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ABSTRACT This paper proposes a deep learning-based channel estimation method for multiple-input
multiple-output (MIMO) systems in spatially correlated channels. To reduce the pilot overhead of pilot
symbol-assisted channel estimation, the proposed method utilizes fewer pilot symbols than the number of
transmit antennas. Firstly, based on pilot symbols, the estimated partial MIMO channel matrix, consisting
of the partial coefficients of the MIMO channel matrix, is obtained by the linear minimum mean square
error algorithm. After that, a deep neural network uses the estimated partial MIMO channel matrix as an
input and we have the predicted MIMO channel matrix, that corresponds to the channel state information
not transmitting pilot symbols. Finally, by aggregating the estimated partial MIMO channel matrix and the
predicted MIMO channel matrix, the proposed method can acquire the reconstructed MIMO channel matrix.
In simulation results, to show the validity of the proposed method, various performances of the proposed
and conventional channel estimation methods were evaluated. Simulation results show that even though the
proposed method does not send the pilot symbols for all transmit antennas, it can achieve almost the same
bit error rate and improved throughput performances compared with the conventional channel estimation
method.

INDEX TERMS Channel estimation method, deep learning, MIMO system, spatially correlated channel.

I. INTRODUCTION
Multiple-input multiple-output (MIMO) systems can provide
improved data rate and reliability performances by utilizing
diversity in MIMO channels [1], [2], [3]. Especially, ultra-
massive MIMO systems, which have emerged in 6G wireless
systems, are considered a key technology to achieve more
than terabits/second peak data rate [4], [5], [6].

To exploit the advantages of MIMO systems, channel
state information (CSI) is essential. Many wireless com-
munication standards adopt pilot symbol-assisted channel
estimation to acquire CSI because it can guarantee high
estimation accuracy with simple implementation [7], [8],
[9], [10], [11]. However, the channel estimation performance
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of massive MIMO systems highly depends on the number
of pilot symbols and is limited due to pilot contamination.
Furthermore, the pilot symbol-assisted channel estimation
based on the least square (LS) or linear minimum mean
square error (LMMSE) algorithm requires at least the number
of pilot symbols same as the number of transmit anten-
nas, and it would be a big burden in ultra-massive MIMO
systems [2], [3], [12], [13], [14], [15]. Meanwhile, in vehicle-
to-everything (V2X) communications that support various
applications based on vehicles and transportation infrastruc-
tures such as road safety, traffic efficiency, and autonomous
driving, the performances of pilot symbol-assisted channel
estimation are degraded due to the high mobility of vehi-
cles [16], [17]. As a result, to maintain the accuracy of
pilot symbol-assisted channel estimation, more pilot sym-
bols or advanced techniques such as data-aided schemes and
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orthogonal time frequency space (OTFS) modulations are
required and these lead to burdensome in terms of resource
utilization and computational complexity [18], [19], [20].

In recent years, deep learning has been researched for
various applications of communication systems such as
detection, localization, and sensing [21], [22], [23], [24], [25].
Specifically, many studies on deep learning-based channel
estimation have been carried out because the advantages
of deep learning can be used to overcome the problems of
the conventional channel estimation method [13], [14], [15],
[26], [27], [28], [29], [30], [31], [32], [33], [34]. In [13],
a deep learning-based two-stage channel estimation scheme
consisting of pilot-aided channel estimation and data-aided
iterative channel estimation was proposed for massiveMIMO
systems. The authors of [14] proposed a deep learning-based
channel estimation method that does not require any training
and is robust to pilot contamination by utilizing a deep image
prior network. The end-to-end deep neural network (DNN)
architecture, which jointly designs the pilot signals and chan-
nel estimator, was introduced in [15]. In [26] and [27], deep
learning-based channel estimation algorithms were proposed
for doubly selective fading channels and vehicular commu-
nications which are challenging environments for channel
estimation. Moreover, the channel prediction methods for
massive MIMO systems and deep learning-based algorithms
for OTFS modulation were investigated in high mobility
scenarios [28], [29], [30]. To reduce the overwhelming
overheads required for downlink training and uplink feed-
back, the channel prediction algorithm based on the sparse
complex-valued neural networks was introduced in [31]. The
authors of [32] and [33] analyzed the performances of deep
learning-based channel estimation. In [34], the deep channel
prediction using recurrent neural networks, which can reduce
the number of pilot symbols by learning channel variations in
time-varying fading channels, was presented. Various works
have been conducted for deep learning-based channel esti-
mation so far, but studies to reduce pilot overhead in MIMO
systems have not been sufficient. Especially, considering that
next-generation communication systems will utilize a very
large number of antennas, which causes spatial correlation,
research on reducing resource overhead for MIMO systems
in spatially correlated channels is essential [35], [36].
In this paper, we propose a deep learning-based chan-

nel estimation method to reduce the pilot overhead of pilot
symbol-assisted channel estimation in spatially correlated
MIMO channels. To do this, the proposed method sends
the pilot symbols for the predetermined transmit antenna
set, whose cardinality is smaller than the number of trans-
mit antennas. Firstly, the estimated partial MIMO channel
matrix, which corresponds to the CSI of the predetermined
transmit antenna set, is acquired by pilot symbols and the
LMMSE algorithm. The CSI of transmit antennas not sending
pilot symbols, called the predicted MIMO channel matrix,
is obtained by a DNN whose input is the estimated partial
MIMO channel matrix. Finally, aggregating two results, the
estimated partial MIMO channel matrix and the predicted

MIMO channel matrix, we have the reconstructed MIMO
channel matrix. Various performances of the conventional
and proposed channel estimation methods are compared in
simulation results. Since the proposed method uses fewer
pilot symbols than the conventional methods, it shows the
degraded normalized mean square error (NMSE) perfor-
mances. However, the throughput performance of the pro-
posed method outperforms that of the conventional method
by maintaining the bit error rate (BER) performance.

II. SYSTEM MODEL
In this paper, we consider massive MIMO systems that
have NT transmit and NR receive antennas, and a uni-
form planar array (UPA) is adopted to deploy antennas,
efficiently [37]. To overcome multipath fading channels,
orthogonal frequency divisionmultiplexingwith cyclic prefix
(CP-OFDM) is applied. Assuming the perfect synchroniza-
tion at the receiver side, the received signal vector y (k, n) =[
y1 (k, n) · · · ynr (k, n) · · · yNR (k, n)

]T , associated with kth
subcarrier and nth symbol interval, can be expressed as

y (k, n) =
√

γH (k, n) s (k, n) + v (k, n) , (1)

where γ is the transmit power, H (k, n) = [h1 (k, n) · · ·

hnt (k, n) · · · hNT (k, n)
]

denotes an NR × NT MIMO
channel matrix in the frequency domain, hnt (k, n) =[
h1,nt (k, n) · · · hnr ,nt (k, n) · · · hNR,nt (k, n)

]T represents an
NR × 1 channel vector for the nt th transmit antenna,
hnr ,nt (k, n) is a channel frequency response (CFR) between
the nt th transmit antenna and nr th receive antenna, s (k, n) =[
s1 (k, n) · · · snt (k, n) · · · sNT (k, n)

]T is an NT × 1 transmit-
ted signal vector with E

[
s (k, n) sH (k, n)

]
= INT , v (k, n) =[

v1 (k, n) · · · vnr (k, n) · · · vNR (k, n)
]T is an NR × 1 additive

white Gaussian noise vector with E
[
v (k, n) vH (k, n)

]
=

σ 2
v INR , E [·] stand for expectation, (·)H represents Hermitian

operator, and IK is the identity matrix of size K [1], [8].
In spatially correlated channels, H (k, n) can be modeled by
the one-ring model, which is given by

H (k, n) = Hw (k, n)R
1
2
t , (2)

where Hw (k, n) is the spatially white MIMO channel matrix
whose entries are independent and identically distributed
zero-mean circularly symmetric complex Gaussian random
variables with unit variance and Rt is a transmit correlation
matrix of UPA [1], [3], [38]. Defining the number of antennas
for UPA in the horizontal and vertical direction as NT ,H and
NT ,V , Rt can be represented as

Rt = R
(
NT ,H

)
⊗ R

(
NT ,V

)
, (3)

where R (N ) is the N × N transmit correlation matrix of a
uniform linear array, the (u, v) entry of R (N ) is given by

{R(N )}u,v =

{
ρ|u−v| for u ≤ v,

(ρ∗)|u−v| otherwise,
(4)

ρ (|ρ| ≤ 1) is the correlation coefficient between adjacent
antennas, and ⊗ denotes the Kronecker product [39], [40].
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To obtain the CSI, we adopt pilot symbol-assisted channel
estimation. In MIMO-OFDM systems, NT pilot symbols are
transmitted through different subcarriers and symbol inter-
vals to estimateMIMO channels. We defineNT pilot symbols
as a pilot group and it is transmitted NL times, repeatedly [9],
[41]. Assuming the pilot symbol associated with the nt th
transmit antenna for the lth pilot group as slnt , the received
signal vector for slnt can be expressed as

y
(
k lnt , n

l
nt

)
=

√
γhnt

(
k lnt , n

l
nt

)
slnt + v(k lnt , n

l
nt ), (5)

where l (1 ≤ l ≤ NL) is an integer number and
(
k lnt , n

l
nt

)
is

the position of the pilot symbol associated with the nt th
transmit antenna for the lth pilot group. To estimate CFR
between the nt th transmit antenna and nr th receive antenna,
hnr ,nt

(
k lnt , n

l
nt

)
, for all pilot groups, we define Ynr ,nt =[

ynr
(
k1nt , n

1
nt

)
· · · ynr

(
kNLnt , nNLnt

)]T
, which is given by

Ynr ,nt =
√

γSntHnr ,nt + Vnt ,nr , (6)

where

Snt = diag
(
s1nt , · · · , sNLnt

)
, (7)

Hnr ,nt =

[
hnr ,nt

(
k1nt , n

1
nt

)
· · · hnr ,nt

(
kNLnt , nNLnt

)]T
, (8)

Vnr ,nt =

[
vnr

(
k1nt , n

1
nt

)
· · · vnr

(
kNLnt , nNLnt

)]T
. (9)

Note that Ynr ,nt is obtained by stacking ynr
(
k1nt , n

1
nt

)
to

ynr
(
kNLnt , nNLnt

)
and defined for all transmit and receive

antenna pair [42]. For estimations, LS or LMMSE algorithm
can be applied and each estimation result is given by

ĤLS
nr ,nt =

1
√

γ
S−1
nt Ynr ,nt , (10)

ĤMMSE
nr ,nt = 4nr ,nt

(
4nr ,nt +

1
γ
INL

)−1

ĤLS
nr ,nt , (11)

where 4nr ,nt = E
[
Hnr ,ntHH

nr ,nt

]
and (·)−1 denotes matrix

inversion [41], [43]. Finally, by utilizing an interpolation
method, we can obtain an estimated MIMO channel matrix
Ĥ (k, n) for all subcarriers and symbol intervals, and the
(nr , nt) entry of Ĥ (k, n) is ĥnr ,nt (k, n) [44]. Based on
Ĥ (k, n), the decodermatrixG (k, n) for symbol detection can
be designed and the post-processing signal vector z (k, n) is
represented by

z (k, n) = G (k, n) y (k, n) . (12)

To evaluate the performance of systems, we consider the
throughput performance T , the amount of successfully trans-
mitted data per unit time [45]. Defining the number of pilot
symbols as Nps = NLNT , data symbols as Nds = Nts −

Nps, and Nts as total symbols, the throughput performance T
during a specific time period τ can be expressed as

T =
log2M

τ
Nds

(
1 − PB,avg

)

FIGURE 1. An architecture and input-output relationship of the proposed
DNN-based channel predictor D.

=
log2M

τ

(
Nts − Nps

) (
1 − PB,avg

)
=

(
T0 − Tps

) (
1 − PB,avg

)
, (13)

whereM is the modulation order, PB,avg denotes the average

bit error probability, T0
(
=

log2M
τ

Nts

)
is the total number of

bits that can be transmitted during τ , and Tps
(
=

log2M
τ

Nps

)
is the number of bits lost due to the transmission of the pilot
symbols during τ [46], [47].

III. PROPOSED DEEP LEARNING-BASED CHANNEL
ESTIMATION METHOD
In this section, we present the deep learning-based chan-
nel estimation method to reduce the overhead of pilot
symbol-assisted channel estimation in spatially correlated
MIMO channels. To do this, the proposed method utilizes
fewer pilot symbols than the number of transmit antennas,
i.e., N pilot

T < NT . We define P and N as a set containing
indices of transmit antennas that send pilot symbols and not,
respectively. Then, U = P ∪N is a set collecting all indices
of transmit antennas. Note that the cardinalities of P and N
are |P| = N pilot

T and |N | = NT − N pilot
T = N null

T . From now
on, we drop (k, n), the index of the subcarrier and symbol
interval, for notation simplicity.

The proposed method first performs pilot symbol-assisted
channel estimation for the predetermined transmit antenna
set, P , and we can obtain an NR × N pilot

T estimated par-
tial MIMO channel matrix Ĥpilot whose ith column vector[
Ĥpilot

]
i
is given by [

Ĥpilot
]
i
= ĥP (i) , (14)

where i = 1, 2, · · · , |P|

(
= N pilot

T

)
and A (i) represents

the ith element of a set A. Note that we have Ĥpilot for all
subcarriers and symbol intervals by applying an interpolation
method. However, defining NR × N null

T matrix Ĥnull as[
Ĥnull

]
i
= ĥN (i) , (15)
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FIGURE 2. The block diagram of the proposed channel estimation method.

where i = 1, 2, · · · , |N |
(
= N null

T

)
, we cannot acquire the

estimated information of Ĥnull because transmit antennas
corresponding N do not send pilot symbols. Considering
the spatial correlation of MIMO channel matrix H, a mathe-

matical relationship between Hpilot
=

[
hP(1) · · · hP

(
N pilot
T

)]
and Hnull

=

[
hN (1) · · · hN

(
N null
T

)] exists. To figure out this
relationship, we utilize a DNN for data modeling which is
widely used as a universal feedforward approximator [48].
The objective of a DNN is to predictHnull without pilot sym-

bols by minimizing E
{∥∥∥Hnull

−f
(
Ĥpilot

)∥∥∥2
F

}
where ∥·∥

2
F is

the Frobenius norm.
Based on the above discussions, we propose the

DNN-based channel predictor D. As depicted in Fig. 1,
it consists of M hidden layers and we use the rectified linear
unit (ReLU) activation function φ (x) = max {0, x} for each
hidden layer. In Fig. 1, d0, · · · , dM+1 represent the number
of nodes of each layer. Then, the depth, width, and size
of the DNN are M + 1, max {d1, · · · , dM }, and

∑M
m=1 dm,

respectively. Note that d0 and dM+1 are the number of nodes
of the input and output layer, respectively. Defining Wm ∈

Rdm+1×dm and bm ∈ Rdm+1 form = 0, 1, · · · ,M as the weight
matrix and bias vector for the DNN, the output of the mth
layer is represented by

xm = φ (Wm−1xm−1 + bm−1) . (16)

Note that (16) only holds for m = 1, · · · ,M , x0 = p ∈ Rd0

is an input vector, and WMxM + bM = q (p) ∈ RdM+1 is a
hypothesis for input vector p. For a fully-connected layer, the
number of floating-point operations (FLOPs) for mth layer is
given by 2dm−1dm [49]. Therefore, by summing the number
of FLOPs for all layers, the computational complexity of the
proposed DNN can be calculated as

2
M+1∑
m=1

dm−1dm. (17)

Denoting the input and output data sample vectors for training
the DNN as psample and qsample, respectively, weight matrices
and bias vectors are updated to decrease the loss function for
qsample and q

(
psample

)
. In the proposed method, we use MSE

for the loss function, which is commonly used for regression,
and it is given by [50]

L = E
{∥∥qsample − q

(
psample

)∥∥2
F

}
. (18)

Considering the objective of a DNN-based channel predictor
D, psample and qsample are given by

psample

=

[
Re

{(
vec

(
Ĥpilot

))T}
, Im

{(
vec

(
Ĥpilot

))T}]T
,

(19)

qsample

=

[
Re

{(
vec

(
Hnull

))T}
, Im

{(
vec

(
Hnull

))T}]T
,

(20)

where d0 = 2NRN
pilot
T and dM+1 = 2NRN null

T . Note that the
input and output vectors of a DNN are made by vectorizing
and stacking the real and imaginary parts of a MIMO channel
matrix.
With the architecture and input-output relationship of the

DNN-based channel predictor D, the proposed channel esti-
mation operates in two phases, the training phase and the
test phase. As described in Fig. 2, in the training phase, both
Ĥpilot and Ĥnull are required to train the DNN. Therefore,
the transmitter has to send NT pilot symbols, corresponding
to all transmit antennas. At the receiver side, by utilizing
the LS or LMMSE algorithm and interpolation method, Ĥ
associated with all subcarriers and symbol intervals can be
obtained and used as the input and output data sample vectors,
psample and qsample, for the DNN training. Note that Hnull

in (20) is not available because it is the real MIMO channel

VOLUME 12, 2024 79085



S. Lee, D. Sim: Deep Learning-Based Channel Estimation Method for MIMO Systems

TABLE 1. System parameters for simulations.

matrix, unlike Ĥpilot in (19). Therefore, Ĥnull is used as
qsample instead of Hnull. However, considering Hnull

≈ Ĥ
null

with high signal-to-noise ratio (SNR) assumption, there is no
effect on the training of DNN. In the test phase, after the DNN
is well-trained, the transmitter exploits N pilot

T pilot symbols,
which correspond to the predetermined transmit antenna set,
P . Therefore, the proposed method can transmit additional
data symbols at the subcarriers and symbol intervals cor-
responding to pilot symbol positions of N in the training
phase. Instead, the receiver can acquire only Ĥpilot by pilot
symbol-assisted channel estimation, and the remaining part
ofH,Hnull, is predicted as H̃null by the proposed DNN-based
channel predictor D. Finally, by aggregating Ĥpilot and Ĥnull

which are obtained by the pilot symbols and DNN-based
channel predictor D, respectively, and assigning appropri-
ate transmit and receive antenna indices, the reconstructed
MIMO channel matrix H̄ can be obtained as follows:

[
H̄

]
nt

=


[
Ĥpilot

]
i
if P(i) = nt ,[

H̃null
]
i
if N (i) = nt .

(21)

Note that, using an interpolation method, we can acquire H̄
for all subcarriers and symbol intervals.

In the proposed channel estimation method, the number
of transmitted pilot symbols is less than in the conventional
channel estimation method and it leads to transmitting addi-
tional data symbols. To evaluate the impact of this advantage
on throughput performance, we define r = N pilot

T /NT , the
number of employed pilot symbols for the proposed method-
to-that for the conventional method ratio. Then, from (13),
we can rewrite the throughput performance of the proposed
method with r as

T =
(
T0−rTps

) (
1 − PB,avg

)
. (22)

Considering 0 < r < 1, the effective number of bits that can
be transmitted during τ for the proposed method, T0−rTps,
is always higher than that for the conventional method, T0 −

Tps. Moreover, assuming spatially correlated channels, the

TABLE 2. DNN parameters for simulations.

FIGURE 3. Comparison of NMSE performances (NT = 64 and NR = 2).

proposed method can be applied to next-generation com-
munication systems including ultra-massive MIMO systems,
high mobility, and wideband support [4], [6], [51]. However,
since the DNN of the proposed method predicts the MIMO
channel matrix without pilot symbols by only utilizing spa-
tial correlation, the accuracy of channel estimation may be
affected by r and ρ, which represent the number of known
spatial channels and the degree of correlation between spatial
channels, respectively, and the NMSE performances of the
proposed method will be degraded compared to the con-
ventional method. Therefore, performances of the proposed
method according to r and ρ have to be evaluated.

IV. SIMULATION RESULTS
In this section, we evaluate the performances of the pro-
posed channel estimation method in MIMO-OFDM systems
by Monte Carlo simulations. System and DNN parame-
ters used in simulations are described in Table 1 and 2.
We use the pedestrian channel models in [52] and adopt
the LMMSE algorithm and zero-forcing decoder for channel
estimation and symbol detection, respectively [40], [53], [54].
For comparison, we also evaluate the performances of the
conventional channel estimation method in [43]. In a conven-
tional method, each transmit antenna sends a pilot symbol
which means NT pilot symbols are utilized. At the receiver
side, an LMMSE algorithm is applied and NT estimated
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FIGURE 4. Comparison of NMSE performances (NT = 128 and NR = 2).

FIGURE 5. Comparison of NMSE performances according to the
correlation coefficient, ρ (NT = 64, NR = 2 and r = 0.969).

FIGURE 6. Comparison of BER performances (NT = 64 and NR = 2).

channel vectors ĥnt are obtained byNT pilot symbols. Finally,
with linear interpolation, we can acquire an estimated MIMO
channel matrix Ĥ =

[
ĥ1 · · · ĥnt · · · ĥNT

]
for all subcarriers

and symbol intervals.
First, the NMSE performance, defined as [57]

NMSE = E

∥∥H − H̄
∥∥2
F

∥H∥
2
F

 , (23)

FIGURE 7. Comparison of BER performances (NT = 128 and NR = 2).

FIGURE 8. Comparison of throughput performances (NT = 64 and
NR = 2).

FIGURE 9. Comparison of throughput performances (NT = 128 and
NR = 2).

is evaluated according to various r and ρ. As shown in Fig. 3
and 4, since the conventional method sends pilot symbols
for all transmit antennas and applies the LMMSE algorithm,
the channel estimation accuracy also improves as the SNR
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FIGURE 10. Comparison of NMSE performances according to DNN
parameters (NT = 64, NR = 2, and r = 0.969).

FIGURE 11. Comparison of BER performances according to DNN
parameters (NT = 64, NR = 2, r = 0.969, and 64-QAM).

increases [43]. However, the NMSE performances of the
proposed method are degraded when compared with the con-
ventional channel estimation method and this phenomenon
is more severe as r decreases. This is because the proposed
method is to predict the CSI of transmit antennas not sending
pilot symbols by utilizing a DNN. As a result, there is a
limitation in the NMSE performance of the proposed method
despite the increase in SNR values and this implies that r
should be carefully chosen to guarantee high link reliability
of the communication system. In this paper, we will use
r = 0.875, 0.938, and 0.969 which can obtain almost the
same BER performances of the conventional method. Fig. 5
shows the NMSE performances of the conventional and pro-
posed method according to the correlation coefficient, ρ,
when NT = 64, NR = 2, and r = 0.969. In Fig. 5, the
conventional method exhibits low NMSE performances for
highly correlated channels [58]. Contrary to the conventional
method, we can see that the NMSE performances of the
proposed method are degraded as the value of ρ decreases.
Considering that the DNN of the proposed method has to find
the unknown variables without pilot symbols by only utilizing

TABLE 3. Computational complexity for various DNN parameters.

spatial correlation, this phenomenon is inevitable. From now
on, to show the performance gain of the proposed method,
effectively, we only evaluate the ρ = 0.9 case.

Fig. 6 and 7 depict the BER performances of the proposed
and conventional methods. Regardless of antenna configura-
tions, the proposed method with r = 0.969 exhibits almost
the same BER performance compared to the conventional
method, unlike the NMSE performance. These results imply
that the proposed method with r = 0.969 satisfies the
NMSE performance to maintain the BER performance of the
conventional method. Furthermore, we can see that the BER
performance degradation is negligible, unlike the NMSE per-
formance, which suffers severe degradation as r decreases.
In Fig. 8 and 9, the throughput performances of the

proposed and conventional methods are compared. Since
the proposed method utilizes fewer pilot symbols than the
conventional method while maintaining BER performances,
it shows better throughput performances. Moreover, even
though the proposed method with r = 0.875 exhibits rel-
atively large BER performance degradation, it outperforms
the throughput performances of other cases. This implies that
the effect of reducing pilot overhead dominates the through-
put performance. However, if the number of pilot symbols
utilized by the proposed method is significantly reduced,
the target BER performance cannot be satisfied. Therefore,
depending on the scenarios in which the proposed method is
applied, r should be carefully chosen to compromise the BER
and throughput performance.

Comparing the performances of the proposed method
according to the antenna configurations, the NMSE perfor-
mances of the NT = 128 case are slightly worse than the
NT = 64 case. However, the NT = 128 case shows better
BER performance than the NT = 64 case because it can
achieve higher diversity gain. Note that since both cases
adopt the same modulation order and the NT = 128 case
requires more pilot overhead for channel estimation than
the NT = 64 case, improvement of BER performance
cannot lead to better throughput performance compared to
NT = 64. In practical systems, the NT = 128 case adopts
a higher modulation order based on the diversity gain and
adaptive modulation, and it can show improved throughput
performances [59]. Considering these points, we can see that
reducing the pilot overhead is very important when applying
pilot symbol-assisted channel estimation in massive MIMO
systems.

Fig. 10 and 11 depict the NMSE and BER performances
according to the DNN structures. To focus the performance
tendency according to the number of nodes of hidden lay-
ers, we fixed the number of hidden layers of the DNN
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structure and only varied the number of nodes of hidden
layers. Note that other hyperparameters, e.g., the number of
hidden layers, etc., must be optimized according to the system
parameters [60], [61]. In Fig. 10 and 11, we can see that
the performance of the proposed method can be improved as
the dimension of the DNN structure is larger, and the BER
performance of the {1024, 1024, 1024} case is closer to the
{2048, 2048, 2048} case than the {512, 512, 512} case. How-
ever, to extend the proposed method to the next-generation
communication systems, which guarantee a low latency, the
computational complexity should be also considered [4], [6].
Therefore, in Table 3, we also compare the computational
complexity of each DNN structure. Table 3 depicts that the
computational complexity increases as the number of nodes
of hidden layers [49]. Moreover, note that the computa-
tional complexity of the {1024, 1024, 1024} case is closer to
the {512, 512, 512} case than the {2048, 2048, 2048} case.
Therefore, based on the above two results, we chose the num-
ber of nodes of hidden layers as 1024 for the DNN structure
by compromising the BER performances and computational
complexity.

In summary, the proposed method can improve the
throughput performances by reducing the pilot overhead.
However, the degradation of the channel estimation accuracy
is inevitable. Therefore, the proposedmethod has to be appro-
priately adopted according to the various target performances
that the communication systems define for each use case.

V. CONCLUSION
Wepropose a deep learning-based channel estimationmethod
for MIMO systems in spatially correlated channels to reduce
the number of employed pilot symbols. Utilizing a DNN, the
proposed method predicts the CSI of transmit antennas not
sending pilot symbols and reconstructs the estimated MIMO
channel matrix. Simulation results show the validity of the
proposed method by comparing various performances with
the conventional channel estimation method.

In future works, we will extend the proposed deep
learning-based channel estimation method to a data-aided
channel estimation method in time-varying channels to
improve channel estimation accuracy and throughput
performance.
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