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ABSTRACT Due to the high computational demands inherent in Deep Neural Network (DNN) executions,
multi-tier environments have emerged as preferred platforms for DNN inference tasks. Previous research
on partitioning strategies for DNN models typically involved leveraging all layers of the DNN to identify
optimal splits aimed at reducing latency or cost. However, due to their computational complexity, these
approaches face scalability issues, particularly with models containing hundreds of layers. The novelty of
our work lies in uniquely identifying specific split points within various DNNmodels that consistently lead to
efficient latency or cost partitioning. Under the assumption that per unit computing cost decreases in higher
tiers and that bandwidth is not free, we show that only these specific split points need to be considered
to optimize latency or cost. Importantly, these split points are independent of different infrastructure
configurations and bandwidth variations. The key contribution of our work is the significant reduction in
the computational complexity of DNN partitioning, making our strategy applicable to models with a large
number of layers. Introducing DNNSplit, an adaptive strategy, enables dynamic split decisions in varying
conditions with the least complexity. Evaluated across nine DNN models varying in size and architecture,
DNNSplit exhibits exceptional effectiveness in optimizing latency and cost. Even for a more substantial
model containing 517 layers, it identifies only 5 points as potential split points, thereby reducing the
partitioning complexity by more than 100x. This makes DNNSplit especially advantageous for managing
larger models. DNNSplit also demonstrates significant improvements for multi-tier deployments compared
to single-tier execution, including up to 15x latency speedup, 20x cost reduction, and 5x throughput
enhancement.

INDEX TERMS Cost-efficient, multi-tier, near-edge.

I. INTRODUCTION
DNN applications play a significant role in various domains,
including image recognition, natural language processing,
and recommendation systems [1]. These applications often
require significant computational resources and can generate
substantial data transmission requirements. The traditional
approach of deploying DNN applications in the Cloud can
result in significant delays when transferring input data from
Edge devices to the Cloud. On the other hand, Edge devices
have constrained resources, making it challenging to process
DNN applications entirely on the Edge. To address this
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dilemma, hybrid multi-tier computing environments [2], [3],
[4] have been adopted. Themulti-tier architecture [3] consists
of Edge devices, Near-Edge (NE) instances, and Cloud
instances, each with varying computational capabilities and
associated costs. Multi-tier computing environments are
characterized by their dynamic nature and varying network
conditions.

In a three-tier computing environment, DNN applications
can be deployed through four main approaches: 1) Edge
deployment, 2) NE deployment, 3) Cloud deployment,
where the entire DNN model resides in the Edge device,
NE instance, and Cloud, respectively; and 4) Multi-tier
deployment, where the DNN model undergoes partitioning
into two or three segments, with the initial layers deployed
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in the lower tiers and the higher layers in the upper tiers [5].
The upper tiers await the completion of computation in the
lower tiers to receive the necessary output data for processing.
Consequently, the processing of partitions in the upper tiers
is contingent on the completion of computations in the lower
tiers.

A critical concern is the strategic selection of partition
points for DNN models to minimize the latency and system
cost while meeting QoS and SLA constraints. However, the
tremendous number of layers makes it difficult to design a
latency and cost-efficient placement by considering all layers
of the DNN. Therefore, it is essential to identify potential
split points that, when used for partitioning, may lead to a
latency or cost-efficient partitioning strategy for large DNNs
consisting of several hundreds of layers.

The partitioning of DNN strikes a delicate trade-off
between computation and communication [6]. As computa-
tion shifts to the upper tier, the time and costs of processing
decrease, however, this comes at the expense of transmitting
input data to the upper tier for processing. Therefore, the
partitioning strategy is efficient only when the upper-tier
processing time/cost reduction compensates for the increase
in transmission time/cost. For DNNs, the output of some
intermediate layers is significantly smaller than that of raw
input data [7]. We leverage this insight to identify potential
split points for various DNNs, laying the foundation for a
cost-efficient splitting strategy in a multi-tier environment.

The split points identified by our strategy remain consistent
regardless of the available bandwidth between tiers. Through
evaluation in Section IV, we confirm that these points are the
sole ones offering advantages, with no other split point yield-
ing lower latency or cost. This novel discovery eliminates the
necessity of individually examining all layers to determine
efficient split points. Moreover, we leverage these points to
develop a solution for latency and cost-efficient partitioning
in a three-tier environment. We break down the problem into
two steps, reducing complexity to linear.

Firstly, we determine the latency and cost-efficient tier for
the single-tier execution of the DNN model. Next, we utilize
the single-tier solution to address the problem of finding one
or two split points to minimize latency and cost.

We develop an algorithm that allocates DNN applications
efficiently to the most suitable tier, considering factors
like computational capacity, data transmission delays, and
associated processing and transmission costs. The goal is
to minimize latency, reduce inference costs, and maximize
the number of completed inference tasks per second within
set QoS and Service Level Agreement (SLA) constraints.
Additionally, our algorithms account for network and cost
dynamics in partitioning decisions, adapting to parameter
variations between tiers.

The document is structured as follows: Subsec.I-A outlines
the study’s motivation and contributions. Sec.II reviews
existing research on DNN partitioning. Sec.III introduces our
system model and the optimization problem. Sec.IV presents
the strategy to find the network-oblivious potential split

points effective for latency and cost minimization for multi-
tier environments. The DNNSplit algorithm is explained in
Sec.V. Evaluation is discussed in Sec.VII, and the paper
concludes in Sec. VIII.

A. MOTIVATION AND PROBLEM STATEMENT
Existing research has primarily focused on the two-tier
partitioning approach to minimize either inference time,
computational cost, or both. However, much of the prior
research lacks detailed insights into the critical layers
essential for the success of their splitting algorithms. Given
the substantial number of layers in DNN applications,
considering each layer in the context of three-tier partitioning
decisions proves impractical. Hence, there is a need to
identify specific layers for inclusion in adaptive partitioning
decisions.

Our contribution entails a comprehensive analysis of layers
across different models, identifying the splitting positions
capable of reducing latency and cost. This novel contribution
is significant as these split points remain unaffected by
different infrastructure configurations and bandwidth vari-
ations among the tiers. We demonstrate that our detected
split points are the exclusive candidates for latency and cost
improvements; no other split point can yield lower latency
or cost. This unique contribution offers valuable insights for
researchers seeking to streamline their partitioning strategies.
To our knowledge, this work is the first to identify potential
split points for various DNNs that are independent of
network conditions and act as the sole candidates for latency
and cost reduction. Our novel strategy comprehensively
considers three different optimizations for DNN placement
in a three-tier environment and yields favorable results with
minimal time complexity.

We define two placement problems:

1) Latency Minimization: This approach aims to mini-
mize the time required to complete the inference task to
meet the QoS requirements, taking SLA into account.

2) Cost Minimization: This approach seeks to minimize
expenses to adhere to budget limitations defined by
SLA while meeting the application QoS requirement.

B. CONTRIBUTIONS
In this paper, our major contributions are as follows:

• We introduce a novel strategy, DNNSplit, to identify
potential layers in various DNNmodels that can serve as
effective split points for minimizing overall latency and
execution costs. These split points remain independent
of different infrastructure configurations and network
conditions. Through our analysis, we confirm that
these identified points are the only ones providing
benefits, with no alternative split point resulting in lower
latency or cost. This significant contribution reduces the
computational complexity of DNN partitioning, making
our strategy applicable to models with a large number of
layers.
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• Our splitting strategy involves two key steps: First,
identifying the optimal tier for running the DNN
model to minimize latency and cost while maintaining
specified QoS and SLA constraints. Second, using
the single-tier solution, our algorithm partitions DNN
models for execution across different tiers in linear time,
aiming to reduce latency and cost, all while ensuring
QoS and SLA compliance. We also show the throughput
improvement that can be gained using the DNNSplit
strategy.

• Our partitioning strategy, evaluated across nine DNN
models, demonstrates significant performance gains.
Even for larger models consisting of 517 layers, our
strategy identifies only 5 potential split points, reducing
the complexity by more than 100-fold. For these larger
models, we achieve up to a 15x latency speedup, 20x cost
reduction, and 5x throughput improvement compared to
single-tier execution.

II. RELATED WORK
Significant research has been conducted on collaborative
methodologies aimed at improving DNN inference. These
methods aim to partition the DNN model into two or three
segments, distributed across different tiers, to reduce overall
inference time. These approaches can be broadly classified
into two-tier [7], [8], [9], [10], [12] or three-tier [8], [11], [13]
joint inference acceleration techniques.

A. TWO-TIER DNN PARTITIONING
Neurosurgeon [7] focuses on finding the optimal splitting
point for chaining DNNs to decrease energy consumption
and latency. However, it does not consider deployment
costs and the DAG structure of DNNs. DADS [12] is
a Dynamic Adaptive DNN Surgery technique to segment
DNN models, aiming to expedite DNN inference and
increase throughput. DADS does not consider cost, and its
computational complexity makes it impractical for larger
models and multi-tier partitioning. Reference [10] addresses
this challenge by reducing the complexity to a linear level.
This modification enables experiments on more extensive
models like Inception V4. However, the authors only explore
2-tier partitioning, recognizing that the complexity would
become quadratic for a three-tier partitioning. Reference [9]
developed an adaptive two-tier division algorithm to reduce
both latency and cost. Notably, the algorithm doesn’t account
for bandwidth costs and propagation delay and assumes zero
cost for Edge devices, overlooking fixed costs and oper-
ational costs. Alternative partitioning approaches explored
distributed offloading techniques. For instance, DINA [14]
employs a matching game approach for partitioning and
offloading DNN tasks in a fog environment, aiming to
minimize the total computation time. Another example is
CoEdge [6], which operates as a distributed DNN computing
system orchestrating collaborative DNN inference across
diverse Edge devices.

B. THREE-TIER DNN PARTITIONING
DECC [8] dynamically divides DNNs into two or three
parts and distributes these parts over Edge and Cloud,
achieving the lowest latency. The emphasis is on maximizing
throughput, and cost optimization is not addressed. In a
previous study [13], a cost-driven offloading approach for
DNNs with deadline constraints across Cloud, Edge, and IoT
devices was introduced. The strategy employed a discrete
Particle SwarmOptimization (PSO) tominimize system costs
associated with executing DNN layers and data transfer.
However, there’s a risk of converging to a local optimum.
Additionally, it did not take into account the variation in
price/performance ratios for servers in each layer in real-
world settings. Another PSO-based strategy is employed in
a recent work [15] for vehicular Edge computing. The study
only focuses on the tiny-YOLOv2 neural network which
is a linear model. Authors in [11] introduced an adaptive
framework for partitioning DNNs across end devices, Edge
servers, and Cloud servers. The framework relies on layer
prediction results to minimize DNN inference latency and
does not consider cost optimization. Moreover, the algo-
rithm’s complexity makes it impractical for larger models.
Many of these studies do not consider factors like propagation
delay and the associated transmission and propagation costs,
which are measured in terms of bandwidth expenses. This
becomes especially crucial when contemplating a three-tier
architecture. DDPQN [16] presents an improved Double
Dueling Prioritized deep Q-Network algorithm aimed at
achieving an efficient DNN offloading strategy with low
delay, low energy consumption, and low cost in a local-edge-
cloud collaborative environment. The algorithm typically
requires up to 100 iterations to converge for simple models
such as AlexNet and VGG. All the works discussed in this
section involve examining every layer of DNNs, which is
computationally intensive. In contrast, we uniquely identify
specific split points, and this innovative approach will aid
researchers in simplifying their partitioning strategies.

It’s important to note that modifying the model is a method
used to speed up the inference process in DNN models, but it
often results in a decrease in model accuracy [17], [18]. Our
approach to enhancing DNN inference speed achieves 100%
accuracy as it does not involve altering the model. Hence,
we refrain from making comparisons with strategies that do.

III. SYSTEM MODEL AND ASSUMPTIONS
We now define the system model by introducing crucial
parameters and mathematical expressions pivotal to our
analysis.

A. APPLICATION TASK MODEL
We calculate the computational requirements of each layer in
different DNNs in terms of Floating Point Operations (FLOP)
involved. Let APml represent the computational workload of
layer l in the DNN application m, measured in GFLOP.
We follow the sequential ordering of layers in a Directed

VOLUME 12, 2024 80049



P. Kayal, A. Leon-Garcia: DNNSplit: Latency and Cost-Efficient Split Point Identification

TABLE 1. Table for comparison of our splitting strategy against relevant research in the literature.

TABLE 2. Pricing of edge devices.

Acyclic Graph (DAG) in the order in which they are added.
However, each Edge of a layer in the DAG structure is
considered in the array of layer input. Let ADml denote the
input data size, measured inMbit, needed for processing layer
l of DNN m. The total computational demand for the entire
application, denoted as APm, is the sum of individual layer
demands APml for all layers l from 1 to Lm. Mathematically,
it can be expressed as APm =

∑Lm
l=1 AP

m
l , where Lm

represents the total number of layers in the application. Each
application is bound by QoS requirements, with a specified
deadline denoted by Dm, and budget constraints as per SLA,
denoted by Bm.

B. THREE TIER COMPUTE AND PRICING MODEL
The computation capabilities of different computing entities
are defined as Pp

E
, Pq

NE
, and Pr

C
, measured in GFLOPS,

for the Edge device p, NE instance q, and Cloud instance
r respectively. For privately owned Edge devices, the cost
encompasses both the purchase price and the electricity
expenses for operating the device over a 3-year lifespan. The
pricing details for Raspberry Pi 4 and Jetson Nano as Edge
devices are presented in Table 2. For NE and Cloud, AWS
instances [19] with on-demand pricing are considered.
Let K p

PE
, K q

PNE
, and K r

PC
denote the computation cost in

$/sec, of Edge device p, NE instance q, and Cloud instance
r respectively. Let BWE−NE and BWNE−C denote the available
bandwidth, measured in Mbps, to transmit data from Edge
device to NE (E-NE) and NE to Cloud (NE-C), respectively.
We use PDE−NE and PDNE−C to denote the propagation delay
between E-NE and NE-C, respectively. Finally, let KBW

E−NE
and

KBW
NE−C

denote the transmission cost over the network between
E-NE and NE-C respectively, measured in USD/sec. Table 3
defines the notations used in this paper.

C. LATENCY AND COST OPTIMIZATION PROBLEM
Latency is defined as the cumulative duration of processing
time, transmission time, and propagation times.

TABLE 3. Table of notations.

1) LATENCY MODEL
We presume that the data originates from the Edge device,
so we don’t take into account any delay during data
transmission when handling the DNN task at the Edge.
Consequently, the latency at the Edge solely reflects the
response time.

Lm
Edge

=
APm

PpE
(1)

The total latency at NE and Cloud also accounts for the
transmission time and the propagation delay. Let TE−NE and
TE−C be the functions to calculate the transmission time of
input data from E-NE and Edge to Cloud respectively. TNE
and TC are the functions to compute the processing time at
NE and Cloud respectively.

TE−NE (ADml ) =
ADml

BWE−NE

+ PDE−NE (2)

TNE (APm) =
APm

PqNE
(3)

TNE−C (ADml ) =
ADml

BWNE−C

+ PDNE−C (4)

TC (APm) =
APm

Pr
C

(5)

80050 VOLUME 12, 2024



P. Kayal, A. Leon-Garcia: DNNSplit: Latency and Cost-Efficient Split Point Identification

Then the total latency at NE and Cloud are given by Eqs. 6
and 7 respectively.

LmNE (AP
m,ADm1 ) = TE−NE (AD

m
1 ) + TNE (AP

m) (6)

LmE−C (AP
m,ADm1 ) = TE−NE (AD

m
1 ) + TNE−C (AD

m
1 )

+ TC (AP
m)

LmNE−C (AP
m,ADm1 ) = TNE−C (AD

m
1 ) + TC (AP

m) (7)

2) COST MODEL
Next, we define the cost of computation of the application
task at each tier. We consider the effect of utilization of
different tiers in the cost computation similar to the approach
outlined in Eq. 1 in the reference [22]. The formulas for
calculating costs are provided as follows:

Cm
Edge(AP

m) =
APm

PpE
× K p

PE
(8)

Cm
NE (AP

m,ADm1 ) = KBW
E−NE

× TE−NE (AD
m
1 )

+ K q
PNE

× TNE (AP
m) (9)

Cm
E−C (AP

m,ADm1 ) = KBW
E−NE

× TE−NE (AD
m
1 )

+ KBW
NE−C

× TNE−C (AD
m
1 )

+ K r
PC

× TC (AP
m) (10)

Cm
NE−C

(APm,ADm1 ) = KBW
NE−C

× TNE−C (AD
m
1 )

+ K r
PC

× TC (AP
m) (11)

Next, we present the most important contribution of this
work: finding the potential split points essential for any
splitting strategy.

IV. LATENCY AND COST-EFFICIENT SPLIT POINT
IDENTIFICATION
As earlier stated, not every DNN layer serves as an optimal
split point; only a limited number of positions result in
reduced latency or cost. In this section, we outline our
most important contribution of identifying these viable split
positions that help to reduce the complexity of any splitting
strategy.

We assume the processing capacity of the tier increases as
we move to the upper tier. ie, the Edge has a lower processing
capacity compared to NE and NE has a smaller processing
capacity compared to the Cloud.

Pp
E

< Pq
NE

< Pr
C

(12)

As a result, as we advance to the upper tiers, the processing
time decreases due to increased processing capacity.

We assume that the processing cost in USD/GFLOP
decreases as we move from the lower tier to the upper tier.
The Edge has a higher processing cost for the same task than
NE, and NE has a higher processing cost than the Cloud.

K p
PE

PpE
>
K q
PNE

PqNE
>
K r
PC

Pr
C

(13)

As we advance to the right in the model’s layers, the
processing demand of the remaining model decreases.

Therefore, only layers with lower transmission requirements
than the previous layers can offer a latency/cost-efficient
execution.
We assume that the bandwidth costs operate on a pay-as-
you-use basis, wherein charges are incurred according to the
bandwidth usage and are nonzero. Therefore we have,

KBW
E−NE

> 0; KBW
NE−C

> 0 (14)

Let SPm be the set of possible split points for a model m with
Lm layers. We start looping over the layers from 1 to Lm to
find the latency and cost-efficient split points. The following
equation describes how the set SPm is updated:

SPm

=

{
{1}, if |SPm| = 0
SPm ∪ {i}, if ADi < ADmax(SPm) for i ∈ [2,Lm]

(15)

where |SPm| represents the cardinality of set SPm. The
possible split points do not depend on the bandwidth values
between the different tiers.

A. PROOFS FOR LATENCY AND COST EFFICIENCY OF
CHOSEN SPLIT POINTS
In this subsection, we illustrate the advantages of these
split points for latency and cost-efficient partitioning and
demonstrate that considering any layer not in SPm as a split
point would result in higher latency and costs.

Let APFms1−1 denote the sum of the processing require-
ments of the model from layer 1 to the split point s1− 1. It is
computed by summing up the computations of all the layers,
given as:

APFms1−1 =

s1−1∑
l=1

APml ; ∀s1 ∈ SPm

Latency Efficiency of Proposed Split Points:
The latency of processing the entire model at the NE will

be represented as:

AD1

BWE−NE

+ PDE−NE +
APm

PqNE

Now if initial s1 − 1 layers are offloaded on the Edge
while the rest are being processed at the NE, then we have
the processing time as:

APFms1−1

PpE
+

ADs1
BWE−NE

+ PDE−NE +
APm − APFms1−1

PqNE

Now the partitioning as layer s1 will be preferred only if it
provides a lower latency which means

APFms1−1

PpE
+

ADs1
BWE−NE

+ PDE−NE +
APm − APFms1−1

PqNE

<
AD1

BWE−NE

+ PDE−NE +
APm

PqNE
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which on further simplification gives:

APFms1−1 · (
1

PpE
−

1

PqNE
) <

AD1 − ADs1
BWE−NE

From Eq. 12, we observe that the left-hand side is positive.
Therefore, the right-hand side should also be positive for the
inequality to hold. This implies AD1 > ADs1, indicating that
the amount of data to be transmitted at any subsequent split
point must be lower than that at any previously considered
split positions.
Cost Efficiency of Proposed Split Points:
The cost of execution of the entire model, with processing

requirement APm, at NE is expressed as:

KBW
E−NE

× (
AD1

BWE−NE

+ PDE−NE ) + K q
PNE

×
APm

PqNE
The cost of model execution, when divided into two
partitions, with the initial partition running at the Edge and
the second partition executed at NE, is expressed as follows:

K p
PE

×
APFm

s1−1

PpE
+ K q

PNE
×

(APm − APFm
s1−1

)

PqNE

+ KBW
E−NE

× (
ADs1
BWE−NE

+ PDE−NE )

Let’s compare the cost of executing the entire model on NE
to the cost of offloading the initial s1 − 1 layers on the Edge
and executing the remaining on the NE to ensure a smaller
cost in the latter. The following conditions must be satisfied:

APFm
s1−1

· (
K p
PE

PpE
−
K q
PNE

PqNE
) < KBW

E−NE
× (

ADm
1

− ADm
s1

BWE−NE

)

As per Eq 13, given that the left side is positive, it implies
that the expression on the right side must also be positive.
Also according to Eq. 14 bandwidth cost is non-zero.
Consequently, this results in the inequality ADm1 > ADms1,
and this inequality must hold for each subsequent split.
In other words, the data transmission requirement at each new
split position is the minimum among the data transmissions
at all previous split positions.

For both latency and cost improvement, we have demon-
strated that only the split points detected by Eq. 15 can serve
as viable split points, and no other layer can result in lower
latency or cost.

B. IDENTIFICATION OF SPLIT POINTS FOR VARIOUS DNN
MODELS
In this section, we apply the strategy introduced in the
previous section to identify the set of potential split points for
nine different DNN models. Table4 presents the split points
detected by Eq. 15 for these models. It is crucial to note that,
based on the evidence presented above, we can confidently
assert that the split points listed in the table are the only
feasible points that may result in latency and cost reduction.

Furthermore, Figure 1 illustrates the reduction in complex-
ity achieved by considering only the split points shown in
Table 4 compared to considering all layers of the models.

TABLE 4. Model split points.

FIGURE 1. Complexity reduction in searching for possible split point for
different DNN models sorted in the increasing order of the number of
layers.

The models on the X-axis are ordered in increasing order of
the number of layers, and the Y-axis shows the improvement
factor in terms of the layers that need to be evaluated
to find a latency or cost-efficient split point. The figure
demonstrates that for larger models, the improvement factor
can be as high as 100 times. We consider the example of
the ResNet50 model, which consists of 177 layers. However,
not all these layers act as potential split points, and only
5 layers are potential split positions as determined by Eq. 15.
Figure 2 illustrates how these 5 potential partition points
for the ResNet 50 model helps to achieve a cost reduction.
On the x-axis, we present the layer names and corresponding
layer numbers of the possible split points, while the y-axis
represents the associated cost in USD. Within each split
position, the first bar represents the processing cost, and the
second bar represents the transmission cost. The blue portion
of the first bar shows the cost of Edge processing, and the
orange part shows the sum of transmission and processing
costs at NE. In the first scenario, when the entire model is
processed at the NE, the processing cost is relatively low
compared to the second scenario in which 39 layers are
processed at the Edge, with the remaining layers processed at
NE. This observation highlights that with an increase in Edge
processing the overall processing cost increases. The same
holds for latency reduction. Therefore, to achieve a lower
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FIGURE 2. Processing and transmission cost at each possible split point
for ResNet50 model with 177 layers.

total cost/latency, the increase in processing cost/time must
be compensated by a corresponding reduction in transmission
cost/time, resulting in a lower total cost/latency than that of
the previous configuration. Consequently, a partition point is
latency or cost-efficient only if the transmission requirements
at that point are lower than those of the previous partition,
where a greater portion of processing occurred at the upper
layers.

C. GENERALIZING SPLIT POINTS FOR ANY NUMBER OF
TIERS
These identified split points remain applicable for any
number of tiers as long as the conditions outlined in
Eqs 12, 13 and 14 are satisfied across the multi-tier
architecture. Let k be the number of tiers in which the DNN
has to be split. Then, the complexity of adapting the split
decision with any variation in infrastructure or bandwidths
would be O(|SPm|

k ).
It’s worth noting that in certain scenarios, the DNN model

output is needed on the Edge tier. We have not considered
this case in our strategy. However, even in such scenarios,
the complexity remains unchanged. In this case, either the
final output is sent to the Edge, or if the final output is larger
than the last split point, then the last split point will always be
chosen as the fourth split point. This is because the last split
point always results in the least processing being sent to the
lower tier, where both the processing time and cost increase
according to Eqs 12, 13 and 14.

V. OPTIMAL PLACEMENT ALGORITHMS
In this section, we formulate the two problems outlined
in Subsection I-A and present the algorithms necessary to
address these optimization challenges.

A. DNN PARTITIONING PROBLEM
In this subsection, we define the problem of partitioning a
DNN application into segments for execution in different
tiers to minimize latency and cost compared to single-tier
execution. Let s1 and s2 represent the two split positions for

model m. In this arrangement, the segment preceding layer
s1 − 1 is processed at the Edge, the input to layer s1 is
transmitted to the NE, and layers s1 to s2 − 1 are executed
at the NE. Subsequently, the input to layer s2 is sent to the
Cloud, and the remaining part is processed in the Cloud.
Consequently, the overall latency and cost for the DNN
model’s execution can be calculated using Eqs 16 and 17,
respectively.

Lsplit (s1, s2) = LEdge(APF
m
s1−1

)

+ LNE ((APF
m
s2−1

− APFm
s1−1

),ADm
s1
)

+ LNE−C ((AP
m

− APFm
s2−1

),ADm
s2
) (16)

Csplit (s1, s2) = CEdge(APF
m
s1−1

)

+ CNE−C ((APF
m
s2−1

− APFm
s1−1

),ADm
s2
)

+ CNE ((AP
m

− APFm
s2−1

),ADm
s1
) (17)

Our objective is to find the optimal split, that is, the layer
s1 and s2 for which the two objectives defined in Sec. I-A are
achieved while satisfying the QoS aligned with the model’s
deadline and adhering to budget constraints defined by the
SLA. The problems of latency and cost minimization are
represented by Equations 18 and 19, respectively.

Lm
OP

= arg min
s1,s2

Lsplit (s1, s2)

s.t. Lm
OP

< Dm

Cm
OP

< Bm

1 ≤ s1 ≤ s2 ≤ Lm (18)

Cm
OP

= arg min
s1,s2

Csplit (s1, s2)

s.t. Lm
OP

< Dm

Cm
OP

< Bm

1 ≤ s1 ≤ s2 ≤ Lm (19)

A naive approach to finding two optimal split positions
results in an algorithmic complexity of O(|SPm|

2). However,
we reduce our algorithm’s complexity to linear by addressing
the two problems defined in Sec.I separately. First, we find
the tier providing the lowest latency for the single-tier
execution of the entire model. Subsequently, Algorithms 2, 3,
and 4 solve the problem of finding the optimal split positions
in three different scenarios. From here onwards, we only
provide steps for solving the problem in Eq.18 due to space
constraints, and a similar approach is applied for problem
defined in Eqs.19. For the minimum latency solution, we find
the optimal tier that provides the minimum latency while
satisfying the SLA constraints. If no solution exists that
satisfies SLA and QoS, we pick the solution that provides
minimum latency as our objective is latency minimization.
The steps to solve the single-tier problem are outlined in
Algorithm1.
In the first scenario, where Edge execution offers the

lowest latency, Algorithm 2 begins by iterating through
potential split points across the model layers. At each split
point si, the algorithm assesses the time required to compute

VOLUME 12, 2024 80053



P. Kayal, A. Leon-Garcia: DNNSplit: Latency and Cost-Efficient Split Point Identification

Algorithm 1Optimal placement that yieldsminimum latency
1: Input: edge, ne, cloud, model, and network params
2: Output: OP(L,C,s1,s2)
3: Compute latency and costs using functions in Eq. 1 and 6

4: Sort Lm
Edge

, Lm
NE
, Lm

E−C
in increasing order

5: Choose Lm
OP

that satisfies QoS and SLA constraints
6: if No solution exists that satisfies both Qos and SLA

constraints then
7: Choose the solution that provides minimum latency.
8: end if
9: if Optimal tier == Edge then

10: OP( LEdge ,CEdge ,L
m,Lm)

11: OP = Algorithm 2
12: else if Optimal tier == NE then
13: OP(Lm

NE
,Cm

NE
, 0,Lm)

14: OP = Algorithm 3
15: else
16: OP(Lm

E−C
,Cm

E−C
, 0, 0)

17: OP = Algorithm 4
18: end if
19: return OP

the model from layer si + 1 to the last layer at both Cloud
and NE in line 4. If the computation time is shorter on the
Cloud, the algorithm checks in the next line if executing this
part on the Cloud also provides a lower latency compared
to the current solution (i.e., Edge execution) (line 5). If this
condition holds, it implies that the selected partition yields
the lowest latency when executed on the Cloud, and so the
algorithm allocates this partition to the Cloud and designates
this split point as s2; otherwise, s2 retains its original value
which is Lm as carried over from line 10 of Algorithm 1.
In both cases, the algorithm then evaluates whether allocating
a portion to the NE can further reduce latency (lines 10 to
14). If any partition from split point si until the part of
the model that has already been offloaded to the Cloud
achieves a lower latency by offloading the part to NE,
which means out of the three tiers NE provides the lowest
latency to execute this part, then we allocate that part to NE.
In cases where offloading does not lead to reduced latency,
the algorithm converges to the Edge-only solution. This
optimization simplifies theDNNSplit algorithm, reducing the
search for two split positions to O(2 · |SPm|).

Similarly, when the NE execution achieves the minimum
latency, we first investigate the later segments, extending
from each split point si to the model’s last layer, intending
to allocate them for Cloud execution. As we already know
the Edge cannot yield lower latency for the later portions.
Hence in Algorithm 3, in lines 3 to 7, we examine whether
a segment can decrease latency when allocated for Cloud
execution. If such a segment is identified, it is allocated to
the Cloud, and the split point is denoted as s2. Subsequently,
from the first layer up to layer s2 (lines 8 to 11), we determine

Algorithm 2 Function when Edge is optimal
1: Input: edge, ne, cloud, model, and network params
2: Output: OP(L,C,s1,s2)
3: for si ∈ SPm do
4: if Lsplit (si, si) < Lsplit (si,L

m) then
5: if Lsplit (si, si) < Lm

OP
& Csplit (si, si) < Bm then

6: OP = (Lsplit (si, si),Csplit (si, si), si, si)
7: end if
8: end if
9: end for
10: for si ∈ SPm & si ≤ s2 do
11: if Lsplit (si, s2) < Lm

OP
& Csplit (si, s2) < Bm then

12: OP=(Lsplit (si, s2),Csplit (si, s2), si, s2)
13: end if
14: end for
15: return OP

Algorithm 3 Function when NE is optimal
1: Input: edge, ne, cloud, model, and network parameters
2: Output: OP(L,C,s1,s2)
3: for si ∈ SPm do
4: if Lsplit (OP.s1, si) < Lm

OP
& Csplit (s1, i) < Bm then

5: OP= Lsplit (s1, si),Csplit (s1, si), s1, si)
6: end if
7: end for
8: for si ∈ SPm & si ≤ s2 do
9: if Lsplit (si, s2) < Lm

OP
& Csplit (si, s2) < Bm then

10: OP=Lsplit (si, s2),Csplit (si, s2), si, s2)
11: end if
12: end for
13: return OP

Algorithm 4 Function when Cloud is optimal
1: Input: edge, ne, cloud, model, and network parameters
2: Output: OP(L,C,s1,s2)
3: for si ∈ SPm do
4: if Lsplit (si, si) < Lsplit (0, si) then
5: if Lsplit (si, si) < Lm

OP
& Csplit (si, si) < Bm then

6: OP = (Lsplit (si, si),Csplit (si, si), si, si)
7: end if
8: end if
9: end for
10: for si ∈ SPm & v ≥ s1 do
11: if Lsplit (s1, si) < Lm

OP
& Csplit (s1, si) < Bm then

12: OP=Lsplit (s1, si),Csplit (s1, si), s1, si)
13: end if
14: end for
15: return OP

whether any section can achieve lower latency through Edge
execution; if affirmative, we assign that section to the Edge
owing to its superior performance and allocate the split point
as s1. This decision is based on our prior knowledge that NE
provides lower latency for the starting layers as compared
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to the Cloud since the single-tier execution yields the lowest
latency at NE.

In scenarios where the Cloud yields the overall minimum
execution time for the entiremodel, Algorithm 4 identifies the
split points that offer lower latency compared to single-tier
execution. The algorithm first examines whether a partition
from layer 1 to a specific split point si achieves the shortest
execution time on the Edge (as seen in lines 5 and 6).
Following this evaluation, this partition is allocated to the
Edge, and both split points are assigned to this split point si,
denoting that the model is being executed between the Edge
and the Cloud. In case no partition, when offloaded to the
Edge, achieves a lower latency, the values of s1 and s2 remain
unchanged as carried over from line 16 in Algorithm 1.
For the remaining segment from s1 to the final layer, the
algorithm (in lines 10 to 15) checks whether any partition can
be processed with lower latency on the NE. Subsequently,
it allocates this partition to the NE, designating this split
point as s2. In all three scenarios, the identification of the
two split points, s1 and s2, involves looping over all possible
split points twice, resulting in a total time complexity of
O(2 · |SPm|).

VI. EFFICIENCY OF DNNSPLIT IN THROUGHPUT
IMPROVEMENT
In this section, we define the throughput achieved by
processing the DNNmodel across different tiers. Let THEdge,
THNE, and THCloud represent the functions calculating the
maximum requests processed per second at the Edge, NE,
and Cloud, respectively. The number of requests that can
be processed at NE will depend on the throughput achieved
by the transmission link between Edge and NE and the
processing throughput at the NE. The maximum throughput
will be determined by the slowest processing segment. The
overall throughput will be the minimum of the two, as given
in Eq.21. Similarly, the throughput of the Cloud execution,
as given in Eq.23, accounts for both the transmission and
processing throughput.

THm
Edge(AP

m)

=
1

LEdge(APm)
(20)

THm
NE (AP

m,ADm1 )

= min
( 1
TE−NE (AD

m
1 )

,
1

TNE (APm)

)
(21)

THm
E−C (AP

m,ADm1 )

= min
( 1
TE−NE (AD

m
1 ) + TNE−C (AD

m
1 )

,
1

TC (APm)

)
THm

NE−C (AP
m,ADm1 )

= min
( 1
TNE−C (AD

m
1 )

,
1

TC (APm)

)
(22)

Let s1 and s2 represent two latency and cost-efficient split
points computed by Eq. 15, the throughput achievable by
partitioning the model into three tiers by using these split

Algorithm 5 Function when Edge is optimal
1: Input: edge, ne, cloud, model, and network params
2: Output: OP(L,C,TH,s1,s2)
3: for si ∈ SPm do
4: if THsplit (si, si) > THsplit (si,L

m) then
5: if THsplit (si, si) > THm

OP
& Csplit (si, si) < Bm &

Lsplit (si, si) < Dm then
6: OP= (Lsplit (si, si),Csplit (si, si),THsplit (si, si), si, si)
7: end if
8: end if
9: end for
10: for si ∈ SPm & si ≤ s2 do
11: if THsplit (si, s2) > THm

OP
& Csplit (si, s2) < Bm &

Lsplit (si, si) < Dm then
12: OP=(Lsplit (si, s2),Csplit (si, s2),THsplit (si, s2), si, s2)
13: end if
14: end for
15: return OP

points is defined in Eq. 23.

THsplit (s1, s2) = min
(
THEdge (APF

m
s1
),

THNE ((APF
m
s2−1

− APFm
s1−1

),ADm
s1
),

THNE−C ((AP
m

− APFm
s2−1

),ADm
s2
)
)
(23)

Further, the throughput improvement problem is defined
in Eq. 24. It is important to note that we exclusively
utilize the latency and cost-efficient split points to enhance
throughput while meeting QoS and SLA requirements. This
does not represent the maximum throughput of the system
but rather the maximum throughput improvement attainable
with latency and cost-efficient split points while adhering to
the constraints.

THm
OP

= argmax
s1,s2

THsplit (s1, s2)

s.t. Lm
OP

< Dm

Cm
OP

< Bm

1 ≤ s1 ≤ s2 ≤ Lm (24)

We employ a two-step strategy to address the throughput
improvement problem, akin to our approach for latency and
cost minimization. Initially, we identify the tier with the
highest throughput while ensuring compliance with latency
and cost constraints. This involves selecting the maximum
throughput from among the three equations: Equations 20,
21, and 22. If a viable solution exists, it is selected.
Subsequently, based on the initially selected tier, we employ
Algorithm 5 if the Edge tier is chosen, Algorithm 6 if the NE
tier is selected, and Algorithm 7 if the Cloud tier is opted for
in the initial step. In each of these situations, determining the
two split points, s1 and s2, requires iterating over all potential
split points twice, leading to a total time complexity of
O(2·|SPm|). Alternatively, if no single-tier execution satisfies
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both QoS and SLA constraints, we prioritize solutions that
meet either of the constraints. In situations where neither
constraint can be fulfilled, we select the solution with the
minimum latency.

Algorithm 6 Function when NE is optimal
1: Input: edge, ne, cloud, model, and network parameters
2: Output: OP(L,C,MT,s1,s2)
3: for si ∈ SPm do
4: if THsplit (s1, si) > THm

OP
& Csplit (s1, i) < Bm &

Lsplit (si, si) < Dm then
5: OP= Lsplit (s1, si),Csplit (s1, si),THsplit
6: (s1, si), s1, si)
7: end if
8: end for
9: for si ∈ SPm & si ≤ s2 do

10: if THsplit (si, s2) > THm
OP

& Csplit (si, s2) < Bm &
Lsplit (si, si) < Dm then

11: OP=(Lsplit (si, s2),Csplit (si, s2),THsplit
12: (si, s2), si, s2)
13: end if
14: end for
15: return OP

Algorithm 7 Function when Cloud is optimal
1: Input: edge, ne, cloud, model, and network parameters
2: Output: OP(L,C,TH,s1,s2)
3: for si ∈ SPm do
4: if THsplit (si, si) > THsplit (0, si) then
5: if THsplit (si, si) > THm

OP
& Csplit (si, si) < Bm &

Lsplit (si, si) < Dm then
6: OP= (Lsplit (si, si),Csplit (si, si),THsplit (si, si), si, si)
7: end if
8: end if
9: end for

10: for si ∈ SPm & v ≥ s1 do
11: if THsplit (s1, si) > THm

OP
& Csplit (s1, si) < Bm &

Lsplit (si, si) < Dm then
12: OP=Lsplit (s1, si),Csplit (s1, si),THsplit (s1, si),
13: s1, si)
14: end if
15: end for
16: return OP

VII. EVALUATION
In this section, we present the experimental results of our
algorithm. Our investigations involve two Edge devices, Rpi
and Jetson Nano, with their specifications detailed in Table 2.
At NE, we consider a GPU device, the specifications of
which are presented in Table 5. It’s important to note that the
listed processing speed for the GPU instance reflects its peak
performance when all cores are actively involved in executing
a task. We treat this as a customizable service and experiment

TABLE 5. Description of AWS instance.

TABLE 6. Description of parameter settings.

TABLE 7. Model information.

with various combinations of processor sharing. Specifically,
we examine scenarios with 1 and 5 virtual GPUs (vGPUs) at
the NE and in the Cloud, respectively. The processing ratio of
NE to Rpi is 4333, while the NE to Jetson Nano ratio is 650.
Unlike prior research, we account for the propagation delay
between distinct tiers, setting the propagation delay between
Edge and NE to 1 ms in adherence to [3]. Table 6 outlines
the constant parameters that we used in all our experiments.
The transmission cost is calculated using the monthly internet
expenses of the AT&T network which is considered to be
$20 per month for a maximum of 300 Mbps. We conduct
experiments on nine benchmark models implemented within
the tensorflow keras module [23], and the specific details of
these models are provided in Table 7 in the increasing order
of their computational requirement.

We conduct a comparative analysis by benchmarking
our strategy against three single-tier execution strategies:
Edge-only, NE-only, and Cloud-only. For single-tier latency
computations, we use the formulas in Eqs.1,6, and 7. For
single-tier cost computations, we use Eqs. 8, 9, and, 10. In our
evaluation, we utilize the SpeedUp metric for comparative
analysis, expressing it as the ratio of the execution time
on a single tier to the execution time achieved by the
DNNSplit algorithm. We measure cost reduction through
the Cost Reduction Factor(CRF), calculated as the ratio of
the single-tier execution cost to the cost achieved by the
DNNSplit algorithm. A SpeedUp/CRF of 1 indicates no
latency/cost reduction, while a SpeedUp/CRF greater than
1 signifies a reduction in latency/cost.

A. EVALUATION OF SPLIT POINT ROBUSTNESS: DETECTED
POINTS VS. ALL LAYERS
In this experiment, we assess the robustness of split points
by comparing the outcomes when considering all layers
of the models versus only the layers detected by Eq.15
as shown in Table 4. Figure 3 compares latency speedup
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FIGURE 3. Speedup and CRF values achieved by DNNSplit for different
models as compared to considering all the layers of the models.

and CRF for both strategies. Remarkably, both strategies
yield identical results with a speedup and CRF of 1 across
various bandwidths, indicating consistent latency and cost
outcomes. We specifically selected lower bandwidths for this
experiment because, at these levels, the partitioning decisions
are more prone to change.

Table 7 summarizes the computational complexity
involved in determining latency and cost-efficient partition-
ing for various models. It demonstrates the reduction in
algorithmic complexity when adjusting split decisions with
network variations.

B. LATENCY AND COST REDUCTION COMPARED TO EDGE
TIER
In this experiment, we compare our partitioning strategy
in terms of speedup and cost reduction achieved compared
to Edge-only execution for two Edge devices. We use a
low-bandwidth scenario in this case because the Edge-only
solution has the potential to achieve the lowest latency and
cost when the bandwidth is small. We establish the QoS
requirement to be speedup = 1 for each model and set the
SLA constraint to achieve CRF = 1 for both Edge devices.
The results of our algorithm are illustrated in Figure 4.

On the X-axis, we have various DNN models arranged in
ascending order of their computational requirements, and the
Y-axis depicts speedup values in the upper plot and CRF in
the lower plot. The black dotted line indicates speedup = 1 in
the upper plot and CRF = 1 in the lower plot.
The graph shows that both Rpi and Jetson exhibit an

increase in speedup and CRF value as bandwidth increases.
This observation indicates that as bandwidth increases,
the DNNSplit algorithm dynamically shifts more layers to
the NE or Cloud, effectively adapting to the bandwidth
increment. Additionally, the figure illustrates that DNNSplit
successfully meets both QoS and SLA constraints across
all bandwidth scenarios and DNN models considered.
Furthermore, it demonstrates that due to the lower processing
capacity of the RPi device, none of the models opt for Edge-
only execution, even at low bandwidths. Conversely, when

Jetson is utilized as the Edge device, Edge-only execution
is favored in most cases due to its lower latency and cost-
effective performance.

Note that the EfficientNetB0 model achieves exceptionally
high speedup and CRF values in both scenarios. Therefore,
it has been removed from the figure for clarity. Specifically,
when RPi is used as the Edge device, it achieves a speedup of
up to 40x and a CRF of up to 30x. Conversely, when Jetson
is employed at the Edge, a speedup of 20x and a CRF of 15x
are attained.

Our second experiment demonstrates the latency and
cost-reducing effectiveness of DNNSplit compared to
NE-only and Cloud-only scenarios. We fixed the Edge device
to Rpi and evaluated the performance of DNNSplit with
varying network bandwidths between E-NE and NE-C. The
goal is to highlight how our algorithm dynamically adjusts
partitioning decisions in response to changes in bandwidth
across the three tiers to achieve lower latency and cost
compared to single-tier execution.

We consider processing at the Cloud to be 25 times cheaper
than at the NE. The QoS and SLA constraints are the same as
in the previous experiment. Figure 5 visually demonstrates
the achieved reduction in latency and costs by the DNNSplit
algorithm while satisfying both QoS and SLA constraints.

Figure 5a illustrates the latency and cost reductions
compared to NE-only execution under three different band-
width conditions. The figure demonstrates that DNNSplit
achieves a speedup of up to 4x and a CRF improvement
of up to 1.5x compared to NE-only execution. Similarly,
Figure 5b presents the results compared to Cloud-only
execution. DNNSplit achieves up to 5x speedup and 2x CRF
enhancement.

It’s worth noting that the model EfficientNetB0 has been
omitted for clarity from Figure 5a, where it achieves a
speedup of up to 30x and a cost reduction of up to 8x.
As depicted in Figure 5b, this model attains up to 15x speedup
and 4x cost reduction compared to Cloud-only execution.

C. THROUGHPUT IMPROVEMENT
In this section, we’ve incorporated our throughput improve-
ment algorithm presented in Section VI to highlight how
DNNSplit significantly improves throughput. By segmenting
the model into distinct tiers and concurrently executing
and transmitting different parts, our strategy showcases
noteworthy results. We show the throughput improvement
with Rpi as the Edge device and 30 Mbps as the bandwidth
between the three tiers. As illustrated in Figure 6, itDNNSplit
attains a remarkable increase in throughput, reaching up to
5 times higher compared to that achieved by running the
entire model in a single tier. Importantly, this improvement
is achieved while adhering to the model’s specified deadline
and budget constraints. Note that smaller models, such as
MobileNetV2, EfficientNetB0, and DenseNet169, have been
excluded from the figure. These models exhibit a preference
for Edge-only execution at lower bandwidths, resulting in
throughput equal to Edge-only throughput.
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FIGURE 4. Results of our splitting algorithm for different models showing how the algorithm adjusts its partitioning decision, for minimizing the
total latency and cost, with varying infrastructure and bandwidth scenario.

FIGURE 5. Results of our splitting algorithm for different models showing how efficient the algorithm is in achieving speedup and cost reduction
with varying bandwidths.

D. IMPACT OF BANDWIDTHS AND TRANSMISSIONS
COSTS
In this section, we conducted experiments to evaluate the
impact of varying combinations of transmission bandwidths
and transmission costs between Edge-to-NE and NE-to-
Cloud. Throughout this experiment, the Edge device was
fixed as Rpi, and the NE was set to 1vGPU. We assumed
that the computational cost at the Cloud is 25 times more
economical than that at the NE. We are exploring four
potential bandwidth options (1, 10, 100, and 1000 Mbps)
between E-NE and NE-C. Moreover, we examined three
distinct factors for the bandwidth cost: a × KBW for
KBW
E−NE

and b × KBW for KBW
NE−C

, where a and b can
assume values from the set {0.1, 1, 10}. The combinations
of bandwidths and costs are represented as tuples with four
values: [BWE−NE , a,BWNE−C , b]. Table 8 displays models that
exhibit a preference for computation entirely on the Edge,
NE, or a partition between the Edge and NE to achieve

minimum cost, considering all considered bandwidth and cost
values. Table 9 illustrates the model VGG16, which does
not favor partitioning. Lastly, Table 10 indicates that larger
models prefer three-tier partitioning at higher bandwidths and
lower costs from NE to Cloud.

E. KEY FINDINGS
The algorithm dynamically adjusts its partitioning decisions
based on changes in infrastructure scenarios, demonstrating
its capability to respond to varying cost ratios, bandwidth
conditions, and device capabilities. The variations in the best
partition point suggest that there is a need for a system to
partition DNN computation between the 3-tiers.

• Edge Device Impact: The selection of an Edge device
(RPi vs. Jetson Nano) significantly influences the
partitioning decision. The Jetson device, with superior
computational capacity, tends to handle more compu-
tational load. This effect is particularly pronounced in
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TABLE 8. Models that achieve minimal costs through single or two-tier partitioning.

TABLE 9. VGG16 model prefers through single tier execution for minimal costs.

FIGURE 6. Throughput improvement achieved by DNNSplit for different
models as compared to the single-tier execution.

the scenario in Figure 4, where the bandwidth between
the Edge and NE is less, and even with increased
bandwidth in Figure 4b the Jetson demonstrates the
capability to execute entire models efficiently, especially
advantageous for smaller models.

• Cost Ratio Impact: The algorithm adapts its partition-
ing strategy based on the cost ratio between the NE
and Cloud instances, demonstrating responsiveness to
the infrastructure and network cost disparities. In the
scenarios, characterized by the lower transmission costs
fromNE-C,DNNSplit allocates more computation to the
Cloud for larger models, leveraging cost advantage.

• Bandwidth influence: The algorithm responds to
changes in bandwidth availability. In the scenario
with higher bandwidth between E-NE and NE-C,
the algorithm allocates more computation to the NE
and Cloud, emphasizing the cost reduction associated
with increased bandwidth. Also, we observe that,
with increased bandwidth, there is a tendency for the
algorithm to shift split positions to earlier layers, thereby
directing more computation to the NE and Cloud tiers.
This demonstrates how a decrease in computation costs
can effectively counterbalance the rising transmission

TABLE 10. Models that achieve minimal costs through up to three-tier
partitioning.

costs, given that the earlier layers correspond to higher
data transmission according to Eq 15.

• Model-Specific Partitioning: Various DNNs demon-
strate distinct partitioning approaches influenced by
the balance between remaining computational demands
and transmission requirements at potential split points.
For instance, as shown in Table 9, a sequential model
like VGG16 tends not to favor splitting, given its
comparable transmission requirements across different
split positions. Also, smaller models as shown in Table 8
only prefer two-tier partitioning even in case of high
bandwidths and low costs between NE-C. However,
as the model size increases, the splitting position adjusts,
correlating with a reduction in cost to even result in a
three-tier partitioning as shown in Table 10.

F. COMPARISON WITH PREVIOUS WORK
In this subsection, we compare the DNNSplit algorithm with
previous works discussed in Sec. II.
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FIGURE 7. Complexity comparison of DNNSplit with lit. for nine DNNs.

1) COMPLEXITY COMPARISON
The effectiveness of an adaptive strategy depends sig-
nificantly on both the search space and the algorithmic
complexity required to adjust decisions in response to
environmental changes. This is particularly crucial when
dealing with DNN models, known for their extensive layer
count. In this section, we evaluate the complexity of the
DNNSplit strategy across nine models, comparing it to
earlier approaches discussed in Section II. Figure 7 shows
DNNSplit’s superior complexity performance relative to other
methods. Notably, the algorithmic complexity of DNNSplit
remains relatively stable, even as DNN model sizes increase.
In contrast, the other solution approaches in the figure exhibit
a noticeable increase in complexity with larger model sizes,
making some of these methods impractical for DNNs with
many layers.

We note that our goal in this paper is to introduce
DNNSplit and its superior algorithmic complexity. We do
not claim overall superiority in latency, compute resource
cost, or throughput compared to all existing works. Instead,
our key contribution is in efficiently finding the lowest-
latency split-point solution, making our method applicable to
larger models where previous approaches faced challenges.
This result demonstrates the effectiveness and scalability of
the DNNSplit in optimizing adaptive decisions for DNNs of
varying sizes.

2) LATENCY AND COST COMPARISON
We consider the two-tier configuration from [10] and [12],
where a Raspberry Pi 3 model B serves as the Edge device
and an Ali cluster machine with a 2.5 GHz and 8-core
processor acts as the Cloud. We use the same 4G and WiFi
bandwidths, neglecting the propagation delay between Edge
and Cloud. None of the previous works used large models
as used in this work for their evaluation most likely due
to scalability issues. Hence, for comparison, we assess the
performance of the DNNSplit algorithm with the two small
models explored in the cited papers, namely ResNet18 and
AlexNet. Figure 8 illustrates the latency speedup achieved

FIGURE 8. Latency speedup achieved by DNNSplit for the models used in
the literature.

TABLE 11. Latency speedup comparison of DNNSplit with literature in a
two-tier environment.

by DNNSplit compared to the DECC strategy across two
different bandwidth conditions 50 and 100 Mbps.

On the x-axis, we show two different bandwidths for each
ResNet18 and AlexNet and the y-axis shows the speedup
value. The figure shows that for the ResNet18 model, both
DECC andDNNSplit exhibit comparable speedups. However,
for the AlexNet model, DNNSplit achieves a slightly higher
speedup than DECC. This shows that DNNSplit leverages
the increased bandwidth to offload more layers to the Cloud.
Table 11 compares the latency speedups of the various
algorithms in a 2-tier environment. Notably, in contrast to
DNNSplit, the latency speedup observed in DNN Surgery
with a bandwidth increase beyond 18.88 Mbps (i.e. WIFI) is
not substantial.

As discussed in Sec.II, there is currently no literature that
thoroughly examines the cost associatedwith deployingDNN
applications in a multi-tier environment. Consequently, the
cost benefits ofDNNSplit cannot be compared to any existing
work in the literature. However, when we specifically assess
the Edge-only cost comparison, similar to the approach taken
for latency, we observe an improvement of up to 6 times,
as illustrated in Figure 5, while still meeting stringent QoS
requirements.

VIII. CONCLUSION AND FUTURE WORK
This paper presents theDNNSplit algorithm, a novel approach
designed to identify potential split points for the efficient
placement of DNN applications within a multi-tier architec-
ture while considering QoS and SLA constraints. Our unique
methodology involves detecting split positions in diverse
DNNs that result in reduced latency and cost. These split
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points, determined by our strategy, remain effective regard-
less of infrastructure configuration and network conditions.
We demonstrate that our identified split points are the sole
candidates for improving latency and cost; no other split point
can achieve lower latency or cost. This significant contri-
bution addresses the scalability issues of previous methods.
Additionally, we develop a two-stage algorithm capable of
finding split points that minimize latency and cost, adjusting
to network fluctuations and varied infrastructure conditions.
Importantly, the linear complexity of our algorithm enables
its versatile application across DNNs of varying sizes
within a multi-tier computational environment. DNNSplit
achieves up to a 100-fold complexity improvement for larger
models compared to existing strategies. We aim to improve
our algorithms by integrating energy-efficient strategies,
acknowledging the importance of reducing carbon footprint.
Our future efforts include extending these algorithms to larger
models like GPT and transformers, broadening our strategic
impact.
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