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ABSTRACT Estimating Visual Quality of Street Space (VQoSS) is pivotal for urban design, environmental
sustainability, civic engagement, etc. Recent advancements, notably in deep learning, have enabled large-
scale analysis. However, traditional deep learning approaches are hampered by extensive data annotation
requirements and limited adaptability across diverse VQoSS tasks. Multimodal Large Language Models
(MLLMs) have recently demonstrated proficiency in various computer vision tasks, positioning them as
promising tools for automated VQoSS assessment. In this paper, we pioneer the application of MLLMs
to VQoSS change estimation, with our empirical findings affirming their effectiveness. In addition,
we introduce Street Quality Generative Pre-trained Transformer (SQ-GPT), a model that distills knowledge
from the current most powerful but inaccessible (not free) GPT-4V, requiring no human efforts. SQ-GPT
approaches GPT-4V’s performance and is viable for large-scale VQoSS change estimation. In a case study
of Nanjing, we showcase the practicality of SQ-GPT and knowledge distillation pipeline. Our work promises
to be a valuable asset for future urban studies research.

INDEX TERMS Smart city, visual quality, deep learning, multimodal large language models.

I. INTRODUCTION
Urban landscapes, encompassing a tapestry of streets,
parks, and public squares, are more than mere channels
of movement; they are the lifeblood of city vibrancy and
communal interaction. Within this urban fabric, the aesthetic,
functional, and social dimensions of street spaces emerge as
pivotal to public well-being and community cohesion [1], [2].
They are not just static structures but vibrant stages where the
urban narrative unfolds over time. The temporal evolution of
street spaces is critical to understanding and fostering urban
vitality, as they are the sites where the past converses with
the present and shapes the future [3]. This recognition has
sparked a series of urban design initiatives [4], underscoring
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the global movement towards enhancing the Visual Quality
of Street Space (VQoSS) [5], [6].

The concept of VQoSS is not a contemporary inven-
tion. Its origin can be traced back to the advocacy for
community-centric urban design in the mid-20th century [7].
Despite their contributions, historical limitations in data
collection confined such research to the realm of small-scale
studies, impeding the development of empirically grounded
urban design principles that could be applied broadly. Urban
planners face the complex challenge of estimating VQoSS
changes as they endeavor to shape environments that align
with human experiences amid the continuous progression of
urban development [8].

In an era where technological advancements have revolu-
tionized data accessibility and analytical capabilities, tools
like Geographic Information Systems (GIS) for street-view
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images [9], [10], remote sensing technologies [11], [12], and
deep learning based methods [13], [14] present new oppor-
tunities for comprehensive urban analysis. They introduce
a refined methodology for evaluating the visual quality of
street spaces, both in their current state and across temporal
shifts, quantifying and analyzing the temporal changes of
VQoSS with unprecedented precision. By leveraging image
processing and machine learning, we can dissect the physical
and perceived visual qualities of urban thoroughfares,
even applying our techniques to the storied alleyways of
historic districts. People can examine the past, present, and
potential futures of urban streets, laying the groundwork for
methodologies that blend tradition with innovation in pursuit
of urban spaces that are not only functional but also inviting.

Previous works [5], [15], [16] incorporate the ability of
deep learning in computer vision, offering solutions for
a variety task of VQoSS. However, current deep learning
technologies face several limitations. One of the primary
challenges is the inherent difficulty in capturing the subjective
elements of aesthetics and social vibrancy that constitute the
essence of street quality. They also need multiple modules
to compute segmentation, detection, depth, and such for
the estimation [5], which makes the pipeline very complex.
Moreover, deep learning models require vast amounts of
labeled data to learn effectively [17], [18], [19]. The
labor-intensive process of gathering and annotating temporal
visual data from urban environments can be prohibitive,
often resulting in models that may not generalize well across
different cities or cultural contexts [20]. Lastly, environmen-
tal and seasonal variations, along with the dynamic nature
of urban life, introduce a level of complexity that deep
learning models, with their need for stable and consistent
patterns, struggle to accommodate. It seems that only using
vision-related technology can not satisfy the real-world
demands of VQoSS tasks [21]. This leads to a question: Can
we design a method that can efficiently and accurately realize
the large-scale VQoSS change estimation tasks without any
manual annotation?

Recently, Large Language Models (LLMs) [22], [23]
have shown their power in a variety of complex language
understanding and generation tasks, fundamentally altering
the landscape of natural language processing. These models,
trained on expansive corpora of text, excel at grasping the
nuances of human language, from writing and summarizing
articles to generating coherent and contextually relevant text.
This ability has been further extended to Multimodal Large
Language Models (MLLMs) [24], [25], achieving outstand-
ing accomplishments. Models like GPT-4V [26] can now
not only understand and generate text but also interpret and
analyze visual data. This integration of vision and language
processing enables them to provide answers to questions
about the content of images, effectively bridging the gap
between visual perception and linguistic expression [27],
[28]. By processing and understanding complex visual
scenes, these models can identify objects, recognize patterns,

and even infer emotions or actions depicted in images [28],
[29], [30]. We can directly use them for the purpose of
VQoSS estimation. Although GPT-4V is powerful, using its
API is expensive [31], and its structure is still unknown,
which makes it impossible for large-scale VQoSS change
estimation.

In this study, we investigate the potential for automating
the estimation of VQoSS changes using street-view imagery
and MLLMs. Our analysis is centered on the urban center
of Nanjing, China. We collected a dataset of 10,598
data points along main thoroughfares, capturing images
from four cardinal directions (0◦, 90◦, 180◦, and 270◦)
at each location for two different periods. We also set
9 different VQoSS change evaluation tasks to quantify
the performance of MLLMs. Our findings indicate that
models such as GPT-4V exhibit remarkable proficiency in
discerning temporal street variations for VQoSS evaluation.
Moreover, as GPT-4V is not free in use, in order to reduce
the cost for large-scale estimation, we introduce the Street
Quality GPT (SQ-GPT) for VQoSS change estimation,
which can efficiently distill [32], [33] GPT-4V’s knowledge.
Through rigorous experimentation, we demonstrate that the
performance of SQ-GPT is close to GPT-4V, validating its
utility as a cost-effective instrument for large-scale urban
street quality surveillance.

We summarized our contributions as follows: (1) Our
study pioneers the integration of MLLMs into the automation
process for estimating changes in the VQoSS, offering a
significant tool for urban research advancements. (2)We have
identified 9 critical VQoSS tasks and have rigorously evalu-
ated the effectiveness of MLLMs through both quantitative
measures and qualitative analysis. (3) We introduce SQ-GPT,
an innovative model that demonstrates performance on par
with GPT-4V, providing an alternative for large-scale VQoSS
estimation tasks.

II. RELATED WORKS
A. VISUAL QUALITY OF STREET SPACE
The requirements to quantify the VQoSS changes in urban
spaces date back to the latter half of the 20th century.
Pioneering works [7] emphasized the importance of street
life and social interactions in urban spaces. They underscored
the need for empirical studies to connect physical appearance
with social attributes. Early efforts were largely qualitative
due to the challenges of quantitative data collection over large
areas [34].

In the end of last century, there seems to be a shift towards
more systematic methodologies for assessing the visual
quality of street spaces [35]. Researchers began employing a
mix of subjective assessments, systematic observations, and
technological advancements such as GIS [36] for more objec-
tive measurements. Studies offered structured approaches
to evaluate the physical and perceptual dimensions of
urban spaces. Recent years have marked the introduction
of advanced technologies into the realm of urban space

87714 VOLUME 12, 2024



H. Liang et al.: Automatic Estimation for Visual Quality Changes of Street Space

assessment. The utilization of Street View Imagery (SVI)
[9], [37], [38] and deep learning algorithms [5], [15],
[16], [39], [40], for instance, has allowed for large-scale
quantitative analyses [41]. This integration has propelled the
field from qualitative descriptions to data-driven, automated
evaluations, as evidenced in works [42] that leveraged SVI
for extensive urban analysis.

Tang and Long [5] built upon this progression by offering
a comprehensive methodology that combines physical and
perceived evaluations of visual quality using machine learn-
ing (SegNet [43]), GIS analysis, and systematic user-based
assessments. Their work stands at the intersection of urban
planning, computer science, and psychology, showcasing
a multifaceted approach to understanding the temporal
dynamics of street space quality in historical areas like
Beijing’s Hutongs. The current trajectory of research suggests
a continuous refinement of methodologies with an increasing
emphasis on integrating user perceptions and technological
sophistication [1], [9]. Upcoming studies will likely focus on
enhancing the objectivity in measuring visual quality [44],
[45], fine-tuning algorithmic approaches [46], and incorpo-
rating real-time data to capture the ever-evolving nature of
urban spaces [47]. This evolution reflects a broader trend
in urban planning towards smart, data-informed decision-
making that prioritizes both the physical attributes and
the experiential qualities of urban environments. Although
previous studies have achieved promising results, large-
scale estimation of VQoSS changes is still labor-intensive.
Especially methods based on deep learning, their accuracy
requires a large amount of data annotation.

B. MULTIMODAL LARGE LANGUAGE MODELS
In recent years, the field of multimodal learning [24],
[48] has experienced rapid development, with researchers
striving to construct artificial intelligence models capable
of comprehending and generating multiple types of data,
including text, images, videos, and more. In this section,
we provide a concise overview of the relevant literature that
informs our work.

To empower LLMs with the ability to interpret images
and engage in user interactions based on visual inputs,
a multitude of methods have emerged. These methods aim
to establish connections between frozen visual encoders and
LLMs while keeping the number of trainable parameters
minimal. Prominent approaches in this category encompass
BLIP-2 [27], InstructBLIP [49], LLaMA-Adapter [50],
LLaMA-Adapter V2 [51], LLaVA [29], MiniGPT-4 [30],
MultiModal-GPT [52], and PandaGPT [53]. These models
introduce additional trainable parameters between the frozen
image encoder (or multimodal encoder in the case of
PandaGPT) and the LLMs. For instance, BLIP-2 [27] utilizes
a lightweight Transformer (Q-Former) as a bridge between
the image encoder and the LLMs. LLaMA-Adapter and
LLaMA-Adapter V2 introduce adaptation prompts that are
pre-added to higher converter layer inputs, along with
new teaching cues injected into LLaMA via a zero-gated

zero-initial attentionmechanism.MultiModal-GPT leverages
low-rank adapters (LoRA) [54] for efficient fine-tuning of
OpenFlamingo [55]. MiniGPT-4 and LLaVA simply add
Linear layers between the frozen visual encoder and frozen
LLMs. There are also some works introduce LLMs for urban
analysis.Wu et al. [56] employed amodel based on CLIP [57]
to facilitate vision-language multimodal learning, specifi-
cally targeting street view images and their spatial context.
This approach highlights the intricate relationship between
visual data and its corresponding linguistic descriptors in
an urban environment. Verma et al. [58] utilized LLMs for
a comprehensive evaluation of environmental surroundings.
Their methodology focuses on interpreting context, framing
perspectives, and predicting behavioral responses, thereby
showcasing the versatility of LLMs in understanding and
anticipating complex human-environment interactions.

A critical objective in developing LLMs is to ensure
that they produce coherent and extended natural language
responses, enabling more human-like conversations. Multi-
modal instruction tuning [59] is a widely adopted technique
in this regard. LLaVA [29] is the first attempt to use pure
language GPT-4 [26] to generate multimodal language-image
instructions following data. They are based on the captions
and bounding boxes on the COCO dataset [60]. Instruct-
BLIP [49] and MultiModal GPT [52] also proposed to match
the corresponding image descriptions to create instruction
fine-tuning data. Using these data, LLMs are trained, result-
ing in a significant improvement in dialogue performance.
However, LLaMA-Adapter v2 [50] and MiniGPT4 [30] only
use ready-made image captioning datasets for multimodal
instruction tuning, potentially resulting in relatively weak
image understanding capabilities. Therefore, it is crucial
to curate diverse datasets that cover various tasks and
scenarios, providing rich contextual information to support
the model in deep reasoning. If the examples in the dataset
are too single or simple, the model may learn to produce
short and uninformative responses. In summary, high-quality
instruction following data is pivotal for enabling effective
conversations [59], [61].
MLLMs have demonstrated a formidable capacity in

bridging various modes of human communication and
understanding. These models are adept at processingmultiple
data types, paving the way for innovative applications across
diverse fields. This is particularly evident in tasks involving
the VQoSS, where the application of MLLMs is especially
critical. The visual quality of street spaces not only impacts
the quality of life for residents but is also intricately linked to
urban planning and sustainable development. Traditionally,
assessing the visual quality of street spaces relies on manual
annotations and subjective evaluations, a process that is both
time-consuming and inefficient. Against this backdrop, the
introduction of MLLMs, such as GPT-4V [26], to automate
the assessment of street space visual quality is revolutionary.
Firstly, by analyzing street view images from different time
periods, MLLMs can identify and track urban features that
change over time, offering insights into the evolving visual
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FIGURE 1. Research area of this study. All data points are collected from
Gulou district (d), Nanjing (c), Jiangsu province (b), China (a).

quality of street spaces. Secondly, MLLMs are capable of
processing and integrating data from various sources, such as
GIS data, social media inputs, and urban planning records,
to provide a more comprehensive assessment of street
space visual quality. Additionally, the integration of MLLMs
helps to overcome the limitations of subjective evaluations,
yielding more objective and consistent assessment results.

Currently, GPT-4V stands as one of the most powerful
MLLMs, albeit accessible only through its official API and
associated with high costs in large-scale applications. There-
fore, we have introduced the SQ-GPT model, which achieves
near GPT-4 performance through efficient knowledge dis-
tillation. The development of SQ-GPT not only signifies
wider accessibility and reduced costs but also represents
a more effective use of advanced MLLMs technology in
the VQoSS domain. It can support urban planning and
community development, such as aid in designing efficient
public transportation systems, optimizing energy usage in
buildings, and creating green spaces in cities, paving the way
for a new era of sustainability in urban development.

III. DATA AND METHOD
A. DATA
1) DATA COLLECTION
Our dataset is acquired from Baidu Street View and
encompasses a total of 10,598 data points from the center
of Nanjing, Gulou district, with each point paired with
corresponding geographical coordinates. Figure 1 depicts
our study area, the Gulou District of Nanjing. The Gulou
District of Nanjing is a vital administrative region situated
in the center of Nanjing City, Jiangsu Province. It covers
an area of approximately 56.57 square kilometers and
has a permanent resident population of about 940,400.
Geographically, the district is bordered by the Yangtze River
to the north, Qinhuai River to the south, Qinhuai and Pukou
districts to the east, Xuanwu and Jianye districts to the
south, and is adjacent to Yuhuatai District to the west and
Qixia District to the north. As the core area of the city,
Gulou District boasts a wealth of historical and cultural
heritage, such as the Drum Tower and the Confucius Temple,
and serves as Nanjing’s center for commerce, culture, and
tourism, with multiple commercial districts and cultural

FIGURE 2. The study area’s specific location at Longitude 118.7490◦ E,
Latitude 32.0869◦ N has street view images from 2017 and 2020 in all
four cardinal directions.

institutions. It offers convenient transportation with several
subway lines and major roads running through it. In terms
of education, the district houses numerous universities and
research institutions, making it one of the most concentrated
areas of scientific and technological resources in China. The
Gulou District also enjoys Nanjing’s 11-kilometer prime
Yangtze River coastline, features diverse terrain, and has a
distinct four-season climate, marking it as a regionwith a long
history and profound cultural heritage.

This dataset captures images from two different periods:
the previous period, denoted as p, is from September 2017,
and the latter period, denoted as l, is from September 2020.
In both periods, we collected four images per data point,
corresponding to the four cardinal directions (0◦, 90◦, 180◦,
and 270◦). Therefore, we refer to our dataset as X , and an
individual image within this dataset is represented by xsdi ,
where d stands for the direction, i is the data point index, and
s indicates the time period (either p or l). We show a sample
of our collection in Figure 2.

To progress with our method and evaluation pipeline,
we randomly selected approximately 10% (1,060) of the data
points (each of them is a group of 8 images from different
directions and periods) from our dataset to distill knowledge
via GPT-4V. We denote these split data as X̄ .For the purpose
of user evaluation, we further randomly chose 200 data points
from the remaining dataset (the remaining 90% of the data
points) to quantify and compare the performance between
GPT-4V and our developed model, SQ-GPT.

2) ESTIMATION SETTINGS
In Figure 3, it can be observed that our pipeline comprises
4 distinct categories, encompassing a total of 9 individual
tasks (T = 9) designed for estimatingVQoSS changes. These
tasks serve as pivotal criteria for quantifying these changes,
providing a comprehensive assessment. For each task, we set
three levels of evaluation results: A: Positive Changes, B:
Negative Changes, and C: No Changes. Our definitions for
these tasks draw inspiration from the work of [5] (some
samples are showing in Figure 4), and we elaborate on their
specific definitions as follows (We make a concise definition
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FIGURE 3. The settings for VQoSS evaluation. We totally defined 4 categories and 9 tasks for the VQoSS evaluation. These tasks can
comprehensively evaluate street visual quality.

so that models can use them as prompt efficiently during
questioning. Note that the ability to recognize each level is
the common sense reasoning ability by MLLMs [62]):

Task A: Facade Color. In this task, the focus is on
assessing the color schemes used on building facades along a
street. It involves evaluating the aesthetic and visual appeal
of the colors employed and considering any changes or
improvements to enhance the overall quality of the street
space.

Task B: FacadeMaterial or Decoration. Task B revolves
around evaluating and potentially modifying the materials
or decorative elements used in building facades within the
street environment. The aim is to enhance the visual and
tactile qualities of facades, potentially by introducing new
materials or decorations that contribute to the overall street
space quality.

Task C: Road Damage. This task refers to any defects or
deterioration in the street surface, such as potholes, cracks,
rutting, weathering, surface defects, and debris, which impair
both the functionality and the appearance of the roadway.

Task D: Lane Refinement. Task G involves assessing and
refining the layout and design of lanes within the street. This
may include modifications to lane width, markings, or traffic
flow to enhance safety, traffic management, and overall street
quality.

Task E: Signboards. In this task, the emphasis is on
evaluating and optimizing the presence and design of sign-
boards within the street space. This may involve assessing
the placement, size, and aesthetics of signboards to improve
the overall quality and functionality of the street.

Task F: Surrounding greenery and Facilities Construc-
tion. In Task I, the scope extends beyond the street itself
to encompass the construction and improvement of greenery
and facilities in the surrounding area. This can include parks,
plazas, or other amenities that contribute to the quality
and attractiveness of the street space and its immediate
surroundings.

Task G: Parking Improvement. Task E focuses on
evaluating and implementing improvements to parking facil-
ities within the street area. This includes considerations for
parking space design, accessibility, and any enhancements
that can contribute to the overall quality of the street space.

Task H: Street Furniture Increases. In Task F, the
objective is to check the quantity and quality of street
furniture. This may involve adding benches, lighting fixtures,
waste bins, or other elements that improve the comfort and
usability of the street space.

Task I: Greenery Improvement. Task H focuses on
evaluating and enhancing the presence of greenery, such as
trees, shrubs, or plantings, within the street environment.
The goal is to improve aesthetics, air quality, and the overall
ambiance of the street.

Each of these tasks is associated with a distinctive question
that necessitates aMLLM to provide an answer. Our objective
is for the MLLM to effectively discern the differences
between images captured during two periods p and l. The
question format for each task adheres to the following
structure:

QT = {D} + ‘‘Analyze’’ + {T }

+ ‘‘changes between different periods,’’ + {C}, (1)

where D is the description of input images as ‘‘The first
four images are street view images taken from four different
directions of the street. The last four images are taken from
the same location and the same four directions but at a
different period.’’ T is the task defined above and C is
a multiple choice question as ‘‘and finally you must give me a
choice from: A: Positive B: Negative, C: No Changes. Make
your statement concise’’. We also demonstrate a sample of
question and answer in Table 1.

B. OVERVIEW OF OUR PIPELINE
The architecture of our pipeline is illustrated in Figure 5.
Initially, we distill knowledge from GPT-4 by inputting
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FIGURE 4. Samples for 9 tasks of VQoSS changes evaluation.

street-view images from a data point along with correspond-
ing prompts and questions to elicit high-quality answers. This
procedure is applied across all 1,060 split data points, gen-
erating a new dataset to fine-tune our own model. SQ-GPT
comprises a frozen image encoder, a frozen QFormer [27]
for image-to-text alignment, a Linear plus Reduction stage
for additional refinement, and a frozen LLMs framework for
the final answer output. The fine-tuning process is informed
by insights drawn from GPT-4, ensuring that the output of
SQ-GPT is improved by the distilled knowledge. We provide
a detailed description of each component in the subsequent
sections.

C. KNOWLEDGE DISTILLATION FROM GPT-4
We utilize the GPT-4V API (gpt-4-vision-preview) for
distillation processes to generate a new dataset for the
fine-tuning of our model. Table 1 presents a sample that
illustrates the generation pipeline. It can be observed that
GPT-4V can describe the details of input images and compare
two periods from multiple aspects.

We sequentially feed GPT-4V four images from a data
point’s period p, aligned at 0◦, 90◦, 180◦, and 270◦. This
is followed by four images from period l in the same
input order. Subsequently, for a given task, the pertinent
question formulated in Equation 1 is inputted (Note that
we also set the definition of the corresponding task as the
input prompt). To augment the dataset with a diverse set of
question-answer pairs, we perform k = 5 iterations of answer
generation. To guarantee uniformity in the responses for a
specific data point within a given task, we mandate that the
outcomes produced for the same question on five separate
generations must be consistent. Any generation where the
generated answers vary will be excluded and subjected to
the regeneration of a new point. The pricing structure is as
follows: $ 0.01 per 1K tokens for input and $ 0.03 per 1K
tokens for output. Our calculations indicate that generating
a single question-answer pair costs approximately $ 0.07.
This cost becomes prohibitive for large-scale operations,
underlining the importance and economic value of our
research. The analysis of the whole city generally involves
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FIGURE 5. Overview of our proposed SQ-GPT. In the upper part, we first distill the knowledge in GPT-4 through split data
points X̄ and generate a new dataset L. Then, in the lower part, we fine-tune our SQ-GPT by the supervision of high-quality
answers from GPT-4.

TABLE 1. To show how we distill knowledge from GPT-4, we demonstrate
an answer sample from GPT-4 in discriminating the color of the facade.
We input four direction images of a data point for previous and later
periods, respectively. Then, we ask GPT-4 to describe the color difference
between two periods and select a choice from the given options.

about 100,000 data points, which may cost 7,000 $ using
GPT-4V. A local server with one A40 GPU (costs about
10,000 $) is enough for the inference of a MLLM model.
Therefore, for long-term planning, it is more appropriate to
deploy a local server.

For a better understanding, we formulated the generation
of new data set L as:

yi,t,k =

∫ 5

k
GPT4V ([

∮ 2

s

∮ 4

d
xsdi ] + Qt ), (2)

L = {(x̂i,Qt , yi,t,k ) | i = 1,

. . . , I ; t = 1, . . . ,T ; k = 1, . . . , 5}, (3)

FIGURE 6. The inference pipeline of a frozen QFormer. It is a N time
transformer [63] blocks and we adopted a learnable query besides the
original learned query.

where
∮

stands the input images in order for period and
direction of a data point,

∫
is the repeat generation for k times,

I is the data point number in split X̄ , x̂i represent all images
for a data point, and t is the index for all tasks T .
L contains 47,700 data triads, each consisting of image

sequences, corresponding questions, and high quality
answers. This rich dataset will be instrumental in the
fine-tuning process of our model, SQ-GPT. The fine-tuning
will be executed with a specific focus on improving the
model’s ability to understand and generate contextually
relevant responses based on sequential visual inputs,
to achieve knowledge distillation of GPT-4V.

D. SQ-GPT
As depicted in Figure 5’s lower branch, our SQ-GPT is
trained in an end-to-end manner. To commence this process,
we employ a frozen image encoder Eimage, which extracts
image features from all images x̂i, corresponding to a given
data point i. This process can be succinctly described as
follows:

f̂i = Eimage(x̂i), ∈ Rsd×hw×c, (4)

where h and w represent the spatial dimensions of the image
features obtained after encoding, while c stands for the feature
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dimension. During this stage, we independently process the
previous four images and the later four images.We stack them
in the same period order and direction order as outlined in the
GPT-4V distillation III-C.

Next, we leverage a frozen QFormer architecture (shown
in Figure 6), as introduced [27], to facilitate image-text
alignment. The choice of QFormer is crucial in our approach,
as it excels in capturing intricate dependencies between
textual and visual information, enabling us to establish a
more robust and meaningful connection between the two
modalities. This alignment step is fundamental to the overall
effectiveness of our method, as it forms the basis for
subsequent fusion and comprehension of image and text
data. Except the learned queries Q∗ in the original QFormer,
we add a set of learnable queries Q′ for better ability
of alignment of image and text. Thus, the calculation of
QFormer is as follows:

f ∗
i = Linear(QFormer(f̂i,Q∗

+ Q′)), ∈ Rsd×hw×c, (5)

where each image feature of f̂ serves as K and V in cross-
attention [63]. Linear is a trainable simple one-layer Fully
Connection (FC) layer that can further adjust the output
features from QFormer.

After the process of image-text alignment, we further
reduce the volume of each image and concatenate them as
a visual token entirety as follows:

f ′
i = Cat[Reduction(f ∗

i )], ∈ Rz×c, (6)

where the reduction operation takes the form of a convo-
lution layer with stride of 2, which effectively reduces the
dimensions of the hw features to one-fourth of their original
size. The concatenation of all images is represented as Cat ,
and the resulting total number of visual tokens is denoted
as z. The inclusion of the reduction step serves a critical
purpose: it shortens the length of visual tokens, mitigating
the potential adverse effects of overly long visual tokens on
the computations of a frozen LLM. The importance of this
reduction step has been substantiated in a prior study [28].

Next we concatenate the visual tokens (as prefix) with text
tokens encoded from question Qt corresponding to a certain
task. Then, a frozen LLMwill take then as input and generate
the answer. It can be formulated as follows:

yi,t = LLM (Cat[f ′
i ,Qt ]). (7)

The output answer of yi,t will calculate loss with one
of the high quality answer yi,t,k . Through this knowledge
distillation training, our SQ-GPT can achieve performance
levels close to those of GPT-4V.

IV. RESULTS
A. EXPERIMENTAL SETTINGS
Our training pipeline is adapted from LLaVA-1.5 13B [29],
with modifications that involve freezing both its image
encoder and its LLM components. Additionally, we incor-
porate a pre-trained QFormer, sourced from BLIP-V2 [27],

to enhance the capabilities of our model in handling
image-text tasks. We also adopt instruction tuning as
LLaMA-Adapter v2 [50] andMiniGPT4 [30] during training.
Only ready-made image captioning in L is utilized, and no
extra tuning data [29] is needed for annotation. We train all
9 tasks together to enhance the generalization of the model.
The training is completedwithin 1 day on aGPU server with 4
Nvidia A40.

To evaluate the performance of our SQ-GPT model and
benchmark it against other models, we refer to Section IV-B
where a human-centric evaluation was conducted on 200 data
points as mentioned in III-A1. We utilized LLaVA-1.5,
SQ-GPT, and GPT-4V to generate answers for all nine
tasks, employing the corresponding questions. During this
process, we set the generation temperature to 0 to ensure
precise and deterministic outputs. We enlisted three distinct
groups of evaluators–50 laypeople, 30 architecture students,
and 10 urban environment experts–to assess the quality of
responses from all three models. Evaluators were instructed
to cast a binary vote on whether the generated answers accu-
rately addressed the task as defined in III-A2. Consequently,
we define ourmetric of agreement based on these binary votes
as follows:

Agreementg,m,t =
1

|Jg|
1

|O|

Jg∑
j=1

O∑
o=1

vote(Ao,m,t ), (8)

where g is the group, m is the model, Jg is the number of
person in a group, and O is the number of generate answer
for a certain model and task.

In Section IV-C, we also provide the visual analysis by
mapping the answer results of all data point to the city map.
We generate answers using SQ-GPT for all 9 tasks. The
answer of A: Positive, B: Negative, and C: No Changes are
translated to the value of 1, 2, and 3.

B. ANSWER QUALITY ANALYSIS
As shown in Figure 7, we analyze the result for human-centric
evaluation in all 9 tasks. The data compares the agreement
with three models: LLaVA-1.5, SQ-GPT, and GPT-4V.
Across all tasks, GPT-4V consistently gains the highest
agreement rates from all respondent groups, indicative of its
superior performance or alignment with human judgment.
Our SQ-GPT also has a performance very close to GPT-4V,
which verifies the effect of our knowledge distillation.
In addition, laypeople demonstrate the highest levels of agree-
ment with the models, suggesting AI outputs are more in tune
with their evaluations. Conversely, experts consistently show
the lowest agreement rates, which may reflect a disparity
in understanding or knowledge relative to the models and
other groups. LLaVA-1.5 is consistently the model with the
lowest agreement rates among all respondents, hinting at it
being the least accurate or aligned with human judgment.
This pattern suggests that advancements in AI, as seen with
GPT-4V, although not perfect, are increasingly recognized by
common sense.
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FIGURE 7. Human-centric evaluation among LLaVA-1.5, SQ-GPT, and GPT-4V. We adopt the agreement testing for 200 data
points and all 9 tasks. We employed three groups of people (50 laypeople, 30 architecture students, and 10 urban
environment experts) for the quantitative evaluation.

Among all tasks, A and B seem to be difficult. Experts
give a low agreement even for the most powerful GPT-4V.
We find the most possible reason is the brightness difference
when capturing images from two periods. This difference
may affect the analysis of models as they can capture the color
changes without discriminating the condition of weather.
Models perform well in tasks like C (‘‘Road Damage’’)
and I (‘‘Greenery Improvement’’). These tasks pay more
attention to some obvious visual forms and layout features,
which are what deep models are good at. Nevertheless,
tasks such as ‘‘Parking Improvement’’ (G) are susceptible
to inaccuracies, as static images do not provide sufficient
information to determine whether vehicles are stationary
(parked) or in motion. In general, MLLMs can complete most
VQoSS tasks well and is a good means to implement urban
analysis. In particular, our SQ-GPT has obtained matching
performance after distilling the knowledge of GPT-4V, and
can be used as a tool for large-scale evaluation.

We also offer some samples of answer comparison between
LLaVA-1.5, SQ-GPT, and GPT-4V. However, due to the

length restriction, only two samples for discriminating
changes of ‘‘Lane Refinement’’ and ‘‘Greenery Improve-
ment’’ are provided in this manuscript. Referencing Table 2,
we tasked the models with interpreting ‘‘Lane Refinement’’
based on images from varying periods. The later-period
images visibly display faded road markings and numerous
repair patches. All models unanimously indicated deteri-
oration with option B: Negative. GPT-4V observed ‘‘The
roads show signs of heavier use,’’ which corroborates our
visual assessment. Interestingly, SQ-GPT’s analysis parallels
GPT-4V’s but goes a step further by considering the condition
of traffic signs, stating, ‘‘Despite a consistent presence of
traffic signs, the overall impression hints at a deterioration in
the road’s organization.’’ This suggests SQ-GPT’s nuanced
attention to detail. LLaVA-1.5, while also noting a negative
change, linked it to an uptick in transportation in the
later period–an associative leap that, although not incorrect,
strays from the task definition provided in III-A2. Such
findings not only demonstrate each model’s unique approach
to the analysis of visual changes but also underscore the
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TABLE 2. Comparison of answer samples among LLaVA-1.5, SQ-GPT, and
GPT-4V for the question of discriminating changes of ‘‘Lane Refinement.’’

variability in interpreting contextual information, offering
valuable insights into the current capabilities and limitations
of MLLMs-based image interpretation.

Referencing Table 3, we tasked the models with interpret-
ing ‘‘Greenery Improvement’’ based on images from varying
periods. The first set of images is taken on a sunny day, while
the later set are take from the day with clouds. At first glance,
there seems to be no obvious greenery improvement changes
exist between images from two periods. LLaVA-1.5 analyse
two periods in a very fairly good way and give an answer as
C: No Changes. However, GPT-4V and our SQ-GPT give the
answer as Positive changes. They all concern about ‘‘the later
images, the trees appear more mature and fuller, indicating
growth and increased leaf density, which contributes to a
lusher streetscape’’. When we look closely at these two
periods, we can find that the trees in the latter period are
indeed more vigorous and the green of the bushes is more
obvious. This shows that GPT-4’s attention is more detailed,
and our model distills the knowledge of GPT-4V and obtains
similar capabilities.

C. VISUALIZATION OF VQOSS ESTIMATION
Our analysis of tasks B, C, and E reveals a persistent blue
tone, suggesting that these tasks of urban development have
remained relatively stable over the past three years. While
stability might imply effective management in these areas,
it could also signal a lack of innovation or improvement
that warrants further investigation. Task G’s ‘‘Parking
Improvement’’ stands in stark contrast with a striking red
spectrum dominating the visual data. This is a clear indicator

TABLE 3. Comparison of answer samples among LLaVA-1.5, SQ-GPT, and
GPT-4V for the question of discriminating changes of ‘‘Greenery
Improvement.’’

of escalating urban congestion, primarily due to a surge in
vehicle ownership. The density of parked cars has outpaced
the availability of parking spaces, highlighting a critical
area for urban policy intervention. The city must consider
implementing multifaceted solutions, such as expanding
public transportation, increasing parking infrastructure, and
encouraging carpooling to alleviate parking pressures.

The evaluation of Task A presents an intricate scenario,
with a balanced mix of colors denoting a complex and
uncertain outcome. This color distribution suggests that the
strategies employed are not yielding clear results. The task’s
low agreement, referenced in Figure 7, corroborates the
ineffectiveness of current efforts. This warrants a reevaluation
of the task’s goals and methods to better serve the city’s
interests. Other tasks reflected by green shades indicate
positive strides in the city’s Visual Quality of Service Stan-
dards. These improvements are promising, demonstrating
successful initiatives that enhance the city’s visual appeal
and functionality. However, it is crucial to maintain this
momentum with continuous monitoring and updating of
urban planning strategies to ensure sustained progress.

While the overall trend points towards an improvement in
the city’s visual quality, the looming shadow of increased
congestion due to population growth cannot be ignored. This
presents a paradox where the city is improving in visual
standards while simultaneously grappling with the challenges
of density and overuse of urban infrastructure. To address
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FIGURE 8. Visualizations on a city map for all 9 VQoSS tasks. We use green point, red point, and blue point to represent positive changes, negative
changes, and no changes, respectively. Sub-figure (a–i), (a) Facade Color; (b) Facade Material or Decoration.; (c) Road Damage; (d) Lane Refinement;
(e) Signboards; (f) Surrounding greenery and Facilities Construction; (g) Parking Improvement; (h) Street Furniture Increases; (i) Greenery Improvement.

this, city planners and policymakers need to adopt a holistic
approach. The above result analysis highlights the actual
effect of our SQ-GPT on VQoSS tasks, indicating that our
method is significant for future urban planning.

The current model evaluates 9 aspects of VQoSS. How-
ever, theymay lack a comprehensive assessment, overlooking
some other potential aspects and how these aspects interact
to affect the overall user experience. We believe that MLLM
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can address this gap. It has the potential to not only quantify
additional aspects of VQoSS, such as user interface fluidity
and security response times, but also to integrate these factors
into a cohesive overall quality assessment. By analyzing
the interplay between different VQoSS components, MLLM
can provide a more nuanced and realistic understanding
of estimation. Our future work aims to expand MLLM’s
capabilities in this direction, enhancing its analytical depth
while maintaining efficiency for real-time applications.

V. DISCUSSION
In this paper, we verified that When applying MLLMs
to the estimation of VQoSS, these models can analyze
photographic or multi-aspects street-view images to assess
various quality indicators such as cleanliness, state of repair,
signage clarity, and overall visual appeal. The estimation of
VQoSS involves evaluating these images to rate or categorize
the street space’s condition and visual characteristics. This
could be used for urban planning, maintenance scheduling,
or to improve navigational aids by providing more detailed
information about the environment. In traditional machine
learning, human annotation is necessary to annotate a dataset,
which the model then uses to learn and make predictions. For
instance, humans might need to annotate images of streets
with descriptors like ‘‘poorly maintained’’ or ‘‘clean’’ to
train a model to recognize these qualities. However, with
MLLMs, the AI can learn from vast amounts of unlabeled
data, recognizing patterns and making inferences without
explicit human-supervision. This capability is particularly
advantageous because it reduces the time and resources
needed to prepare data, making it easier to scale up and
apply these models to large-scale tasks, such as those
needed for assessing the VQoSS across different cities or
regions. In addition, we can further use MLLMs with both
street imagery and possibly accompanying textual data (like
metadata, annotations, or descriptions) to form an assessment
of the street’s visual quality, which could inform various
urban development and management decisions.

A distillation pipeline is also provided aimed at enhancing
cost-efficiency. Given that GPT-4V is not currently free,
direct API utilization for large-scale VQoSS estimation is
not feasible. Our experiments with the proposed SQ-GPT
demonstrated that, after distillation, our model can achieve
performance comparable to GPT-4V at a reduced cost. This
allows for its application in large-scale estimation tasks
across various tasks for VQoSS. As the field of MLLMs
evolves rapidly, GPT-4V, despite its effectiveness in numer-
ous tasks, may be superseded in the future. Consequently,
our pipeline is significant for users wishing to elevate their
models to state-of-the-art MLLM technology.

In summary, we demonstrated that MLLMs can effectively
interpret visual information for VQoSS estimation. This
approach marks a significant departure from traditional deep
learning methods, reducing the need for human-annotated
data and enhancing scalability for large-scale applications.
Our methodology leverages MLLMs to analyze street-view

TABLE 4. Evaluation on samples with both positive and negative changes.

images, assessing various urban quality indicators. Further-
more, we introduced a cost-efficient distillation pipeline with
our SQ-GPT model, enabling comparable performance to
GPT-4V but at a reduced cost. This development is crucial
for practical, large-scale VQoSS assessments and future
adaptations to advancing MLLM technologies, representing
a significant theoretical and practical contribution to the field.

A. LIMITATIONS AND FUTURE WORKS
The current version of SQ-GPT presents some limitations.
Specifically, the integration of several frozen modules from
prior research may hinder performance optimization during
fine-tuning. While methodologies such as Lora [54] offer
pathways for efficient training, our attempts in this direction
yielded suboptimal results. Adjustments to the image encoder
or LLMs adversely affected the quality of the generated
answers. This could be attributed to data constraints, as the
distilled dataset available for fine-tuning may be insufficient
for the extensive modules in question. Addressing these
issues will be a primary focus in our forthcoming research
endeavors.

Furthermore, our analysis indicates that SQ-GPT’s perfor-
mance in tasks such as ‘‘Facade Color’’ recognition is not
good enough, which can be primarily attributed to the chal-
lenges posed by varying light intensities and angles during
image capturing. These environmental factors can signifi-
cantly alter the perceived color, leading to inaccuracies in the
model’s answering. To counteract these issues, future version
of the pipeline could incorporate advanced pre-processing
algorithms that normalize lighting conditions or employmore
sophisticated techniques for color constancy. Additionally,
enhancing the dataset with a wider array of images captured
under diverse lighting conditions may improve the model’s
robustness to such environmental variables. By addressing
these nuances, we can refine SQ-GPT’s capabilities for more
accurate and reliable analysis.

We also investigated the ability of theMLLM to distinguish
and detail multiple elements present in imagery, such as
facades, signboards, and billboards, as well as to assess
changes in scenarios like parking improvements and scenery
and facilities construction. Given the complexity of such
images, where both positive and negative changes might be
present simultaneously, we were particularly interested in
the MLLM’s discriminative power and its response tendency.
Upon analyzing the generated answers from all our training
data, we observed instances where a single scene depicted
both negative and positive changes. Specifically, shown in
Table 4, we identified 8 data points for Task A, 25 for Task B,
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44 for Task E, and 61 for Task G that presented such duality.
In these scenarios, GPT-4V exhibited a tendency to respond
with ‘No Changes’ in 33.5% of cases, ‘Positive’ changes
in 51.1%, and ‘Negative’ changes in 15.4%. This indicates
a propensity for GPT-4V to report positive changes more
frequently. Further examination revealed that the MLLM
lacks the ability to discern all details in the images precisely.
However, it’s important to note that such cases were relatively
rare and did not significantly impact the overall analysis. This
insight into theMLLM’s capabilities and limitations is crucial
for understanding its application in complex urban imagery
analysis, where multiple elements and contrasting changes
coexist.

Comparison to previous deep learning based works is also
important. A key issue we have identified is the complexity
of hyperparameter settings in previous methodologies, which
not only adds to the intricacy of the models but also often
obscures their replicability and comparison. Additionally,
a significant barrier to progress in this field has been the lack
of open-source data and code, hindering transparent and fair
comparisons across different methods. Our future efforts will
be directed towards creating and contributing open-source
datasets and code related to our research. This initiative will
not only facilitate more straightforward comparisons with
existing methods but also foster a collaborative and open
environment in the research community. By addressing these
issues, we aim to refine the efficiency and accuracy of our
models, making them more user-friendly and replicable, thus
advancing the field in a meaningful and measurable way.

VI. CONCLUSION
In this paper, we proposed SQ-GPT, aimed at assessing
the visual quality of street spaces using the capabilities of
MLLMs like GPT-4V. We also proposed our own model
SQ-GPT which comprises several key components: an image
encoder, a QFormer for aligning images with text, and a
refinement stage to fine-tune the process. Through efficient
knowledge distillation, SQ-GPT manages to closely mirror
GPT-4V’s performance while significantly cutting down on
costs, thereby democratizing the technology for broader use.
We utilized a dataset from Baidu Street View in Nanjing,
Gulou district, capturing images from two distinct time
frames to monitor changes over time.

We also assessed the model’s performance through
both human-centric evaluation and visual analysis, which
confirmed its effectiveness in various tasks. Nevertheless,
we recognized the model’s limitations, such as the chal-
lenge of inconsistent lighting conditions affecting color
recognition, and proposed future improvements, including
the development of sophisticated pre-processing algorithms.
In conclusion, we showed that SQ-GPT can perform on
par with GPT-4V in quality assessments but at a more
affordable rate, which is highly beneficial for large-scale
urban planning and quality assessment projects. We also
acknowledged the necessity for ongoing research to surmount
the existing limitations and to boost the model’s adaptability

and sturdiness across various urban settings. We believe that
this paper could be a pioneer work that inspires researchers
using MLLMs for the future efficient and high-quality urban
planning.
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