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ABSTRACT Recently, thyroid disease has been a leading cause of mortality, underscoring the importance
of early diagnosis to mitigate its impact. Researchers have randomly employed static selection ensemble
methods aiming to forecast the disease in its initial stages. However, the use of such ensemble methods in
healthcare diagnosis poses challenges related to performance consistency and potential mismatches with
new data characteristics. Hence, this paper proposes a novel approach by introducing the Dynamic Selection
Hybrid Model (DSHM) that leverages the most effective conventional classifiers using an appropriate
ensemble method. Instead of going the conventional way, we evaluate various baseline classifiers to
demonstrate their impact on the characteristics selected by two robust feature selection techniques. This
evaluation employs an explainable AI (XAI) method, Permutation Feature Importance (PFI), and selects the
most effective classifiers based on their characteristics impact. Then the selected classifiers are integrated
by an appropriate ensemble method, based on a comparative evaluation between four efficient ensemble
methods. Allowing the proposed DSHM to dynamically adjust its composition based on selecting conditions
can potentially achieve robust performance by better adaptability on unseen data. Before the training DSHM,
the methodology begins by addressing the dataset’s imbalance issue using an effective data balancing
method BOO-ST. To demonstrate the superiority of DSHM, various performance evaluation matrices,
and a statistical test are employed. The experimental results reveal the effectiveness of our proposed
DSHM, outperformed with an impressive 99.33% accuracy. Finally, to enhance transparency, trust, and
patient outcomes, we applied the Local Interpretable Model-agnostic Explanations (LIME) to explain
DSHM-provided outcomes. With a robust classification performance, our proposed DSHM aims to explain
its outcomes, contributing to improved clinical decision-making processes and ultimately enhancing patient
care.

INDEX TERMS Dynamic selection hybrid classifier, feature selection, explainable AI, thyroid disease.

I. INTRODUCTION
Thyroid disease is a widespread global health concern that
arises when the thyroid gland is unable to produce a sufficient
relevant hormone. Individuals affected by this condition may
exhibit specific symptoms, such as loss of hair, lethargy,
weight gain, an accelerated heart rate, and dry skin [1].
Left untreated, thyroid disease can lead to various health
complications, including joint pain, infertility, obesity, and
heart disease [2]. The prevalence of this condition in the
general population ranges from 0.3% to 3.7% in the USA and
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0.2% to 3.5% in Europe, with a gradual increase observed
annually [3]. The American Cancer Society estimates that
the aberrant proliferation of thyroid gland cells accounted for
2120 more deaths in the USA in 2023 [4].

Detecting or predicting thyroid disease at an early stage
is crucial for preventing severe consequences. However,
traditional laboratory tests for diagnosing this disease are
intricate and demand extensive knowledge and expertise.
Moreover, the manual diagnostic process is time-consuming
and may yield inaccurate results. Machine Learning (ML)
has emerged as a widely accepted approach to tackling
these challenges and providing early warnings for disease
prevention. Despite its potential, these studies for disease
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forecasting pose significant issues, as discussed in the
following subsection.

A. PROBLEM STATEMENT AND RESEARCH GAP
Previous research efforts primarily concentrated on address-
ing the imbalance issues [5], [6], [7], [8], training models
using conventional ML algorithms [9], [10], [11], [12], [13],
and employing traditional ensemble methods randomly [14],
[15], [16], [17], [18]. For instance, the study by [5] utilized
the synthetic minority oversampling technique (SMOTE)
to balance the thyroid dataset before initiating the train-
ing process. Similarly, Sultana and Islam [6] employed
SMOTE to tackle the class imbalance problem. The use
of SMOTE remained consistent across studies [7], [8],
given its well-established reputation for data balancing.
It is imperative to acknowledge that SMOTE may result
in noisy and uninformative data, resulting in, potentially
compromising the model’s efficiency [19]. Subsequently,
Savcı and Nuriyeva [9] employed six machine learning
(ML) algorithms, including Random Forest (RF) and Sup-
port Vector Machine (SVM), to classify thyroid stages.
Olatunji et al. [10] also utilized RF and SVM for this task
on the Saudi Arabian thyroid dataset. In addition to these,
other standalone ML classifiers, such as Decision Tree (DT)
[11], Gradient Boost (GB), K-Nearest Neighbors (KNN)
[12], and Ada Boost (AB) [13] were applied. Though these
studies achieve extraordinary outcomes for the task, however,
standalone ML algorithms exhibit limited effectiveness in
handling complex and diverse datasets and are not stable
due to the algorithm’s stochastic nature [20]. Consequently,
Solmaz et al. [14] focused on a hybrid ML classifier
using the ensemble method Boosting (BS). The study [15]
employed another ensemble technique named Bagging (BG).
Hybrid models were created by Dharamkar et al. [16] and
Akhtar et al. [17] utilizing Voting (VT), while Yadav and
Pal [18] employed the Stacking (ST) ensemble method in
their study. It’s noteworthy that the selection process of base
classifiers in these hybrid models is static, as the classifier is
predefined before the training phase and remains unchanged.
This limitation hampers their ability to maintain optimal
performance in situations where the relationships between
features and the target variable may vary over time [21].
Moreover, the authors randomly selected different ensemble
methods without considering their compatibility with the
characteristics of the dataset, which lies in the potential lack
of optimization and adaptability to the characteristics of the
dataset.

B. NOVELTY AND CONTRIBUTION
In response to the concerns mentioned above, we ini-
tially employed an effective data-balancing method named
BOO-ST [22]. This method initially utilizes BS to improve
the minority class’s representatives before applying SMOTE.
BS assists SMOTE in mitigating the issues related to
producing noisy and irrelevant samples by enhancing the
model’s discriminative ability, focusing on informative

features, prioritizing the correct classification of minority
class instances, and improving generalization to unseen
data [23], [49]. Subsequently, Tomek links were also consid-
ered to remove any raucous and useless synthetic samples
if still generated by SMOTE [22], [24]. By employing
these ways, we effectively address the issues related to
SMOTE in our study. Then, instead of static selection conven-
tional classifiers and randomly selected ensemble methods,
we proposed a Dynamic Selection Hybrid Model (DSHM)
considering effective baseline classifiers and an appropriate
ensemble method. To establish a dynamic selection process,
we conducted a comparative analysis of six well-known ML
classifiers (e.g., DT, KNN, SVM, RF, GB, and AB), com-
monly used in thyroid classification tasks. An explainable
AI (XAI) technique named Permutation Feature Importance
(PFI) is utilized to assess the significance of each classifier on
selected feature sets [50]. Based on this analysis, we selected
half of the classifiers as base estimators for this predictive
task [51]. Additionally, we make a comparative evaluation
between the predictive results of four ensemble algorithms
(e.g., BS, BG, VT, and ST). From this analysis, we choose the
most appropriate ensemble method for the task, and applying
it we integrate the selected baseline classifiers, resulting in
presented DSHM. This proposed model possesses the ability
to adjust their ensemble of base classifiers dynamically
based on the evolving nature of the input data. The dynamic
adaptability and responsiveness make it more suitable where
the data distribution is non-stationary or subject to changes
over time [21]. Overall, DSHM offers greater adaptability,
performance optimization, robustness to model drift, and
enhanced diversity compared to static selectionmethods. This
enables the model to better cope with the dynamic nature
of real-world data and tasks, leading to improved predictive
performance and reliability [52]. The key contributions of the
research work are as follows:
• We employed an effective data balancing method named
BOO-ST to address the limitations associated with
SMOTE.

• We applied two robust feature selection methods,
namely Univariate and Information Gain, to identify
and retain the most relevant features while reducing
dimensionality.

• Incorporated a dynamic selection phrase using an
explainable AI, named PFI and introduced the Dynamic
Selection Hybrid Model.

• We conducted a comprehensive and intuitive compari-
son between the static and our proposed dynamic model.
Wherein, DSHM emerged as the overall superior model,
achieving an impressive accuracy of 99.33%.

• Utilized the LIME and SHapley Additive exPlanations
(SHAP) to clarify the outcome reasons of DSHM and
global behavior of characteristics.

II. RELATED WORK
In recent years, a significant number of researchers have
turned their attention to the detection of thyroid diseases.
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TABLE 1. A summary of recent machine learning-based studies on the diagnosis of thyroid disease and their core limitations.

Some have initiated efforts to address dataset imbalances.
For instance, Alshayeji [5] proposed a thyroid classification
system that employed SMOTE to balance the dataset before
applying ML classification algorithms. The proposed model
demonstrated satisfactory outcomes in disease prediction.
Sultana and Islam [6] utilized a thyroid dataset from the Uni-
versity of California Irvine (UCI) repository, addressing the
imbalance issue through SMOTE. They applied two feature
selection techniques to reduce the dimensionality of synthetic
samples, and RF achieved the highest accuracy of 99%within
one of the subsets. Kour et al. [7] introduced a bagged-based
ensemble model, incorporating SMOTE to identify thyroid
disorders. They utilized two thyroid datasets and achieved
accuracy rates of 85.45% and 82.71% from their proposed
model. Islam et al. [8] employed the Sick-euthyroid dataset
from the UCI repository, implementing both oversampling
and under-sampling using SMOTE on the raw dataset. Their
over-sampled dataset yielded the highest result, with 95.87%
accuracy.

Subsequently, the authors also emphasize the utilization of
different ML classifiers, conducting a comparative evaluation
among them. For instance, Savcı and Nuriyeva [9] explored
various ML algorithms, with the Artificial Neural Network
(ANN) achieving the highest accuracy of 98% compared
to others. Olatunji et al. [10] presented an ML-based
tool using a Saudi Arabian dataset, where among several

conventional algorithms, RF emerged as the top performer
with 90.91% accuracy. Alyas et al. [11] analyzed various
ML classifiers, where the RF algorithm demonstrated a
generalized accuracy of 94.8%. Dignata et al. [12] also
presented an analysis of different ML classifiers, where RF
consistently outperformed other classifiers with an accuracy
of 99.14%. Chaganti et al. [13] employed several ML
classifiers, highlighting that the Extra Tree (ET) features
subset yielded the highest results, achieving 99% accuracy
with the RF algorithm. Additionally, they asserted the
essential role of ML classifiers over Deep Learning in terms
of accuracy and complexity.

Moreover, several researchers have introduced static
selection ensemble methods utilizing BS, BG, VT, and ST.
For instance, Solmaz et al. [14] introduced anAndroid thyroid
diagnosis application using a hybrid algorithm, achieving a
99.08% accuracy with the aid of the BS ensemble method.
Xie et al. [15] proposed another static hybrid selection
model using the BG ensemble method, considering multiple
base estimators, which demonstrated an acceptable score of
92.3% accuracy in the experimental section. Subsequently,
Dharamkar et al. [16] introduced a hybrid model combining
C4.5 and RF by VT, named CCTML, which achieved an
accuracy of 96%. Similarly, Akhtar et al. [17] proposed
a homogeneous hybrid model activating both BS and BG
using both soft and hard VT. Finally, Yadav and Pal [18]
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introduced a static hybrid system using the ST ensemble
method. An overall summary of these studies is presented in
Table 1.

Furthermore, the prevalence of developing hybrid or
ensembleMLmodels is also increasing in various biomedical
data. For example, Shahid et al. [43] proposed a Multi-
Feature Representation and Genetic Algorithm-Based Deep
Ensemble Model to identify the Anti-Tubercular Peptides.
Akbar et al. [44] introduced an ensemble deep neural
network-based model for classifying anticancer peptides.
Additionally, to identify antifreeze proteins [45], anti-
inflammatory peptides [46], antiviral peptides [47], and
anti-fungal peptides [48] the researchers also presented
several efficient hybrid or ensemble ML models.

III. RESEARCH METHODOLOGY
In this section, we offer a thorough discourse on the
methodologies and procedures utilized in the research. The
working methodology is segmented into five primary com-
ponents, encompassing data collection, data preprocessing,
feature selection or dimension reduction, proposed dynamic
selection classifiers, and performance evaluation. Figure 1
provides an overview of the entire working process.

A. DATA COLLECTION
A real-world dataset related to thyroid cases is sourced
from the Kaggle data repository [25], comprising 30 features
and 3,772 distinct case records. Table 2 provides details
on their respective data types (such as string, float, integer,
Boolean, and constant), short descriptions, and the count
of identical values. Noteworthy features such as T3, TT4,
TSH, T4U, and FTI assess various functions related to the
disease and measure their levels in blood through lab tests.
Additionally, clinical features like Pregnant, Sick, Thyroid
Surgery, Goiter, Tumor, and Psych are included in the dataset.
A very unbalanced dataset is indicated by the study of the
test report, which found 231 positive thyroid cases and 3,541
negative thyroid cases in the target class.

B. DATA PREPOCESSING
Data preprocessing stands as a pivotal phase in the training
of any machine learning model, facilitating the extraction
of meaningful insights from the original dataset. Essentially,
these processing techniques serve to convert the original
data into a comprehensible and readable format. In our
experimentation, six distinct preprocessing techniques are
employed. Primarily, since the majority of features are
categorical, a conversion into numeric vectors is imperative
before feeding the data into some classification algorithms
in ML [26]. Utilizing a Level encoder, the data is encoded
without altering its dimension [27]. Subsequently, a con-
siderable number of features are identified with missing
values, including T3, TSH, Age, T4U, TT4, TBG, FTI, and
Sex. Features with missingness exceeding 50% are excluded
from further analyses [28]. For the remaining features,

an imputation technique, specifically mean interpolation,
is applied to address the missing values. In the subsequent
subsection, we elaborate on the data-balancing method
named BOO-ST, employed to mitigate issues related to data
imbalance.

1) DATA BALANCING WITH BOO-ST
In contemporary times, the imbalance of datasets has become
a prevalent issue, particularly in publicly accessible datasets.
When the number of examples in one class greatly surpasses
or falls short of those in another class, this situation occurs.
This issue may cause the model to become biased in favor
of the majority class, which would lead to poor performance
of the minority class and misleading performance mea-
sures [29]. Consequently, researchers express considerable
concern about this issue and aim to address it proactively
before commencing data training. The synthetic minority
oversampling technique (SMOTE) stands out as a renowned
approach for balancing data, often favored by researchers [5],
[6], [7], [8], [11]. However, it is important to highlight that
this approach frequently introduces irrelevant and noisy data
when creating synthetic instances [24].

In this study, we have systematically tackled both the
challenges associated with the class imbalance and the
intricacies of SMOTE through a three-stage process termed
BOO-ST [22], encompassing BS, SMOTE, and Tomek link
(TL). Minority classes often encounter misclassification
issues due to their underrepresentation, lacking sufficient
instances to adequately capture complex patterns. Hence,
initially, we applied the BS to the imbalanced dataset, denoted
as D, across I iterations. During this stage, D is trained
with equal weights (1/N ) assigned to samples, and the
learning rate (LR) is computed, where N represents the
number of samples. The LR are then utilized to increase
the weights for minority class samples, ensuring that in
subsequent stages, greater emphasis is placed on minority
instances. This deliberate weighting helps to produce more
varied synthetic instances and improves the minority class’s
representation [23].

After adjusting the weights, we applied the SMOTE
technique to D. This technique calculates the imbalance ratio
as M/S, where M and S represent the number of minority
classes and samples, respectively. Subsequently, it identifies
the k nearest neighbors (KNN) fromM and randomly selects
these neighbors. The newly generated synthetic instances are
then incorporated into the augmented dataset (AG). However,
there is a potential drawback in this process, as the inclusion
of noisy and irrelevant synthetic instances may introduce
high complexity and hinder result reproducibility. Therefore,
in the final stages, we address these concerns by applying
TL to the AG. In this stage, we once again identify KNN
from both majority and minority samples in AG. This entails
figuring out the Euclidean distance between each instance
in AG and the feature vector, then choosing the instances
from both classes with the shortest distances. After that,
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FIGURE 1. A flow diagram of our proposed study with different primary components.

we find and eliminate the majority class data samples that
are most similar to the minority class data. Due to the
removal of irrelevant and noisy samples, these approaches
greatly minimize the complexity of AG [30]. The utilized
BOO-ST method resulted in the generation of 2815 instances
in the negative class and 3156 instances in the positive class.
Additional details regarding the employed method can be
found in the study [22].

C. DIMENSION REDUCTION
Dimension reduction, also known as feature selection,
is a systematic procedure designed to eliminate irrelevant
features and choose a subset of relevant ones from the original
dataset. The goal is to retain the most informative features
while reducing their number, all without compromising the
model’s ability to generalize [31]. This method not only
reduces computational expenses but also enhances model
performance by addressing the challenges associated with
the curse of dimensionality. In this study, we have applied
two well-known feature selection methods, Univariate and
Information Gain, explanations are provided in the following
subsections.

1) UNIVARIATE FEATURE SELECTION (UFS)
UFS is used to select the informative features from a dataset
based on their relationship with target features. Here we set

the f-statistic metric for the evaluation of each feature and
rank them based on their scores. Features with higher scores
are considered more relevant in the context of predictive
tasks. Then, a selection threshold is determined, features with
scores above this threshold are selected for the final feature
subset, while those below the threshold are discarded.

2) INFORMATION GAIN FEATURE SELECTION (IGS)
IGS is an entropy-based feature selection method for iden-
tifying informative feature subsets. It assesses the reduction
in entropy or disorder resulting from the transformation of a
dataset. It primarily operates by computing the Information
Gain of each feature concerning the target class. A higher
Information Gain indicates that splitting the dataset based on
that specific feature is more effective in reducing uncertainty.

From these dimension reduction methods, we have dis-
carded half of the irrelevant features [32] and selected the
rest of them for the predictive task. The table 3 shows the
reprieved features from these selection techniques.

D. CLASSIFIERS DESCRIPTIONS
We have employed six conventional well-known ML clas-
sifiers: DT, SVM, KNN, RF, AB, and GB. Additionally,
we proposed A Dynamic Selection Hybrid Model by fitting
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TABLE 2. Details of the employed thyroid dataset.

TABLE 3. Selected feature subsets from the univariate and information
gain feature selection method.

an effective ensemble method. Subsequent sections describe
each classifier briefly.

1) DECISION TREES (DT)
An algorithmic method is used to create DT, which finds
the best methods to divide a dataset according to certain
criteria. ‘‘Splitting’’ is the process of building the tree from

the root node upwards, choosing the ‘‘Best Feature’’ from
among the features that are present. The determination of
the ‘‘Best Feature’’ involves calculating Entropy (E) and
Information Gain (IG). The formulas for computing E and
IG are expressed in Eq.1 and 2, where X is the attributes,
Y represents the class level, and (P+) and (P−) denote
positive and negative samples, respectively. It categorizes the
data points from the root node to the terminal node, where
the terminal node provides the classification of a particular
feature. For every subtree rooted at the new node, this iterative
procedure is repeated. Notably, the DT classifier is a suitable
choice when dealing with datasets containing a significant
amount of discrete, logical, or categorical data [33].

E(D) = −(P+) log2 (P+)− (P−) log2 (P+), (1)

IG(X ) = E(X )− E(X ,Y ). (2)

2) SUPPORT VECTOR MACHINE (SVM)
SVM is an effective supervised learning technique that
may be used for tasks involving both classification and
regression. Using datasets with several classes, SVM seeks to
determine the best decision boundary or hyperplane [34]. The
principal aim is to identify the hyperplane with the highest
margin, denoting the separation between the hyperplane
and the closest data point for every class. The functional
representation of SVM is depicted in Eq. 3, where X
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represents the input, W signifies the weight, B denotes
the bias, T stands for transpose, and SIGN () is a function
providing either 1+ or 1− based on the input data type.

SVM (X ) = SIGN {W (T )X + B}. (3)

3) K NEAREST NEIGHBORS (KNN)
KNN algorithm aims to identify the optimal class for test data
by assessing the distance between the test data and training
points. KNN offers flexibility through various types of
modifications, allowing for adaptations to specific scenarios.
This algorithm demonstrates resilience to considerable noise
in training data and proves effective when dealing with
substantial training datasets [35]. The core operation of KNN
involves computing the Euclidean distance (Eq. 4) between
each set of raw training data and the test data. In this equation,
(X1, X2) and (Y1, Y2) represent the coordinates of the first and
second points, respectively.

Euclidean =
√
(X2 − X1)+ (Y2 − Y1). (4)

4) RANDOM FOREST (RF)
RF classifier is constructed using an ensemble of Decision
Trees (DTs). Each tree in the ensemble is generated from
a sample drawn from the training set with replacement,
known as the bootstrap sample [36]. For the classification
task, a majority voting approach is employed, wherein
the predicted class is determined by selecting the most
frequently occurring class. The features are denoted as
X = {x1, x2, x3, . . . ., xn} with corresponding responses
Y = {y1, y2, y3, . . . ., yn} where n represents the number of
samples. There is a lower limit of 1 and an upper limit of L
for the index l. The prediction for samples is carried out by
averaging the predictions for xp given by each distinct tree
for x, as shown in Eq. 5.

RF =
1
L

L∑
l=1

l(xp). (5)

5) ADA BOOST (AB)
AB stands as an ensemble boosting classifier that assembles
a robust and accurate classifier by combining multiple weak
classifiers. The main advantage of the AB is that it is less
prone to over-fitting and correct misclassification of weak
learners [37]. The core idea behind AB classifiers involves
adjusting the weights of the data and training the data
samples with an initial weight of 1/F , where F represents the
frequency of training instances. Subsequently, after obtaining
the outcome, the error is calculated as (correct − F)/F .
Finally, the classification is measured using the Eq. 6, where
e is the number of weak learners, he(p) is the prediction of e,
and ae represents the weight of e.

AB = +/−

e∑
e=1

(aehe(p)). (6)

6) GRADIENT BOOST (GB)
GB emerges as an ensemble technique that combines
multiple weak learning models to create a robust predictive
model suitable for high-dimensional data [38]. Through
optimization, this method aims to minimize the loss function.
Consider a training dataset {(X1, Y1),. . . ,(Xn, Yn)}, where the
objective is to learn a function F(X ) for predicting dependent
variables Y . Initially, a constant value f0(X ) is initialize
to compute residuals {(r1 = Y1 − f0(X1))},. . . ,{(rn = Yn −
f0(Xn))}. Subsequently, the model is updated by fitting a
weak learner h1(X ) to predict r for the current model. This
process continues until the r can no longer be significantly
reduced, incorporating new weak learners hn(X ) into the r .
The ultimate procedure is detailed in Eq. 7.

F(x) = f0(X )+ h1(X )+ h2(X ) +, . . . ,+ hn(X ). (7)

7) DYNAMIC SELECTION HYBRID MODEL (DSHM)
There are two possible approaches to choosing a hybrid
classifier: static and dynamic. Static selection involves
pre-selecting the classifier before the training phase. Sub-
sequently, the ensemble formed is utilized for training
and classifying all unseen data. On the contrary, dynamic
approaches involve the selection of the ensemble of classifiers
during the learning phase. A selection criterion is used to
assess the base classifiers’ competency for every training
sample. To predict the label of the supplied test sample,
only the classifier(s) that meet a predetermined degree of
competence are used. Through dynamic ensemble selec-
tion, complex non-linear decision boundary classification
problems can be addressed using only a few classifiers.

This research integrates a dynamic selection phase by
employing an Explainable AI (EAI) technique known as
Permutation Feature Importance (PFI) [40]. PFI serves as
a model-independent global explanation method used for
ranking features based on their influence on the predictions
of trained ML models. We applied PFI to the six classifiers
utilized in our study and assessed the significance of each
feature selected by Univariate Feature Selection (UFS) and
Information Gain Selection (IGS). Through this evaluation,
we identified half of the classifiers demonstrating the highest
positive impact on predictions. Subsequently, we employed
four well-established ensemble methods, namely Boosting
(BS), Bagging (BG), Voting (VT), and Stacking (ST),
to construct a hybrid model with the dynamically selected
classifiers. Our objective is to discern the most effective
ensemble methods by evaluating their initial accuracy for the
task.

Algorithm 1 depicted the procedure of our proposed
DSHM. Where, initially, we trained six different classifiers
(e.g., DT, SVM, KNN, RF, AB, and GB) and for each
classifier, we measured the PFI rank on each feature,
let as PFI

{
DT (XTR)

}
, PFI

{
SVM (XTR)

}
, PFI

{
KNN (XTR)

}
,

PFI
{
RF (XTR)

}
, PFI

{
AB(XTR)

}
, and PFI

{
GB(XTR)

}
. Then we

attempted to select the half-most efficient classifiers (HEC)
with the highest PFI, as stated in Eq. 8, where B represents the
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total conventional classifiers and XTR is the training features
of UFS and IGS.

HEC = Bi ∈
{
DT (XTR), . . . ,GB(XTR)

}
,

∧
B
2

[
argmax

[
PFI

{
DT (XTR)

}
, . . . ,PFI

{
GB(XTR)

}]]
.

(8)

In the second dynamic stage, we make a comparative
evaluation between the ensemble methods based on their
accuracy on UFS and IGS. We have selected four different
ensemble methods (e.g., BS, BG, VT, and ST) and for
each subset (UFS, IGS), we measured the initial accuracy,
let as ACC

{
BS(XTR)

}
, ACC

{
BG(XTR)

}
, ACC

{
VT (XTR)

}
, and

ACC
{
VT (XTR)

}
. Next, we select the most efficient ensemble

method (EEM) with the highest accuracy, as stated in Eq. 9,
where E represents the number of ensemble methods.

EEC

= Ei ∈
{
BS(XTR), . . . , ST (XTR)

}
,

∧ argmax
[
ACC

{
BS(XTR)

}
, . . . ,ACC

{
ST (XTR)

}]
.

(9)

From the numerical result analysis, we conclude that
the ST ensemble methods outperformed others, showcasing
the obtained results in the experimental result analysis
section. Hence, we leveraged the collective power of multiple
conventional classifiers using ST. The ST ensemble method
is a potent strategy that integrates predictions from multiple
models to enhance accuracy and resilience. In this method,
a meta-model is trained based on the predictions generated
by the base classifiers, let as HEC1, HEC2, and HEC3.
The individual predictions from these base classifiers serve
as inputs for the meta-model, Eq. 10 stated the working
procedures of these processes.

BETE = HEC1(XTE ),HEC2(XTE ),HEC3(XTE ),

BEPR = HEC1(YPR),HEC2(YPR),HEC3(YPR). (10)

where BETE and BEPR represent the training of base
estimators and prediction of base estimators, respectively.
Logistic Regression (LG) is employed in this context to
train the meta-model using the predictions from the base
estimators. Finally, we apply BEPR to classify XTR as XNTR,
Eq. 11 states the procedure of meta model (MM), δ0 is the
intercept, and δ1 to δn is the coefficient of the generated input
features X iNTR to XnNTR.

MM = exp
[
−

{
δ0 + δ1(X1

NTR)+ . . . .+ δn(XnNTR)
}]

(11)

The proposed method evaluates the outcome based on
first-level prediction BEPR, it used the first-level prediction
as a new training set for MM. MM is trained on the outputs
of BEPR, allowing it to capture complex relationships and
dependencies. The potential superiority of DSHM lies in its
ability to adaptively learn and optimize the combination of
diverse base models based on the characteristics of the data.

Algorithm 1 Showcasing Major Working Steps of DSHM.

1: Inputs: Dataset, D =
∑M

i=1(Xi,Yi), Conventional
Classifiers = CC , Ensemble Methods = EM .

2: Outputs: Classify whether the thyroid is affected or not.
3: XTR,YTR,XTS ,YTS ← TrainTestSplit(Xi,Yi, 0.2)
4: for i = 1; i <= Number − of − CC ; i++ do
5: HECi← PFI (CC(XTR))
6: end for
7: HEC ← Number−of−CC

2 {argmaxi(HECi)}
8: for i = 1; i <= Number − of − EM ; i++ do
9: EECi← ACC(EM (XTR))
10: end for
11: EEC ← argmaxi(EECi)
12: while (Train− different − HEC) do
13: BE (i)

TE ← HECi(XTR,YTR)
14: end while
15: while (Pred − different − HEC) do
16: BE (i)

PR← HECi(XTS ,YTS )
17: end while
18: BEPR← concatenate(BE (1)

PR, . . . ,BE (n)
PR)

19: for i = 1; i <= M ; i++ do
20: Apply BEPR to classify XTR
21: XNTR← BEPR (XTR)
22: end for
23: MM = exp

[
−

{
δ0 + δ1(X1

NTR)+ . . . .+ δn(XnNTR)
}]

24: FinalPR← MM .predict(New− sample)
25: Return FinalPR.

IV. EXPERIMENTAL ANALYSIS AND DISCUSSION
This section conducts a comprehensive evaluation of the
experimental results obtained from our proposed method-
ology. In order to ensure a comprehensive examination,
we have assessed multiple classification metrics for each of
the three situations (All features, UFS-based features, and
IGS-based features), such as accuracy, precision, recall, and
f1-score [39], for all three scenarios (All features, UFS-based
features, and IGS-based features). Additionally, we showcase
the superiority of our proposed study through a comparative
analysis between traditional classifiers (DT, SVM, KNN, RF,
GB, and AB), a static hybrid model (combining ensemble
methods BS, BG, and VT with all conventional classifiers,
named A-BS, A-BG, and A-VT), and our proposed DSHM.

A. EXPERIMENTAL SETUP
The developed methods were constructed and prototyped
using the cloud-based Jupyter Notebook environment (Colab
NoteBook). The availability of numerous freely available
and appropriate libraries for machine learning models,
including Scikit-learn, Matplotlib, Keras, and others, led to
this decision.

B. DYNAMIC PARAMETER ANALYSIS FOR PROPOSED
DSHM
As detailed in the proposed methodology section, an initial
comparative evaluation was conducted using the Permutation

78648 VOLUME 12, 2024



M. Khalid et al.: DSHM for Advancing Thyroid Care With BOO-ST Balancing Method

TABLE 4. Parameter analysis in terms of the base estimators of our proposed DSHM.

Feature Importance (PFI) rank of features selected through
Univariate Feature Selection (UFS) and Information Gain
Selection (IGS). Table 4 presents the PFI rank results for
six well-known machine learning classifiers employed in
this evaluation. The first value in each rank signifies the
extent to which the model’s performance deteriorated due to
random shuffling. This value is typically the mean or average
of each feature rank, indicating the estimated importance
or impact of the feature based on testing. The number
following the ± sign represents the variation in performance
across reshuffles, usually denoting the confidence interval or
standard deviation. For example, the obtained rank for the
feature T3 in IGS-based features is 0.6635 ± 0.2627 using
the Gradient Boosting (GB) classifier, providing a central
estimate of feature importance (0.6635) with an associated
level of uncertainty (± 0.2627).

These mean and standard deviation values lead to the
conclusion that features including T3, TT4, FTI, On Thy-
roxine, TSH, and T4U are the most relevant for the task.
However, it is evident that for the UFS set, the features
Query Hyperthyroid have no influence on the DT and SVM
classifiers, and Thyroid Surgery has no impact on DT, SVM,
KNN, and RF classifiers. Additionally, for the IGS set, TT4
Measured has no impact on the prediction of KNN, Tumor in
DT, and Hypopituitary on SVM and KNN, these values are

highlighted in the table. From this analysis, it is apparent that
DT, SVM, andKNN classifiers have no impact on some of the
features for this task, and RF is on the list once. Thereby we
aim to select half of the classifiers [51], such as RF, AB, and
GB, which have a consistent impact on the features of UFS
and IGS (based on the PFI analysis), and these are chosen for
the intended proposed DSHM.

Now we aim to combine their individual strengths, thereby
conducting another analysis to explore the most effective
ensemble method. For this evaluation, we trained four
well-known ensemble methods (e.g., BS, BG, VT, and ST)
and analyzed their obtained outcome for both UFS and
IGS-based selected features. Table 5 states the accuracy of
these ensemble methods on the selected feature sets. All
the methods have achieved an acceptable accuracy for this
task. However, ST outperformed with IGS-based selected
features with an impressive 98.99% accuracy. Hence, we have
selected the ST ensemble method for our proposed DSHM.

C. RESULT ANALYSIS
To demonstrate the significance of our proposed method
over static hybrid and baseline classifier we have employed
four classification metrics. Figure 2 showcases a comparative
analysis of these classifiers in terms of their accuracy. This
figure demonstrates the superiority of our proposed DSHM,
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FIGURE 2. Accuracy measured for the conventional classifiers, static hybrid models, and proposed DSHM on ALL,
UFS, and IGS features.

FIGURE 3. Precision measured for the conventional classifiers, static hybrid models, and proposed DSHM on ALL,
UFS, and IGS features.

TABLE 5. Analysis for selecting the appropriate ensemble method based
on their effectiveness.

which outperformed with 99.33% accuracy with the IGS
features set. In terms of UFS and ALL feature sets, DSHM
also gains an impressive accuracy of 99.20% and 98.52%,
respectively. Whereases, DT achieves the lowest accuracy of
97.01% for all different types of feature sets. In terms of the
static hybrid model, A-VT gained 99.20% accuracy for both
UFS and IGS-selected features.

Our second assessment metric is precision, a measure
of the model’s accuracy in positive predictions. Precision
evaluates the trustworthiness of positive predictions and helps
identify instances of false positives, allowing for necessary

adjustments in performance. In Figure 3, when examining the
UFS and IGS features set, the DSHM achieves the highest
precision scores of 99.63% for both sets. In terms ofALL sets,
it produced a 98.16% precision score. From the conventional
classifiers, GB gained an extraordinary precision score of
99.40% for IGS-based selected features.

Then recall gauges a model’s ability to accurately identify
the number of positive instances among the total positive
samples. Figure 4 illustrates the obtained recall scores for
all the employed models on different feature sets. The
proposed DSHM achieved recall scores of 97.67%, 98.37%,
and 98.81% for ALL, UFS, and IGS feature sets, respectively.
When considering the static models, A-BS and A-VT
performed a generalized score of 97.59% with UFS-selected
features. From the traditional models, the highest recall
score is attained with AB, which gained a 98.15% recall
score.
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FIGURE 4. Recall measured for the conventional classifiers, static hybrid models, and proposed DSHM on ALL, UFS, and
IGS features.

FIGURE 5. F1-score measured for the conventional classifiers, static hybrid models, and proposed DSHM on ALL, UFS,
and IGS features.

Our final classification metric is the F1-score, which
incorporates precision and recall scores, and evaluates how
efficiently our proposed DSHM can predict outcomes.
Figure 5 depicts the F1-score of the trained models on
different feature sets. In comparison to other models, the
DSHMachieved enhanced results on the selected feature sets.
Specifically, the proposed model achieved the highest score
of 99.21% with IGS features. Concerning the conventional
models, GB scores exceed 98.12% with IGS-based selected
features.

Moreover, to gain insight into the cost efficiency and
deployment speed of our employed models, we have
evaluated their compilation time on three different feature
sets. Table 6 deprived their compilation times in milliseconds

(MS), where DT has taken the overall lowest time for its
execution, only 20.3, 18.7, and 18.2 MS for ALL, UFS, and
IGS feature sets, respectively, whereas our proposed DSHM
demands 451, 382, and 374 MS. However, the static hybrid
models have taken the overall highest time, as they need to
execute six different conventional classifiers.

D. OUTCOME EXPLANABILITY
In this section, we integrate explainable AI (XAI) in
our proposed ML-based healthcare diagnosis models to
provide transparency, accountability, validation, patient
understanding, and clinical adoption. By incorporating
XAI techniques, we can develop trustworthy and effective
AI-driven solutions that improve patient outcomes while
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TABLE 6. Reported the compilation time for all the employed classifiers on different feature subsets.

TABLE 7. Outcome explanations of DSHM generation by LIME for a random positive and negative case.

ensuring safety and fairness. To make such an implica-
tion, we have utilized an XAI technique named Local
Interpretable Model-agnostic Explanations (LIME), which
make explanations for individual predictions made by
complex ML models. LIME selects an instance, generates
perturbed samples around it, and learns a local interpretable
model based on the black-box model’s predictions on
these samples. It then generates explanations by analyzing
the interpretable model’s coefficients or rules, providing
insights into how each feature contributes to the black-
box model’s prediction for the selected instance. Finally,
it’s important to evaluate the quality and trustworthiness of
the explanations generated by LIME through validation and
testing.

Table 7 presents the LIME-generated prediction proba-
bilities and explanations for two randomly selected data
samples (one positive and one negative) from the IGS-based
selected feature sets (as this feature set outperforms others).
The real values of each characteristic are displayed in the
‘‘actual value’’ column, whilst the LIME-generated values
in the ‘‘Negative reasons’’ and ‘‘Positive reasons’’ sections
indicate whether a feature has a positive or negative impact
on prediction probabilities. For example, suppose a feature
negatively affects a sample. In that case, its name and recom-
mended value ranges are entered into the ‘‘Negative reasons’’
field, and a positive influence is stated in the ‘‘Positive
reasons’’ field. In the case of a random positive sample,
our proposed DSHM model predicts a 100% probability of
having thyroid disease. The feature ‘‘T3’’ makes the most
important contribution to this positive forecast, with its actual
value falling somewhere between 0.35 and 1.2, for example,
0.9. Other characteristics, such as ‘‘Age,’’ ‘‘FTI,’’ ‘‘Sex,’’
and so on, also play an important role in good prediction.

In the case of the Negative prediction, DSHM forecasts a
99% chance of not having thyroid disease. Again, ‘‘T3’’
emerges as the most relevant factor in forecasting, with an
actual value of 2.1 falling within the recommended range of
1.5-2.3. Additionally, other feature values such as ‘‘TT4,’’
‘‘Psych,’’ ‘‘Age,’’ ‘‘TSH,’’ ‘‘FTI,’’ ‘‘Sex,’’ ‘‘TT4 Measured,’’
‘‘T3 Measured,’’ and ‘‘On Thyroxine’’ also contribute to the
negative prediction.

Subsequently, we also consider evaluating the global
behavior of the IGS-based features set, understanding the
underlying structure of data, validating model performance,
and informing decision-making processes. For that, we used
Shapley Additive exPlanations (SHAP) on this feature set.
SHAP is an XAI technique that provides insights into the
importance and contributions of each feature to the output of
anMLmodel. SHAP values are based on Shapley values from
cooperative game theory and offer a unified framework for
understanding the impact of features on model predictions.
Figure 6 illustrates the global behavior of the IGS-based
selected features set, showcasing how factors affect predic-
tions on a global scale. The plot displays higher-contributing
features at the top, whereas blue, purple, and red indicate low,
moderate, and high feature values. Higher feature values (red
or purple dots) indicate a lower likelihood of thyroid disease,
with particularly negative SHAP values. Blue dots with lower
feature values typically imply higher illness risk, as evidenced
by positive SHAP values. This figure demonstrates how T3,
FTI, TSH, TT4, Age, On Thyroxine, Sex, T3 Measured,
and Psych are the most influencing characteristics of this
thyroid diagnostic model and significantly affect the dataset’s
global behaviors, similar to local explanations. However, the
features of TSH Measured and hypopituitary do not have
such a significant influence on these XAI models. Hence
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TABLE 8. Evaluate the statistical significance between the two models using the Mann-Whitney U Statistical Test.

TABLE 9. Evaluate the generalization of our proposed model using an independent dataset.

FIGURE 6. Display the global behavior of the high contributory features
set.

we discarded these features to the LIME and SHAP-based
interpretation.

E. PAIR-WISE STATISTICAL TEST OF EMPLOYED
CLASSIFIERS
In this subsection, we perform a statistical test to analyze
the significance of our proposed method. For this evaluation,
a Mann-Whitney U statistic [41] is applied to the accuracy
of different feature sets, determining whether there is a
difference between two employed models based on their
performance. The total ranks for one of the groups in the
comparison are represented by the U-Test. A lower U-Test
value suggests that the first group’s value distribution is
typically higher than the second group’s value distribution.
The incredibly small p-value points to a highly significant
outcome, suggesting that the null hypothesis—that there is
no difference between the two groups—is strongly supported
by the evidence. The significance level α, which denotes
the likelihood of rejecting a true null hypothesis, or Type
I error, is set to 0.05 in this case. Stated differently, the

significance level denotes the cutoff point utilized to ascertain
the statistical significance of the observed outcomes. Table 8
shows the P-value and U-Test; the first value indicates the
U-Test, while the second value indicates the P-value. This
table shows that for DSHM with the pair of DT, KNN, and
A-VT, the total rank is 0. It usually means that the two
samples are perfectly separated from one another. Since the
p-value is nearly zero, there is substantial evidence to refute
the null hypothesis. The incredibly small P-values of 0.05 and
0.04 in various observations point to a highly significant
outcome, providing compelling evidence to reject the null
hypothesis that the two models’ executed outcomes show
a statistically significant difference. For clear observations,
we have highlighted these pairs which are statistically
significant to each other.

F. DISCUSSION
Our proposed DSHM proves its significance in early-stage
disease prediction by achieving superior scores across various
classification metrics. Nevertheless, the model’s generaliz-
ability could be affected by unforeseen data circumstances,
leading to challenges such as over-fitting and under-fitting
in classification models. Over-fitting occurs when a function
closely matches a limited number of data points, while
under-fitting arises when the model struggles to accurately
map inputs and outputs during training, resulting in signif-
icant training errors. Indications of under-fitting manifest
as high bias and low variance during the training process.
To address these challenges from our proposed DSHM,
we have considered various mechanisms before training
the model. First, we implemented various preprocessing
techniques to clean the dataset. Additionally, we tackled
class imbalance using the BOO-ST method to achieve
a balanced distribution and selected relevant features to
enhance model performance. These measures aim to reduce
the risk of over-fitting and improve the generalizability of
the model [22]. Subsequently, we developed the proposed
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TABLE 10. Comparative analysis between existing and our study in terms of core methodologies and predictive performance.

model by integrating multiple preferable baseline classifiers
using an effective ensemble method. This integration helps
mitigate individual biases and captures diverse perspectives,
thereby alleviating over-fitting [24]. Moreover, the baseline
classifiers within the ensemble were trained with a fine-tuned
set of parameters to effectively control the learning process.
These approaches render our proposed model less susceptible
to over-fitting, ensuring they produce more generalized
results [27]. Furthermore, we have used one more dataset to
evaluate the generalization of our proposed model, which is
publicly available in [42]. Table 9 represents the performed
accuracy, precision, recall, and f1-score by our proposed
DSHM model using this dataset. Where our proposed model
obtained a robust accuracy of 99.15% with an IGS-based
selected features set. The outcomes are also superior in
terms of other performance indicator metrics. This table
demonstrates the generalization of our proposedmodel across
an independent dataset. Finally, a comparison is shown in
Table 10 between our model and existing thyroid predictive
models, where our models surpass the outcome of existing
models. These findings lend support to our assertion and
improve the credibility of the proposed strategy.

V. CONCLUSION
As the prevalence of thyroid disease continues to increase
globally, predicting the illness and categorizing patients has
become a more challenging task for practitioners. In response
to this growing impact, we have introduced a Machine

Learning-based disease prediction system leveraging the
most essential features. The utilization of the BOO-ST
method has been crucial in preparing a balanced dataset
for our experiments. Experimental analysis underscores the
pivotal role of the proposed DSHM, particularly when
utilizing IGS-based selected features. However, it is essential
to note that the proposed DSHM demands higher compu-
tational resources and incurs increased computational costs
compared to traditional single classifiers. Hence in future
studies, we plan to investigate addressing this challenge, one
potential solution is the exploration of a distributed learning
mechanism. Additionally, we will explore the different
ways to select the more appropriate baseline models in a
dynamic environment. Moreover, we envision integrating
our approach into a blockchain network, aiming to enhance
the security and accessibility of information across various
healthcare settings, including hospitals and clinics.
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