and place
task, #,. t, is a characteristic of the robot and is not
tunable. Metrics derived from #, include:

— the number of pick-and-placed parts per unit-time
i.e. so-called part cadence PPas or throughput

— the gripping rate, G, i.e. the number of parts picked
by the robot over the total number that enter the
workspace and

— efficiency, i.e. the throughput over the maximum
throughput

« the velocity v, of the belt

« the distance d between two consecutive parts on the belt.

In most cases the items are equally spaced (distance d and
vp / d matches the minimum robot pick-and-place time). The
sizing of such a conveyor system is then done empirically
according to the following decision sequence [9],:

1) A particular input part flow rate f,, is chosen.

2) The part cadence PPas is estimated

3) The minimum number of robot is calculated: Ny, =f,, /

PPas.

4) A margin of safety is included by adding one or more

robots to Ny,ip

In the above system, the set of parts to be picked by a
particular robot can be considered as a queue of jobs waiting
to be ““served” and a simple first-in-first-out (FIFO) rule is
adopted as scheduling discipline to select the next job (i.e.
part) from the queue i.e. pick the next part.

However, there are cases where the arrival of parts onto
the belt is not fixed and is characterised by a stochastic
process [8], [10]. In these cases, the distance between the
incoming parts varies greatly. This means that the robot
picking time is no longer constant within its workspace and
the serving time of the parts in the queue (i.e., the time
needed to perform the pick-and-place ““service” they require)
varies with their moving position. In these situations the FIFO
rule may perform very inefficiently, thus requiring different
scheduling strategies for different robots.

The challenge for these dynamic serving time PnP systems
then becomes how to choose the appropriate set of scheduling
disciplines, in the face of random part distribution on the
conveyor, to optimise the overall system performance. This
is inherently a multi-robot coordination challenge.

IIl. RELATED WORK

Mattone et al. [10] focused on optimizing gripping strategies
for single robot PnP systems. For multi-robot systems,
however, more intricate algorithms and scheduling rules are
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necessary. Huang et al. [8] suggested the integration of
part-dispatching rules with a greedy randomized adaptive
search procedure (GRASP) and a Monte Carlo strategy for
coordinating multiple PnP robots. Bozma and Kalalioglu [11]
developed a multi-robot coordination approach for PnP
tasks on a conveyor belt using non-cooperative game
theory, where each robot’s action was informed by local
observations, including the actions of adjacent robots.
Daoud et al. [12] examined the effectiveness of three
metaheuristics—ant colony optimization, particle swarm
optimization, and genetic algorithms—in maximizing part
picking with minimal execution times.

In recent developments, researchers have started applying
MADRL to PnP systems. Wang et al. [13] introduced a
novel algorithm, MRCDRL, utilizing end-to-end MADRL
for addressing obstacle avoidance challenges among multiple
robots. Gomes et al. [ 14] conducted a case study using DRL to
improve the efficiency of a collaborative robot (cobot) in PnP
tasks within human-robot interaction scenarios. Liu et al. [15]
investigated the application of DRL for training single robot
manipulators in simulations and successfully transferring
these learned policies to real-world tasks, showcasing the
potential of sim-to-real transfer in complex manipulative
tasks. Kim et al. [16] introduced a multi-agent approach
based on Deep Q-Networks (DQNs) designed to adapt and
make improved decisions within dynamic environments.
These DQN agents represent various components of the
manufacturing process responsible to access and prioritise
jobs. They are continuously learning and hence improve their
ability to make scheduling decision, which in turn leads to
improvements in task allocation and mass customisation.
Zhou et al. [17] proposed a smart factory model featuring
a range of components and introduced a decentralized job
scheduling approach using a multi-agent actor-critic method.
Each machine in this setup is paired with an actor-critic agent,
further enhanced by target policy and target critic networks.
These agents communicate to observe each other’s states,
allowing them to effectively navigate the dynamic and non-
stationary environment of the factory.

In the context of HRL, a crucial contribution was made by
Sutton and Barto [18], who developed a significant frame-
work for temporal abstraction in reinforcement learning,
effectively bridging the gap between MDPs and semi-
MDPs. This framework has been fundamental in hierarchical
approaches, especially for breaking down complex robotic
tasks into smaller, more manageable sub-tasks, thus enhanc-
ing learning efficiency and performance in multi-robot PnP
systems. Further extending, Dietterich [19] explored the
hierarchical decomposition of reinforcement learning tasks,
providing a robust methodology for structuring problems in
a hierarchical fashion. This approach significantly aids in
managing the complexity inherent in multi-agent environ-
ments. Luo et al. [20] introduced a hierarchical reinforcement
learning (HRL) approach for production scheduling, using
a two-tiered system to minimize tardiness and maximize
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machine utilization. A high-level DDQN agent sets global
goals, while a low-level DDQN handles dispatching rules.
However, this added complexity can impede the learning
process’s convergence. Also in their further paper [21]
they developed a hierarchical multi-agent proximal policy
optimization (HMAPPO) approach for dynamic scheduling
problems with no-wait constraints. This method uses three
types of agents: a controller, a job selector, and a machine
assigner. The controller sets temporary goals, while the job
and machine agents quickly adapt to real-time demands.
Despite its hierarchical structure facilitating layered learning,
the system isn’t fully decentralized, and optimality of the
combined policies isn’t guaranteed. Despite these significant
advancements in the field, there remains a gap in research
specifically focused on the optimization of gripping rates
in PnP systems. Our research aims to address this gap by
applying and extending these foundational concepts of HRL
to the specific challenge of optimizing gripping rates in multi-
robot PnP systems.

IV. CONCURRENT MULTI AGENT SYSTEMS

A. PARTIALLY OBSERVABLE MDP

In multi-agent reinforcement learning (MARL), the dynamics
of decision-making are substantially more intricate than in
single-agent scenarios. This complexity arises due to the
influence of both the environment and the strategies of other
agents on the optimal policy for any given agent. Agents
in such environments must either collaborate or compete
to effectively navigate and resolve task-specific challenges.
Theoretical frameworks like game theory are instrumental
in understanding these strategic interactions among agents.
Consequently, the conventional single-agent MDP model is
expanded into a Markov game to accommodate multi-agent
interactions.

In a collaborative multi-agent environment, it is typically
essential for each agent to possess knowledge about the
other agents to inform its decision-making process. However,
many existing methods overlook a crucial reality—agents
may not always have unrestricted access to this information.
In the context of distributed multi-agent scenarios, the
world is generally only partially observable to each agent.
To address this partial observability, Partially Observable
Markov Decision Processes (POMDPs) extend the concept
of MDPs. In a POMDP, agents form policies as mappings
from a set of beliefs about the state to actions, based on a
history of observations to estimate the state probabilities. This
partial observability poses heightened challenges in multi-
agent settings, as agents may lack information about other
agents’ states or the entire environment [22]. The POMDP
framework can be extended to allow for multiple distributed
agents to base their decisions on their local observations.
This model is called decentralized POMDP (Dec-POMDP).
This model integrates joint actions and observations, where
each agent operates based on its individual perceptions
and actions without real-time communication with others.
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In Dec-POMDP, agents independently make decisions based
on partial information, which is crucial in scenarios with
limited or no communication. This approach allows agents
to navigate complex environments where collective state
transitions are determined by the confluence of individual
agents’ actions [22]. Thus, POMDP and Dec-POMDP
provide robust frameworks for modeling and solving intricate
and uncertain scenarios characteristic of multi-agent systems.

One fundamental distinction in MARL algorithms is
whether they adopt a centralized or decentralized training
approach. In centralized approaches, a central controller or
critic observes the complete state of the environment and the
actions of all agents. This centralized entity provides a global
perspective, enabling efficient coordination among agents.
The new approach of centralised training decentralised
execution (CTDE) [23] is widely using in MARL POMDP,
agents undergo training with access to sharing information,
but during online execution, they operate in a decentralized
manner with agents’ local observation [24].

B. TEMPORAL ABSTRACTION AND HIERARCHICAL MARL
A Multi-robot PnP with concurrent actions modelled as a
MARL/MADRL system is an example of an Al system that
requires learning, planning, and representing knowledge at
multiple levels of temporal abstraction. Temporal abstraction
is instrumental in managing tasks that span a range of time
scales, as it simplifies complexities by enabling agents to
overlook minute details that are not directly relevant to the
primary task [25].

Hierarchical RL can be used to address temporal abstrac-
tion by decomposing a temporally extended reinforcement
learning task into a hierarchy of subproblems or subtasks such
that each subtask is a higher-level action that persists for a
longer timescale compared to a lower-level action and the
agent operates and learns simultaneously at multiple levels
of abstraction. Each higher-level policy learns to perform the
task by choosing optimal subtasks as the higher-level actions.

As per literature describing multi agent temporal abstrac-
tion we model a two level hierarchical learning task as a
Markov game. Here, each agent establishes intrinsic, multi-
step goals at the higher level, followed by executing a series
of primitive actions at the lower level to fulfill these goals
- see Figure 2 (a). It is assumed that the intrinsic goals are
temporal abstraction of the simple tasks or skills that can be
achieved or accomplished independently. This approach not
only eases the complexity inherent in the original problem but
also preserves the multiagent dynamics.As a result, agents are
equipped to learn cooperative and coordinated behaviors at
the higher strategic level.

Intrinsic goals are a key factor to achieving effective
hierarchical coordination. Intrinsic motivation - as opposed
to extrinsic motivation from the environment - involves
providing the agent with additional rewards or goals that
are not explicitly defined by the external task but emerge
from within the agent itself. The idea is to encourage the
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FIGURE 2. (a) Hierarchical control flow. (b) Decision trajectories for MARL
and hierarchical MARL. For (a) and hierarchical MARL in (b), solid and
hollow circles denote intrinsic goals and primitive actions respectively.
(following [27]).

agent to explore its environment and learn more effectively.
By incorporating intrinsic motivation, the agent may exhibit
behaviors such as curiosity, novelty-seeking, or skill devel-
opment that go beyond the immediate external task. The goal
of incorporating intrinsic motivation is to enhance the agent’s
learning process, promote exploration, and enable the agent
to discover more robust and adaptive policies. It can be
particularly useful in scenarios where the external reward
signals may be sparse or delayed, as intrinsic motivation can
help the agent to learn more efficiently in the absence of
immediate external feedback.

Based on the above multi agent temporal abstraction
model, we consider hierarchical MARL as illustrated in
Figure 2 (b). The higher level of the hierarchy can be modeled
as a Semi-Markov game, similar to the Multiagent Semi-
MDP (MSMDP), since intrinsic goals may last for multiple
time steps. SMDP’s were pioneered by [26] as an extension to
the basic RL framework for representing temporal abstraction
i.e. the actions in SMDPs take variable amounts of time
and temporal abstraction is captured as the (hierarchical)
interplay between SMDPs and MDPs.

A Multi-agent Semi-Markov Decision Process (MSMDP)
is characterized by six elements: (D, S, A, P, R, T) and is
defined in the following manner:

1) Agent Set D: This represents a finite group of n agents,
where each agent, denoted as i in D.

2) Joint Action Space A: The combined actions of all
agents are represented in A, which is the product of
individual action sets A; for each agent i, where i ranges
from 1 to n.

3) State Set S: S is the set of all possible states in the
system.

4) Reward Function R: This is a function that maps states
in S to real numbers, representing the rewards.
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5) Transition Probability Function P: Defined as P: § x
IN x § x A — [0, 1], where IN is the set of natural
numbers, this function determines the probability
of transitioning from one state to another, given a
particular joint action and time steps. For instance, P(s’,
Nls,a) represents the probability that the joint action a
will transition the system from state s to state s’ in N
time steps.

6) Termination Scheme 7: Since joint actions consist
of temporally extended individual actions that may
not conclude simultaneously, the multi-step transition
probability P is influenced by the manner in which
decision epochs are defined, which in turn depends on
the termination scheme 7.

Returning to Figure 2 (b), formally, each agent i receives
observation o! and chooses a goal gi € G/, where G' denotes
the set of all possible intrinsic goals. A new goal g, is
selected until the current goal g is achieved or terminated
after 7 steps of low-level executions. The next state s;4; is
determined by the multi-step transition probability function
P. The objective of agent i’s high-level policy 7’ is to
maximize the cumulative extrinsic reward.

Whereas we model the higher level as SMDPs, we model
the lower level of hierarchy as MDPs. Agent i receives the
intrinsic observation ¢ which depends on observation o and
current goal g, and chooses an action a € A;;-, where A;;- (c

A') is a set of all available primitive actions under the current
goal. Given an intrinsic goal, agent i learns a low-level policy
né via optimizing the cumulative intrinsic reward.

The above discussion is detailed further in the next section
which describes how HRL agent can be realised using Deep
Q Networks. Following [28] we can consider the two layers
of a HRL agent to consist of a controller (lower level) and
meta-controller (upper level) - see Figure 3

The meta-controller, receive the current state s;, selects a
goal g; from a predefined goal space G. The controller is then
responsible for determining an action a;, taking into account
both the state s; and the goal g;. The goal g; is maintained
across a sequence of time steps, until it is fulfilled or until
the end state is reached. The role of the internal critic is to
assess goal attainment and allocate an intrinsic reward r;(g)
to the controller. The objective of controller is to maximize
the sum of intrinsic rewards, formulated as:

o
R@@) =Dy "rig).
t'=t
Conversely, the meta-controller is tasked with maximizing
the sum of extrinsic rewards, F; = > 7, ¥ ~'f,, where
fr symbolizes the extrinsic rewards emanating from the
environment.

Finally we can consider an example scenario to illustrate
these ideas. This is the Multi Agent Trash Collection (MATC)
[5], [27]. In this scenario a several agents pick trash cans over
extended area (often modelled as a grid world) and deposit the
trash to a central bin. For example consider a case with two
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agents Al, A2 and trash cans T1, T2 and central bin Dump.
Agents need to learn three skills here. First, how to do each
subtask, such as navigate to trash cans T1 or T2 or Dump,
and when to perform Pick or Put action. Second, the order
to carry out the subtasks, for example go to T1 and collect
trash before heading to Dump. Finally, how to coordinate
with each other, i.e., agent Al can pick up trash from T1
whereas agent A2 can service T2. The strength of the HRL
methods (when extended to multi-agent domains) is that they
can serve as a base for efficiently learning all these three types
of skills. In these methods, the overall task is decomposed
into a collection of primitive actions and temporally extended
(non-primitive) subtasks that are important for solving the
problem. A task graph representation for this scenario can be
derived from from [27] - see Figure 4

Each agent has 7 actions, including navigation actions (i.e.,
up, down, left, right and no-op) and operation actions (i.e.,
pick-up and put-down). The task is abstracted into two one-
step operation goals (i.e., pick-up, put-down) and several
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navigation goals that are built over navigation actions. Once a
multi-step action is chosen on the high level by the controller
the destination of the object referenced by the action is given
as a goal to the lower level. The agent learns a low level policy
to move to the destination with the minimal amount of moves.
A binary intrinsic reward function for low-level policy learn-
ing, which gives 1 for reaching the goal and - 0.01 otherwise.
At the upper level agent receive a reward related to the speed
of completion of the trash pick up. Note that the upper level
goals include two primitive actions also. The reason for this
is that the problem is constructed such that the lower level
policy learns over navigation actions which the pick-up and
put-down actions are not. The no-op action is used for special
cases such as when the destination is reached and when pick
and put are chosen as the high level goals.

C. TERMINATION SCHEMES

Joint actions in a HRL Dec-POMDP consist of temporally
extended individual actions that may not conclude simultane-
ously and which may exhibit a range of fermination schemes.
Three such schemes, namely ¢_any, t_all, and ¢_continue were
introduced in [6] for temporally extended joint actions - see
Figure 5.

In the 7_any termination scheme, the subsequent decision
epoch is determined by the first action within the ongoing
joint action reaching completion. The actions that have not
yet terminated are interrupted, and the next decision epoch
ensues.

In the 7_all termination scheme, the next decision epoch
occurs when all actions within the ongoing joint action have
concluded. After completing an action, an agent waits (takes
the idle action) until all other agents finish their current
actions, leading to a synchronized decision epoch where all
agents jointly choose the next action.

The t continue termination scheme shares similarities
with 7_any, as the next decision epoch is triggered by the
termination of the first action within the current joint action.
However, in t_continue, agents whose activities have not
terminated are not interrupted. Only those agents whose
actions have concluded select new actions, creating a scenario
where only a subset of agents make decisions at each decision
epoch. After an agent completes an action, the next decision
epoch occurs exclusively for that agent, and it selects its
next action based on the ongoing actions performed by other
agents.

We can categorise these approaches as either synchronous
or asynchronous [5]. In synchronous strategies- such as ¢_any,
t_all- every agent selects their actions simultaneously at each
decision point as showing in Figure 5. However, a drawback
of synchronous approaches is the potential for less optimal
policies. This happens because agents need to either delay or
prematurely conclude their lower-level tasks to comply with
the synchronization demands [5]. Such issues could intensify
as the number of agents increases.

On the other hand, asynchronous strategies - such as
t_continue- are defined by only some agents making action
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decisions at each decision epoch as as showing in Figure 5.
This setup eliminates the need for a central system to
synchronize agents, enabling a decentralized approach to
decision-making. This flexibility allows agents to develop
more adaptable policies, though it may also present chal-
lenges in achieving effective coordination among them.

V. METHODOLOGY

A. MADRL APPROACH FOR PnP

We consider the multirobot PnP gripping process as a
hierarchical RL multi-agent system with asynchronous
termination where the agents (robots) cooperate to optimise
the throughput of products through the system. The PnP
system acts as a decentralised POMDP where each agent has
only partial observability of the whole system and takes local
actions based on this information.

Moreover, we leverage the approach proposed by Bozma
and Kalalioglu [11] to model the multi robot system PnP
conveyor. This formulation is depicted in Figure 6, where
the workspace of each robot is segmented into several
arbitrarily smaller sub-workspaces where each such sub-
workspace holds one part placed on the belt. Taken to its
limit the conveyor belt can be imagined as a grid of point
locations much like a computer vision image. We use this
‘conveyor belt as image’ paradigm as the basis for the
model design and, following Mnih et al. [3], use DQN
for the algorithm development. When building a DQN
based HRL, both controller and meta-controller are usually
implemented as (separate) DQN components [27], [28], with
a centralised training, decentralised execution approach used
for the MARL case.

To achieve temporal abstraction we use part-dispatching
rules/scheduling disciplines (e.g., first-in-first-out (FIFO)
and shortest distance (SD)) as actions at the higher (meta-
controller) layer of the hierarchical DQN multi agent
system.

The use of part dispatching rules for coordination in a
multi robot pick and place system has been investigated
by a number of researchers [8], [10], [29], [30]. Different
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FIGURE 6. Workspace for four robots.

part-dispatching rules can be used for the different robots
such that each robot picks up as many products moving
through its workspace as possible. The challenge for these
dynamic serving time PnP systems then becomes how to
choose the appropriate set of scheduling disciplines, in the
face of random product distribution on the conveyor, so as
to optimise the overall system performance. The scheduling
disciplines considered for our study include the following
options:

1) First In First Out (FIFO): This discipline involves
picking up the part that first entered the robot’s
workspace on the conveyor.

2) Last In First Out (LIFO): Under this discipline, the
robot picks up the part that most recently entered its
workspace on the conveyor.

3) Service In Random Order (SIRO): This approach
allows the robot to randomly select any part within its
workspace on the conveyor for pick up.

4) Shortest Distance (SD): This method prioritizes pick-
ing up the part that is closest to the upper edge of the
conveyor, minimizing travel distance.

5) Longest Distance (LD): Contrary to SD, this discipline
focuses on picking up the part that is nearest to the
lower edge of the conveyor.

Each of these disciplines offers a unique approach to task
execution in the context of our multi-agent system.

At the lower (controller) layer of the HDQN three
primitive actions suggest themselves i.e.

1) Pick i.e. robot picks a a part from its workspace

2) Place i.e. a robot places a part in the receiving bin

3) No-oP i.e. the robot takes no action - this action is used
to emulate the passing of time as the robot arm moves
either to pick or place the part. No-oP is a common
primitive action in hierarchical RL [5], [27]

The task decomposition illustrating the interaction between
the higher and lower layers is shown in Figure 7. The upper
layer actions are selected by the meta controller policy while
the lower layer actions are chosen the controller policy.
As noted previously both levels of controller are normally
implemented as DQN models and that is indeed the case
for the meta-controller here. However the lower level of our
agent is considerably simplified by the fact that the pick and
place operations are in fact intrinsically part of the upper
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level actions within our simulator as will be discussed in
the next section. While they could be abstracted out and
cast as stand-alone primitive actions it would be an artificial
construct and would offer no theoretical nor implementation
advantage - this fact is indicated by the dashed line defining
the actions. In consequence we are left with just a single
low level primitive action -NooP -which negates the need
for action selection. The policy is deterministic with just one
action for every state.

A more detailed description of the agent architecture is
given in section VI.

B. PnP SIMULATION

1) SIMULATOR OPERATION

Simulation is a critical tool in the realm of robotics algorithm
development, offering a platform to assess the efficiency,
safety, and robustness of new algorithms, as highlighted by
Staranowicz and Mariottini [31]. A variety of both commer-
cial and open-source robotic simulators, such as Gazebo [32]
and Vrep [33], are available, providing valuable support for
the development of diverse robotic scenarios, including pick-
and-place operations. These simulators, often integrated with
the Robot Operating System (ROS) [34], allow for algorithms
crafted in the simulation environment to be directly applied
to real-world robots. Additionally, these simulators typically
offer programming interfaces for seamless integration with
algorithm development environments.

However, despite their versatility and utility, these simula-
tors do not completely align with our specific requirements.
Their primary focus is on visual perception and the control
of robotic arm movements for pick-and-place tasks. Our
research, in contrast, centers on higher-level coordination
tasks that are better addressed through discrete event
simulation. This approach enables us to abstractly model the
simulation, avoiding the extensive development and testing
demands associated with programming robotic arm behaviors
as required in systems like Gazebo or Vrep.
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SimPy [35], is a discrete event simulation framework
in Python, previously utilized in Deep RL simulations
within healthcare systems. While SimPy excels in modeling
concurrent systems, it lacks the capacity to represent data-
rich environments such as those found in pick-and-place
settings. Consequently, we have developed our own Python-
based discrete event simulator tailored for the pick-and-place
conveyor belt. This custom simulator allows us to effectively
develop and test our mutli agent RL approach in a more
controlled and relevant environment.

In the simulator the conveyor belt is represented as a grid
structure. The x-axis of this grid signifies the length of the
belt, while the y-axis represents its width. Each cell within
this grid stands for a possible position where a part might be
located on the belt. The presence of a part in a cell is denoted
by a one (1), and its absence is indicated by a zero (0).

Our experimental setup is based on that described by
Huang et al [8] which was, in turn, based on their discussions
with engineers at a robotic company. It consists of a multi-
robot system featuring four identical robotic arms and their
corresponding packaging boxes, alongside a continuously
moving conveyor belt. Following Huang we choose a
maximum arm speed of 7.0 meters per second. The conveyor
speed can be varied but is normally at a consistent speed
of 0.8 meters per second (as Huang). While different
distributions may be used for the purpose [36] parts are fed
onto the belt following a normal distribution, as with Huang.
The part flow rate can be varied and ranges between 8 to
16 parts per second as with Huang.

The conveyor belt is represented as a grid measuring
64 cells in length and 8 cells in width. Each robot is restricted
to picking up parts solely from its own workspace, and it
has full access to every part within this area. After all robots
complete their designated action A, at a given time step 7, the
simulator provides a feedback reward R for that step, which
is relayed back to the agent.

Figure 8 illustrates the architecture of the simulator, which
operates with two primary control threads: the Agent and
the Dispatcher. The Robot Handler, a crucial component,
functions within the main thread of the Agent. Additionally,
the simulator features shared data structures, namely the
Task Queue and the Conveyor, which facilitate coordinated
operations between these components.

The Dispatcher in the simulator serves two key roles:
firstly, it manages the addition and removal of parts on
the belt, using a Gaussian distribution for placement;
secondly, it processes tasks from the job queue for the pick
and place operations. The conveyor belt is modeled as a
double-ended queue where parts are added and removed,
effectively simulating the movement of items along the
belt. The simulation’s clock frequency, which influences the
conveyor’s operational pace, is set based on the selected speed
of the belt.

The Robot Handler, conforming to the OpenAl Gym
interface, acts as a virtual controller for the robots. It is
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FIGURE 9. Scheduling discipline with relative velocity.

responsible for managing the scheduling disciplines and/or
primitive actions for each robot. During each timestep of an
episode, the Robot Handler determines - according to the
scheduling discipline action- the most suitable part for each
robot to pick, subsequently placing a corresponding job in the
Task Queue with a calculated delay, allowing for the robot
arm to intercept the part as it moves along the belt.

In parallel, the Dispatcher manages the task timeouts
for picking operations from the Task Queue. This involves
removing the part from the Conveyor and queuing a new job
with the delay for the robot arm’s return journey to the bin.
Upon timeout of this job, the Dispatcher ‘places’ the part in
the bin, indicated by an increment in the bin counter. After
all placement jobs are completed, the Dispatcher signals the
Robot Handler, thereby transferring control back to the DQN
Agent.

2) SCHEDULING DISCIPLINE IMPLEMENTATION

Within the conveyor belt simulation, the movement of the belt
is synchronized with the robots’ pick-and-place actions. This
necessitates precise calculation of the part’s future position,
where the robot arm is expected to intercept and pick it
up. Given the known variables - the velocity of the belt,
the initial position of the part, and the speed at which the
robot arm moves - determining the future location of the
part is achievable through the application of relative velocity
principles [37].
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Each robot in our simulation is positioned at the central
point of its designated workspace. The process for calculating
the future position of a part relative to each robot, as shown
in Figure 9, involves the following steps:

1) Given the known horizontal distance p (distance from
the robot to the part’s initial location) and vertical
distance ¢ (distance between the robot and part
vertically), we can compute the diagonal distance Dj.

2) Using g and Dg, the angle 8 is determined based on the
Sine Rule.

3) With the angle B, the speed of the robot arm, and
the speed of the belt known, we apply the concept
of relative velocity: sin8 / robot speed = sina / belt
speed. This allows us to determine « and subsequently
calculate the remaining angles: ¢, 8, 6, 0.

4) Utilizing relative velocity principles and the known
angles along with D§, we calculate D« (the horizontal
displacement from the part’s original to future location)
and T (the time it takes for the part to reach its future
position).

5) Dé¢ is represented as the number of grid cells between
the part’s initial and future locations. If the future
position falls outside the robot’s workspace, a null
value is returned. 76, expressed in seconds, is then
converted into the number of clock ticks necessary
for the part to reach the future position at the current
belt speed. This information, along with other relevant
details, is then added to the Task Queue as previously
described.

VI. EXPERIMENTS
Figure 10 provides a overview of our approach. The top
section of the figure shows an environment that complies with
the OpenAl Gym standards, featuring a simulated hierarchi-
cal multi-robot system for pick-and-place tasks. Below this is
the multi agent controllers which are implemented as simple
deterministic NooP action selections. On the bottom is shown
the meta-controller DQN.

Our PnP system is defined as a Dec-POMDP with the
following characteristics:

1) Agent Set D: Comprises a collection of agents, denoted
asl,...,n.

2) The state space S includes the ‘image’ of the conveyor
belt, represented as a two-dimensional tensor. This
aligns with our chosen representation of the conveyor
belt.

3) Joint Action Space A: Defined as a; x. . . xa,,, where each
a; corresponds to a specific scheduling discipline.

4) Joint Observation Space O: Constituted as o1x...xo,,
where each o; is the two-dimensional tensor that depicts
what agent d; can see on the conveyor belt.

5) Joint Time Steps T: Defined as #x. .. xt,, where each ¢;
is the number of steps each robot spends from pick to
place.
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6) Reward Structure: The reward (R) aims to maximize the
number of parts picked in the least time, varying with
the type of task:

a) extrinsic reward: Each agent receives a reward
that is directly proportional to their efficiency in
picking parts. For agent i who picks up n; parts
within #; time, the reward R; is computed as 1,

R = ni/ti, n;> )
0, n; = 0

b) intrinsic reward: The intrinsic reward is calcu-
lated by the number of occurrences of the NooP
action i.e. for agent i with k; occurrences of NooP,
the intrinsic reward IR; will be:

IR,' = k,' * —0.01 (2)

The architecture of the DQN in our study includes three
convolutional layers, followed by a fully-connected hidden
layer, and concludes with a fully-connected output layer.
The initial input layer processes a two-dimensional vector
representing the length and width of the conveyor. The fully-
connected hidden layer is composed of 512 rectified linear
units, while the output layer is a fully-connected linear layer
that outputs the action values for each possible combination
of disciplines. For the optimization process, we employ the
RMSprop optimizer, as ori.

As mentioned in the introduction, we selected HDQN as
the principal algorithm for training the agents. Following a
series of trial and error, we established that each training
episode would consist of 5000 steps, with the overall training
extending across 1200 episodes. This study maintains three
constant parameters for the robots and the conveyor system.
Drawing from the real robot arm movement speed detailed by
Huang et al. [8], we established a baseline speed of 3m/s for
our robot arms. Additionally, the conveyor belt speed was set
at 0.8m/s, and the rate of part replacement was fixed at 10.

A. HDQN BASELINE PERFORMANCE

Training was conducted using a GPU server, outfitted with an
Intel Xeon 5120 CPU featuring 56 cores and a clock speed of
2.20GHz, complemented by 250GB of RAM and four Nvidia
Tesla V100-SMX2 GPUs, each with 32GB of memory. The
software stack included Python 3.8 and PyTorch 2.0.1, which
provided the necessary computational frameworks for our
models. Code implementation was carried out in PyCharm
Community Edition 2023. On average, the training process
spanned approximately 24 hours, with nearly 60% of this
duration dedicated to simulating the delays encountered in
robot pick and place operations within the environment.

To evaluate the performance of the multi-agent systems
using different methodologies, we analyzed the gripping rate
G;. This rate is calculated as the ratio of the total number of
items picked N, by all robots in a given episode to the total
number of parts presented on the conveyor belt N; in the same
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Np
G, = — x 100 3)
Ni
ginally utilized in the seminal DQN study [3], to effectively
minimize loss.

Regarding memory and training parameters, the replay
memory is configured to hold 10,000 instances. The network
update frequency for the target model is set at a standard
rate of every 100 episodes. Additionally, we set a discount
factor y of 0.9 and learning rate « of 0.01, which serves to
encourage the agents to identify the most advantageous action
before the termination of each episode. The training of the
agents commenced following the completion of 100 episodes.
As illustrated in Figure 11, the data clearly shows that
the average rewards per step for all agents stabilize at
approximately 0.18. Further, as shown in Figure 12, it is
observed that once the agents reach a stable state, HDQN
consistently attains an average gripping rate of 72%.

Figure 13 displays the distribution of action occurrences
across a span of roughly 6 million steps, excluding the NooP
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action. The data clearly indicates that the SD action is the
most frequently choice among all robots, followed closely by
FIFO as the second most common strategy.

B. COMPARISON OF GRIPPING RATES ACROSS
DIFFERENT ARM SPEEDS

The influence of arm speed on pick-and-place efficiency
is substantial. Echoing the findings of Bozma and
Kalalioglu [11], we incorporated robots with diverse speed
capabilities in our study, classifying them into slow, medium,
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and fast categories with respective speeds of 2, 3, and 4m/s.
To evaluate the gripping rate under these varied conditions,
we utilized the HDQN algorithm. The data, as depicted
in Figure 14, reveal a marked disparity in gripping rates
across the different robot speed categories. The robot with
the slow speed registers an average gripping rate near 47%,
in contrast, the medium and fast-speed robots demonstrate
higher gripping rates of approximately 72% and 82%,
respectively. These results highlight the critical role of arm
speed in optimizing pick-and-place task performance.

C. COMPARISON OF GRIPPING RATES ACROSS
DIFFERENT PARAMETERS

The performance of the pick-and-place system was method-
ically examined through a comprehensive series of simula-
tions, each differentiated by distinct parameters:

1) Robot speeds were classified into three tiers: speed 2
(slow), speed 4 (medium), and speed 6 (fast).

2) Product flow rates were tested at three levels—10,
12, and 15—determining the frequency of product
availability.

In total, this established 27 scenarios for evaluation. The
efficiency of each scenario was measured by the gripping
rate, serving as the primary metric of performance. Figure 15
illustrates scenarios where the conveyor belt speed is set
at 0.6m/s. Given the relatively slow movement of the
belt, scenarios featuring robots with higher speed settings
consistently achieve nearly 100% gripping rates across all
part flow conditions. Conversely, robots operating at slow
and medium speeds exhibit a decrease in gripping rate as
the part flow rate increases. Figure 16 presents outcomes for
a conveyor belt speed of 0.8 meters per second, considered
a medium speed. In scenarios incorporating fast robots, the
gripping rates remain impressively high, exceeding 90%
across varying part flow rates. However, for robots designated
as slow or medium in speed, there is an observable decrease
in gripping efficiency—approximately 10%—each time the
part flow rate increases a level. Figure 17, where the
conveyor operates at a comparatively fast 1 meter per second,
we observe that fast robots maintain a high gripping rate
above 90% when the part flow is set at 10 and 12. Yet,
when faced with a part flow of 15, their efficiency dips to
75%. Robots classified as slow or of medium speed also
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demonstrate a reduction in gripping rates by approximately
10% with each increment in part flow levels.

D. COMPARISON OF GRIPPING RATES ACROSS
DIFFERENT SCENARIOS

Our simulator is capable of adapting to a wide array of
RL configurations. It was initially focused on scenarios
where a single agent controlled multiple robots, providing
a window into the nuances of individual agent efficacy
within multi-robot frameworks. Subsequently, we extended
the simulator’s capabilities to accommodate multi-agent
synchronous reinforcement learning, thereby enabling a
deeper investigation into the cooperative dynamics that
emerge when multiple agents interact within a shared space.

Our methodology for evaluating the effectiveness of differ-
ent configurations relied heavily on the gripping rate metric.
This choice allowed us to accurately measure efficiency
across various PnP tasks. For our analyses, we selected data
that with optimal performance within each tested scenario.
This included employing a cooperative environment for
both the single-agent multi-robot system and the multi-agent
synchronous (¢_all termination scheme) framework, while a
competitive environment was used to assess the multi-agent
asynchronous (¢_continuous termination scheme) model,
with the setup parameters including a robot arm speed of 3,
a belt speed of 0.8 meters per second, and a part flow
rate of 10. As depicted in Figure 18, showing intriguing
patterns of performance across the tested models. Notably,
the gripping rate comparison indicates that while the single-
agent and multi-agent synchronous systems exhibit similar
efficiency levels, the single-agent model slightly edges out its
multi-agent counterpart. We attribute this minor performance
disparity to the complete observation capabilities of the single
agent, in contrast to the partial observations inherent in the
multi-agent setup.

A standout finding from our investigation is the dis-
tinct performance leap demonstrated by the HDQN in
the asynchronous multi-agent environment. The HDQN
model showcases a gripping rate approximately 10% higher
than that achieved by the multi-agent synchronous system.
This pronounced improvement underscores the HDQN’s
adeptness at navigating the intricacies of asynchronous
operations, highlighting its potent capability for optimizing
collaborative tasks in complex, multi-agent pick-and-place
environments. We attribute this efficiency to the HDQN’s
use of a continuous termination scheme ¢_continue, which
effectively removes idle times compared to the other two
scenarioes as ¢_all scheme where robots wait for all tasks to
conclude. This approach contributes to a swifter completion
of tasks.

These findings not only validate the effectiveness of hier-
archical learning strategies in enhancing task performance
but also emphasize the critical role of observation scope
and agent coordination in achieving optimal outcomes in
robotic pick-and-place operations. Through this exploration
of different RL configurations, our work sheds light on
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the intricate interplay between agent autonomy, cooperation,

and system architecture, offering valuable perspectives for E. COMPARISON WITH OTHER RESULTS

future advancements in multi-agent reinforcement learning As we believe this to be the first work to address the use
applications. of HRL for multi robot PnP, there is no other HRL work
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with which we can compare our results. There are however
a number of comparable works. Foremost amongst those is
Huang et al. [8] whihc has been described earlier. This work
guided our own experimentation with respect to the conveyor
belt sizing e.g. robot arm and belt speeds, work area size etc.

Yu et al. [38] also compare the use of scheduling disciplines
for a two robot pick and place system. They use the FIFO and
Shortest Sorting Time (SST) algorithms as well as a custom
defined Second Shortest Sorting Time (SSST) algorithm and
define the coordination problem as the optimisation of the
choice of three scheduling disciplines across two robots so
that the total number of candidate multi-robot coordination
choices is nine (= 3*3). They then analyse the performance
of different combinations of scheduling discipline at different
belt speed and with a mean distance of 30 cm between each
part on the belt- see Figure 19. No figures are give for arm
speed, nor placement rate.

Zhou and Jiang [39] develop a PNP sequence planning
algorithm for a two robots conveyor belt system that is
optimal in a finite field of view. The computational efficiency
is sufficiently fast for the actual picking process and the
overall picking rateand maximum picking throughput are
10-20 % better than existing commonly used methods such
as FIFO and SPT. Their simulation assumes a 1 meter/second
belt speed. However no figures are given for gripping
rate performance making direct comparison with our work
difficult.

We compare results for arm speeds 6 and 7 ms/s with
the optimal result reported by Huang across their various
experiments - see Figure 20 - showing gripping rate for
arm speeds 5,6 and 7 m/s, and Table 1 for a comparison of
configurations and results. See also sorting rate reported by
Chu - Figure 19. These results demonstrate performance of
our system in terms of gripping rate is at least on a par with
the state of the art as exemplified by Huang and Chu.

We believe that, combined with the gripping rate perfor-
mance, HRL’s hierarchical structure, efficient exploration-
exploitation trade-offs, and flexibility in task decomposition
offers greater advantages for coordinating multiple robots in
conveyor belt pick-and-place tasks than the other approaches.
By leveraging hierarchical learning, robots can effectively
manage complexity, adapt to variations, and optimize perfor-
mance in dynamic and uncertain environments, surpassing
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TABLE 1. Comparison.

Name | Arm Speed | Gripping Rate | Belt Speed | Part Flow
Huang Max 7.8 99.4 % 0.8m/s 15.8
Us 6 90 %(Avg.) 0.8m/s 15
Us 7 97.5 %(Avg.) 0.8m/s 15
Chu - 90 %(Avg.) 0.8m/s -

the capabilities of traditional greedy algorithms like

GRASP.

VIi. CONCLUSION

In this work, we have introduced a novel approach to
addressing the challenges of coordination in multi-robot pick-
and-place systems through the application of hierarchical
multi-agent deep reinforcement learning. We described the
architecture of our pick and place simulator. This simulator
was purpose-built to facilitate reinforcement learning appli-
cations in multi-robot PnP scenarios, ensuring compatibility
and relevance to our HMADRL methodology. The design
considerations taken into account reflect the need for high-
fidelity simulations that accurately capture the challenges
inherent in real-world PnP tasks.

In our explanation of the methodology, we have pro-
vided a thorough description of the HMADRL algorithms
employed, with a focus on their hierarchical structure and
the resulting advantages. We clarified the design decisions,
underscoring their alignment with the imperatives of multi-
agent coordination and the pursuit of enhanced learning
efficacy.

We detailed the findings derived from implementing the
HDOQN algorithm, compare the performance metrics across a
spectrum of robotic arm speeds. Additionally, we illustrated
the predominance of specific actions among the four robots,
as evidenced by the action frequency table. Moreover,
we showed that the performance of our multi robot PnP
system is comparable performance wise to the state of the
art.

However, moving beyond laboratory settings and simu-
lations into real-world manufacturing environments poses
several challenges for the scalability of the HMADRL
approach. Scalability concerns primarily revolve around the
integration of HMADRL with existing industrial systems
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including computer vision systems needs to generate the
environment representation and the resulting computational
complexity as the number of robots and tasks scales up.
Practical deployment also requires robust error handling and
recovery protocols to manage the inevitable uncertainties and
operational anomalies in real-world environments. Adapting
our HMADRL approach to include self-diagnostic and
adaptive learning capabilities could significantly enhance its
practical utility, making it more resilient and adaptive to the
dynamic conditions of a manufacturing floor. In conclusion,
while our HMADRL approach offers promising results
in simulated environments, substantial work remains to
adapt and scale these algorithms for widespread real-world
application. These advancements will be critical in transi-
tioning from theoretical models to practical, deployable sys-
tems that can genuinely transform industrial manufacturing
operations.
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