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ABSTRACT Given the far-reaching impact of the gold price on global financial markets, accurately
predicting the gold price has become essential, with machine learning methods emerging as a prominent
tool to tackle this challenge. Nonetheless, traditional single prediction models usually suffer from limited
predictive performance and fail to capture complex variability of market behavior. Aiming to solve these
limitations, an innovative two-stage hybrid deep integration framework that combines feature extraction and
residual correction techniques is proposed with a view to predicting the gold price more accurately. The
prediction effectiveness is enhanced by employing a variational modal decomposition to cluster time series
data into three classes. The first stage employs variational mode decomposition to categorize time series
data, improving computational efficiency and initial prediction accuracy. The second stage refines these
predictions through a novel residual correction process, leveraging back propagation, long and short-term
memory, and convolutional neural networks. In addition, through the in-depth analysis and processing of
residuals, it is demonstrated that starvation of our method further improves the credibility of the prediction
results, and effectively predicts the price movements of the four major gold markets. This approach not only
provides a remarkably valuable perspective for policy makers, investors, and trading firms in the gold market,
but also deals with the shortcomings of a single model in the face of complex market dynamics, and lays the
foundation for the development of even more powerful forecasting models in the future.

INDEX TERMS Feature fusion, integration model, price forecast, residual correction.

I. INTRODUCTION [3]. Therefore, the value of gold is derived not only from its

Gold, a precious metal, has played multiple significant roles
in the history of mankind. It serves as a medium of exchange,
and a means of storing value, as well as a globally recognized
symbol of wealth. In the financial markets, gold’s status as
a safe-haven asset and an inflation hedge provides investors
with degree of security in times of economic turmoil [1], [2],
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physical properties, such as scarcity and durability, but also
from its historical and cultural significance, as well as its
widely recognized financial status.

The price of gold represents an important indicator of the
state of the banking and stock markets, and has a significant
predictive effect on the economic and financial spheres.
As a result, accurately predicting the movement of the gold
price has become a focus of both industry and academic
attention. It is essential for strategic decision-making not
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only for company management and government departments,
but also for commercial investors [2], [3], [4]. Additionally,
the volatility of the gold market increases investment risks,
and fluctuations are influenced by a combination of many
complex factors. Historically, gold has been favored by
financial experts due to high liquidity and solid performance
during financial crises [5]. After the collapse which marked
the end of the fixed exchange rate between gold and the
US dollar, the price of gold rose significantly, reaching
new highs in the 1970s and early 1980s. During the global
financial crisis of 2008, in the face of widespread economic
uncertainty and market turmoil, gold once again became
the asset of choice for investors looking for a safe-haven,
with the price reaching a peak of approximately US$1,900
per ounce in 2011. It is also typical that the profitability
of gold mining companies is particularly affected by price
fluctuations. A decrease in the price of gold can render
mining projects unprofitable [3]. Consequently, predicting
gold movements is essential for financial investors and
policymakers in making informed investment decisions and
mitigating potential risks [4]. An in-depth analysis of the
factors that drive gold price volatility can offer valuable
insights to global investors, governments, and economic
players, enabling them to make more rational and informed
decisions in the complex and volatile financial markets.

According to existing literature, a lot of efforts and
contributions have been made in gold price forecasting.
These methods of gold price forecasting through gold price
time series can be classified into three categories: traditional
statistical method, machine learning method and hybrid
model. Firstly, traditional econometric methods emerged
early and were widely used, including autoregressive inte-
grated moving average model (ARIMA), generalized autore-
gressive conditional heteroskedasticity model (GARCH),
error correction model (ECM), vector autoregression (VAR),
etc. Traditional statistical models often assume that the under-
lying relationships of the time series data is linear. However,
the price of gold is governed by a variety of non-linear factors
such as macroeconomic indicators, geopolitical events and
market sentiment [6], [7], [8], [9]. While traditional statistical
models require the input time series data to be static, i.e.
to exhibit a constant mean and variance over time, gold
prices tend to exhibit non-stationary behaviour due to trends,
seasonality and structural breaks [10]. Transformations such
as differencing or detrending might be may be required to
make the data stationary, but these processes result in the loss
of valuable information [2].

Given these limitations, researchers are increasingly
turning to alternative methods, such as machine learning
and hybrid models, which can more effectively capture the
nonlinearities, non-stationarities, and complex interactions
inherent in gold price time series data [11]. It has been shown
that single machine learning models are an improvement over
traditional statistical models in forecasting gold prices [9],
[12]. However, they still face certain limitations, especially
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when trained on limited data or with a high number of
features, and have the problem of overfitting [13], [14].
Overfitting models may perform well on the training data but
fail to generalize to unseen data, resulting in poor forecasting
performance [15]. Hence, researchers have adopted various
fusion models to address the deficiencies of single machine
learning models in predicting gold prices [15], [16], [17].
Typically, these fusion models blend the strengths of different
techniques to improve prediction accuracy and compensate
for the limitations of individual models, such as stacked
generalization, weighted averaging etc. [11], [16], [18], [19].
These methods train multiple base models on the same
dataset and then combine their predictions using meta-
models. To produce the final prediction, the meta-model is
trained on the output of the base models. After assembling,
it can fully utilize the strengths of different models. These
methods also combine the predictions of multiple models
by assigning weights to their outputs. These methods
can also combine the predictions of multiple models by
assigning weights to the outputs, where the weights can
be defined based on the performance of individual models,
enabling the higher performing models to contribute more
to the final prediction. In turn, averaging reduces the
impact of errors in a single model and improves overall
accuracy [19].

Nevertheless, careful selection of the appropriate base
models, fusion techniques, and hyperparameters plays a
crucial role in improving the performance of fusion mod-
els. On the other hand, finding the optimal combination
often requires extensive experimentation, which is not only
time-consuming but also consumes computational resources.
Despite these limitations, fusion models have already
exhibited potential benefits in addressing the challenges
associated with gold price forecasting and other complex
prediction tasks [18], [20]. When properly implemented,
these models can enhance performance by integrating the
strengths and compensating for the weaknesses of different
models.

To overcome these critical issues, an innovative two-
stage deep fusion integration framework, which is based on
feature extraction and residual correction, is proposed in this
study with the aim of improving the prediction accuracy of
gold prices. By fine-tuning the residuals of the prediction
model, we are able to further enhance the accuracy of the
prediction results. The framework carefully considers the
shortcomings of decomposed ensemble models and employs
feature reconstruction techniques to identify the optimal
feature subsequence. Within this subsequence, a feature
fusion model is employed to cope with the challenges of
complex data as well as high noise levels. Furthermore, in-
depth processing of residuals helps to improve the accuracy
of prediction.

Our proposed framework integrates variational mode
decomposition [21], Gaussian mixture modeling [22], back
propagation, long short-term memory, and convolutional

VOLUME 12, 2024



C. Qiu et al.: Two-Stage Deep Fusion Integration Framework

IEEE Access

neural networks. By decomposing the gold price series into
a number of subsequences, we reduce the complexity of
the data and make the series smoother. These subsequences
are clustered into three major sequences using Gaussian
mixture modeling, improving computational efficiency. Next,
we developed a BP-CNN-LSTM fusion model and trained the
subsequences with a combination of backpropagation, long
and short-term memory, and convolutional neural networks.
By splicing the obtained tensors, we obtained preliminary
fitted values and further corrected the residuals using the
proposed BP-CNN-LSTM fusion model to achieve effective
prediction of gold price. This paper is structured as follows:
Section II provides an overview of related work in gold
price forecasting. Section III details the proposed two-stage
deep integration framework, including the methodologies
employed. Section IV presents the experimental setup and
results, along with a discussion of the findings. Finally,
Section V concludes the study and outlines potential direc-
tions for future research.

Il. METHODOLOGY
This section will introduce the specific principles of the
methods and technical models involved in gold price
forecasting research.

A. VARIATIONAL MODE DECOMPOSITION (VMD)
Variational Mode Decomposition (VMD), proposed by
Dragomiretskiy and Zosso [21] in 2014 as an extended
version of the EMD algorithm, is a non-recursive and adaptive
method for decomposing non-smooth and non-linear signals.
VMD is well-suited to financial time series forecasting,
including gold price prediction, and has been widely used in
various fields, such as fault diagnosis, time series prediction,
and image processing. Li et al. [23] successfully predicted
short-term wind speed by using VMD to eliminate the
instability of wind speed data. Yan and Mu [24] also
employed VMD and CEEMDAN to reduce noise in financial
time series data, thus enhancing prediction accuracy. VMD
can decompose complex signals into a set of intrinsic mode
functions (IMFs), each of which can be regarded as the
fluctuation of a single frequency mode. The problem to be
solved is the constrained variational optimisation problem.
This can be stated as follows:

) |
> | 5 (G + w0 s u e 3

min
{utm i AWk

s.t. Zk we(t) = f(t) 1)

In the formula, uy refers to the & mode function after
the input signal decomposition, wy represents the central
frequency, and K is the number of modes to be decomposed.
The § (t) is the unit impulse function, and f (t) is the original
signal. To solve the optimization problem, we introduce the
Lagrange multiplier A and the second-order penalty factor
o, and then transform the constrained variational problem
into an unconstrained variational problem, obtaining the

VOLUME 12, 2024

augmented Lagrange expression:
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Equation (2) is solved as a saddle point. The parameters
uy, Wa, A1, and n are initialized. The initial value of n is set
to 0, and a cyclic process is initiated such that n =n + 1.
The values of ug, w;, and A, are updated using the following
formula. When the components satisfy equation (6), the
solution is completed.

B. GAUSSIAN MIXTURE MODEL (GMM)

Gaussian Mixture Models (GMMs) function as an amalgama-
tion of ‘K’ Gaussian models [22], characterized by a unique
probability distribution of the form:

PaI =" adxl6) 3

Here, each is a coefficient satisfying o> 0, with
Z]Ile ax = 1. The term ¢ (x| 6) represents a Gaussian
distribution, with 6= (py, 0,3) referred to as the k-th sub-
model. The Gaussian distribution ¢ (x | 6x) can be defined as:

1 _ T =1 _

¢ (-x | 9]() = 5 1 exp (_ (.X Mk) 2k (.X ,[,Lk))
(2m)2 | 2|2

4

GMM provides a generative modelling methodology that
models the process of generating data as a combination
of multiple Gaussian probability distributions [25]. For
instance, envisage two one-dimensional standard Gaussian
distributions N(0,1) and N(2,1) which are assigned weights of
0.7 and 0.3, respectively. The generation of a new data points
first involves randomly selecting a distribution according
to these weights, and then sampling from the selected
distribution to obtain a point. It is assumed that is that each
point is generated independently, and the process is iteratively
continued until the desired data count is reached. The
flexibility of this model allows it to represent complex data
distributions. In practice, the parameters of GMM are derived
from observed data through maximum likelihood estimation,
a process that often utilizes the expectation-maximization
(EM) algorithm. This algorithm iteratively optimizes the
model parameters with respect to observed data, making it
applicable in various fields like image processing, signal
processing, and machine learning. In the case of gold price
prediction, the ability of GMM to perform cluster analysis
on subseries derived from variational modal decomposition
(VMD) significantly reduces model complexity and improves
computational efficiency, making GMM a key component of
a comprehensive approach to gold price prediction.
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C. BACK PROPAGATION NEURAL NETWORK (BP)

The BP neural network is an artificial neural network
learning process that combines an error back-propagation
algorithm as a learning mechanism, which is a multi-layer
forward network with weights non-linear differentiable
functions and consists of two processes: forward propagation
of information and backward propagation of errors. The
input layer tasked with gathering information from the
external environment and conveying it to the neurons in
the intermediate layer. This intermediate layer acts as a
processing hub, where the transformation of information
occurs. Depending on the precision required, this layer can be
structured as either a single-layer or multi-layer hidden-layer
configuration. Subsequently, the final hidden layer relays
the refined data to the output layer, which completes the
learning cycle. The output layer then further processes this
information before presenting the results back to the external
world. If the actual output value differ from the anticipated
output, the gradient descent technique is employed to
retroactively distribute the error to each layer, adjusting
their respective weights. This process extends progressively
back to the hidden and input layers. Through the repetitive
cycle of forward propagation and reverse error dissemination,
the weightings of the individual layers are meticulously
honed to mirror the neural network’s connectivity objectives
accurately. The process continues until the output error
decreases below a pre-set threshold or a pre-set number
of learning iterations is reached. Through this laborious
process, the BP neural network autonomously fine-tunes
itself, enhancing the forecast accuracy of the model. Such
enhancement is essential in addressing the intricate and
fluctuating nature of financial markets.

D. LONG SHORT-TERM MEMORY (LSTM)

Long short-term memory (LSTM) was proposed by Hochre-
iter and Schmidhuber [26] and was recently improved by
Alex Graves [26]. LSTM solves the gradient disappearance
problem by designing an elaborate network structure. LSTM
designs the memory cells, which can add or remove
information by the input gate (i), forget gate (f;), output gate
(op). ct—1 and c; respectively indicate the cell state at time
t — 1 and t-g; add information to cell state. The input and
hidden state are represented by x; and h; at time t. Cells and
gates are updated according to Equations (5)-(9).

iy =0 (Wix; + Rily—1 + b)) (5
Jio =0 (Wrxe + Rehy—1 + by) (6
0r = 0 (Wox; + Rohsi—1 + by) @)
g: = tanh (ng, +Rehi—1 + bg) ®)
G =fr-c—1+8 i 9
hy = oy - tanh (c;) (10)

o (-) denotes the sigmoid function, W and R respectively
indicate input weights and recurrent weights, b represent
bias. Weights are updated by back propagation trough
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time algorithm. The forget gate selectively discards the
information in the past cell state (c(—1), as shown in Eq. (9).
The input gate selectively records new information in the
cell state (c(), as presented in Egs. (7) and (8). The output
gate determines how much of the current cell’s information
is assigned to the next cell, as noted in Eq. (10).

E. CONVOLUTIONAL NEURAL NETWORK (CNN)
Convolutional Neural Networks (CNN) represent another cat-
egory of feed-forward architecture which primarily process
their input as bi-dimensional matrices. They are typically
composed of a sequence of successive convolutional and
subsampling layers, followed one or multiple hidden layers
and culminating in an output layer. The initial layers of
convolution and subsampling are iteratively stacked to extract
high-level feature vectors in a single dimension. These feature
vectors are processed by the hidden and output layers, which
function akin to a fully connected multilayer perceptron [15].

In this architecture, convolutional layers encompass a
multiple filters, also known as convolutions, that are applied
to the input from the previous layer. The kernel weights
of these convolution filters are optimized throughout the
training phase. In this context subsampling or pooling layers
serve to diminish the dimensionality of the features, thereby
providing a robustness mechanism against noise.

1ll. PROPOSED MIODEL

The introduction of feature fusion in our framework addresses
the complex and non-linear nature of gold price time
series data. Traditional single models, such as ARIMA and
GARCH, are often inadequate for capturing the intricate
patterns in the data due to their linear assumptions. Even
individual deep learning models like LSTM or CNN, while
powerful, can suffer from limitations such as overfitting
or an inability to capture both short-term and long-term
dependencies effectively.

Feature fusion combines the strengths of multiple models,
leveraging their unique capabilities to create a more robust
predictive model. Specifically, we employ variational mode
decomposition (VMD) to decompose the time series into
more manageable components, which are then processed
by a combination of backpropagation (BP), long short-term
memory (LSTM), and convolutional neural networks (CNN).
This approach ensures that the model can capture both the
temporal dependencies and the underlying patterns in the data
more effectively than any single model alone.

The core of our research lies in the design of a com-
prehensive structure known as the Feature Fusion Module
(FFM). Illustrated in Figure 1. Contrived to process the input
data and generate feature vectors, the Feature Fusion Module
consists of three distinct branches, each adept at processing a
seven-dimensional input vector to produce a 128-dimensional
feature vector. In the first branch— referred to as the left
branch—the input vector is induced and backpropagated
through a fully connected layer. Backpropagation is used
in this branch as a traditional algorithm that effectively

VOLUME 12, 2024



C. Qiu et al.: Two-Stage Deep Fusion Integration Framework

IEEE Access

. Backpropagation .

| | l

I 7-dimensional input
|

. Fully Connected Layer I I

| | | |

: ReLU .
| | |

7-dimensional input

II 1D Convolutional Layer I I

ReLU

7x64 feature vector

Fully Connected Layer

ReL.U

| I 7x1inp|.lltvectul' |
- i

LSTM Network |

| | RelLU |
" ° 64-dimensional feature vector -

' I
Fully Connected Layer .

ReLU |

Y

,\ 128-dimensional output I l 128-dimensional output J

128-dimensional feature vector ‘

i Fully Connected Layer 2 ‘

Fully Connected Layer 4

—_ _— _—
[ e — — |
. 384-dimensional feature vector 64-dimensional feature vector L 1-dimensional feature vector .
. Fully Connected Layer 1 Fully Connected Layer 3 | i
i RelLU ‘ ReLU | |
i 32-dimensional feature vector | Output :

FIGURE 1. Feature processing framework.

reduces prediction error by optimizing the weights during
model training and has proved to be very effective in
training machine learning models, including neural networks.
Next comes the intermediate branch, which employs a
convolutional network to process the input vectors. Specif-
ically, a one-dimensional convolutional layer is employed,
generating a 7 x 64 feature vector. This vector is expanded to
a 448 dimensions and then further processed through a fully
connected layer, culminating in a 128-dimensional feature
vector. Convolutional Neural Network (CNN) is deployed
in this branch because of its superior capability to identify
spatial relationships in data, making it particularly suitable for
processing time series data like gold price trends. Finally, the
right branch contains a Long Short-Term Memory (LSTM)
network. The LSTM network extracts features from a 7 x 1
input vector, forming a 64-dimensional feature vector, which
is subsequently manipulated through a fully connected layer,
thus yielding a 128-dimensional feature vector. The LSTM
is particularly useful for processing data such as gold price
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trends because of its ability to remember patterns over long
time horizons, which is crucial for our model, they allow for
more accurate predictions by taking into account long-term
dependencies in the time series data.

Next, we splice the three produced 128-dimensional
feature vectors are then concatenated to form a singular
384-dimensional feature vector. Afterwards, this vector is
processed through a series of consecutive fully connected
layers, resulting in a sequence of feature vectors (128, 64, and
32 dimensions, respectively), which are finally compressed
into a one-dimensional feature vector.

In conclusion, Feature fusion plays a crucial role in the
gold price prediction model we constructed. It provides the
possibility of integrating various complementary informa-
tion collected from multiple feature extraction techniques.
By amalgamating the outputs from different branches of
backpropagation, convolutional neural networks, and LSTM
networks, the Feature Fusion Module successfully builds
a comprehensive feature representation. This representation
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original gold price time series data
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FIGURE 2. Fusion model framework.

captures the complex and diverse patterns present in the time
series data of gold prices.

A. FUSION MODEL FRAMEWORK

In this study, we propose a fusion modelling framework
that integrates data preprocessing techniques, optimization
algorithms, and machine learning methods, aimed at accurate
forecasting of gold price time series data. With the seamless
integration of three unique modules, this innovative approach
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Fitted value =

first fitted value +output 3

collectively enhances the prediction performance. Together,
these modules not only capture key features of the data, but
also optimise the predictive output of the model (Figure 2).
Specifically, Module A is the primary component of
this fusion model, which focuses on data extraction and
preprocessing. In this key step, the raw gold price time series
data is converted into a format suitable for further analysis.
Given that time series data are typically non-stationary,
we employ a variational pattern decomposition to process
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the raw data into seven subseries, effectively separating
out underlying trends and cyclical patterns. Subsequently,
a Gaussian Mixture Model approach is applied to process
these subsequences, ultimately transforming them into three
distinct data sets. This process not only simplifies the data
structure but also ensure that the newly generated datasets
accurately reflected the fundamental characteristics of the
original time series data.

Next, Module B centres on developing a composite model
called BP-CNN-LSTM, which combines the strengths of
three distinct machine learning methods: Backpropagation
(BP), Long Short-Term Memory (LSTM), and Convolutional
Neural Networks (CNN). The approaches are linked to
each other through a fully connected layer, with the aim
of exploiting their unique capabilities and complementing
each other’s shortcomings. The three preprocessed data sets
derived from Module A are then meticulously trained with the
BP-CNN-LSTM integrated model, producing three output
results. An optimization algorithm such as Genetic Algorithm
or Particle Swarm Optimization is subsequently utilized to
assign weights to the predictions of each model. His step
helps to determine the optimal model configuration and
derive the final predicted values. Then the residuals between
the initial predicted values and the actual observed values are
calculated.

In the end, Module C completes the proposed fusion
model framework by implementing a comprehensive residual
correction process. The goal of this stage is to improve
the prediction accuracy of the model by examining the
differences between the initial predicted values generated by
Module B and the actual values. To accomplish this, residuals
are used as inputs and undergo secondary training through the
BP-CNN-LSTM integrated model in order to capture residual
patterns or correlations that may not be adequately revealed
by the initial training.

Upon completing the secondary training, the model
generates Output 3, which further improves the accuracy of
the prediction results. Following this, the initial predictions
obtained from Module B are combined with Output 3 to o
obtain a residual-corrected second version of the fitted values.
This process effectively integrates residual correction into
the overall orecasting process, resulting in more accurate
and reliable gold price forecasts. A coherent and transparent
model structure guarantees that it maintains the interpretabil-
ity of the model while incorporating the advantages of
advanced machine learning techniques.

The fusion modelling framework proposed in this study
takes full advantage of the combined strengths of data
preprocessing, feature fusion, and machine learning methods,
offers a systematic and robust approach to gold price
prediction. By integrating these elements into a coherent
and efficient framework, the model captures the complex
dynamics of gold price time series data and addresses
the limitations that may be encountered when using each
method individually. Taken together, the model becomes a
fully-featured and powerful tool for gold price forecasting,
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and is expected to significantly improve the accuracy and
reliability of forecasting efforts in the financial sector. Its
innovative architecture and the synergistic application of
multiple techniques sets a new benchmark for gold price
prediction and provides valuable insights for future research
in the field of time series analysis and prediction.

IV. SIMULATION AND DISCUSSION

In this section, in order to comprehensively evaluate the
effectiveness of a two-stage deep integration model based on
feature fusion and residual correction in gold price prediction,
we choose four major gold markets as experimental object:
AuT+D, London Gold Spot (US dollar), COMEX gold
futures (active contract) and MICEX gold futures (active
contract), s. This section exhaustively describes the experi-
mental process including performance comparisons between
different machine learning models, and presents the final
results and their discussion.

A. DATA COLLECTION

The experimental dataset for this study were obtained from
the Wind Information database (https://www.wind.com.cn).
Four principal gold markets were selected as the experimental
targets, including the Shanghai Gold Exchange Gold Spot:
Closing Price: AuT+-D, London Spot Gold (denominated in
US Dollars), Futures Closing Price (Active Contract) from
COMEX Gold, and Futures Closing Price (Active Contracts)
from MICEX Gold. These datasets encompass four distinct
markets and their respective ranges, after cleaning, outlier
removal and data preprocessing, are listed in Table 1.

TABLE 1. Time range of gold market data.

i e T T
LondonSpot Gold 2000011~ 5603 4ss4 1139
COMEX Gold JOTILT se93 4ssa 1139
MICEX Gold A T YL S

In this case, the gold price time series were partitioned
into two sections: a training subset, which accounts for
80% of the time series and was utilized for constructing
forecasting models, another testing subset, which accounts
for the remaining 20 percent of the time series, is used to
validate the forecasting performance of the hybrid model.
This approach assured a rigorous evaluation of the proposed
hybrid model’s accuracy and effectiveness.

B. EVALUATION OF PREDICTION ACCURACY

Most published studies currently employ a variety of
performance evaluation criteria to demonstrate the predictive
accuracy of the model. These metrics include mean absolute
error (MAE), root mean square error (RMSE), mean absolute
percentage error (MAPE), mean square error (MSE), and
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FIGURE 3. VMD decomposition model.

coefficient of determination (R?). Lower values of MAE,
RMSE, MAPE, and MSE indicate better predictive models.
Conversely, higher values of R? signify superior model
performance.

1 N
MAE = - Zi:l |YPREG) = YACT ()| an
1 N 2
RMS = \/ N Zi:l (yerREG) — YACT () (12)
1 N H — j
MAPE = _ 3" |MPREQ ZICTO 1 909, (13)
N —i=I YACT (i)
MSE = -3 2 14
=5 Zi:l (vPREG) = YacT (@) (14)
2
: [y — average
R—1— > (vPrEG) ge (yprE)) (15)

2
> (vacr — average (ypre))

where N is the size of testing dataset, yaverage 18 the mean
value of y, yacT(;) and ypRre(;) are the iz, actual and forecasting
values.
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C. EXPERIMENTAL PROCESS

1) VMD DECOMPOSITION

Given the inherent volatility and non-stationary nature
of gold price data, the high level of noise commonly
found in financial time series data, and the nonlinearity
and complexity of gold price movements, the variational
mode decomposition (VMD) method provides a robust
solution [11], [18], [24], [27], [28]. This method is able
to segregate various underlying trends and periodic patterns
in the data efficiently, thus deepening our understanding of
the characteristics of the data and enhancing the forecasting
accuracy of the process. The VMD decomposition mode is as
shown in Figure 3.

D. DATA ANALYSIS

1) FORECASTING THE PRICE OF GOLD

In this study, three benchmark models and five recognized
performance evaluation metrics were used to assess the
predictive ability of the current hybrid forecasting model.
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TABLE 2. Experimental results in shanghai gold exchange gold spot.

Market Model MSE MAE RMSE R? MAPE

BP-train 5.21 1.6039 2.2825 0.9988 0.0068
BP-test 10.3993 2.2767 3.2248 0.9937 0.0063
LSTM-train 6.1949 1.7621 2.489 0.9985 0.0076

Shanghai Gold Exchange Gold Spot LSTM-te-st 10.3993 2.2767 3.2248 0.9937 0.0063
CNN-train 6.4775 1.8159 2.5451 0.9985 0.008
CNN-test 13.5242 2.6604 3.6775 0.9919 0.0073
BP-CNN-LSTN-train 5.0281 1.579 2.2423 0.9988 0.0067
BP-CNN-LSTM-test 10.1062 2.2617 3.179 0.9939 0.0062

TABLE 3. Experimental results in london spot gold.

Model MSE MAE RMSE R? MAPE

BP-train 122.7637 7.4611 11.08 0.9994 0.0081
BP-test 248.9281 11.441 15.778 0.9962 0.007

LSTM-train 142.9921 8.0648 11.958 0.9993 0.0087
LSTM-test 316.3692 13.2151 17.787 0.9952 0.008

CNN-train 161.9153 9.4441 12.725 0.9992 0.0129
CNN-test 273.4234 12.1231 16.536 0.9958 0.0074
BP-CNN-LSTN-train 117.5241 7.2698 10.841 0.9994 0.0079
BP-CNN-LSTM-test 242.5457 11.2532 15.574 0.9963 0.0069

TABLE 4. Experimental results in COMEX Gold.

Market Model MSE MAE RMSE R? MAPE

BP-train 86.0057 6.1737 9.2739 0.9996 0.0066
BP-test 185.0242 9.7258 13.602 0.9972 0.0059
LSTM-train 104.4357 6.8206 10.219 0.9995 0.0073

COMEX Gold LSTM-test 324.095 13.5994 18.003 0.995 0.0081
CNN-train 108.1047 7.0257 10.397 0.9995 0.008
CNN-test 236.1998 11.0068 15.369 0.9964 0.0067
BP-CNN-LSTN-train 83.6408 6.0692 9.1455 0.9996 0.0065
BP-CNN-LSTM-test 175.6793 9.5391 13.254 0.9973 0.0058

TABLE 5. Experimental results in MICEX Gold.

Market Model MSE MAE RMSE R? MAPE
BP-train 122.3411 8.1389 11.061 0.9982 0.0068
BP-test 238.1695 11.7109 15.433 0.9924 0.0067
LSTM-train 147.4852 8.9802 12.144 0.9979 0.0075
MICEX Gold LSTM-test 306.5525 13.5874 17.509 0.9902 0.0078
CNN-train 158.245 9.2366 12.58 0.9977 0.0077
CNN-test 301.5735 13.126 17.366 0.9903 0.0075
BP-CNN-LSTN-train 120.9784 8.1113 10.999 0.9983 0.0067
BP-CNN-LSTM-test 240.5556 11.8331 15.51 0.9923 0.0068

The results of the detailed performance metrics are displayed much lower values of MSE, MAE, RMSE, MAPE, and higher
in Tables 2-5. Clearly, the current hybrid model achieves values of R?, demonstrating its superior predictive ability
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and more reliable and stable forecasting results. According
to the data in Table 2, the results depicts instability when
a single model is used to forecast the gold spot price on
the Shanghai Gold Exchange. Specifically, the MAPE values
for BP-test, LSTM-test, and CNN-test are 0.0063, 0.0063,
and 0.0073 respectively, and these values are higher than
that of the hybrid BP-CNN-LSTM model (0.0062). Notably,
the MAPE values for the hybrid BP-CNN-LSTM model

VOLUME 12, 2024

in London Spot Gold, COMEX Gold, and MICEX Gold
are 0.0069, 0.0058, and 0.0068 respectively, which perform
better than their corresponding single models. In addition,
when other performance metrics such as MSE, MAE and
RMSE are considered, the predictive performance of the
fused BP-CNN-LSTM model also outperforms the other
single models as shown in Figure 4. This result indicates that
the proposed hybrid model has significant advantages in gold
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TABLE 6. The comparison between first-stage and second-stage hybrid models.

Market Model MSE MAE RMSE R? MAPE
Shanghai Gold First-stage BP-CNN-LSTM 10.1062 2.2617 3.1790 0.9939 0.0062
Exchange Gold Spot Second-stage BP-CNN-LSTM 9.6574 2.2098 3.1076 0.9942 0.0061
London Spot Gold First-stage BP-CNN-LSTM 242.5457 11.2532 15.5738 0.9963 0.0069
Second-stage BP-CNN-LSTM 242.5457 11.2532 15.5739 0.9963 0.0069
COMEX Gold First-stage BP-CNN-LSTM 175.6793 9.5391 13.2544 0.9973 0.0058
Second-stage BP-CNN-LSTM 164.9928 9.2938 12.8450 0.9975 0.0056
MICEX Gold First-stage BP-CNN-LSTM 240.5556 11.8331 15.5098 0.9923 0.0068
Second-stage BP-CNN-LSTM 229.3081 11.5136 15.1429 0.9926 0.0066

price prediction and can provide more accurate and stable
prediction results.

2) RESIDUAL CORRECTION AND OPTIMIZATION

Although the results of the first-stage experiments are
impressive, it is recognised that there is further scope for
improving the prediction accuracy. Towards this end, a novel
methodology is introduced, whereby the hybrid model is opti-
mized by training the residuals of the first-stage experiment
to improve the final results with a view to obtaining more
accurate predictions. The methodology involves training the
residuals from the four major gold markets to produce the
final fitted values. Figure 5 illustrates a comparison of
the residuals extracted by the three different machine learning
methods as well as the fusion model when dealing with the
test and training sets.

As indicated in Figure 6 and Table 6, the hybrid BP-CNN-
LSTM model of the second stage outperforms the hybrid
model of the first stage in terms of MSE, MAE, RMSE,
MAPE, and R? values.

According to the data in Table 6, the MSE values of
the second-stage BP-CNN-LSTM model are significantly
lower than those of the first-stage BP-CNN-LSTM model in
the four major gold markets, which are 9.6574, 242.5457,
164,9928, and 229.3081, respectively. Particularly in the
COMEX gold market, the MAPE values of the first-stage
and second-stage hybrid BP-CNN- LSTM models have
MAPE values of 0.9973 and 0.9975, respectively, a result
that suggests that the second-stage model has superior
predictive ability. In other words, by further operating on
the residuals of the first-stage hybrid model, we achieve a
significant improvement in the predictive performance. Our
results indicate that the proposed hybrid model outperforms
traditional single prediction models in terms of MSE, MAE,
RMSE, MAPE, and RZ. These findings are consistent with
the results reported by Liu et al. [11] who demonstrated the
effectiveness of hybrid models in capturing the nonlinearities
and complexities inherent in financial time series data.
Moreover, the superior performance of our model compared
to that of He et al. [27] underscores the importance of incor-
porating advanced feature extraction and residual correction
techniques. Our results not only confirm the advantages of
hybrid models but also highlight the significance of refining
residuals for improving predictive accuracy. This discussion
aligns with previous research by Liang et al. [20] and further
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validates the robustness of our proposed framework in diverse
market conditions.

V. CONCLUSION

Overall, this research begins by highlighting the increasing
importance of gold price forecasting for various stakeholders,
such as policymakers, financial investors, and others. The
development of a more accurate prediction model will
undoubtedly help these stakeholders to make more informed
decisions and strategies in a volatile market. Faced with
the challenges posed by the highly dynamic gold market,
our research successfully integrates the strengths of CNN,
BP, and LSTM models to overcoming their respective
shortcomings to provide an excellent forecasting framework.
The key innovation in the research is to optimally process
the residuals generated from the first-stage experiment.
By comparing the performance of the first-stage and second-
stage experiments, it is confirmed that the second stage
experiments are able to achieve more accurate prediction
results. Moreover, potential interference from chance factors
is minimised through the selection of four mainstream gold
markets as the study object.

In summary, on the one hand, the proposed hybrid
model provides precise gold price forecasts and valuable
insights for various stakeholders, and on the other hand,
it represents an innovative approach to time series prediction.
The adaptability and accuracy of the model also means that
it has the potential to be applied to a variety of fields, such
as stock markets and machine production, which is expected
to bring significant social benefits. Nevertheless, the current
study still has some limitations, like not fully considering
relevant influencing factors and market environments, which
could play a crucial role in forecasting. Future research
could address these shortcomings to further enhance the
predictive capabilities of the hybrid model. Despite the
promising results, this study has certain limitations. One
of the primary limitations is the model’s dependency
on historical data, which may not fully capture sudden
market shifts caused by unforeseen geopolitical events or
economic crises. Additionally, the model’s performance
could be affected by the choice of hyperparameters and
the initial setup of the training process. Future research
should focus on incorporating more adaptive algorithms
that can dynamically adjust to real-time data and market
conditions.

85577



IEEE Access

C. Qiu et al.: Two-Stage Deep Fusion Integration Framework

ACKNOWLEDGMENT
(Cihai Qiu, Yitian Zhang, and Xunrui Qian contributed
equally to this work.)

REFERENCES

[1]

[2]

[3]

[4]

[51

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

D. Bams, G. Blanchard, I. Honarvar, and T. Lehnert, “Does oil and gold
price uncertainty matter for the stock market?”” J. Empirical Finance,
vol. 44, pp. 270-285, Dec. 2017, doi: 10.1016/j.jempfin.2017.07.003.

J. Beckmann and R. Czudaj, “Gold as an inflation Hedge in a time-
varying coefficient framework,” North Amer. J. Econ. Finance, vol. 24,
pp. 208-222, Jan. 2013, doi: 10.1016/j.najef.2012.10.007.

H. Hassani, E. S. Silva, R. Gupta, and M. K. Segnon, “Forecasting the
price of gold,” Appl. Econ., vol. 47, no. 39, pp. 4141-4152, Aug. 2015,
doi: 10.1080/00036846.2015.1026580.

C. Wang, X. Zhang, M. Wang, M. K. Lim, and P. Ghadimi, “Predictive
analytics of the copper spot price by utilizing complex network and
artificial neural network techniques,” Resour. Policy, vol. 63, Oct. 2019,
Art. no. 101414, doi: 10.1016/j.resourpol.2019.101414.

J. Beckmann, T. Berger, and R. Czudaj, “Gold price dynamics and the role
of uncertainty,” Quant. Finance, vol. 19, no. 4, pp. 663-681, Apr. 2019,
doi: 10.1080/14697688.2018.1508879.

G. Bandyopadhyay, “Gold price forecasting using ARIMA model,”
J. Adv. Manage. Sci., vol. 4, no. 2, pp.117-121, 2016, doi:
10.12720/joams.4.2.117-121.

Y. Wang, J. Wang, G. Zhao, and Y. Dong, “Application of residual
modification approach in seasonal ARIMA for electricity demand
forecasting: A case study of China,” Energy Policy, vol. 48, pp. 284-294,
Sep. 2012, doi: 10.1016/j.enpol.2012.05.026.

B. M. Lucey and F. A. O’Connor, “Do bubbles occur in the gold
price? An investigation of gold lease rates and Markov switching
models,” Borsa Istanbul Rev., vol. 13, no. 3, pp. 53-63, Sep. 2013, doi:
10.1016/j.bir.2013.10.008.

H. Mombeini and A. Yazdani-Chamzini, “Modeling gold price via
artificial neural network,” J. Econ., Bus. Manage., vol. 3, no. 7,
pp. 699-703, 2015, doi: 10.7763/joebm.2015.v3.269.

J. Chai, C. Zhao, Y. Hu, and Z. G. Zhang, ““Structural analysis and forecast
of gold price returns,” J. Manage. Sci. Eng., vol. 6, no. 2, pp. 135-145,
Jun. 2021, doi: 10.1016/j.jmse.2021.02.011.

Q. Liu, M. Liu, H. Zhou, and F. Yan, “A multi-model fusion based
non-ferrous metal price forecasting,” Resour. Policy, vol. 77, Aug. 2022,
Art. no. 102714, doi: 10.1016/j.resourpol.2022.102714.

D. Liu and Z. Li, “Gold price forecasting and related influence factors
analysis based on random forest,” in Advances in Intelligent Systems
and Computing, vol. 502. Singapore: Springer, 2017, pp. 711-723, doi:
10.1007/978-981-10-1837-4_59.

Z. Alameer, A. Fathalla, K. Li, H. Ye, and Z. Jianhua, ‘“Multistep-
ahead forecasting of coal prices using a hybrid deep learning
model,” Resour. Policy, vol. 65, Mar. 2020, Art.no. 101588, doi:
10.1016/j.resourpol.2020.101588.

I. Ul and K. Nazir, “Predicting future gold rates using machine learning
approach,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 12, pp. 92-95, 2017,
doi: 10.14569/ijacsa.2017.081213.

O. B. Sezer and A. M. Ozbayoglu, ““‘Algorithmic financial trading with
deep convolutional neural networks: Time series to image conversion
approach,” Appl. Soft Comput., vol. 70, pp. 525-538, Sep. 2018, doi:
10.1016/j.as0¢.2018.04.024.

Y. Liu, C. Yang, K. Huang, and W. Liu, “A multi-factor selection
and fusion method through the CNN-LSTM network for dynamic price
forecasting,” Mathematics, vol. 11, no. 5, p. 1132, Feb. 2023, doi:
10.3390/math11051132.

Z. He, J. Zhou, H. N. Dai, and H. Wang, “Gold price forecast based
on LSTM-CNN model,” in Proc. IEEE Intl Conf. Dependable,
Autonomic Secure Computing, Intl Conf Pervasive Intell. Comput.,
Intl Conf Cloud Big Data Comput., Intl Conf. Cyber Sci. Technol.
Congr. (DASC/PiCom/CBDCom/CyberSciTech), Fukuoka, Japan, 2019,
pp. 1046-1053, doi: 10.1109/DASC/PiCom/CBDCom/CyberSciTech.
2019.00188.

Y. Liu, C. Yang, K. Huang, and W. Gui, “Non-ferrous metals price
forecasting based on variational mode decomposition and LSTM net-
work,” Knowl.-Based Syst., vol. 188, Jan. 2020, Art. no. 105006, doi:
10.1016/j.knosys.2019.105006.

85578

(19]

(20]

(21]

[22]

(23]

[24]

[25]

(26]

(27]

(28]

S. Zhang, M. Li, and C. Yan, “The empirical analysis of Bitcoin price
prediction based on deep learning integration method,” Comput. Intell.
Neurosci., vol. 2022, pp. 1-9, Jun. 2022, doi: 10.1155/2022/1265837.

Y. Liang, Y. Lin, and Q. Lu, ‘““Forecasting gold price using a novel hybrid
model with ICEEMDAN and LSTM-CNN-CBAM,” Expert Syst. Appl.,
vol. 206, Nov. 2022, Art. no. 117847, doi: 10.1016/j.eswa.2022.117847.
K. Dragomiretskiy and D. Zosso, ‘“‘Variational mode decomposition,”
IEEE Trans. Signal Process., vol. 62, no. 3, pp. 531-544, Feb. 2014, doi:
10.1109/TSP.2013.2288675.

H. Wang, Y. Tian, A. Li, J. Wu, and G. Sun, “Resident user load
classification method based on improved Gaussian mixture model
clustering,” in Proc. MATEC Web Conf., vol. 355, 2022, p. 02024, doi:
10.1051/matecconf/202235502024.

Y. M. Li, J. Zhang, Y. Hu, and Y. N. Zhao, “Short term wind speed
prediction based on the fusion of VMD and hybrid deep learning
frameworks,” Comput. Syst. Appl., vol. 32, no. 9, pp. 161-176, 2023, doi:
10.15888/j.cnki.csa.008810.

Y. Yan and N. Mu, “Ultra-high-frequency financial time series forecasting
based on CEEMDAN-VMD-LSTM,” Computer Era, no. 5, pp. 102-108,
2023, doi: 10.16644/j.cnki.cn33-1094/tp.2023.05.023.

E. Nowakowska, J. Koronacki, and S. Lipovetsky, “Clusterability assess-
ment for Gaussian mixture models,” Appl. Math. Comput., vol. 256,
pp. 591-601, Apr. 2015, doi: 10.1016/j.amc.2014.12.038.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp.1735-1780, Nov. 1997, doi:
10.1162/neco0.1997.9.8.1735.

Y. Huang, J. Lin, Z. Liu, and W. Wu, “A modified scale-space guiding
variational mode decomposition for high-speed railway bearing fault
diagnosis,” J. Sound Vibrat., vol. 444, pp.216-234, Mar. 2019, doi:
10.1016/j.jsv.2018.12.033.

Y. Li, G. Cheng, C. Liu, and X. Chen, “Study on planetary gear
fault diagnosis based on variational mode decomposition and deep
neural networks,” Measurement, vol. 130, pp. 94-104, Dec. 2018, doi:
10.1016/j.measurement.2018.08.002.

CIHAI QIU was born in Suzhou, Jiangsu, China,
in 2002. He is currently pursuing the bachelor’s
degree in data science and big data technology
with the School of Mathematical, Physical and
Computational Sciences, University of Reading.
His research interests include computational intel-
ligence, machine learning, and big data analysis.

YITIAN ZHANG is currently pursuing the bache-
lor’s degree in data science and big data technol-
ogy with the School of Mathematical, Physical and
Computational Sciences, University of Reading.
He participated in a data science research
project organized by Oxford University Prof.
Patrick Rebeschini, in 2023, earning a letter of
recommendation from the professor.

XUNRUI QIAN was born in Nanton, Jiangsu,
China, in 2003. He is currently pursuing the bach-
elor’s degree in enterprise systems with the School
of Overseas Education, Changzhou University.
His research interests include marketing analysis,
blockchain technology and cryptocurrency, digital
marketing, and Chinese philosophy.

VOLUME 12, 2024


http://dx.doi.org/10.1016/j.jempfin.2017.07.003
http://dx.doi.org/10.1016/j.najef.2012.10.007
http://dx.doi.org/10.1080/00036846.2015.1026580
http://dx.doi.org/10.1016/j.resourpol.2019.101414
http://dx.doi.org/10.1080/14697688.2018.1508879
http://dx.doi.org/10.12720/joams.4.2.117-121
http://dx.doi.org/10.1016/j.enpol.2012.05.026
http://dx.doi.org/10.1016/j.bir.2013.10.008
http://dx.doi.org/10.7763/joebm.2015.v3.269
http://dx.doi.org/10.1016/j.jmse.2021.02.011
http://dx.doi.org/10.1016/j.resourpol.2022.102714
http://dx.doi.org/10.1007/978-981-10-1837-4_59
http://dx.doi.org/10.1016/j.resourpol.2020.101588
http://dx.doi.org/10.14569/ijacsa.2017.081213
http://dx.doi.org/10.1016/j.asoc.2018.04.024
http://dx.doi.org/10.3390/math11051132
http://dx.doi.org/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00188
http://dx.doi.org/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00188
http://dx.doi.org/10.1016/j.knosys.2019.105006
http://dx.doi.org/10.1155/2022/1265837
http://dx.doi.org/10.1016/j.eswa.2022.117847
http://dx.doi.org/10.1109/TSP.2013.2288675
http://dx.doi.org/10.1051/matecconf/202235502024
http://dx.doi.org/10.15888/j.cnki.csa.008810
http://dx.doi.org/10.16644/j.cnki.cn33-1094/tp.2023.05.023
http://dx.doi.org/10.1016/j.amc.2014.12.038
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.jsv.2018.12.033
http://dx.doi.org/10.1016/j.measurement.2018.08.002

C. Qiu et al.: Two-Stage Deep Fusion Integration Framework

IEEE Access

CHUHANG WU was born in Changshu, Jiangsu,
China, in 2002. He is currently pursuing the bach-
elor’s degree in economics with the University of
Connecticut.

JIACHENG LOU received the degree in big data
science from Nanjing University of Information
Science and Technology, in 2024.

He demonstrated exceptional proficiency in
machine learning and data analytics. He Partici-
pated in a rigorous seminar, ‘“‘Hands-on Machine
Learning for Finance and Python,” he excelled,
applying statistical learning techniques to finan-
cial datasets with notable success. His project
on predicting advertisement click-through rates

advanced machine learning models received acclaim for its analytical depth
and practical relevance and got the recommendation letter from the professor.
Furthermore, he was honored with the Bronze Award at the 9th ““Internet+
College Students Innovation and Entrepreneurship Competition, showcasing
his innovative capabilities and entrepreneurial spirit. His academic pursuits
and achievements highlight a dedicated and insightful approach to big data
challenges, marking him as a promising talent in the field of data science.

VOLUME 12, 2024

YANG CHEN was born in Kunshan, Suzhou,
China, in 2004. He is currently pursuing the
bachelor’s degree in data science and big data
technology with the School of Mathematical,
Physical and Computational Sciences, University
of Reading.

YANSONG XI was born in Wuxi, Jiangsu, China,
in 2003. He is currently pursuing the degree in
electronic information with Nanjing University of
Science and Technology. Now, he has chosen the
direction of communication engineering.

WENIE ZHANG (Student Member, IEEE) was
born in Wuxi, Jiangsu, China, in 2002. He
is currently pursuing the bachelor’s degree in
data science and big data technology with the
Nanjing University of Information Science and
Technology. His research interests include intel-
ligent algorithms, machine learning, and big data
analysis.

ZHENXI GONG received the degree in math-
ematics and applied mathematics from Nanjing
University of Information Science and Technol-
ogy. He has published two articles in the field
of machine learning as the first author and one
building journal as the coauthor. He won the
National Scholarship in 2022. He participated
in a national college students’ innovation and
entrepreneurship project and won the second prize
of Jiangsu Division of National College Students’
Mathematical Modeling Competition.

85579



