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ABSTRACT In the digital age, people’s demand for 3D videos is becoming increasingly strong. Nowadays,
the 3D-HEVC video coding standard is far from meeting people’s needs. Compared to HEVC, Versatile
Video Coding (VVC) exhibits better encoding performance. Depth maps are a critical part of 3D video, but
current research on VVC has only been limited to texture videos. Accordingly, to diminish the computational
complicacy of depth map intra coding block division in VVC 3D video, a fast approach for VVC depth map
coding based on texture characteristics and deep learning is presented in this paper. We first use gradient
matrix to classify CUs into simple CUs, fuzzy CUs, and complex CUs. Simple CUs can terminate their
partitioning process in advance, while fuzzy CUs use the original encoder algorithm. For complex CUs,
we designed two adaptive CCNs that can serve multiple sizes of CUs. The first CNN model is used to
determine whether a square CU performs quadtree partitioning or multi type tree partitioning. The second
CNNmodel is used to determine whether a CU that definitely performs multi type tree partitioning performs
horizontal or vertical tree partitioning. It is clear that the second model is complementary to the first. The
experimental results indicate that this scheme can achieve an average reduction of 45.35% in coding time,
while BDBR only increases by 0.23%, which is superior to existing technologies in reducing encoding
complexity and ensuring encoding quality.

INDEX TERMS Depth map, early termination, VVC 3D video, CNN.

I. INTRODUCTION
Today, the advancement of video coding technology has ush-
ered in a new era of higher quality multimedia videos [1],
changing the way we experience visual media. From early
black and white televisions to high-definition 2D video
streams that dominate today’s digital video, video encod-
ing technology continues to improve to meet the growing
needs of the general public and various industries. However,
as our demand for immersive and engaging visual experi-
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ences continues to grow, the limitations of traditional 2D
videos have become increasingly apparent. Its drawback is
that it cannot convey the depth information present in real
scenes [2], leading to the planarization of scenes in videos.
It is not difficult to imagine that the lack of depth information
makes it difficult for viewers to experience an immersive
visual experience. Whether it is the daily entertainment needs
of modern people or the needs of high-end technology, 3D
videos play an important role, such as the added viewpoints
and depth information in 3D videos, which are crucial in
applications such as telemedicine, virtual tourism, and inter-
active games. Therefore, 3D video has gained the attention
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and love of the public and many people in the technology
field. The demand for more immersive visual experiences has
driven the development of 3D video technology. Technically
speaking, compared to 2D videos, 3D videos contain more
viewpoints and corresponding depth information [3], which
can effectively display the original real scene and create a
more realistic and attractive viewing experience for viewers.
However, at the same time, this also requires larger stor-
age space to store 3D videos and faster data transmission
speed to achieve the application of 3D videos. Compared
with traditional 2D videos, the transmission and application
of 3D videos pose greater challenges to video compression
efficiency. Therefore, fast encoding of 3D videos has become
one of the hotspots in current video research.

Traditional 2D videos cannot meet people’s requirements
for immersive visual experiences, to this end, in 2015, the
3D video encoding standard HEVC was jointly released by
the Moving Picture Experts Group and the Video Coding
Expert Group. 3D-HEVC employs some new coding tools
especially for depth maps coding, such as depth modeling
mode (DMM) [4], segment-wise DC coding (SDC) [5], depth
intra skip (DIS) [6], and view synthesis optimization (VSO)
[7], etc. These new coding techniques in 3D-HEVC improve
the compression efficiency and bring the superior perceptual
quality of synthesized views. With the rapid development
of multimedia technology, in July 2020, the Joint Video
Experts Team (JVET) released the VVC standard [8], which
is committed to applying in application scenarios where
previous generation standard HEVC cannot meet the require-
ments, such as 4K videos and 360-degree video. VVC defines
65 different basic intra prediction directions for brightness
prediction blocks, which is equivalent to adding one direction
between every two directions of 33 predicted directions in
the HEVC frame. With the addition of Planar and DC modes,
there are a total of 67 prediction modes. In addition, VVC
adopts a new and more flexible partitioning structure, namely
the Quad-tree with Nested Multi-type Tree (QTMT), which
greatly increases coding efficiency. Although the structure
of the VVC video encoding layer remains the traditional
block-based hybrid video encoding mode, VVC provides
multiple advanced video encoding tools, with a compres-
sion rate approximately double that of the previous HEVC
standard.

Currently, 3D videos generally use the popular Multi view
Video Plus Depth (MVD) format, which requires encoding
and transmitting texture and depth maps from three different
viewpoints. Therefore, compared to 2D videos, this encod-
ing method will bring a huge amount of data. Depth maps
are actually grayscale images, where the grayscale values
represent the distance between the object and the camera in
the scene [9]. However, the color, pattern, and brightness
of the object itself are not reflected in depth map. There-
fore, it has less edge information than texture maps. For
example, in depth maps, edges are generated by the relative
distance difference between the entity and the background
in the scene, while in the corresponding texture map, this

edge usually also appears unless the color information of
both, that is, the entity and its surrounding background, are
completely consistent [10]. In texture maps, an entity or
background contains a lot of texture information, while in
depth maps, the same object or background is often very flat
and smooth, with smaller textures. The texture differences
between the two types of images are reflected in Figure 1.
There are two contrasting texture regions in the depth map.
For the segmentation of coding units in the depth map, the
segmentation depth in the flat area is often lower, while in the
sharp edge area, the encoder tends to choose small size blocks
for encoding. Based on this, the traditional CU partitioning
method for texture maps is not suitable for depth maps [11].
In VVC 3D Video depth map coding, CU partitioning adopts
the QTMT partitioning structure. In the original algorithm of
the intra encoding unit, regardless of whether the encoded
region is flat or complex, all possible partitioning methods
need to be traversed. Due to the new QTMT partitioning
structure, compared to 3D-HEVC depth map encoding, this
will result in greater computational complexity. Currently,
there are a large number of fast encoding algorithms applied
to VVC 2D Video, but few are targeted at 3D videos. There-
fore, designing a low complexity coding unit partitioning
approach for VVC 3D Video depth map based on the texture
characteristics of depth maps to replace or partially replace
the original algorithm will greatly reduce encoding time and
facilitate the further development of 3D video.

FIGURE 1. A texture and depth map in the Poznan_Street video sequence.

In response to the problem of high computational com-
plicacy in depth map intra frame encoding under QTMT
partitioning technology, this paper aims to accelerate the
decision-making process of depth map CU partitioning.
To this end, we propose an algorithm that combines tra-
ditional manual methods and deep learning methods to
accelerate depth map encoding. It can be summarized as the
following two points. (1) Use gradient matrix to divide CU
into simple CU, fuzzy CU, and complex CU. Simple CU can
terminate its partitioning process in advance, thus avoiding
some unnecessary Rate-Distortion Optimization (RDO) pro-
cesses. Fuzzy CU uses the original encoder algorithm. For
complex CU, we designed two adaptive CCNs to accelerate
its partitioning process. (2) We propose two adaptive Con-
volutional Neural Network (CNN)s that can serve multiple
sizes of CUs. The first CNN model is used to determine
whether CUs perform quadtree partitioning or multi type
tree partitioning on square CUs. The second CNN model is
used to determine whether CU performs horizontal or vertical
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tree partitioning for CU that definitely performs multi type
tree partitioning, thus replacing some of the original RDO
calculations and achieving the purpose of this paper.

The structure of the following four chapters in the article is
as follows. Chapter 2 introduces some methods for accelerat-
ing 3D-HEVC encoding and VVC 2D texture map encoding.
Chapter 3 provides a detailed description of the method
proposed in this article. Chapter 4 presents the experimental
results of our algorithm. Chapter 5 summarizes this paper.

II. RELATED WORKS
Nowadays, a number of approaches have been proposed to
accelerate the block partition for 3D-HEVC and VVC 2D
Video.

A. APPROACHES FOR 3D-HEVC
There are currently many mature methods available to accel-
erate 3D-HEVC block partitioning. Li et al. [12] used an
unsupervised learning method to accelerate the CU parti-
tioning process of depth maps. The algorithm regards the
decision of CU division as a clustering problem, and only
uses a feature, namely RD cost. In general, the method uses
three K-means clustering methods to determine 64 × 64,
32 × 32 and 16 × 16 size CU continues to be divided
or terminated in advance. In addition, a variable similarity
distance is introduced so that users can flexibly adjust the
balance between video quality and complicacy reduction.
Hamout and Elyousf [13] proposed a clustering algorithm to
diminish the computational complicacy of CU partitioning
within depth map frames. The method needs to calculate the
sample of simplified mass center (ASMCV) and the vari-
ance, and compare them with four thresholds to construct
a CU size decision model. In [14], the authors use deep
learning methods to speed up the decision-making process
of 3D-HEVC depth map CU quadtree partitioning patterns.
Firstly, the authors constructed a database of depth map par-
titioning information and ultimately used this data to create
a Multi Deep Convolutional Neural Network (MD-CNN)
model. This model can directly predict the partitioning mode
of CU without requiring time-consuming RDO process, thus
achieving the goal of reducing encoding complexity. Refer-
ence [15] proposed a method to simultaneously accelerate
the encoding speed of texture and depth maps. The core of
this algorithm is to disguise the self-learning residual model
as a binary classifier to determine in advance whether the
coding units in texture and depth maps need to be partitioned.
Specifically, the algorithm treats residual signals as features
of each coding unit, extracts residual signals from each CU,
and ultimately constructs the self-learning residual model
using intra feature learning. In [16], Chen et al. found that
the division depth of coding units in flat regions in depth
maps is often not very deep, and DMM modes are often not
selected. Therefore, if it is known in advance that CU will not
continue to partition and DMM modes will not be selected,
unnecessary RDO calculations and DMM calculations can be
skipped, thus reducing the encoding complexity. The authors

use sum of gradient to calculate the flatness of CU. Due to
the characteristics of depth maps, most coding units have
high flatness. Therefore, this algorithm improves encoding
efficiency while ensuring encoding quality.

B. APPROACHES FOR VVC 2D VIDEO
The emergence of the new partitioning structure, QTMT, has
led researchers to invest in the research of new fast block
partitioning algorithms for coding units. Currently, there are
many efficient research literatures to improve the intra frame
encoding efficiency of VVC 2D texture maps. Two solu-
tions were presented in reference [17]. Specifically, the first
algorithm: select three important features and use them to
trains the five Support Vector Machine (SVM) models for
CUs of sizes from 8 × 16 to 32 × 32 respectively, which
can adaptively skip the unnecessary division direction of
the CU in advance. The second algorithm: use the Laplace
operator to determine the general direction in order to skip
some intra modes in advance. Zhao et al. [18] presented
a fast-partitioning algorithm based on the edge features of
coding units. First, coding unit was divided into CU of com-
plex region and CU of simple region according to whether
it contained edges. For the former, the authors calculated
their edge feature value and compared it with the two preset
thresholds, so as to skip the impossible partitioning direction
in advance. For the latter, whether to end the division process
in advance is determined according to the difference between
their division depth and the division depth of adjacent CUs.
Wang et al. [19] used machine learning approaches to speed
up the decision-making process of coding unit size. Specifi-
cally, the authors constructed two extra tree models, which
were executed in series. The algorithm process involved
calculating some relevant characteristic values of the CU
and inputting this information into the first extra tree model
to determine the current direction of CU partitioning. The
second extra tree model was able to predict whether the CU
would be partitioned into a binary tree or a ternary tree,
thus simplifying the encoding process and greatly acceler-
ating the encoding process. Unlike previous fast algorithms
for intra and inter frame coding, in general, intra frame
coding is aimed at reducing spatial redundancy, while inter
frame coding is aimed at reducing temporal redundancy. This
difference often leads to different methods used for both.
Kuang et al. [20] used the same approach to diminish the
complexity of intra and inter frame prediction coding, utiliz-
ing several historical information, namely traversed partition
modes. This method can skip RDO calculation process of
some partition modes, thereby improving coding efficiency.
In response to the time-consuming problem of using QTMT
partition structure to partition coding units in VVC encoders,
Amna et al. [21] presented a swift CU size decision strategy.
The authors constructed a lightweight neural network (LNN)
model to determine whether the current CU needs ternary
tree partition or binary tree partition. This method requires
calculating several important feature values of the current CU
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and inputting them into the LNN model, which can save the
encoder a lot of computation process of traversing the ternary
tree partition mode and effectively reduce encoding time.

The methods mentioned above that use traditional manual
methods, machine learning, and deep learning all work well
in reducing coding complexity, but all of these algorithms are
applied to 3D-HEVC and VVC 2D video. At present, there
are few papers on VVC 3D video in the field of scientific
research, and we believe that with the continuous popularity
of VVC video coding and people’s demand for higher quality
3D video, the research on VVC 3D video will eventually
become hot in the near future.

III. PROPOSED ALGORITHM
In recent years, emerging deep learning technologies such
as CNN have played a significant role in many fields, many
scholars have used CNNs to accelerate CU division andmode
selection in the field of video coding research and have
achieved amazing results [22]. In this paper, we present a CU
partitioning method based on gradient matrix and adaptive
CNN. Firstly, we introduce a coding unit classifier based
on texture complexity to divide CUs into three categories,
namely simple, fuzzy, complex. Specifically, if the texture
complexity (TC) value calculated by the CU classifier of the
coding unit is less than T1, it is classified as simple class, and
the partition process is terminated; if the TC is larger than the
T1 but less than T2, the CU is considered as fuzzy CU that
will perform primitive RDO calculation to decide on the divi-
sion mode; for the third case, CUs are classified as complex
CUs, such CUs will be fed into subsequent CNNs for further
division determination. Specifically, the first CNN model is
used to determine whether a square CU performs quadtree
partitioning or multi type tree partitioning. The second CNN
model is used to determine whether a CU that definitely
performs multi type tree partitioning performs horizontal or
vertical tree partitioning. Figure 2 shows the overall algorithm
flowchart. The following sections describe the complexity
criterion used to classify CUs, the adaptive CNN structure,
and their training process.

A. CU CLASSIFICATION MODEL BASED ON GRADIENT
MATRIX
Depth maps represent the distance of objects in a scene from
the camera’s viewpoint, and are characterized by a large area
of flat and a small number of distinct shape edge areas.
Considering the depth map feature, this paper proposes to use
gradient matrix to calculate the texture complexity of CUs
and classify CUs: homogeneous CU, fuzzy CU and complex
CU. Among them, homogeneous CU means that there is no
need to continue to divide into smaller CUs for encoding, and
the current size is the optimal coding size; complex CU refers
to the need to continue to divide into smaller size CUs for
encoding.

In depthmap encoding, the pixel values of flat areas change
very little or nothing, and on the contrary, the pixel values
of the edge areas of the shape change dramatically [23].

FIGURE 2. Overall algorithm flowchart.

To evaluate the texture complicacy of the depth map coding
block, in this paper, we use gradient matrix as a tool to
calculate the texture complicacy of coding units. The specific
details of the gradient matrix are as follows: for a CU with
height H and width W, it contains H × W grayscale values,
among which there are (H-2) × (W-2) non edge grayscale
values. These non-edge grayscale values can form a matrix
of 3 × 3 size with their surrounding grayscale values. In this
article, we refer to this matrix as the 3 × 3 matrix of non-
edge pixels, and its shape is shown in Figure 3. Each such
matrix will form an element of the final gradient matrix, and
each element actually represents the texture complexity of the
local area where its matrix is located. It calculates the sum of
the gradients of the pixel in four directions, which are 0◦, 90◦,
45◦, and 135◦, respectively. Their calculation formulas are as
follows:

(i, j)0◦ = |p (i− 1, j) − p (i+ 1, j)| (1)

(i, j)90◦ = |p (i, j− 1) − p (i, j+ 1)| (2)

(i, j)45◦ = |p (i+ 1, j− 1) − p (i− 1, j+ 1)| (3)

(i, j)135◦ = |p (i− 1, j− 1) − p (i+ 1, j+ 1)| (4)

We set the coordinates of each element of the gradient
matrix as (a, b) and use p (a, b) to represent the values of
elements in the gradient matrix, whose values are the sum
of gradients in four directions. Its calculation formula is as
follows:

p (a, b) = (a, b)0◦ + (a, b)90◦ + (a, b)45◦ + (a, b)135◦ (5)
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FIGURE 3. Matrix with size of 3 × 3 composed of non-edge pixels.

Each depth map coding unit has a unique corresponding
gradient matrix. If the length and width of a CU are H and
W, respectively, then the size of its gradient matrix is (H-2)
× (W-2). We can easily infer that the pixel values in the pixel
matrix of the coding units in the flat area of the depth map are
basically the same, which results in most of the elements in
the gradient matrix being almost zero. On the contrary, for the
coding units in the sharp area of the depth map, the element
values in the pixel matrix differ greatly, leading to a larger
element value in the gradient matrix. Figure 4 shows the pixel
matrix and its gradient matrix of a depth map coding unit with
simple and complex textures, confirming this conclusion.

In the study of CU partitioning in video encoding, texture
complexity often plays a decisive role in the depth of coding
unit partitioning [24]. CUs in regions with strong texture
homogeneity are likely to end the partitioning process earlier,
while CUs in regions with more complex textures are likely
to continue their partitioning process. In 3D video encoding,
this rule still holds true for both texture and depth videos [25].
Figure 5 shows the coding unit partitioning result of a depth
map in the Newspaper video sequence, showing the rela-
tion between CU texture features and partitioning. And the
gradient matrix we introduce can better reflect the texture
complicacy of the depth map coding unit, we give the texture
complexity (TC) calculationmethod according to the gradient
matrix of CU. By comparing the magnitude relationship of
TC with the preset threshold, we divide CU into simple CU,
fuzzy CU, and complex CU. The calculation formula for TC
is as follows:

TC =

W−2∑
a=1

H−2∑
b=1

p (a, b) ×
1

(W − 2) × (H − 2)
(6)

FIGURE 4. Pixel matrix and gradient matrix of depth map CU (a) Pixel
matrix and gradient matrix of simple CU (b) Pixel matrix and gradient
matrix of complex CU.

FIGURE 5. A frame image in the newspaper video sequence and its CU
partitioning results.

Obviously, the setting of the two thresholds T1 and T2 is
particularly crucial in this algorithm. Similar to the thresh-
old setting in manual algorithms aimed at reducing video
encoding complexity, our threshold setting needs to minimize
encoding time as much as possible while ensuring minimal
loss of video quality. To maintain the effectiveness of the
threshold, we use the method of training frames to dynam-
ically adjust the threshold, so that it can better serve the
algorithm and classify CUs into three categories. Specifi-
cally, we define the first frame of the video sequence as the
training frame, and the encoding of the first frame image
adopts the anchor encoder algorithm. After encoding the first
frame, we obtain two ideal thresholds T1 and T2. Considering
the temporal correlation of video encoding, the threshold is
updated every 30 frames to ensure that the algorithm remains
effective. Through this method, we get two thresholds, T1 and
T2. If the texture complexity (TC) value calculated by the CU
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classifier for the coding unit is less than T1, it is classified as
simple class, and the partition process is terminated. If the
value of TC is between T1 and T2, CUs will execute the
original encoder encoding to ensure that the algorithm hardly
affects the encoding quality. If TC is greater than T2, the
proposed adaptive CNNs are utilized to speed up the QTMT
segmentation process. This algorithm can avoid unnecessary
pattern calculations, thus achieving the goal of this paper,
and can remove some training samples from our proposed
adaptive CNNs, thereby improving its accuracy.

B. ADAPTIVE CNN STRUCTURE
Because new partition module named Multi-Type Tree
(MTT) is added in VVC, which greatly increases coding
efficiency at the expense of enormous complicacy. At the
same time, changes in the rules for dividing code units will
also bring about changes in the dividing results. In VVC,
there are 16 CU sizes [26] (Contains squares and rectan-
gles) that can continue to be divided compared to the 3 CU
sizes (Square only, 64 × 64, 32 × 32, 16 × 16) of HEVC.
Therefore, some algorithmic ideas for designing three models
separately for the three CU sizes of HEVCwill not work well
in VVC 3D Video depth map intra coding. Authors in [27]
have presented a CNN network model with variable pooling
layer size to ensure that the final output feature map size
is consistent. Based on the structural characteristics of this
CNN network model, we design two CNNs to accelerate the
QTMT division of depth maps intra-frame coding in VVC 3D
video. Consequently, the proposed method can replace part
of RDO, which is significant for reducing depth map intra
coding complexity.

Specifically, the biggest highlight of the adaptive convo-
lutional neural network proposed in this paper is that it can
serve a variety of coding units with different sizes. Its specific
performance is that CUs with different sizes are input into
the adaptive CNN, and before they reach the full connection
layer, they will become input blocks with a size of 4 × 4.
Therefore, we can only use this model to predict the division
mode of these CUs, which benefits from the clever design of
the pooling layer. The following introduces the input layer,
convolutional layer, pooling layer, fully connected layer, and
output layer of the proposed adaptive CNN one by one. Our
model includes an input layer, where the input is the residual
block of the coding unit rather than the original block, as the
former can better reflect its partitioning information. Convo-
lutional layer 1 has 64 convolution kernels, with a size of 5 ×

5 and a step size of 1. The same filling mode is used to keep
the size of the feature map unchanged. Adaptive pooling layer
1 is the max pooling layer, and its size varies adaptively based
on the size of the input block. The function of this pooling
layer is to reduce the input block by half when its width or
length is greater than or equal to 32. The only difference
from convolution layer 1 is that the kernel size of convolution
layers 2 and 3 is 3 × 3, and they still use the same filling
method. The structure and function of adaptive pooling layer

FIGURE 6. The presented adaptive CNN architecture.

2 are basically the same as the first pooling layer. The function
of this pooling layer is to reduce the input block by half when
its width or length is greater than or equal to 16. Pooling layer
3 is the max pooling layer with a size of 2 × 2. The fully
connected layer has 64 neurons, and to raise the accuracy
of the model, it includes encoding quantization parameters
and the height and width of the input CU. The output layer
of the entire model uses the SoftMax activation function to
output the predicted probabilities of two classification results.
Figure 6 and Table 1 respectively show the brief process and
detailed structure of the model.

C. CNNs TRAINING
This article uses official 3D video sequences to train and
test the presented model. And the training data of both CNN
models are all from the data classified as complex CU by the
first algorithm proposed in this article, to raise the predic-
tion accuracy of the CNN model, and to make the two sub
algorithms complement each other, which can promote our
overall algorithm to realize the goal of significantly reducing
encoding complicacy without affecting video quality. The
official 3D video sequence is shown in Table 2. It should be
pointed out that two CNNs are complementary to each other.
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TABLE 1. Details of the presented adaptive CNN structure.

To forecast the division mode of a square CU, our proposed
adaptive CNN sub algorithm first uses the first CNN to
determine whether it is QT partitioned. If its optimal partition
mode is QT partitioned, predicting whether it is horizontally
or vertically partitioned is meaningless and wastes encoding
time. Similarly, predicting whether to perform QT partition-
ing on a rectangular CU is meaningless and a waste of coding
time. In summary, if the current CU is square, it must be input
into the first CNN model first. If the prediction result is MT
partition, the residual block of this CU must be input into
the second CNN model. Otherwise, the second model will
not be utilized. If the current CU is a rectangle, it is directly
input into the second CNN model. Therefore, in order to
achieve high prediction accuracy, appropriate steps must also
be followed when training the dataset. Square CUs must be
filtered by the first CNN model before being used as training
data for the second CNN model. The two proposed CNN
models have the same network structure and use the same
optimization algorithm and loss function during their train-
ing process. The optimization algorithm uses the Stochastic
Gradient Descent (SGD) algorithm, and the loss function uses
the commonly used cross-entropy loss function for binary
classification prediction. The formula is as follows:

loss =

∑
n
i=1[mi log(

∧
m) + (1 − mi) log(1 −

∧
m)] (7)

where mi is the true value of the sample,
∧
m is the predicted

value output by the model.
During the training process, for the first CNNmodel, if the

division mode of the CU is QT division, it is marked ‘‘1,0’’;
otherwise, it is marked ‘‘0,1’’. Similarly, for the second CNN
model, if the division mode of the CU is horizontal division,
it is marked ‘‘1,0’’; otherwise, it is marked ‘‘0,1’’. After
the model training is completed, we can apply the adaptive
CNN solution to seven block sizes, thus avoiding unnecessary
partition pattern traversal for many coding units.

IV. EXPERIMENTAL RESULTS
The experimental results of the algorithm presented in this
article are presented in this section. The depth map video
sequence is from the official 3D video sequence as shown
in Table 2. It contains eight video sequences, two resolu-
tions, and has multiple video features. It should be pointed
out that our proposed algorithm only applies to the division

TABLE 2. Official 3D video sequence.

of 3D video depth map coding units and does not include
texture maps. The software and hardware environment for
the experiment is as follows: the CPU is Intel (R) Core
(TM) i7-10700 K, the RAM is 32 GB, and the GPU is RTX
3070. The original encoder is VTM 10.0, with an encoding
configuration of All intra and QP (depth) set to 34, 39, 42,
and 45. We use two performance metrics to demonstrate the
effectiveness of the method, namely Bjøntegaard delta bit
rate (BDBR) [28] and time reduction (TR). BDBR represents
the rate savings under a certain objective encoding quality,
a negative value indicates an improvement in encoding per-
formance, and a positive value indicates a loss in encoding
quality. The change in coding complicacy is represented by
the proportion of encoding time saved, and its expression is:

TR =
Tanc − Tpro

Tanc
× 100% (8)

where Tpro represents the time required to encode depth maps
using the proposed approach, and Tanc represents the time
required to encode depth maps using anchoring algorithms.

A. ALGORITHM PERFORMANCE ANALYSIS
The proposed approach includes two sub algorithms, namely
the CUs classification algorithm based on gradient matrix
and the adaptive CNN fast coding unit partitioning algorithm.
Both contribute to reducing the complicacy of intra frame
depth map CU division in VVC 3D videos. The first sub
algorithm mainly utilizes the texture characteristics of 3D
video depth maps, namely the presence of large flat areas
and some sharp areas, focusing on canceling the rate dis-
tortion cost calculation process of coding units in flat areas,
thereby significantly reducing encoding time. The second
sub algorithm addresses the phenomenon of diverse sizes of
CUs in the QTMT partitioning mode, and constructs two
adaptive CNNs to solve the problem of input CU sizes being
different. This efficiently predicts the partitioning mode of
CUs, eliminates the rate distortion cost calculation process of
unnecessary partitioning modes of CUs, and accelerates the
encoding speed.

To test the specific performance of the two sub algorithms,
we examine their performance when acting alone. Specifi-
cally, we first use the gradient matrix to classify each coding
unit. For simple CUs, the RDO process can be skipped, while

79124 VOLUME 12, 2024



L. Si et al.: CU Split Method Based on Adaptive CNN and Gradient Matrix for VVC 3D Video Depth Map

FIGURE 7. Performance comparison of four methods at two resolutions (a) Encoding loss (b) Time reduction.

for other types of CUs, the original encoder algorithm needs
to be used for partitioning decisions. This way, we obtain the
performance of the first sub algorithm. We changed the train-
ing data of the adaptive CNN to all CUs and used thismodel to
predict whether the square CU will undergo QT partitioning
and whether the rectangular CU will skip a certain direction
of partitioning mode. This way, we obtained the performance
of the second sub algorithm. Obviously, using the second sub
algorithm alone will reduce its expected effect. The overall
algorithm and the performance of the two sub algorithms are
shown in Table 3.

We can conclude from Table 3 that both of our proposed
sub algorithms can diminish the complicacy of depth map
encoding and maintain almost no loss of encoding qual-
ity. Specifically, the first CUs classification algorithm based
on gradient matrix can diminish encoding time by 33.71%
on average, while the encoding quality loss of this sub
algorithm is only 0.18%. This indicates that it can effec-
tively identify simple CUs and terminate their partitioning
decision process in advance, thus avoiding unnecessary RDO
calculation processes for simple CUs. This makes the origi-
nal encoder only need to make partitioning mode decisions
for other types of CUs. The second fast CU partitioning
method based on adaptive CNN can diminish encoding time
by 28.88% on average, while the encoding quality loss of
this sub algorithm is only 0.25%. This indicates that the
presented CNN model can be effectively applied to var-
ious sizes of CUs and successfully predict their possible
partitioning directions, reducing the burden of encoder com-
putation rate distortion cost. Specifically, when using the
first sub algorithm alone, it showed the best performance
in the Poznan_street video sequences, with a reduction of
48.18% in encoding time compared to the original encoder.
This is because the video sequence has a large flat area,
which contains a large number of simple CUs, thus leveraging
the advantages of this algorithm. The second sub algorithm
showed the best performance in Shark video sequences with
relatively few flat regions, reducing encoding complexity
by 34.71%. In summary, the two sub algorithms efficiently

TABLE 3. Individual performance and overall performance of two sub
algorithms.

diminish the encoding time of VVC 3D video depth maps
while ensuring that the encoding quality is not significantly
affected.

The last two columns of Table 3 show the performance of
the overall method. As our first and second sub algorithms
can complement each other, the former filters out sample
data that fits its function and can train models with higher
prediction accuracy, while the latter acts on complex CUs that
the first sub algorithm cannot handle. The two complement
each other, so the overall algorithm’s performance is much
higher than that of a single sub algorithm. The eight test video
sequences used in this article have two resolutions, 1024 ×

768 and 1920 × 1088, respectively. The method proposed in
the five video sequences with a resolution of 1920× 1088 can
perform better, reducing coding time by 49.65% on average,
and encoding loss is only negligible by 0.24%. Overall, the
average experimental results of 8 video sequences indicate
that the overall method can diminish coding time by 45.35%,
while the BDBR increase is only 0.23%, achieving the goal
of reducing the complicacy of VVC 3D video depth map
encoding.
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TABLE 4. The experimental results of the proposed approach compared to the other three approaches.

B. PERFORMANCE COMPARISON
To indicate the advantages of the proposed approach, we will
compare its performance with three advanced methods.
Table 4 presents in detail the experimental results of three
methods and the method presented in this paper on eight
video sequences. Reference [29] provides a scheme that
includes three fast pattern decision algorithms for depth
maps, achieving 37.4% coding time savings at a cost of
0.27% coding quality loss. Compared with this algorithm,
our presented method can diminish coding time by 7.95%
on average. To alleviate the huge computational complex-
ity problem induced by the introduction of new encoding
technology in 3D-HEVC, [30] provides two methods to
quicken the intra frame mode decision-making process of
depth maps, achieving a reduction of 39.31% in coding
time, but an increase of 0.53% in BDBR. Compared with
this, our algorithm achieves more encoding time reduction
at the cost of smaller encoding quality loss, demonstrating
the superiority of our method. Reference [31] utilized the
clustering method to accelerate the encoding speed of 3D
video depth maps, achieving good results in ensuring encod-
ing quality, just like the method proposed in this paper. The
BDBR increase was only 0.25% (the proposed algorithm was
0.23%), while the method proposed in this paper provided
an additional 3.76% reduction in encoding complexity com-
pared to the method proposed in [31]. Moreover, in the Shark
video sequences, the proposed method realizes a 14.53%
reduction in encoding time compared to the literaturemethod.
Figure 7 shows the performance of four schemes under
two video resolutions and average conditions, intuitively
demonstrating that compared to other excellent methods, this
algorithm performs well in reducing depth map encoding
complicacy and ensuring video quality.

V. CONCLUSION
This paper provides a method to reduce the complexity of
intra frame coding unit partitioning in VVC 3D video depth
maps, which consists of two parts. The first part is a cod-
ing unit classification algorithm based on gradient matrix,

which can classify CUs into three categories: simple CUs,
fuzzy CUs, and complex CUs. It can skip the partitioning
process of simple CUs in advance to reduce unnecessary
encoding calculations and filter sample data for adaptive
CNN models. The second part constructs two CNN models
with consistent structures, which can predict the partition
patterns of multiple sizes of CUs under VVC partitioning
technology. These two adaptive CNN models complement
each other and avoid unnecessary partition pattern judgments.
The experimental results indicate that the proposed solu-
tion can diminish encoding time by 45.35%, while BDBR
only increases by 0.23%, showing excellent performance
compared to advanced algorithms. Therefore, our proposed
method has contributed to 3D video encoding and accelerated
its application speed in real life.
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