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ABSTRACT The statistical relationship between sensor signature features and lubricant solid particle con-
tamination conditions in a spherical roller bearing has been investigated in this study. The influence of particle
size and concentration of solid contaminants in lubricant on the RMS parameter of time-domain acoustic
emission, vibration, and sound sensor signals are examined. Machine learning algorithms are trained with
time domain statistical features derived from sensor signatures to predict the lubricant conditions. Decision
trees, bagging tree ensembles, and support vector machines are used to build ML models. Decision Tree
models are built using classification and regression tree algorithms with three distinct split criteria, namely
gini, towing, and maximum deviance. A bagged tree ensemble model is constructed using the decision
tree as a base learner. In the support vector machine, kernel tricking is done to optimize the classification
boundaries. Models built using Acoustic emission signature features predict lubricant conditions with better
accuracy compared to models constructed using sound and vibration signature features. Feature-level fusion
approach is implemented by combining the vibration, sound, and acoustic emission features at the feature
level to improve the prediction power of machine learning models. The bagged tree ensemble and support
vector machinemodels, which are trained using fused features, predict lubricant conditions in spherical roller
bearings with an accuracy of around 99%.

INDEX TERMS Acoustic emission, condition monitoring, feature level fusion, lubricant solid particle
contamination, machine learning, vibration signature analysis.

I. INTRODUCTION
Modern manufacturing sectors rely significantly on automa-
tion to improve their productivity and competitiveness. The
maintenance of rotating machinery is crucial in an auto-
mated environment. Currently, industries are moving towards
condition-based maintenance to avoid catastrophic failure of
mechanical parts and reduce the cost of maintenance and
downtime. Rotary bearing plays a vital role in reducing the
friction between rotating machinery’s rotating and station-
ary components. In bearings, over 70% of failures can be
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attributed to issues related to the lubricant [1]. Improper
lubrication and selection of the bearing, wrong mounting of
the bearing, and indirect factors such as overload, electri-
cal discharge, vibration, operating the bearing at excessive
temperature, material flaws, and manufacturing faults are
significant causes of bearing failure. Improper mounting of
bearings leads to load imbalance, misalignments, and bearing
heating. Improper lubrication factors include running bear-
ings without renewing the lubricant beyond its service life,
insufficient lubrication, over-lubrication, and contamination.
Lubricant contamination may occur due to the presence of
solid particles in the lubricant, improper sealing, and the
presence of dirt or burr in the bearing housing. Inadequate
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lubrication results in abrasive wear and accumulates wear
particles in the lubricant. An increase in abrasive solid parti-
cles due to continuous operation without proper maintenance
accelerates the abrasive wear process and results in failure
of the bearing [2]. The contaminant particles in the lubricant
are lodged between the race and the ball or roller. Due to
the load acting on the bearing, the particles cause defects
in the ball or roller and races. The containment particles
impinge on the surface of the inner race, outer race, and ball or
roller and induce stress concentration. Increased solid particle
contamination in the lubricant accelerates the rate of wear in
the bearing, causing vibration and eventual bearing failure.
Solid particles also induce microcracks and generate surface
contact fatigue, pitting, wiping, and scoring over the bearing
raceway, reducing the bearing life [3].

Catastrophic failure or a reduction in the life of the bearing
can be caused by a variety of factors, including the size, type,
and concentration of solid particles, the thickness of the lubri-
cant film, and the size of the bearing. The presence of con-
taminants in lubricants causes a) the oil film to dilute, b) the
temperature to rise and reduce the viscosity of lubricant oil,
and c) accelerates the wear. In automated systems, it is critical
to keep an eye on the lubricant’s state in order to prevent lubri-
cant contamination-related failures and to enable condition-
based maintenance, which involves replacing the lubricants
as needed. Some degree of particle contamination in such
systems is often inevitable despite efforts to prevent it [1], [2].
Therefore, the prediction of solid particle contamination in a
spherical roller bearing (SRB) is chosen as the main objective
of the current study. The SRB is an ideal solution for heavy
axial and radial load conditions. SRB can accommodate shaft
misalignments and defections and is suitable for many heavy
industry applications in conveyor systems, wind turbines, oil
& gas, mining, and paper machines.

Health condition monitoring in rotating machinery is
essential, as it reduces the machinery’s breakdown mainte-
nance and operating costs [4]. Due to the implementation of
Industry 4.0, industries are moving towards condition-based
maintenance using a sensor-based approach. Intelligent mod-
els have been developed to forecast the state of the machinery
and the remaining useful life of the mechanical component
or system using sensors, such as motor current, vibration,
sound, acoustic emission, etc. The development of artificial
intelligence (AI) and machine learning (ML) models utilizing
sensor signature features can prevent catastrophic failures
in mechanical systems and enable prompt replacement or
repair of the affected component. Bearings are a critical
part of the rotating machinery, necessitating an effective
method to detect lubricant conditions in them. Solid particle
contaminants in lubricant can damage the bearing contact
surfaces, increasing noise, vibration, and temperature lev-
els, resulting in the premature failure of the bearing. It is
necessary that for critical operations, real-time monitoring
of bearing is essential. Early detection of lubricant failure
modes by sensor-based monitoring systems will facilitate the
application of condition-based maintenance (CBM) plans.

CBM helps to ensure that the bearings and lubricant serve
their entire life, avoid catastrophic bearing failures, and allow
timely replacement of the lubricant as needed. In this study,
the bearing’s acoustic emission (AE), vibration, and sound
signatures under various lubricant contaminant conditions
are extracted. ML models are constructed utilizing sensor
signature data to predict the lubricant conditions in an SRB.

II. LITERATURE REVIEW
A significant amount of research is being conducted on the
condition monitoring of machine parts to reduce catastrophic
failure and maintenance costs and to automate maintenance
activity. Sensors, advanced signal processing methods, and
ML models are increasingly used for machine condition
monitoring. Condition monitoring uses a variety of signa-
tures, including motor current, sound, vibration, and AE [5].
Intelligent models are built to predict the fault conditions
based on sensor signature features acquired in a)time domain,
b)frequency domain, and c)time-frequency domains. The lit-
erature review focuses on a)particle contamination in lubri-
cants and b)sensor-based intelligent approaches to predict
lubricant contaminants in bearings.

A. SOLID PARTICLE CONTAMINATION
Solid particle contaminants in rotating machinery primarily
result from a) Implanted contamination, b) Generated con-
tamination, and c) Ingested contamination. Solid particles
generally present in the lubricant include Fe, Al, Cu, Sn,
SiC, and sand. Solid particle contaminants influence sur-
face damage, fatigue, abrasive wear, and vibration in the
bearing and its associated mechanical system [6]. Kahlman
and Hutchings [7] studied the effect of hard contaminants
in a lubricated roller bearing by introducing Titanium and
Silica particles as contaminants. From the wear studies made,
it is observed that premature failure of bearings is noticed
due to fatigue or abrasive wear. Khonsari and Booser [8]
reviewed the detrimental effects of particle contamination in
hydrodynamic bearings with particle size and hardness of
the particle as the focus. In an experimental investigation,
Wang et al. [9] studied the raceway defects in roller bearings
caused by solid particle contamination in lubricant oil. They
noted that particle contamination causes stress concentra-
tions, which shortens the bearing’s fatigue life. Nikas [10]
reviewed the particle contamination in bearings, gears, seals,
mechanisms, and machines. Scanning Electron Microscope
(SEM), Ferrography, and Spectrographic studies conducted
by various researchers to identify particle size and shape were
discussed in their review. Debris reported in their studies
include ‘Cu’ particles of size 30µm, silicon particles of size
25µm, and Fe particles of size 3–20µm. It was observed that
the use of correct filtering systems improved the machine
element wear and reduced the premature failure of bearings.

Beghini et al. [11] observed that wear particles, namely
Fe, Al, Cu, Sn, and SiC, are present in the various bearing
lubricants of size 0-250µm. Solid particle contamination in a
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ball bearing was reviewed by Singotia and Jain [12]. In their
article, analytical, numerical, and experimental methods were
reviewed and various solid particle contaminant materials
affecting the bearing’s performances were investigated. In a
study, steel particles were introduced into the grease lubricant
in SRB by Lin et al. [13] to induce wear. Their investiga-
tion revealed that lubricant film thinning, and wear debris
growth are influenced by grease contamination. The survey
by Ding et al. [14] highlighted the possible application of
flexure joints based on compliant mechanisms to eliminate
the need for lubrication and minimize friction. They explored
mechanical design, kineto-static modeling, functional mech-
anisms, and other recent advances in the development of
compliant micro-positioning stages. In rotary bearings, solid
particle contaminants in the lubricant lead to noise, vibration,
and acoustic emissions. Studies show that lubricant condi-
tions and bearing failures can be predicted well in advance
by examining sound, vibration and AE signatures [10], [15],
[16], [17].

B. VIBRATION-BASED APPROACHES
One of the well-established methods for locating fault
conditions in rotating machinery is vibration-based anal-
ysis. Tiboni et al. [16] provided a thorough analysis of
vibration-based techniques for machine condition monitor-
ing. In their study, they reviewed the literature on vibration,
AE, and other sensor-based approaches to investigate solid
particle contamination. Particles of silica and ferric oxide are
found in the lubricant used in the ball bearings of electric
motors. According to their research, vibration levels rise
with increasing concentration and particle size. Frequency
spectrum analysis using vibration signatures was carried out
by Maru et al. [17] to study the effect of solid particle con-
tamination on vibration levels in a ball bearing. Their inves-
tigation demonstrated that the lubricant’s increased levels of
solid particle contamination caused an increase in vibration
levels. Studies on lubricant contamination in roller bearings
were carried out by Hariharan and Srinivasan [20] using
lubricant mixed with silica particles of varying sizes and
concentrations. In this investigation, the lubricant conditions
were examined using the vibration signature’s RMS values.
In a study by Mahajan and Utpat [21], dolomite powder
was introduced as a contaminant to the lubricant. In the
experiments, a range of particle sizes and three different
concentration levels were used to investigate deep groove
ball-bearing wear. As part of their investigation, they per-
formed frequency spectrum analysis using the RMS value
of the vibration signals. According to their analysis, bearing
wear rises as solid particle concentration and size increase.
Koulocheris et al. [22] added steel and corundum particles of
various sizes and concentrations as contaminants in lubricant
grease. They performed vibration analysis to investigate the
wear and fatigue life of ball bearings. The impact of particle
size and hardness of the particles on the life of the bear-
ing were analyzed in their study. Healthy and defective ball

bearings were studied using vibration signatures by Kulkarni
and Bewoor [23]. Vibration parameters, namely RMS, Peak
and peak to peak, and kurtosis were used to characterize
the bearing defects. Nabhan [24] conducted experimental
research on deep groove ball bearings to investigate the
vibration behavior utilizing both numerical and experimental
methods. It was observed that there is a strong correlation
between the degrading conditions of slew bearing and var-
ious vibration features, including the Lyapunov-Exponent
(L-E), Approximate-Entropy (A-E), impulse-factor (I-F), and
margin-factor (M-F) [25].

In a deep groove ball bearing, vibration RMS value and
peak amplitude parameters significantly influence the solid
particle contamination and concentration. Coal particles of
size 150 micrometers (µm) with concentrations of 30% and
40% by the grease weight were used to induce contamination
in the lubricant [26]. Sheriff et al. [27] studied the ball-bearing
performance by contaminating the lubricant using green sand
of particle sizes of 75, 106, and 150 µm. Vibration signature
analysis was carried out using the RMS parameter. It was
observed that vibration parameters have a strong correlation
with the lubricant contaminant conditions. The lubrication
conditions in SRBs were ascertained by Jacobsen et al. [28]
with the use of a MEMS microphone. Their investigation
involved the use of grease as a lubricant. A simple linear
regression model developed with statistical features was used
to estimate lubricant viscosity conditions. It is observed from
the literature that the solid particle size and concentration in
lubricants influence the vibration levels of rotating elements.
Statistical feature information extracted from the vibration
signature can be correlated to the condition of the lubricant
used in rotating elements such as bearings. Many studies
focused on the RMS parameter of vibration signature for
identifying good and contaminated lubricant conditions.

C. ACOUSTIC EMISSION SIGNATURE ANALYSIS
AE sensors are widely used to detect the early failure modes
and their mechanisms in rotating machines. Tandon and
Choudhury [29] examined the techniques for AE measure-
ment to find rolling element-bearing flaws. It is observed
that AE methods can identify faults in rotating machinery
much earlier than vibration-based approaches [29], [30], [31],
[32], [33], [34]. Many studies have been done using AE
sensors to monitor lubricant conditions in different types
of bearings. Mirhadizadeh et al. [35] have investigated the
effects of operational variables, such as load, speed, and oil
film thickness, on AE parameters in a hydrodynamic bearing.
Taura and Nakayama [36] investigated the lattice structure
of the material during the onset of sliding friction using AE
based approach. Friction, wear, corrosion, phase transition,
cavitation, cracking, fracture, and other changes in the mate-
rial’s state can all be detected using AE sensors. Piezoelec-
tric elements in AE monitoring have a frequency range of
100 kHz to 400 kHz. In this frequency, minor variations due
to cracks or subsurface damage can be effectively identified
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by the AE sensor. The vibration-based accelerometers cap-
ture vibration frequency from 0.5 Hz to 15 Hz. Vibration
sensors are unsuitable for detecting early failure modes due
to minor cracks or sub-surface damages. Vibration sensors
will capture the environmental noise along with noise due to
failure modes, which needs to be filtered for further analysis.
AE offers a distinct advantage in identifying solid particle
contamination in lubricants due to its ability to capture the
failure modes much earlier than vibration-based sensors.

Sheriff et al. [37] conducted research on the impact of
green sand contamination in ball bearings using contami-
nant particle sizes of 75, 106, and 150 µm. Experiments
were conducted in a grease-lubricated ball bearing at various
speeds and load circumstances. AE parameters viz. RMS,
kurtosis, and peak-peak were considered in their analysis.
Their experiments revealed a strong relationship between
wear patterns and AE parameters as a result of solid particle
contamination in the lubricant. Schnabel et al. [38] studied
plastic deformation in rolling element bearings using AE
signatures at higher speed ranges. Their study concluded that
the dominance of transient force signals at higher speeds pro-
hibits particle contamination detection. Whereas under low-
speed conditions, plastic deformation is effectively captured
by AE. Martin-del-Campo et al. [15] continued the work by
Schnabel et al. [38] using a similar experimental setup and
investigated particle contamination in rolling element bearing
using the AE approach. A novel dictionary learning approach
was used in their study to detect particle contamination under
high speeds up to 3000 rpm. Lubricant starving conditions in
an angular contact bearing were predicted using a K-nearest
neighbors (K-NN) based classifier trained using an AE sig-
nature [39]. Konig et al. [40] monitored wear in a sliding
bearing system using AE sensor signals. Experiments were
carried out with the addition of 5 mg/l of ultra-fine dust (ISO-
MTD-A1) to the bearing lubricant. A deep neural network
(NN) was used to classify anomaly detection, particle con-
tamination in lubricant, and inadequate lubrication. Poddar
and Tandon [41], [42] studied solid particle contamination
using vibration and AE signatures in journal bearing. Sil-
ica particles of sizes 10, 30, 50, and 70 µm were used in
their experimentation. Results were analyzed based on AE
RMS, AE Energy, and AE spectrum amplitude parameters
at different concentrations of the contaminants and particle
size. In their study, AE frequency characterization for normal
and contaminant conditions was identified, and AE RMS
and AE energy and vibration parameters were observed to
increase with the particle’s size and concentration. Cavita-
tion, particle contamination, and oil starvation were studied
using AE signature features, and a Weighted K-NN model
was developed to predict fault conditions in a journal bearing.
Scheeren, Kaminski, and Pahlavan [43] proposed a novel
method for health monitoring in low-speed roller bearings
using AE signals. They introduced a waveform-similarity-
based clustering approach to effectively identify consistent
AE sources indicative of wear and localized defects in the
raceway. They observed increased degradation rates after

70,000 cycles on a run-to-failure experiment. Their findings
indicate that cross-correlation-based clustering techniques
are effective in isolating and identifying faults in low-speed
roller bearings.

Compared to vibration-based sensors, AE sensors can pre-
dict the failure modes much earlier. Limited studies were
made to study the lubricant contaminant conditions in rotat-
ing elements such as SRBs.

D. MOTOR CURRENT SIGNATURE ANALYSIS
Researchers have attempted to study bearing faults using
Motor Current Signature Analysis (MCSA). Onel et al. [44]
studied the outer raceway defect in the ball bearing using
motor current signature with the aid of Fast Fourier Trans-
form. Alwodai [45] studied the motor bearing using MCSA
and identified baseline, outer, and inner race fault conditions
using modulation signal bi-spectrum (MSB). An electrical
impedance technique was suggested by Maruyama et al. [46]
to monitor the lubricant level in deep-groove ball bearings.
In order to forecast the lubricant’s state, their study estimated
the lubricant film thickness and breakdown-ratio. Nakamura
and Mizuno [47] recently studied bearing faults using ML
approaches with features extracted from MCSA. MCSA
has numerous advantages, viz. a) non-invasive, b) does not
require special sensors, and c) is suitable for online monitor-
ing. Mainly, MCSA has been performed to study the faults in
induction motor bearings where grease is commonly used as
a lubrication medium. Motor current signatures were mainly
utilized to identify the faulty condition of ball bearings. There
is ample scope to use the motor current signature as a source
to identify the lubricant contaminant conditions in rotating
elements.

E. MACHINE LEARNING APPROACHES USING SENSOR
SIGNATURES
In a preventive maintenance activity, machines or compo-
nents are periodically monitored to identify early fault or
damage conditions. Maintenance will be carried out to repair
or replace the parts of the system when the fault condition is
identified. In some critical machines, continuous monitoring
of the machine or process is required. In such situations,
sensors-based monitoring is being adopted to identify failure
modes and remailing useful life of the component or system.
Computational methods and signal processing are needed to
interpret the sensor data and ascertain the machine’s current
state. Off-late, the ML approach is being increasingly imple-
mented for real-time monitoring by building an intelligent
model that will predict the machine’s condition based on
the input sensor signature. Intelligent models are commonly
built using ML algorithms to forecast fault conditions based
on statistical features acquired from the sensor signatures in
time, frequency, or time-frequency domain.

Adamsab [48] reviewed the use of ML algorithms
in machinery-bearing fault identification. Various ML
approaches, namely support vector machines (SVM),
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artificial neural networks (ANN), Decision Trees, K-NN,
relevance vector machines (RVM), and support vector regres-
sion (SVR), applied to bearing fault identification, have
been presented in their review. Studies have been made
to identify bearing fault conditions using various sensor
signature features [49], [53] using conventional and deep
learning approaches. Ni et al. [54] proposed a novel scheme
to estimate the remaining useful life for rolling element
bearings. A novel health indicator has been proposed by
them. A GRU network was employed in their study to
predict the RUL of bearing. Poddar and Tandon [42] used
AE signature as an input to a machine-learning algorithm
to classify cavitation, contamination, and oil-starvation in
a journal bearing. They accomplished this by applying ML
approaches like K-NN and Decision Trees. It was concluded
in their study that ML models can be used to develop online
monitoring systems for critical equipment. Wakiru et al. [55]
reviewed lubricant condition monitoring, focusing on various
traditional and intelligent methods for providingmaintenance
decision support for machinery maintenance. Recently, Rah-
man et al. [56] reviewed recent advancements in the appli-
cation of ML techniques in the oil and lubrication industry.
Sugumaran and Ramachandran [57] classified the fault con-
ditions in a roller bearing using SVM and PSVM approaches.
Senthilnathan et al. [58] conducted a comprehensive review
of recent advancements in fault diagnosis of SRBs. The
study discussed various decomposition methods for signal
processing and feature extraction, models for analysis of
oil-air lubrication and thermal, optimal strategies for sensor
placement, and the application of neural networks. They
emphasized the application of signal processing techniques
such as the discrete wavelet transform (DWT), specifically
leveraging Daubechies four with five-layer decomposition
for assessing bearing defect severity. Additionally, Orthog-
onal Fuzzy Neighborhood Discriminant (OFND) features
were also explored. Convolutional neural networks (CNN),
Bayesian neural networks (BNN), and probabilistic neural
networks (PNN) were highlighted as the most popular neural
network techniques. Moreover, modified CNN architectures
were found to provide high accuracy and robustness, even in
noisy conditions.

Sahu et al. [59] studied the solid particle contamination
in a roller bearing using a vibration signature. Their study
used Silica particles of size 37µm to contaminate the lubri-
cant. Deep learning techniques and SVMs were employed to
forecast the conditions of lubricant oil. Their investigation
concluded that ML algorithms could reasonably predict the
presence of solid particle contaminants in a rolling element
bearing. It is possible to apply the suggested methodology to
other kinds of bearings, including cylindrical, self-aligning,
and tapered bearings. Zhao et al. [60] investigated fault diag-
nosis methods in rolling element bearings, with a particular
focus on oil debris monitoring and abnormal wear detection.
They introduced nonferrous contaminants of high hardness in
the lubrication to accelerate pitting and spalling in the rolling
bearing-rotor test rig. They found that rather than relying

solely on vibration signals, incorporating synchronous tem-
perature and oil debris monitoring data helped improve the
accuracy of the bearing health assessment. They employed
various ML algorithms, such as SVM, KNN, and Decision
Tree, which demonstrated good accuracy by incorporating oil
debris-based and vibration-based features.

F. SUMMARY OF LITERATURE REVIEW
Based on existing literature, it is observed that solid particle
contaminations in lubricants reduce the life of the bearing
due to fatigue and abrasive wear [1], [2], [3], [4], [6], [7],
[8], [9], [10], [11], [12]. Most of the studies in lubrica-
tion contamination detection are focused on offline methods.
The use of AI and ML-based techniques in predicting the
lubricant conditions is limited in the literature. Developing
AI-based techniques is vital for lubricant condition moni-
toring due to the emergence of Industry 4.0. The literature
indicates that while existing studies have investigated ML
approaches for detecting particle contamination and predict-
ing the lubricant condition in bearings, many of the stud-
ies either employed a single sensor modality or focused on
a limited range of particle sizes and concentrations. This
potentially limits the robustness and generalization capabil-
ities of the developed ML models. Off-late, sensors have
been used to predict the lubricant contamination using the
statistical parameters of vibration and AE signature. Some
studies use ML models trained on the individual features of
vibration, sound, and AE to predict the lubricant conditions.
The feature-level fusion approach utilizing the multiple sen-
sors’ signature features may improve the reliability of ML
models.

In order to predict lubricant conditions in SRBs, the current
study focuses on developing ML models that use sound,
vibration, and AE signature features separately and simul-
taneously by fusing the feature data at the feature level,
thereby combining the strengths of the three sensor modali-
ties. It investigates a range of solid particle contaminant sizes
between 5µm and 100µm, with different concentrations and
operating speeds. Few studies in the literature have inves-
tigated lubricant condition prediction for SRBs using ML
approaches while considering different particle sizes, con-
centrations, and operating speeds. The present study seeks to
address this gap and contributes to the development of robust
ML models capable of predicting SRB lubricant conditions
across a wide range of operating scenarios. The proposed
models can be implemented to achieve CBM strategies for
industrial practice.

III. OBJECTIVES AND METHODOLOGY
A. OBJECTIVES
Based on the thorough literature review, research gaps were
identified. The objectives are framed by carefully studying
the research gaps. The methodology is defined based on the
objectives of this project. The important research objectives
are listed as follows:
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• Establish an experimental setup to capture the AE, vibra-
tion, and sound signatures of lubricant conditions in an
SRB with varying solid particle contaminant sizes and
concentrations.

• Acquire sensor signatures of various lubricant condi-
tions, extract statistical features, and establish a statisti-
cal correlation between lubricant conditions and sensor
signature features.

• Build MLmodels for predicting the lubricant conditions
and improve the prediction ability of MLmodels by fus-
ing the sound, AE, and vibration features at the feature
level.

B. METHODOLOGY
An experimental setup was established to acquire signatures
of AE, vibration, and sound from the various conditions
of lubricants in an SRB with varied speed conditions. The
vibration and sound signals are acquired using a free-field-
array microphone and a tri-axial accelerometer, respectively.
AE signature is captured with the aid of a piezoelectric-AE
sensor. The ‘Vib-pilot’ Data Acquisition System (DAS) is
used to acquire and digitize the sound and vibration signa-
tures. PC1-2muti-channel AE board and ‘‘AE-Win’’ software
are used to generate AE waveforms, extract features, and
analyze AE data. Fig. 1 illustrates the methodology used
in this investigation to forecast lubricant contamination in a
bearing.

FIGURE 1. Methodology.

C. EXPERIMENTAL SETUP AND DATA ACQUISITION
The experimental setup established in this study is shown
in Figures 2 and 3. Fig. 2 shows the line diagram of the
experimental setup. A photograph of the experimental setup
is given in Fig. 3. The bearing of specification 21308E (SKF)
has been used in this study for lubricant condition monitoring
by operating the bearing with and without lubricant contami-
nation. The bearing has an outside diameter of 90 mm, a bore
diameter of 40 mm, and a width of 23 mm. The radial internal
clearance of SRB with the cylindrical base is 100µm (max).
The bearing’s static and dynamic loading ratings are 108kN

and 107kN, respectively. The SRB’s outer ring provides four
lubrication holes for the recirculation of the lubricant. In this
investigation, lubricant oil ‘LMTH68’, which has an oper-
ating temperature range of −20 ◦C to 100◦C, was selected.
Base oil viscosity (ISO-VG) is 68mm3/s at 40◦C and 9mm2/s
at 100◦C. The split plumber block supports the bearing.

D. CONTAMINANT SOLID PARTICLE SIZE AND
CONCENTRATION
Experiments are carried out by contaminating the lubricant
with ‘Fe’ and ‘SiC’ particles. Iron (Fe) particles of size 5,
10, 37, 74, and 100 µm (P1, P2, P3, P4, and P5) are chosen
for the experiment. SiC particle of size 10µm is chosen.
Experiments are conducted with three different levels of solid
particle concentrations, viz. 5%, 10%, and 15% (C1, C2, and
C3) at different size of solid particles. The details are shown
in Table 1. The total oil required for a single test condition
is around 25ml. Fresh oil is mixed with solid particles of the
required size and concentration for every test condition for
the experimentation. The bearing is operated at two different
speeds, 800 and 1200 rpm.

A total of thirty-two lubricant conditions (LC) are estab-
lished for conducting the experiments. The details are pro-
vided in Table 2. Experiments are carried out for 100 sec
for every condition. AE, vibration, and sound signature data
are acquired by fixing the set sampling rate using the DAQ
system. The sensor signals are captured after running the
experimental setup for a fewminutes to stabilize the lubricant
condition. The bearing is flushed with fresh lubricant to
remove the contaminants after every experiment and relubri-
cated with the required quantity of lubricant.

TABLE 1. Contaminant particle concentration.

IV. SENSOR SIGNATURE ANALYSIS AND FEATURE
EXTRACTION
A. DATA ACQUISITION
In this study, experiments are carried out with thirty-two
different test conditions. A triaxial 3273A2 accelerometer is
used in this study to capture vibration signatures. Vibration
signature is acquired with a sampling rate of 8192 data points
per second. Experiments were carried out at every lubrication
condition for 100 sec. A Micro30D AE sensor is used to
acquire the AE for different lubricant conditions during the
experimentation. The operating frequency range of the AE
sensor is 150-400 KHz. A sampling rate of 1024 data per hit
is chosen to acquire the data. The total number of data points
acquired per second is 10,240. Experiments were carried out
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FIGURE 2. Schematic line diagram of the experimental setup.

FIGURE 3. Experimental setup photograph.

at every lubrication condition for 100 sec. In order to acquire
the sound signature for various lubricant conditions, a GRAS
40PH-10 CCP Free-field ArrayMicrophone was employed in
this study. The sound signature is acquired with a sampling
rate of 8192 data points per second. A ‘Smart Office’ analysis
software analyses the vibration and sound data. An acoustic
emission sensor is also connected to the bearing housing.
AE data the sensor captures is sent to the pre-amplifier,
and a dedicated AE-DAQ device acquires the signature.
An ‘AEWin’ software is used to analyze the data further.
A threshold of 40dB is fixed for AE data acquisition. The data
is collected at a fixed waveform sampling rate of 1 MSPS.
AE, vibration, and sound measurement chain is illustrated in
Fig. 4.

B. SENSOR SIGNATURE STATISTICS
Time domain RMS data were plotted and shown separately
for bearings operated at 800 rpm and 1300 rpm for all

lubricant conditions considered in this study. RMS of signa-
tures were computed and plotted for 80 seconds. The sensor
signatures of the bearing operated with fresh lubricant with-
out any solid particle contamination are shown in Fig. 5. Con-
ditions LC1 and LC2 indicate that the bearing operated with
speeds of 800 and 1300 rpm, respectively. The signatures are
unique for low-speed (LC1) and high-speed (LC2) conditions
in the case of vibration and AE signatures. It is difficult to
differentiate the LC1 And LC2 conditions with ease in the
case of microphone signatures. The mean statistic of RMS is
computed to understand the behavior of sensor signatures at
different speed conditions. In the case of AE, for the LC1
condition, the mean is 0.34, and for the LC2 condition is
0.39. for sound signature, the mean value of RMS is 37.40 for
LC1 and 38.20 for LC2. For vibration signature, the mean
RMS for LC1 and LC2 are 3.57 and 5.12, respectively. It can
be concluded that speed conditions could be identified by
computing sensor signature statistical parameters when the
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FIGURE 4. AE, Vibration, and Sound signature measurement chain.

FIGURE 5. Sound, vibration, and AE signatures of Lubricant Conditions (LC1 and LC2)- Fresh lubricant without solid particle contamination.
Note: LC1- SRB operated under 800 rpm using fresh lubricant without any solid particle contamination; LC2- SRB operated under 1300 rpm using
fresh lubricant without any solid particle contamination.

bearing is operated under lubricant without any contamina-
tion.

Signature analysis is carried out for lubricant conditions
(LC3 – LC32) with solid particle contamination. Fig. 6 dis-
plays the sensor signature patterns for lubricant conditions
LC3–LC32. RMS signatures of lubricant have unique pat-
terns for every lubricant condition. It is observed that in the
case of sound and vibration signatures, it is challenging to
differentiate conditions with ease. In AE signature plots, it is
understood that different lubrication conditions have unique
signatures and can be distinguished without much difficulty.
It is noted that 32 conditions were established with good
lubricant and contaminated lubricant by inducing solid par-
ticle contamination with different sizes and concentrations.
Sensor signatures are investigated using RMS mean plots to
gain additional insight into the lubricant conditions.

To understand the variation in the sensor signal due to the
increase in the size of the solid particles, mean RMS values

are plotted against particle size (P1, P2, P3, P4, and P5). Sen-
sor signature (RMS) correlation with solid particle concen-
tration for different particle sizes and speed of operation are
shown in Fig. 7. Plots are made separately for solid particle
concentration levels C1, C2, and C3 by operating the bearing
under low speed (LS) and high speed (HS). It is observed
that considering sound, vibration, and AE signatures, the
RMS amplitude increases with the increase in concentration
level of solid particle contamination in lubricant for almost
all cases. RMS amplitude of high-speed conditions is higher
compared to low-speed conditions for almost all particle
sizes. An increase in RMS amplitude is also noticed when
there is an increase in particle size for sound and vibration
sensor signatures. In the case of AE signature, the amplitude
of AE is less when the particle of size P1 and increases
slightly when the particle size increases. The AE amplitude
is reduced with the higher particle size of P5. AE emissions
are due to high-frequency excitations due to the interaction of
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TABLE 2. Lubricant conditions.

solid particles with the bearing surface. Since AE is recorded
by the sensors between 150 and 400 KHz in frequency,
external disturbances like vibration and sound will not be
impacted.

It is observed that conditions, viz., the speed of bearing
operation, particle size, and its concentration in lubricants,
have unique signature patterns. Having the time domain sig-
nature and simple statistics will not be adequate to assess
the lubricant’s condition in real-time; additional analysis of
the signature is needed. Time domain signature and simple
RMS statistics provide an indication that there is an apparent
variation in the signature pattern and its statistics pertaining
to fresh lubricant and lubricant contaminated with solid par-
ticles. In this study, ML models are developed to predict the
lubricant conditions with five different particle sizes, three
concentration levels, and two different speeds of operation of
SRB using statical features extracted from the time domain
signals of sound, vibration, and AE.

C. FEATURE EXTRACTION AND SELECTION
A feature in ML and pattern recognition is a quantifiable
attribute of a sensor signature. The effectiveness of pat-
tern recognition, classification, and regression tasks depends
critically on the extraction and selection of independent,
discriminating, and informative features. In this work, sta-
tistical characteristics are taken from the vibration, sound,

and AE sensor signatures of various lubricant conditions.
To train ML algorithms features with important infor-
mation about the process conditions are chosen. Trained
ML models are used to predict the lubricant conditions.
The statistical features are extracted by further process-
ing of the time domain data that was collected from the
sensors of 32 lubricant conditions. From the sound and
vibration features, a total of eleven features are extracted:
a)variance, b)kurtosis, c)skewness, d)mean, e)sum, f)median,
g)minimum, h)maximum, i)mode, j)standard-deviation, and
k)RMS. Thirteen characteristic features are extracted from
the signature of the AE sensor: a)rise, b)count, c)amplitude,
d)amplitude-frequency, e)RMS, f)ASL, g)PCNTS, h)rise-
frequency, i)I-frequency, j)signal-strength, k)absolute energy,
l)C-frequency, and m)P-frequency.

Feature selection improves the performance of ML mod-
els by selecting the most significant features and eliminat-
ing redundant and irrelevant features. Feature selection also
reduces the computational complexity of ML models since
training and testing times are reduced. A Relief algorithm
proposed by Kira and Rendell [61] has been implemented in
this study to select the best features for training and testing
the ML models. Feature score is computed for each fea-
ture, ranking is done, and top-scoring features are selected
for building the ML model. From the sound signal, eight
features, namely mean, sum, maximum, skewness, kurtosis,
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FIGURE 6. Sensor signature patterns of Lubricant Conditions (LC3 to LC32).
Note: Lubricant Conditions (LC): LC3, LC5, LC7, LC9, LC11, LC13, LC15, LC17, LC19, LC21, LC23, LC25, LC27, LC29, and LC31 – SRB operated with
1300 rpm with varied solid particle size (P1, P2, P3 & P4) and concentration (C1, C2, and C3) in lubricant.

standard deviation, variance, and RMS features, are selected.
Features viz., mean minimum, maximum, standard devia-
tion, kurtosis, skewness, and RMS were selected from the
vibration features. From the AE signature, six features, viz.
count, RMS, signal strength, absolute energy, P-frequency,
and C-frequency, are selected. Features extracted from the
raw signatures are used to train the ML algorithms to predict
the lubricant conditions. CART, bagged tree, and SVMmeth-
ods are used to build the statistical models using the features
of sound, vibration, and AE.

D. SENSOR SIGNATURE FEATURE FUSION
In this study, multiple sensors, namely microphones,
accelerometers, and piezoelectric sensors, are used to capture
the sound, vibration, and AE signatures of lubricant condi-
tions. It is observed from the literature that the reliability
of ML models can be improved by training the ML models
using fused features of multiple sensor signatures. The basic
idea of fusion methodology is to use the strength of each
sensor and to build a robust and reliable model [62]. There
are different approaches for sensor fusion, namely a) data
level fusion, b) feature level fusion, c) decision level fusion,
and d) hierarchical sensor level fusion. In this study, we have
adopted a feature-level future approach to build the ML
model. The methodology is shown in Fig. 8. Fused feature
sets of sound, vibration, and AE are used to train the CART,
ensemble (bagged tree), and SVM algorithms separately, and
their performances are compared.

V. MACHINE LEARNING MODELS FOR LUBRICANT
CONDITION PREDICTION
Sensor signature features of 32 lubricant conditions are used
to train ML algorithms. In this study, the lubricant con-
ditions are predicted using a)CART, b)Bagged-Tree, and
c)SVM algorithms. For every lubricant condition, 1024 data
points are used to train the ML algorithms. A 10-fold cross-
validation is used in this study to train and test the ML
models with the objective of reducing bias and variance.
To comprehend the prediction capacity of the classifiers
taken into consideration in this study, performance measures
such as a) classification-accuracy, b)sensitivity, c)specificity,
d)precision, e)recall, f)Kappa, g) MCC and f)F-Measure are
computed.

A. DECISION TREE
Decision Tree algorithms are ML algorithms for making pre-
dictions. Decision Trees supervised learning models and tree
structures are established to make predictions [63]. Different
decision tree algorithms used for classifying the data include
ID3, C4,5, and CART. CART is one of the approaches used
to build the decision trees for prediction. CART algorithms
are used for solving classification and regression problems.
In the CART algorithm, the training data, i.e., feature data
points of the sensor’s signatures, are fed into the root node,
and the node is split into two child nodes, considering the best
attribute and threshold value. The child nodes further split
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FIGURE 7. Sensor signature (RMS) correlation with solid particle concentration for different particle sizes and speed of operation.
Note: Lubricant Conditions (LC): LC4, LC6, LC8, LC10, LC12, LC14, LC16, LC18, LC20, LC22, LC24, LC26, LC28, LC30, and LC32 – SRB operated
with 800 rpm with varied solid particle size (P1, P2, P3 & P4) and concentration (C1, C2, and C3) in lubricant.

FIGURE 8. Feature-level fusion methodology.

again based on the attribute and threshold until the last pure
subset, called the leaf node, is found on the growing tree [64].
Three criteria are used in this study to split the nodes, includ-
ing a)maximum-deviance, b)towing, and c)Gini. With a value
ranging from 0 to 1, the Gini Index divides the node according
to the likelihood that a randomly selected variable will be
classified incorrectly. The Gini-index or Gini- impurity for a
node ’t’ is computed using equation (1). The Gini index value
of ’0’ indicates all the data points belong to only one class;

a value of ’1’ indicates the input data is randomly distributed
across all the conditions.

Gini Impurityt = 1 −

∑n

i=1
(Pi)2 (1)

where ’Pi’ is the probability of an instance belonging to a
particular condition and ’n’ is the number of conditions.

For the ‘left (l)’ and ‘right (r)’ descendant nodes, the Gini
impurity is computed using equations (2) and (3).

Gini Impurityl = 1 −

∑n

i=1

(∣∣Pi|l )2 (2)

Gini Impurityr = 1 −

∑n

i=1

(∣∣Pi|r )2 (3)

where, Pn|l and Pn|r are the proportions of nth class on the
‘left’ and ‘right’ descendent node, respectively.
The Gini criterion for goodness of split (GOF) used for

node split is given in equation (4).

GOFGini = Gini Impurityt − PlGini Impurityl
− PrGini Impurityr (4)

where ’Pl’ and ’Pr ’ are the percentages of instances on ‘left’
and ‘right’ descendent nodes, respectively.

Towing rule has been implemented in CART to mea-
sure the change in the probability that a class is in the
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left-descendant node rather than the right-descendant node.
The towing criterion computes the best splitting value, which
maximizes the function given in equation (5).

Towing function =
PlPr
4

[∑n

i=1

∣∣Pi|l − Pi|r
∣∣]2 (5)

where ’Pl’ and ’Pr ’ are the percentages of instances on ‘left’
and ‘right’ descendent nodes, respectively. The ‘PlPr ’ is
implemented for favoring even split.

Maximum Deviance Reduction (MDR) criteria is another
essential parameter used to define the goodness of split,
indicating how well the tree is reproducing the conditional
distribution of the response variable for each possible profile.
It measures the node impurity, indicating the deviations of the
predicted value by the model from the target. The deviance
can be expressed as shown in equation (6).

Deviance measure = −

∑
P (i) log 2P (i) (6)

In this study, the CART algorithm is implemented to pre-
dict the lubricant conditions in an SRB. Three criteria, namely
Gini, Towing, and MDR criteria, are used as split criteria at
nodes. Classification accuracies of CART using different split
criteria are compared.

B. ENSEMBLE METHODS
The common issues with CART algorithms include overfit-
ting, high variance, and low bias. When the tree accounts
for a lot of the noise in the data and produces an erroneous
conclusion, it is said to be overfit. A slight variation in the
data can produce a very significant variation in the prediction,
which will affect the outcome’s stability. The bias of a com-
plicated decision tree is often low. The model finds it highly
challenging to include any fresh data as a result.

Meta models, known as ensemble methods, integrate mul-
tiple machine-learning techniques into a single predictive
model in order to reduce variance (bagging), boost bias
(boosting), or enhance predictions (stacking). One approach
in the ensemble makes use of the sequential method, cap-
italizing on the mutual dependence of the base learners.
In the parallel ensemble approach, the overall classifier per-
formance can be boosted by weighing previously mislabelled
examples with higher weight. The primary motivation for
parallel methods is to take advantage of the independence
between base learners. The ensembles improve the accuracy
of prediction by combining many ML algorithms. In this
study, the bagged decision tree approach is used to predict
the lubricant solid particle contamination in SRB. Bagged
trees are a well-known technique for enhancing the prediction
power of a decision tree, which accesses the insight of many
decision-tree models [65]. The bagging is a two-step process,
viz. a) Bootstrapping and Training and b) Aggregation. The
bagging process used in this study for predicting the solid
particle lubricant condition in an SRB is shown in Fig. 9.
Step 1: Bootstrap and Training
a) Drawing a sample from the original training dataset with

a replacement

FIGURE 9. Bagging process.

b) Train the decision treemodels using the sampled dataset.
c) Repeat Steps 1 and 2 to the set value.
Step 2: Aggregate
a) Generate predictions from each of the trees separately.
b) Aggregate the predictions together to get the final pre-

diction.

C. SUPPORT VECTOR MACHINE
Supervised algorithms such as Support Vector Machine
(SVM) are employed to solve classification and regression
problems [66]. SVM performs data transformation based on
the selected kernel function. Primarily, SVM maximizes the
separation boundaries between the classes. The separation
of classes is based on kernel functions, namely a) linear, b)
polynomial, c) Gaussian, d) Radian Basic Function, and e)
Sigmoid. SVM supports binary and multi-class classifica-
tion. This study looks at a multi-class classification problem
with the goal of categorizing 32 lubricant conditions using
a cubic kernel function. For multi-class classification, there
are two approaches, namely a) the one-to-one approach and
b) the one-to-rest approach. The multi-class problem is split
up into several binary classification problems in a ‘one-to-
one’ method. For every pair of classes, a binary classifier is
employed. The no. of SVMs used in the one-to-one approach
is given in equation (7). In the one-to-rest approach, one
class is compared with the rest of the class data, and ‘n’ no.
of SVMs will be used for prediction. All SVMs will forecast
whether a given condition or class belongs to one of the ‘n’
classes.

No. of SVMs =
n (n− 1)

2
(7)

where ‘n’ is the no. of conditions.
The ‘one-to-rest’ approach is used in this study to clas-

sify lubricant condition data extracted from the sensors into
32 classes. It should be mentioned that the ‘one-to-rest’
approach has less computational complexity than the ‘one-to-
one’ approach. The SVM method uses hyperplanes to divide
the data into its respective classes. If the data set is non-
linear, it is difficult for the algorithm to classify the data using
a linear hyperplane. The data generated using the sound,
vibration, and AE are non-stationary and non-linear. The
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important hyperparameter of SVM is kernels. Kernel tricking
is carried out in SVM to separate the non-linear data into
linearly separable. There are various kernel methods used
in SVM, including linear, polynomial, sigmoidal, and radial
basis functions.

The linear kernel for two vectors x and y representing data
sets ‘A’ and ‘B’ can be expressed as a dot product of vectors
x and y. The linear kernel is shown in equation (8). Liner
kernel is one of the fastest implementations in SVM.

K (x, y) =

(
xT y

)
(8)

The polynomial kernel is defined as shown in equation (9).

K (x, y) =

(
γ.xT y+ c

)d
(9)

where γ and c are free parameters; γ > 0 and c ≥ 0; d is the
degree of the polynomial.

Gaussian kernel is an example of a Radial Basis Function
(RBF). The RBF kernel is defined as shown in equation (10).
One of the most critical parameters affecting SVM perfor-
mance is ‘σ ’. The euclidean-distance between 2 feature vec-
tors is defined as

∥∥x − x ′
∥∥.

K (x, y) = e

(
−

∥x−y∥2

2σ2

)
(10)

An equivalent definition using the parameter ‘σ ’,
The parameter ‘γ ’ is defined as 1

/
2σ 2

The RBF kernel can be expressed as shown in
equation (11).

K (x, y) = e
(
−γ ∥x−y∥2

)
(11)

The sigmoidal kernel is like the sigmoidal function
used in logistic regression, and the definition is shown in
equation (12).

K (x, y) = tanh
(
γ.xT y+ c

)
(12)

While implementing SVM for the prediction type of prob-
lems, the hyperparameters need to be appropriately tuned to
improve their classification ability. To classify the lubricant
solid particle contamination conditions in an SRB, we have
implemented an SVM algorithmwith a cubic kernel function.

D. PERFORMANCE MEASURES
ML models are evaluated using various performance mea-
sures. Some of the metrics used for evaluation include accu-
racy, confusion matrix, receiver operating characteristics,
precision, recall, F1 score, kappa statistics, and Matthew’s
correlation coefficient [67]. Researchers rarely use any one
of the matrices separately to access the model. It is suggested
to assess the no. of matrices and weigh up the trade-offs to
decide on the prediction ability of models.

Confusion matrix is another crucial metric to access the
model in which way its prediction ability is poor. These
metrics, namely true-positive, false-positive, true-negative,
and false-negative, are used to study the prediction ability

of models. The true-positive value indicates that no. of the
positive observed instances is correctly classified as positive
instances by the model. The number of positive observed
instances that are incorrectly classified as positive is termed
as false-positive instances. In similar lines, true-negative and
false-negative instances are defined. The accuracy value of
the model is computed as shown in equation (13).

Accuracy =
TP + TN

TP + FP + TN + FN
(13)

Receiver order characteristics curves of a model plot the
accuracy of models, and it is best suited for assessing the
model without an imbalance of data. To arrive at the model
performance, the area under the curve is computed by plotting
the false-positive rate vs true-positive rate. Precision is a mea-
sure to assess how well the ML model is correctly predicting
the positive classes. Precision is computed using TPandTN
Instances as given in equation (14).

Precision =
TP

TP + TN
(14)

Recall or sensitivity of themodel indicates the ability of the
model to predict all the positive observations of the dataset.
Recall is computed as shown in equation (15). The percentage
of fault events that the classifier correctly detects is referred
to as specificity and is calculated using equation (16).
The F1 score is the harmonic mean of ‘recall’ and ‘preci-

sion’. TheF1 score takes a value between ‘0’ and ‘1’. Amodel
with a value of ‘1’ indicates that the models predict with
perfect ‘precision’ and ‘recall’. The F1 score is computed
using the formula as shown in Equation (17).

Recall or Sensitivity =
TP

TP + FN
(15)

Specificity =
TN

TN + FP
(16)

F1Score = 2 ×

[
Precision× Recall
Precision+ Recall

]
(17)

Kappa statistics compares the observed and expected accu-
racy. The imbalance in the dataset may be overcome by using
the kappa statistics. It computes the kappa value based on
no. of instances in each class. Based on the frequency of
each class, the observations are taken at random. The kappa
statistics are computed using equation (18). Kappa statistics
return a value maximum of ‘1’. The model is nearly perfectly
in agreement when the kappa value falls between 0.81 and
1.0. The kappa value between 0.61 and 0.80 shows a high
degree of agreement. A moderate agreement can be observed
for a kappa value between 0.41-0.60. A kappa statistic below
‘0.2’ has poor or no agreement.

Kappa value=
[
Obserbed accuracy− Expected Accuracy

1−Expected Accuracy

]
(18)

Matthews Correlation Coefficient (MCC) is another mea-
sure to evaluate the ML models. This measure produces
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a score in the interval [+1, −1]. The value of ‘−1’ indi-
cates the model as a perfect mis-classifier and ‘+1’ will
be a perfect classifier. The prediction receives a high score
from the MCC only if it performs well across all four cate-
gories, viz. TP,FN ,TN , and FP. MCC is computed using the
equation (19).

MCC =
TP.TN − FP.FN

√
(TP + FP) . (TP + FN ) . (TN + FP) . (TN + FN )

(19)

The performance of the classifiers taken into consideration
in this study has been evaluated using all the metrics as
mentioned earlier.

VI. RESULTS AND DISCUSSIONS
A. PERFORMANCE OF ML MODELS TRAINED SEPARATELY
WITH SOUND, VIBRATION, AND AE SIGNATURE FEATURES
The performance of ML algorithms trained and tested sep-
arately with sound, vibration, and AE signature features are
shown in Table 3, Table 4, and Table 5, respectively. In the
CART algorithm, three split criteria, namely, Gini, Towing,
and MDR criteria are used to study the performance of the
CART algorithm. The maximum no. of splits considered is
100. Along with the CART algorithm, Bagged Tree and SVM
trained with cubic kernel function are used in this study.
For the training bagged tree, the number of splits consid-
ered is 32767, and the number of base learners utilized is
40. In a multi-class SVM model, the box constraint level
has been chosen as one. The data associated with each test
case is categorized using the ‘‘One-to-Rest’’ method. The
ML algorithms are trained and tested using the following
sound and vibration features: a)mean, b)median, c)mode,
d)sum, e)minimum, f)maximum, g)skewness, h)kurtosis,
i)standard-deviation, j)variance, and k)RMS features. AE fea-
tures, namely a)rise, b)count, c)RMS, d)ASL, e)PCNTS,
f)R-FRQ, g)I-FRQ, h)signal-strength, i)absolute-energy, and
j)C-Frequency are used to train and test the ML models.
The ML algorithm’s prediction ability for the lubrication
conditions is assessed using performancemeasures, including
recall, F-measure, sensitivity, specificity, Kappa, MCC, and
accuracy.

Based on the findings in Table 3, the ML models trained
solely on sound signature features exhibited a modest ability
to predict the lubricant condition in SRB with an accuracy of
around 61 - 65%. The SVM and Bagged tree models were
observed to have marginally higher accuracies compared to
the CART models. The Kappa values suggested a substan-
tial agreement between the predicted and actual lubricant
conditions. The MCC, however, indicated only a moderate
correlation between the predicted and actual lubricant condi-
tions, with the SVMmodel achieving the highest MCC of just
0.52. The sensitivity values suggest a reasonably high capa-
bility to correctly identify true instances of the presence of
solid particle contamination. Conversely, the models exhib-
ited only a moderate ability to correctly identify true negative
instances, i.e., the absence of solid particle contamination.

TABLE 3. Performance Of Ml algorithms trained using sound signature
features.

The precision, ranging between 0.68 and 0.70, suggests only a
moderate ability to correctly predict the presence of solid par-
ticle contamination from among the positive classifications.
All models exhibited similar levels of F-Measure between
0.76 and 0.78, indicating a similar balance between precision
and recall. It is noted that the split criteria did not significantly
influence the prediction ability of the CART models, as evi-
denced by their comparable performance. The ‘Towing’ cri-
teria provided only a slight performance improvement while
the ‘MDR’ criteria provided slightly worse results than the
rest. The SVM model was observed to be slightly better than
the Bagged Treemodel in terms of sensitivity, F-measure, and
MCC.

TABLE 4. Performance Of Ml algorithms trained using vibration signature
features.

Similar to the previous discussion on sound signature-
based models, the ML models trained solely on vibration
signature features also exhibited a modest ability to pre-
dict the lubricant condition, as indicated by the results in
Table 4. The Bagged Tree model was observed to provide the
highest accuracy of 65%, with the SVM model performing
only slightly worse at 64%. The CART models performed
worse with 58-61% accuracy. The split criteria once again
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had an insignificant influence on the performance of the
CART models, with the ‘Towing’ and ‘MDR’ spilt criterion
providing slightly better accuracy than ‘Gini’. The Kappa
also indicated substantial agreement between the predicted
and actual lubricant conditions, with the Bagged Tree model
exhibiting the highest Kappa of 0.79. The MCC indicated
that the models exhibited moderate performance, with the
Bagged Tree model achieving the highest MCC of 0.61. The
models were observed to have a high capability to correctly
identify true instances of the presence of solid particle con-
tamination, as indicated by their high sensitivity, with the
Bagged Tree model demonstrating the highest sensitivity of
0.94. However, similar to the case with the sound signature-
based models, the ability of the models to correctly identify
true negative instances was observed to be moderate, as indi-
cated by their specificities. The models exhibited a moder-
ate ability to correctly predict the presence of solid particle
contamination from among the positive classifications, with
a precision between 0.68 and 0.72. The Bagged Tree model
had the highest F-Measure of 0.82, indicating a better bal-
ance between precision and sensitivity compared to the other
models.

Overall, when trained solely on sound signature features,
the SVM and Bagged Tree models generally outperform
the CART models by a small margin. Meanwhile, when
trained solely on vibration signature features, the Bagged
Tree model outperformed all other models across all the
performance measures considered. The ML models trained
solely on vibration signature or sound signature features
exhibited the highest classification accuracy of around 65%.
It is observed that the models trained on vibration sig-
nature features generally performed relatively better than
those trained on sound signature features across most per-
formance measures such as sensitivity, precision, F-Measure,
Kappa, and MCC. However, the overall accuracy and perfor-
mance of all the models were observed to be relatively mod-
est, suggesting that sound signatures or vibration signatures
alone may be insufficient for accurate prediction of lubricant
conditions.

TABLE 5. Performance Of Ml algorithms trained using AE signature
features.

The performance measures of theMLmodels trained using
the AE features are shown in Table 5. The results indicate
that, in comparison to models developed using sound and
vibration features, models developed using AE features are
better at predicting the solid particle lubricant contamination
conditions in SRB. In particular, the bagged tree ensemble
and SVM models exhibit very good performance across all
metrics considered, with accuracy above 93%, near-perfect
sensitivity, high specificity, precision, F-Measure, and MCC,
and very high Kappa. The near-perfect sensitivity indicates
that the models are highly capable of identifying nearly all
instances of solid particle contamination. Moreover, the high
precision and specificity further emphasize their reliability
in correctly identifying lubricant conditions and minimizing
false positives. The high F-Measure demonstrates that the
models exhibit a good balance between precision and recall.
The Kappa Statistics indicate an almost perfect agreement
between the predicted and actual lubricant conditions, and
the MCC values also indicate a very high performance across
all categories, considering true positives, false negatives, true
negatives, and false positives. Once again, the split criteria
did not significantly influence the performance of the CART
models.

The Bagged Tree and SVM models outperformed the
CART models regardless of the signature features on which
they were trained. This may be attributed to the capability
of these models to handle noise and represent the complex
non-linear relationships between the features more effec-
tively. The Bagged Tree model, employing the ensemble
method, combines the predictions of multiple base learners,
which reduce variance and overfitting to improve the over-
all performance of the model. Meanwhile, the SVM model
maps the features into a higher-dimensional space using
the cubic kernel function to determine the optimal hyper-
planes while also reducing overfitting, resulting in better
generalization.

The superior performance of the models trained using
the AE signature features compared to the sound and
vibration-based models may be attributed to the fundamental
differences in the frequency ranges and sensitivity of the
sensors. The interaction of solid contaminant particles with
the bearing surfaces generates high-frequency acoustic waves
that are effectively captured by the AE sensor, as evident
from the unique AE signature patterns observed in Fig. 4
for different lubricant conditions. Particularly, the AE sensors
capture high-frequency acoustic emission signatures in the
range of 150-400 kHz, which are more sensitive to changes
in lubricant conditions caused by solid particle contamina-
tion. Furthermore, AE sensors amplify the high-frequency
AE signals, which may be attenuated or masked by noise
in lower frequency ranges. In contrast, sound and vibration
sensors, operating at lower frequencies, may be inadequate
in detecting subtle changes in lubricant conditions. The ML
models built using AE sensors features effectively capture
a)variations in particle size, b)solid particle concentration,
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TABLE 6. Comparative performance of Ml algorithms trained with sensor signature features separately and combinedly using feature level fusion
method.

and c)speed of operation of bearing and predict the lubricant
conditions with reasonable accuracy.

B. PERFORMANCE OF ML ALGORITHMS TRAINED WITH
FUSED FEATURES OF SOUND, VIBRATION, AND AE
SIGNATURES
MLmodels have been trainedwith the fusion of all sensor sig-
nal features at the feature level in an attempt to increase their
prediction accuracy and reliability. The approach involved
combining selected features from the sound, AE, and vibra-
tion sensor signatures into a shared database. A total of 34 fea-
tures, comprising 11 features each from sound and vibration
and 12 from AE, are utilized to train the ML models for pre-
dicting 32 different lubricant conditions. The study employed
CART, Bagged Tree, and Cubic Kernel SVM algorithms,
which were trained and tested using 10-fold cross-validation.
The performances of theMLmodels were evaluated using the
metrics employed prior, viz., accuracy, sensitivity, specificity,
precision, recall, F-Measure, kappa, and MCC. The feature
data points were extracted from 100 seconds of operation for
each condition, resulting in a total of 892,160 data points for
training the ML algorithms.

The performance of theML algorithms using the fused fea-
ture data comprising all sensor signature features is presented
in Table 6. The best-performing models trained separately
on vibration, sound, and AE features are compared with
the models trained using the feature-level fusion approach.
The results demonstrate that the fusion models using Bagged
Tree, SVM, and CART algorithms outperform the models
trained separately on individual sensor signature features
by a wide margin. Notably, the Bagged Tree, SVM, and
CART models achieved high classification accuracies of
99%, 98%, and 97%, respectively, in predicting lubricant
conditions in SRB. The split criteria had no significant influ-
ence on the performance of the CART models. The perfect
sensitivity (100%) and near-perfect specificity (above 97%)
of the models trained using the feature-level fusion approach

demonstrate their outstanding capability to correctly identify
all instances of solid particle contamination while minimiz-
ing false positives. The high precision (above 97%) and
F-Measure values (above 98%) further indicate the reliabil-
ity of the models in classifying lubricant conditions, with a
good balance between precision and sensitivity. The Kappa
values also indicate near-perfect agreement between actual
and predicted lubricant conditions. The high MCC reinforces
the reliable performance of the models trained using the
feature-level fusion approach.

The Bagged Tree and SVMmodels trained using the fusion
approach are observed to provide very high performance
across all evaluation measures considered. The Bagged Tree
model is also found to outperform the SVM model by a very
slight margin. The findings indicate that the fusion approach
can significantly improve the performance of the various
ML algorithms examined in the study. The high performance
of the ML models trained using the feature-level fusion
approach may be attributed to the complementary nature of
the data provided by the different sensor signatures. By com-
bining the sound, vibration, and AE signature features into a
unified feature vector, the models can effectively exploit the
strengths of each sensor modality, thereby obtaining a more
comprehensive representation of the lubricant condition. The
fusion approach captures the unique characteristics of each
sensor modality, allowing the ML models to discriminate
between the different classes more easily.

The Confusion Matrix (CM) of the best-performing
Bagged Tree ensemble model is shown in Table 7. The CM
provides an overview of the classification results of the ML
model, displaying the prediction counts of true-positive, true-
negative, false-positive, and false-negative values. The diago-
nal values indicate the number of instances that were correctly
classified. Out of 26,240 features, the Bagged Treemodel cor-
rectly classified 25,882 features corresponding to the lubri-
cant condition. Lubricant conditions LC1 and LC2 represent
fresh lubricants without any solid particle contamination,
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TABLE 7. Confusion matrix of best performing algorithm – bagged tree model trained with sound, vibration, and AE signature features (feature level
fusion model).

with the bearing operated at 800 and 1300 rpm, respectively.
Under these conditions, no misclassifications are observed,
and all features are classified correctly by the model.

Condition LC3-LC8 represents a particle size of 5µmwith
three different concentrations and bearings operated under
two different speed conditions. In these conditions, among
4,920 data features, only 10 data features were misclassi-
fied. There were 33 and 31 misclassifications observed under
conditions LC9-LC14 and LC15-LC20, respectively, with
solid particle sizes of 10µm and 37µm. In conditions LC21-
LC26, the bearing operated with solid particle contaminants
of size 74µm, and the number of misclassifications observed

was 112. In the case of particle size 100µm corresponding
to conditions LC27-LC32, 171 instances were misclassified.
It is noted that as solid particle contamination increased,
the number of misclassifications predicted by the model
also increased. This increase was marginal at lower particle
sizes but became more apparent at larger particle sizes. It is
observed from the CM that most misclassifications occurred
between similar lubricant conditions, especially those with
larger particle sizes and higher concentrations. This may
be attributed to the fact that sensor signals were captured
at discrete conditions rather than in a continuous manner,
leading to potential overlaps in the feature space between
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TABLE 8. Performance of bagged tree model trained with sound, vibration, and AE signature features (feature level fusion model).

neighboring conditions. The overlapping feature distributions
of similar conditions may affect the ability of the model
to separate them effectively. The model exhibited very few
misclassifications for extreme conditions, such as conditions
with fresh lubricant with no contamination or conditions with
low particle size and low concentration, indicating the relia-
bility of the model in distinguishing between these distinct
classes.

There were only 36 instances where the model
misidentified conditions with different particle sizes, and
these misclassifications were only observed between neigh-
boring particle sizes. The majority of these misclassifications
were between the lubricant conditions with larger particle
sizes of 74µm and 100µm, with 20 instances of conditions
with 74µm particles being mistaken for conditions with
100µm particle contaminants. Meanwhile, five instances of
conditions with 100µm particles were mistaken for condi-
tions with 74µm particles. Additionally, there were even
fewer misclassifications involving the particle size of 37µm,
where it was confused with 74µm and 10µm particle sizes.
Notably, no misclassifications were observed between the
conditions with fresh lubricant and those with particle con-
taminants of sizes 5µm and 10µm. The total misclassi-
fications between lubricant conditions with different sizes
of solid particle contamination amount to less than 0.15%
of the total classifications. These results indicate that the
fused model can effectively distinguish the sensor signature
features associated with the varying sizes of particle contam-
ination.

For lubricant conditions with particles of size 5µm, no
misclassifications were observed for instances with high con-
centrations of solid particle contamination, irrespective of
operation speed. However, misclassifications were observed
when differentiating between the low and medium concentra-
tions. Similarly, no misclassifications were observed at low
concentrations for conditions with particles of size 10µm.
However, misclassifications were evident at medium and
high concentrations of solid particle contaminants. Some
misclassifications related to operating speed conditions were
present in both 5µm and 10µm scenarios, though marginal.
As particle sizes increased to 37µm and above, the model
experienced more significant challenges in differentiating
solid particle concentrations accurately. The number of mis-
classifications related to particle concentration progressively

increased for larger particle sizes of 74µm and 100µm. Most
misclassifications occurred while identifying the correct con-
centration level rather than the particle size or operating
speed. It is evident that while the model is effective at detect-
ing the presence of particle contamination, discriminating
between different concentrations becomes more complicated
when dealing with lubricant contamination scenarios involv-
ing larger particles at low to medium concentrations.

To provide a comprehensive understanding of the predic-
tive capabilities of the developed feature-level fusion model,
Table 8 presents a detailed analysis of the model’s overall
prediction accuracy under various lubricant conditions: a)
without any solid particle contamination, b) with varying
solid particle sizes and concentrations, and c) with two dif-
ferent bearing operating speeds (low & high). It is observed
that the ML model predicted all 32 lubricant conditions with
reasonable accuracy (above 96.5%). The model predicted
fresh lubricant conditions without solid particle contamina-
tion with 100% accuracy, demonstrating its reliability in iden-
tifying ideal operating conditions. The classification ability
decreased slightly as particle size increased, which may be
due to the increased complexity in distinguishing between
similar contamination levels at higher concentrations. The
model exhibited consistently high accuracy while predict-
ing lubricant conditions with contaminants particle sizes of
37µm and less across low, medium, and high concentrations.
However, the accuracy varied much more across the different
concentrations for conditions with larger particle sizes (74µm
and 100µm), indicating that the concentration of larger par-
ticles has a more significant impact on the model’s perfor-
mance. Nonetheless, the overall accuracy of the classification
remained above 96.5% even for the most challenging condi-
tion with contaminants of particle size 100µm. The results
also show that the model had slight difficulties determining
the condition of lubricant with contaminant particles of size
100µm while operating at low speed and low to medium
concentrations.

In conclusion, the fusion of sound, vibration, and AE
signature features using the robust Bagged Tree ensemble
algorithm enables reliable classification of lubricant condi-
tions in SRB under various operating scenarios. The model
has demonstrated the ability to generalize across diverse con-
ditions, including varying particle sizes, concentrations, and
operating speeds.
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VII. CONCLUSION
In this present study, statistical models were developed using
ML algorithms with the sound, vibration, and AE sensor
signature features acquired by operating the bearing under
fresh lubricant and lubricant with solid particle contamina-
tion. Lubricant contaminant conditions were established by
adding Iron and Silicon carbide particles at different sizes and
concentrations in a controlled manner. A total of 32 lubricant
conditions were established. Sensor signatures were acquired
by operating the SRB under two different speed conditions.

RMS statistics derived from the time domain signature of
AE exhibit a unique pattern for all 32 lubricant conditions
considered in this study. This shows the dominance of AE
compared to sound and vibration signatures in differentiating
the lubricant conditions. It is also noted that an increase in
the size and concentration of solid particles used in lubricant
has a significant impact on the RMS signature amplitude.
The increase in particle size and concentration results in an
increase in the amplitude of the sound, vibration, and AE
signatures for almost all conditions. Sensor signature patterns
and RMS statistics indicate that sound, vibration, and AE
signatures captured the particle contamination conditions in
the lubricant effectively.

For predicting the lubricant conditions, ML models are
developed using the statistical features extracted from sensor
signatures of all 32 lubricant conditions. CART, Bagged tree
ensemble, and Support Vector Machines were employed.
Feature-level fusion models were developed in this study to
improve the prediction ability of ML models. The classifi-
cation ability of ML models was compared by training the
ML models with signature features separately and combined
by fusing the sound, vibration, and AE features at the feature
level.

Among the ML models developed in this study, models
trained with AE signature features outperform models built
with vibration and sound signature features. Decision trees
built using Gini, Towing, andMDR split criterion, the bagged
tree ensemble model, and SVM trained with cubic kernel
function predict the lubricant conditions with an accuracy of
more than 90%. The interaction of solid particle contaminants
with the bearing surface resulted in the generation of AE
waves, and are well captured by the AE sensor. AE sensors
are sensitive to capture the slight variations in the AE due to
changes in particle size, speed of operation, and concentration
of solid particles in the lubricant.

Online monitoring needs a robust model to predict the con-
dition of the lubricant. A feature-level fusion methodology
adopted in this study improved the prediction ability of the
ML models. All models achieved an accuracy of more than
97%. The bagged tree ensemble predicted the lubricant con-
ditions with a maximum accuracy of 99%. CART algorithm
and SVM algorithms can detect the lubricant condition with
an accuracy of 98% and 97%, respectively.

The proposed approach can be used to develop a real-time
lubricant condition monitoring system to adopt condition-
based maintenance. When compared to models created using

vibration and sound signature features, AE-basedMLmodels
prove to be effective in predicting the lubricant conditions,
and the fusion model improved the classification ability of
all ML models considered in this study.

The experiments for the study were conducted in a con-
trolled laboratory environment, which may not fully reflect
the conditions encountered in a real-world industrial envi-
ronment. The study extracted the sensor signature features
using time domain signatures for developing ML models.
The data used in the study was collected for a limited dura-
tion by artificially introducing solid particle contaminants
of different sizes and concentrations. The long-term effects
of lubricant contamination due to wear and particle gener-
ation may be investigated further. These limitations may be
addressed in future studies to improve the reliability and
generalization capability of the models. Further ML models
can be developed using features extracted from frequency and
time-frequency domains for predicting the lubricant contam-
inant conditions in different types of bearings and lubricants.

REFERENCES
[1] C. Radu, ‘‘The most common causes of bearing failure and the

importance of bearing lubrication,’’ RKB Tech. Rev., pp. 1–7, Feb. 2010.
[Online]. Available: https://pdf.directindustry.com/pdf/rkb-europe/most-
common-causes-bearing-failure-importance-bearing-lubrication/27918-
138476.html

[2] R. Nilsson, R. S. Dwyer-Joyce, and U. Olofsson, ‘‘Abrasive wear of
rolling bearings by lubricant borne particles,’’ Proc. Inst. Mech. Eng.,
J, J. Eng. Tribol., vol. 220, no. 5, pp. 429–439, Aug. 2006, doi:
10.1243/13506501j00205.

[3] R. S. Dwyer-Joyce, ‘‘Predicting the abrasive wear of ball bearings by
lubricant debris,’’ Wear, vols. 233–235, pp. 692–701, Dec. 1999, doi:
10.1016/s0043-1648(99)00184-2.

[4] H. Zhou, X. Huang, G. Wen, Z. Lei, S. Dong, P. Zhang, and X. Chen,
‘‘Construction of health indicators for condition monitoring of rotating
machinery: A review of the research,’’Exp. Syst. Appl., vol. 203, Oct. 2022,
Art. no. 117297, doi: 10.1016/j.eswa.2022.117297.

[5] R. Bogue, ‘‘Sensors for condition monitoring: A review of technologies
and applications,’’ Sensor Rev., vol. 33, no. 4, pp. 295–299, Sep. 2013, doi:
10.1108/sr-05-2013-675.

[6] R. S. Dwyer-Joyce, ‘‘The effects of lubricant contamination on rolling
bearing performance,’’ Ph.D. dissertation, Dept. Mech. Eng., Impe-
rial College London, South Kensington, London SW7 2AZ, UK,
1993.

[7] L. Kahlman and I. M. Hutchings, ‘‘Effect of particulate contamination in
grease-lubricated hybrid rolling bearings,’’ Tribol. Trans., vol. 42, no. 4,
pp. 842–850, Jan. 1999, doi: 10.1080/10402009908982291.

[8] M. M. Khonsari and E. R. Booser, ‘‘Effect of contamination on
the performance of hydrodynamic bearings,’’ Proc. Inst. Mech. Eng.,
J, J. Eng. Tribol., vol. 220, no. 5, pp. 419–428, May 2006, doi:
10.1243/13506501j00705.

[9] W. Wang, P. L. Wong, F. He, and G. T. Y. Wan, ‘‘Experimental study of the
smoothing effect of a ceramic rolling element on a bearing raceway in con-
taminated lubrication,’’ Tribol. Lett., vol. 28, no. 1, pp. 89–97, Aug. 2007,
doi: 10.1007/s11249-007-9251-8.

[10] G. K. Nikas, ‘‘A state-of-the-art review on the effects of particulate con-
tamination and related topics in machine-element contacts,’’ Proc. Inst.
Mech. Eng., J, J. Eng. Tribol., vol. 224, no. 5, pp. 453–479, May 2010,
doi: 10.1243/13506501jet752.

[11] E. Beghini, R. S. Dwyer-Joyce, E. Ioannides, and B. Jacobson, ‘‘Elas-
tic/plastic contact and endurance life prediction,’’ J. Phys. D, Appl. Phys.,
vol. 25, no. 3, pp. 379–383, Mar. 1992, doi: 10.1088/0022-3727/25/
3/007.

[12] G. Singotia and A. K. Jain, ‘‘Effect of solid contamination in ball
bearings—A review,’’ Int. J. Current Res. Rev., vol. 5, no. 12, pp. 119–124,
2013.

78698 VOLUME 12, 2024

http://dx.doi.org/10.1243/13506501j00205
http://dx.doi.org/10.1016/s0043-1648(99)00184-2
http://dx.doi.org/10.1016/j.eswa.2022.117297
http://dx.doi.org/10.1108/sr-05-2013-675
http://dx.doi.org/10.1080/10402009908982291
http://dx.doi.org/10.1243/13506501j00705
http://dx.doi.org/10.1007/s11249-007-9251-8
http://dx.doi.org/10.1243/13506501jet752
http://dx.doi.org/10.1088/0022-3727/25/3/007
http://dx.doi.org/10.1088/0022-3727/25/3/007


K. Rameshkumar et al.: ML Approach for Predicting the Solid Particle Lubricant Contamination

[13] C.-L. Lin, M. Pozzebon, K. A. Sokolowski, and P. A. Meehan,
‘‘Experimental investigation on rolling contact wear in grease
lubricated spherical roller bearings using microcomputed tomography
(µCT),’’ Wear, vols. 534–535, Dec. 2023, Art. no. 205121, doi:
10.1016/j.wear.2023.205121.

[14] B. Ding, X. Li, C. Li, Y. Li, and S.-C. Chen, ‘‘A survey on the mechan-
ical design for piezo-actuated compliant micro-positioning stages,’’
Rev. Sci. Instrum., vol. 94, no. 10, Oct. 2023, Art. no. 101502, doi:
10.1063/5.0162246.

[15] S. Martin-Del-Campo, S. Schnabel, F. Sandin, and P. Marklund, ‘‘Detec-
tion of particle contaminants in rolling element bearings with unsuper-
vised acoustic emission feature learning,’’ Tribol. Int., vol. 132, pp. 30–38,
Apr. 2019, doi: 10.1016/j.triboint.2018.12.007.

[16] T. Akagaki, M. Nakamura, T. Monzen, and M. Kawabata, ‘‘Analysis of
the behaviour of rolling bearings in contaminated oil using some condition
monitoring techniques,’’ Proc. Inst. Mech. Eng., J, J. Eng. Tribol., vol. 220,
no. 5, pp. 447–453, May 2006, doi: 10.1243/13506501j00605.

[17] J. Miettinen and P. Andersson, ‘‘Acoustic emission of rolling bear-
ings lubricated with contaminated grease,’’ Tribol. Int., vol. 33, no. 11,
pp. 777–787, Nov. 2000, doi: 10.1016/s0301-679x(00)00124-9.

[18] M. Tiboni, C. Remino, R. Bussola, and C. Amici, ‘‘A review on vibration-
based condition monitoring of rotating machinery,’’ Appl. Sci., vol. 12,
no. 3, p. 972, Jan. 2022, doi: 10.3390/app12030972.

[19] M. M. Maru, R. Serrato-Castillo, and L. R. Padovese, ‘‘Influence of
oil contamination on vibration and wear in ball and roller bearings,’’
Ind. Lubrication Tribol., vol. 59, no. 3, pp. 137–142, May 2007, doi:
10.1108/00368790710746101.

[20] V. Hariharan and P. S. S. Srinivasan, ‘‘Condition monitoring studies
on ball bearings considering solid contaminants in the lubricant,’’ Proc.
Inst. Mech. Eng., C, J. Mech. Eng. Sci., vol. 224, no. 8, pp. 1727–1748,
Aug. 2010, doi: 10.1243/09544062jmes1885.

[21] O. L. Mahajan and A. A. Utpat, ‘‘Study of effect of solid contaminants in
the lubricant on ball bearings vibration,’’ Int. J. Instrum. Control Autom.,
vol. 1, pp. 28–31, Apr. 2012, doi: 10.47893/ijica.2012.1063.

[22] D.Koulocheris, A. Stathis, T. Costopoulos, andD. Tsantiotis, ‘‘Experimen-
tal study of the impact of grease particle contaminants on wear and fatigue
life of ball bearings,’’ Eng. Failure Anal., vol. 39, pp. 164–180, Apr. 2014,
doi: 10.1016/j.engfailanal.2014.01.016.

[23] S. Kulkarni and A. Bewoor, ‘‘Vibration based condition assessment of ball
bearing with distributed defects,’’ J. Meas. Eng., vol. 4, no. 2, pp. 87–94,
2016.

[24] A. Nabhan, M. Nouby, A. Sami, and M. Mousa, ‘‘Vibration analysis of
deep groove ball bearing with outer race defect using ABAQUS,’’ J. Low
Freq. Noise, Vibrat. Act. Control, vol. 35, no. 4, pp. 312–325, Dec. 2016,
doi: 10.1177/0263092316676414.

[25] W. Caesarendra and T. Tjahjowidodo, ‘‘A review of feature extraction
methods in vibration-based condition monitoring and its application for
degradation trend estimation of low-speed slew bearing,’’Machines, vol. 5,
no. 4, p. 21, Sep. 2017, doi: 10.3390/machines5040021.

[26] S. S. Nawale and P. D. Kulkarni, ‘‘Vibration analysis of ball bearing
considering effect of contaminant in lubricant,’’ Int. J. Sci. Eng. Res., vol. 8,
no. 4, pp. 170–174, 2017.

[27] K. A. Ibrahim Sheriff, V. Hariharan, and B. Varunesh, ‘‘Performance
analysis of ball bearing with solid contaminants using vibration analysis,’’
in Materials, Design, and Manufacturing for Sustainable Environment
(Lecture Notes in Mechanical Engineering). Singapore: Springer, 2021,
pp. 175–182, doi: 10.1007/978-981-15-9809-8_14.

[28] M. O. Jakobsen, E. S. Herskind, C. F. Pedersen, and M. B. Knudsen,
‘‘Detecting insufficient lubrication in rolling bearings, using a low cost
MEMS microphone to measure vibrations,’’ Mech. Syst. Signal Process.,
vol. 200, Oct. 2023, Art. no. 110553, doi: 10.1016/j.ymssp.2023.110553.

[29] N. Tandon and A. Choudhury, ‘‘A review of vibration and acoustic mea-
surement methods for the detection of defects in rolling element bearings,’’
Tribol. Int., vol. 32, no. 8, pp. 469–480, Aug. 1999.

[30] A. M. Al-Ghamd and D. Mba, ‘‘A comparative experimental study on the
use of acoustic emission and vibration analysis for bearing defect identifi-
cation and estimation of defect size,’’Mech. Syst. Signal Process., vol. 20,
no. 7, pp. 1537–1571, Oct. 2006, doi: 10.1016/j.ymssp.2004.10.013.

[31] M. Elforjani andD.Mba, ‘‘Detecting the onset, propagation and location of
non-artificial defects in a slow rotating thrust bearing with acoustic emis-
sion,’’ Insight-Non-Destructive Test. Condition Monitor., vol. 50, no. 5,
pp. 264–268, May 2008, doi: 10.1784/insi.2008.50.5.264.

[32] S. A. Niknam,V. Songmene, andY. H. J. Au, ‘‘The use of acoustic emission
information to distinguish between dry and lubricated rolling element
bearings in low-speed rotating machines,’’ Int. J. Adv. Manuf. Technol.,
vol. 69, nos. 9–12, pp. 2679–2689, Dec. 2013, doi: 10.1007/s00170-013-
5222-4.

[33] P. Sachin Krishnan and K. Rameshkumar, ‘‘Grinding wheel condition
prediction with discrete hidden Markov model using acoustic emission
signature,’’ Mater. Today, Proc., vol. 46, pp. 9168–9175, Jan. 2021, doi:
10.1016/j.matpr.2019.12.428.

[34] K. Rameshkumar, R. Sriram, M. Saimurugan, and P. Krishnakumar,
‘‘Establishing statistical correlation between sensor signature features and
lubricant solid particle contamination in a spur gearbox,’’ IEEE Access,
vol. 10, pp. 106230–106247, 2022, doi: 10.1109/ACCESS.2022.3210983.

[35] S. A. Mirhadizadeh, E. P. Moncholi, and D. Mba, ‘‘Influence of opera-
tional variables in a hydrodynamic bearing on the generation of acoustic
emission,’’ Tribol. Int., vol. 43, no. 9, pp. 1760–1767, Sep. 2010, doi:
10.1016/j.triboint.2010.03.003.

[36] H. Taura and K. Nakayama, ‘‘Behavior of acoustic emissions at the onset
of sliding friction,’’ Tribol. Int., vol. 123, pp. 155–160, Jul. 2018, doi:
10.1016/j.triboint.2018.01.025.

[37] K. A. I. Sheriff, V. Hariharan, and T. Kannan, ‘‘Analysis of solid contam-
ination in ball bearing through acoustic emission signals,’’ Arch. Metall.
Mater., vol. 62, no. 3, pp. 1871–1874, Sep. 2017, doi: 10.1515/amm-2017-
0283.

[38] S. Schnabel, S. Golling, P. Marklund, and R. Larsson, ‘‘Absolute mea-
surement of elastic waves excited by Hertzian contacts in boundary
restricted systems,’’ Tribol. Lett., vol. 65, no. 1, pp. 1–11, Mar. 2017, doi:
10.1007/s11249-016-0790-8.

[39] M. Motahari-Nezhad and S. M. Jafari, ‘‘Bearing remaining useful life
prediction under starved lubricating condition using time domain acous-
tic emission signal processing,’’ Exp. Syst. Appl., vol. 168, Apr. 2021,
Art. no. 114391, doi: 10.1016/j.eswa.2020.114391.

[40] F. König, C. Sous, A. Ouald Chaib, and G. Jacobs, ‘‘Machine learning
based anomaly detection and classification of acoustic emission events
for wear monitoring in sliding bearing systems,’’ Tribol. Int., vol. 155,
Mar. 2021, Art. no. 106811, doi: 10.1016/j.triboint.2020.106811.

[41] S. Poddar and N. Tandon, ‘‘Detection of particle contamination
in journal bearing using acoustic emission and vibration monitor-
ing techniques,’’ Tribol. Int., vol. 134, pp. 154–164, Jun. 2019, doi:
10.1016/j.triboint.2019.01.050.

[42] S. Poddar and N. Tandon, ‘‘Classification and detection of cavitation, par-
ticle contamination and oil starvation in journal bearing through machine
learning approach using acoustic emission signals,’’ Proc. Inst. Mech.
Eng., J, J. Eng. Tribol., vol. 235, no. 10, pp. 2137–2143, 2021, doi:
10.1177/1350650121991316.

[43] B. Scheeren, M. L. Kaminski, and L. Pahlavan, ‘‘Acoustic emission mon-
itoring of naturally developed damage in large-scale low-speed roller
bearings,’’ Struct. Health Monitor., vol. 23, no. 1, pp. 360–382, Jan. 2024,
doi: 10.1177/14759217231164912.

[44] I. Y. Önel, K. B. Dalci, and I. Senol, ‘‘Detection of outer raceway bearing
defects in small induction motors using stator current analysis,’’ Sadhana,
vol. 30, no. 6, pp. 713–722, Dec. 2005, doi: 10.1007/bf02716705.

[45] A. Alwodai, T. Wang, Z. Chen, F. Gu, R. Cattley, and A. Ball, ‘‘A study
of motor bearing fault diagnosis using modulation signal bispectrum
analysis of motor current signals,’’ J. Signal Inf. Process., vol. 4, no. 3,
pp. 72–79, 2013, doi: 10.4236/jsip.2013.43b013.

[46] T. Maruyama, M. Maeda, and K. Nakano, ‘‘Lubrication condition moni-
toring of practical ball bearings by electrical impedance method,’’ Tribol.
Online, vol. 14, no. 5, pp. 327–338, 2019, doi: 10.2474/trol.14.327.

[47] H. Nakamura and Y. Mizuno, ‘‘Diagnosis for slight bearing fault in induc-
tion motor based on combination of selective features and machine learn-
ing,’’ Energies, vol. 15, no. 2, p. 453, Jan. 2022, doi: 10.3390/en15020453.

[48] K.Adamsab, ‘‘Machine learning algorithms for rotatingmachinery bearing
fault diagnostics,’’Mater. Today, Proc., vol. 44, pp. 4931–4933, Jan. 2021,
doi: 10.1016/j.matpr.2020.12.050.

[49] B. Samanta, K. R. Al-Balushi, and S. A. Al-Araimi, ‘‘Artificial neural
networks and support vector machines with genetic algorithm for bearing
fault detection,’’ Eng. Appl. Artif. Intell., vol. 16, nos. 7–8, pp. 657–665,
Oct. 2003, doi: 10.1016/j.engappai.2003.09.006.

[50] S. Zhang, S. Zhang, B. Wang, and T. G. Habetler, ‘‘Deep learning
algorithms for bearing fault diagnostics—A comprehensive
review,’’ IEEE Access, vol. 8, pp. 29857–29881, 2020, doi:
10.1109/ACCESS.2020.2972859.

VOLUME 12, 2024 78699

http://dx.doi.org/10.1016/j.wear.2023.205121
http://dx.doi.org/10.1063/5.0162246
http://dx.doi.org/10.1016/j.triboint.2018.12.007
http://dx.doi.org/10.1243/13506501j00605
http://dx.doi.org/10.1016/s0301-679x(00)00124-9
http://dx.doi.org/10.3390/app12030972
http://dx.doi.org/10.1108/00368790710746101
http://dx.doi.org/10.1243/09544062jmes1885
http://dx.doi.org/10.47893/ijica.2012.1063
http://dx.doi.org/10.1016/j.engfailanal.2014.01.016
http://dx.doi.org/10.1177/0263092316676414
http://dx.doi.org/10.3390/machines5040021
http://dx.doi.org/10.1007/978-981-15-9809-8_14
http://dx.doi.org/10.1016/j.ymssp.2023.110553
http://dx.doi.org/10.1016/j.ymssp.2004.10.013
http://dx.doi.org/10.1784/insi.2008.50.5.264
http://dx.doi.org/10.1007/s00170-013-5222-4
http://dx.doi.org/10.1007/s00170-013-5222-4
http://dx.doi.org/10.1016/j.matpr.2019.12.428
http://dx.doi.org/10.1109/ACCESS.2022.3210983
http://dx.doi.org/10.1016/j.triboint.2010.03.003
http://dx.doi.org/10.1016/j.triboint.2018.01.025
http://dx.doi.org/10.1515/amm-2017-0283
http://dx.doi.org/10.1515/amm-2017-0283
http://dx.doi.org/10.1007/s11249-016-0790-8
http://dx.doi.org/10.1016/j.eswa.2020.114391
http://dx.doi.org/10.1016/j.triboint.2020.106811
http://dx.doi.org/10.1016/j.triboint.2019.01.050
http://dx.doi.org/10.1177/1350650121991316
http://dx.doi.org/10.1177/14759217231164912
http://dx.doi.org/10.1007/bf02716705
http://dx.doi.org/10.4236/jsip.2013.43b013
http://dx.doi.org/10.2474/trol.14.327
http://dx.doi.org/10.3390/en15020453
http://dx.doi.org/10.1016/j.matpr.2020.12.050
http://dx.doi.org/10.1016/j.engappai.2003.09.006
http://dx.doi.org/10.1109/ACCESS.2020.2972859


K. Rameshkumar et al.: ML Approach for Predicting the Solid Particle Lubricant Contamination

[51] O. Abdeljaber, S. Sassi, O. Avci, S. Kiranyaz, A. A. Ibrahim, and
M. Gabbouj, ‘‘Fault detection and severity identification of ball bearings
by online condition monitoring,’’ IEEE Trans. Ind. Electron., vol. 66,
no. 10, pp. 8136–8147, Oct. 2019, doi: 10.1109/TIE.2018.2886789.

[52] M. Bhadane and K. I. Ramachandran, ‘‘Bearing fault identification and
classification with convolutional neural network,’’ in Proc. Int. Conf.
Circuit, Power Comput. Technol. (ICCPCT), Apr. 2017, pp. 1–5, doi:
10.1109/ICCPCT.2017.8074401.

[53] J. Koshy, N. K. Prakash, and T. Ananthan, ‘‘Wavelet based
bearing fault prognosis using machine learning in cloud platform,’’
in Proc. Int. Conf. Ind. 4.0 Technol., Sep. 2022, pp. 1–7, doi:
10.1109/I4Tech55392.2022.9952792.

[54] Q. Ni, J. C. Ji, and K. Feng, ‘‘Data-driven prognostic scheme for bearings
based on a novel health indicator and gated recurrent unit network,’’
IEEE Trans. Ind. Informat., vol. 19, no. 2, pp. 1301–1311, Feb. 2023, doi:
10.1109/TII.2022.3169465.

[55] J. M. Wakiru, L. Pintelon, P. N. Muchiri, and P. K. Chemweno, ‘‘A review
on lubricant condition monitoring information analysis for maintenance
decision support,’’ Mech. Syst. Signal Process., vol. 118, pp. 108–132,
Mar. 2019, doi: 10.1016/j.ymssp.2018.08.039.

[56] M. H. Rahman, S. Shahriar, and P. L. Menezes, ‘‘Recent progress of
machine learning algorithms for the oil and lubricant industry,’’ Lubricants,
vol. 11, no. 7, p. 289, Jul. 2023, doi: 10.3390/lubricants11070289.

[57] V. Sugumaran and K. I. Ramachandran, ‘‘Effect of number of fea-
tures on classification of roller bearing faults using SVM and PSVM,’’
Exp. Syst. Appl., vol. 38, no. 4, pp. 4088–4096, Apr. 2011, doi:
10.1016/j.eswa.2010.09.072.

[58] N. Senthilnathan, T. N. Babu, K. S. D. Varma, S. Rushmith, J. A. Reddy,
K. V. N. Kavitha, and D. R. Prabha, ‘‘Recent advancements in fault diag-
nosis of spherical roller bearing: A short review,’’ J. Vibrat. Eng. Tech-
nol., vol. 12, no. 4, pp. 6963–6977, Apr. 2024, doi: 10.1007/s42417-024-
01293-4.

[59] P. K. Sahu, ‘‘Grease contamination detection in the rolling element bearing
using deep learning technique,’’ Int. J. Mech. Eng. Robot. Res., vol. 11,
no. 4, pp. 275–280, 2022, doi: 10.18178/ijmerr.11.4.275-280.

[60] Y. Zhao, X. Wang, S. Han, J. Lin, and Q. Han, ‘‘Fault diagnosis for
abnormal wear of rolling element bearing fusing oil debris monitoring,’’
Sensors, vol. 23, no. 7, p. 3402, Mar. 2023, doi: 10.3390/s23073402.

[61] K. Kira and L. A. Rendell, ‘‘A practical approach to feature selection,’’ in
Proc. 9th Int. Work. Mach. Learn., 1992, pp. 249–256, doi: 10.1016/B978-
1-55860-247-2.50037-1.

[62] P. Krishnakumar, K. Rameshkumar, and K. I. Ramachandran, ‘‘Fea-
ture level fusion of vibration and acoustic emission signals in tool
condition monitoring using machine learning classifiers,’’ Int. J. Prog-
nostics Health Manag., vol. 9, no. 1, pp. 1–15, Nov. 2020, doi:
10.36001/ijphm.2018.v9i1.2694.

[63] J. R. Quinlan, ‘‘Induction of decision trees,’’ Mach. Learn., vol. 1, no. 1,
pp. 81–106, Mar. 1986, doi: 10.1007/bf00116251.

[64] A. D. Gordon, L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,
‘‘Classification and regression trees,’’ Biometrics, vol. 40, no. 3, p. 874,
Sep. 1984, doi: 10.2307/2530946.

[65] L. Breiman, ‘‘Bagging predictors,’’ Mach. Learn., vol. 24, no. 2,
pp. 123–140, Aug. 1996, doi: 10.1007/bf00058655.

[66] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/bf00994018.

[67] M. Sokolova and G. Lapalme, ‘‘A systematic analysis of performance
measures for classification tasks,’’ Inf. Process. Manag., vol. 45, no. 4,
pp. 427–437, Jul. 2009, doi: 10.1016/j.ipm.2009.03.002.

K. RAMESHKUMAR received the B.E. degree in
mechanical engineering and the M.E. degree in
production engineering, in 1990 and 1991, respec-
tively, and the Ph.D. degree in optimization of dis-
crete and continuous optimization problems using
bio-inspired algorithms from the PSG College of
Technology, Bharathiar University, Coimbatore,
India, in 2008. Later, he was with the projects
department in a staple fiber manufacturing plant
in India and was involved in the erection, commis-

sioning, and technical services of a 150 TPD viscose staple fiber manufactur-
ing plant in collaboration with M/s Lenzing, Austria. He was also a Faculty
Member with the Department of Engineering,Ministry ofManpower, Higher
College of Technology, Oman, from 2009 to 2010 and from 2015 to 2016.

He is currently a Professor and the Chairperson with the Department of
Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa
Vidyapeetham, Coimbatore Campus. His current activities include admin-
istration of the Mechanical Engineering Department, teaching B.Tech.,
M.Tech., and Ph.D. level courses, coordinating OBE and NBA activities of
the department, and guiding student research projects (UG, PG, and Ph.D.)
in predictive analytics of machine tools using machine learning algorithms,
tool condition monitoring, weld condition monitoring, machining dynamics,
multi-objective optimization, and discrete event simulation of manufacturing
systems. He has received research grants from government agencies, namely
AICTE, DRDO, AR&DB, and DST. He received the Amrita University
Chancellor’s Publication Award, in 2020 and 2023.

KAVIARASU NATARAJ received the bachelor’s
degree in mechanical engineering from Anna Uni-
versity, India, and the M.Tech. degree in engi-
neering design from the Department of Mechan-
ical Engineering, Amrita School of Engineering,
Amrita Vishwa Vidyapeetham, Coimbatore Cam-
pus, India, in 2020. He is currently working at M/s
Taark Equipments Pvt. Ltd., Pollachi, Coimbatore,
as a Senior Design Engineer.

P. KRISHNAKUMAR received the bachelor’s
degree in mechanical engineering from Bharathiar
University, India, the M.Tech. degree in computer
integrated manufacturing from the PSG College of
Technology, India, in 2000, and the Ph.D. degree
in mechanical engineering from the Amrita School
of Engineering, Amrita Vishwa Vidyapeetham,
Coimbatore Campus, India, in 2017. He is cur-
rently an Associate Professor and the Dy. COE
with the Department of Mechanical Engineering,

Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore
Campus. He received sponsored projects in metal cutting and machine
condition monitoring from AR&DB, DRDO, and DST. His research inter-
ests include design and analysis, metal cutting, and micro-machining.
He received the Amrita University Chancellor’s Publication Award, in 2023.

M. SAIMURUGAN received the B.E. degree in
mechanical engineering from Bharathiar Univer-
sity, Coimbatore, India, in 1998, the M.E. degree
in computer-aided design from Periyar University,
India, in 2000, and the Ph.D. degree in mechanical
engineering from the Amrita School of Engineer-
ing, Amrita Vishwa Vidyapeetham, Coimbatore
Campus, India, in 2013. He is currently an Asso-
ciate Professor with the Department of Mechan-
ical Engineering, Amrita School of Engineering,

Amrita Vishwa Vidyapeetham, Coimbatore Campus. He received sponsored
projects in machine condition monitoring from AR&DB, DRDO, and DST.
His research interests include vibration analysis, machine learning, and
machine condition monitoring. His research articles were the best papers at
the 12th IEEE India International Conference on Electronics, Energy, Envi-
ronment, Communication, Computer Science, Control (INDICON, 2015)
and the International Conference on Soft Computing in Applied Sciences and
Engineering, in 2015. He also received the Amrita University Chancellor’s
Publication Award, in 2023.

78700 VOLUME 12, 2024

http://dx.doi.org/10.1109/TIE.2018.2886789
http://dx.doi.org/10.1109/ICCPCT.2017.8074401
http://dx.doi.org/10.1109/I4Tech55392.2022.9952792
http://dx.doi.org/10.1109/TII.2022.3169465
http://dx.doi.org/10.1016/j.ymssp.2018.08.039
http://dx.doi.org/10.3390/lubricants11070289
http://dx.doi.org/10.1016/j.eswa.2010.09.072
http://dx.doi.org/10.1007/s42417-024-01293-4
http://dx.doi.org/10.1007/s42417-024-01293-4
http://dx.doi.org/10.18178/ijmerr.11.4.275-280
http://dx.doi.org/10.3390/s23073402
http://dx.doi.org/10.1016/B978-1-55860-247-2.50037-1
http://dx.doi.org/10.1016/B978-1-55860-247-2.50037-1
http://dx.doi.org/10.36001/ijphm.2018.v9i1.2694
http://dx.doi.org/10.1007/bf00116251
http://dx.doi.org/10.2307/2530946
http://dx.doi.org/10.1007/bf00058655
http://dx.doi.org/10.1007/bf00994018
http://dx.doi.org/10.1016/j.ipm.2009.03.002

