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ABSTRACT Issues are evolving requirements in software engineering. They are the main factors
that increase the cost of software evolution. To help developers manage issues, GitHub provides issue
labeling mechanisms in issue management systems. However, manually labeling issue reports still requires
considerable developer workload. To ease developers’ burden, researchers have proposed automatically
classifying issue reports. To improve the classification accuracy, researchers adopted deep learning
techniques and pretrained models. However, pretrained models in the general domain such as RoBERTa
have limitations in understanding the contexts of software engineering tasks. In this paper, we create a
pretrained model, IssueBERT, with issue data to understand whether a domain-specific pretrained model
could improve the accuracy of issue report classification. We also adopt and explore several pretrained
models in the software engineering domain, namely, CodeBERT, BERTOverflow, and seBERT. We conduct
a comparative experiment on these pretrained models to evaluate their performance in classifying issue
reports. Our comparison results show that IssueBERT outperforms the other pretrained models. Noticeably,
IssueBERT yields an average F1 score that is 1.74% higher than that of seBERT and 3.61% higher than that
of RoBERTa, even though IssueBERT was pretrained with much less data than seBERT and RoBERTa.

INDEX TERMS Issue reports, issue classification, BERT, pretrained models, deep learning techniques.

I. INTRODUCTION
Issues are evolving requirements in software engineering.
They are the main factors that increase the cost of software
evolution. Therefore, managing issues well is a way to
reduce the cost of software evolution while systematically
evolving software systems. Issue classification is a way to
achieve systematic issue management. The GitHub issue
management system provides a lightweight labeling mech-
anism for managing issue reports. Although the mechanism
is simple enough for developers to easily report their issues,
developers still need to label issue reports by themselves.
Manual labeling tasks are repetitive and cumbersome.

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudia Raibulet .

Researchers have developed automated issue classification
techniques to reduce developers’ manual workloads. Initially,
researchers proposed automatically classifying issue reports
into categories such as bugs and nonbugs [1], [2], [3], [4], [5].
However, such a classification is far from feasible because
developers add multiple labels to issue reports [6]. Another
group of researchers proposed automatically classifying issue
reports with multiple labels [7], [8], [9], [10], [11]. However,
such approaches still suffer from low classification accuracies
of up to 64%. Recently, to improve the accuracy of issue
report classification, researchers have used pretrained deep
learning models [8], [9], [10]. For example, Wang et al. [9]
compared the performances of BiLSTM, CNN, RCNN,
and BERT and showed that the pretrained bidirectional
encoder representations from transformers (BERT) model
can improve the performance inmultilabel recommendations.
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However, their accuracies are between 38% and 55%,
according to their F1-scores.

We notice a gap between training pretrained mod-
els with general domain data and applying those mod-
els to software engineering domain contexts, thanks to
Mosel et al.’s work [12]. We also observe that there are
software engineering-specific pretrained models such as
CodeBERT [13], BERTOverflow [14] and seBERT [12].
However, very few researchers have proposed methods based
on software engineering-specific pretrained models for issue
classification tasks. Among the pretrained models in the
software engineering domain, seBERT is the only model
that uses issue data for pretraining. seBERT also uses Stack-
Overflow data and commit messages for pretraining. The
performance of seBERT has been evaluated experimentally
on the binary issue classification task of determining whether
issues are bugs or nonbugs. However, such type-based
classification is far from practical, as mentioned in the above
paragraphs.

Therefore, we develop a pretrained model, IssueBERT,
based on only an issue dataset. We then explore the perfor-
mance of IssueBERT and other pretrained models, namely,
RoBERTa [15], CodeBERT [13], BERTOverflow [14],
seBERT [12] on issue classification tasks. We investigate
whether software engineering-specific pretrained models
can outperform general domain pretrained models such
as RoBERTa, which are the existing issue classification
approaches. We also determine which pretrained model
outperforms other pretrained models on issue classification
tasks.

Our experiments show that IssueBERT outperforms the
other pretrained models and that seBERT performs second-
best overall. Noticeably, IssueBERT yields an average F1
score that is 1.74% higher than that of seBERT and 3.61%
higher than that of RoBERTa, even though IssueBERT
was pretrained with much less data than seBERT and
RoBERTa. The performance of CodeBERT is similar to
that of RoBERTa. BERTOverflow performs worse than
RoBERTa. Our findings contrast with those of an experiment
on seBERT in which seBERT and BERTOverflow performed
the best on the issue type-based classification task.

Our additional findings are as follows. First, the models
pretrained on issue data perform better than do the models
pretrained on general domain data for issue classification
tasks because IssueBERT and seBERT outperform RoBERTa
(see Sections IV. A and IV.B). Second, the homogeneity
between the pretraining data and the fine-tuning and applica-
tion data is still important because BERTOverflow performs
the worst when applied to issue classification tasks (see
Sections IV-A and IV-B). Third, the structure of a pretrained
model and its hyperparameter values can also affect the
classification accuracy, considering that RoBERTa performs
moderately (see Section IV-B).
Our contributions are as follows.
• First, we develop IssueBERT, which is pretrained on
only issue data.

• Second, we perform comparative experiments with
various pretrained models, namely, RoBERTa, Code-
BERT, BERTOverflow, seBERT and IssueBERT, for
binary issue classification tasks and multilabel issue
classification tasks.

• Third, we uncover that IssueBERT outperforms other
models on issue classification tasks, even though
IssueBERT was trained on a much smaller dataset than
the other models.

• Fourth, we characterize the models that can improve the
issue classification task performance by analyzing the
characteristics of the pretrained models.

• Fifth, we report our experimental results, which contrast
with the experimental results obtained for seBERT [12].

• Finally, we make IssueBERT publicly available at
https://huggingface.co/gbkwon/issueBERT-large.

The remainder of our paper is organized as follows.
Section II introduces our related work. Section III explains
our experimental setup. Section IV presents and discusses
the experimental results. Section V discusses additional
experimental results. Section VI explores the implications of
our paper. Section VII discusses the threats to the validity of
our research. Finally, Section VIII concludes our paper.

II. RELATED WORK
The related work can be divided into three groups. The
first group addresses issue classification. The second group
proposes pretrained models with software engineering data.
The third group compares several different pretrained models
for software engineering tasks.

A. ISSUE CLASSIFICATION
1) BINARY CLASSIFICATION
Studies classify issue reports into two groups, bugs and
nonbugs. Sohrawardi et al. [1] proposed a technique for
automatically classifying issue reports into bugs and nonbugs.
The authors used machine learning techniques such as
Naive Bayes, kNN, Pegasus, Rochio, and Perceptron. They
evaluated these techniques on four projects: HttpClient,
Jackrabbit, Lucene, and Tomcat5. In their experiment, the
perceptron model performed the best, with an average error
rate of 23%.

Pandey et al. [2] also proposed a technique for classifying
issue reports into bugs and nonbugs. The authors used
machine learning techniques such as Naive Bayes, Latent
Dirichlet Allocation (LDA), kNN, Support Vector Machine
(SVM), Decision Tree, and RandomForest. Their experimen-
tal results showed that the random forest and SVM methods
were the most accurate, with accuracies ranging from
75–83%, depending on the project.

Fan et al. [3] focused on distinguishing bugs from
nonbugs among all issues. They proposed a new two-stage
classificationmethod. They evaluated their methodwith other
machine learning techniques such as SVM, Naive Bayes,
Logistic Regression, and Random Forest on 80 projects. The
results showed that the proposed method performed well;
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the 1st quartile of the average F-measure was 75%, and the
median was 79%.

Pandey et al. [4] also studied how machine learning can
be used to automatically classify issue reports as bugs or
nonbugs. They extracted summaries from issue reports and
classified them using machine learning techniques such as
Naive Bayes, SVM, Logistic Regression, and LDA. The
results showed that Naive Bayes and SVM classifiers had the
highest accuracy, with accuracies ranging from 61% to 77%
and from 64% to 78%, respectively.

Zhu et al. [5] proposed a novel approach for automatically
distinguishing between bugs and nonbugs in an issue tracking
system. They used a kNN machine learning algorithm
to determine whether the existing labels were accurate
and attention-based bidirectional Long Short-Term Memory
(LSTM) to classify issue reports. Their approach outper-
formed state-of-the-art machine learning-based methods,
with an F-measure of 85%.

Zhifang, Liao, et al. [16] utilized transfer learning and
the personal characteristics of submitters to classify issue
reports as bugs or nonbugs. Their proposed two-stage
learning approach involves fine-tuning the BERT language
model and utilizing nine characteristics representing the
submitters’ influence on and familiarity with the projects.
The experimental results showed that the proposed method
outperformed state-of-the-art classification methods, with an
F-measure of 85%.

However, they used the BERT model trained on general
domain data; thus, the BERT model was limited in under-
standing domain-specific issue data. In this paper, we adopt
several BERT-based models trained on software engineering
domain data and evaluate the issue classification performance
of these models.

2) MULTILABEL CLASSIFICATION
Recent studies have classified issue reports with multiple
labels as developers do in practice. Xie et al. [17] pro-
posed MULA, a just-in-time multilabeling system, using
FastText [18].MULAautomatically assignsmultiple labels to
issue reports. Xie et al. [17] constructed a dataset with 81,601
issues and 11 labels to build a MULAmodel. They compared
the performance of the MULA model with those of five
other models: BR+RandomForest, BR+kNN, TextCNN,
TextRNN, and BR+SVM. Although the MULA model
showed F1-scores between 45% and 87%, the evaluation was
conducted based on the set of labels, not the set of issue
reports. Hence, the metrics were different from those used
in other studies.

Park et al. [7] classified issue reports with custom labels
that developers defined for their projects. They adopted Fast-
Text [18]. In their experiment, they found that the proposed
method yielded F1-scores of 57%, 49%, and 64% for the
VS Code, Dart-lang, and TypeScript projects, respectively.
Similarly, Heo et al. [8] adopted RoBERTa [15] and showed

that the replacement model improved the F1-scores by 2% to
6% for three projects: Dart-lang, VS Code, and TypeScript.

To classify issue reports with multiple labels,
Wang et al. [9] adopted a pretrained contextual language
model, BERT, and other deep learning models, such as Bi-
LSTM, CNN, and RCNN. The authors compared the perfor-
mances of those models. With the best performance, BERT
obtained an F1-score of 38%.Wang et al. [10] proposed a new
multilabel prediction framework for predicting personalized
labels for different projects automatically. They reported an
F1-score of 55%.

Heo et al. [11] noted that some labels are classified
with high or low accuracy. They reported that the labels
bug, enhancement, user- submission, and new-version were
classified with F1-scores between 67% and 95%, while the
labels duplicate, good-first-issue, and discussion had F1-
scores between 31% and 39%.

Researchers used a BERT-based model trained on general
domain data in those studies. In this paper, we adopt
pretrained models trained on software engineering data, such
as CodeBERT, BERTOverflow, seBERT and IssueBERT, and
compare their performances on binary and multilabel issue
classification tasks.

B. DOMAIN-SPECIFIC PRETRAINED MODELS
Recently, researchers have proposed the following pretrained
models for software engineering domain data. Feng et al. [13]
developed CodeBERT, a pretrained model designed to learn
from bimodal data comprising code in multiple programming
languages and text in natural languages. They created
bimodal training data by incorporating code from different
programming languages (Python, Java, and JavaScript) and
function-level natural language documents extracted from
GitHub. CodeBERT has demonstrated impressive perfor-
mance on various downstream tasks involving natural lan-
guage and programming languages, such as natural language
code searching and code-to-documentation generation.

Tabassum et al. [14] developed BERTOverflow, a model
pretrained on a corpus comprising 152 million sentences
sourced from StackOverflow. They also proposed SoftNer,
a model specifically designed for named entity recognition.
BERTOverflow led to a noteworthy improvement of approx-
imately 10% in the F1-score compared to the baseline BERT
model; the SoftNer model demonstrated an impressive F1-
score of 79% for the named entity recognition task, thereby
enhancing the performance of BERT-based tagging models.

Guo et al. [19] developed GraphCodeBERT, a pretrained
model that considers the inherent code structure by leveraging
data flow during the pretraining phase. They assessed the
effectiveness of their proposed approach by applying it to
four downstream tasks: code discovery, duplicate detection,
code translation, and code refinement. Their method achieved
state-of-the-art performance across all the tasks.

Lin et al. [20] developed T-BERT, a novel framework that
utilizes pretrained BERTmodels (single-BERT, sham-BERT,
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triple-BERT). They compared the performance of this
method with those of the vector space model (VSM) and
the TraceNN (TNN) in open-source software (OSS) projects.
The evaluation results demonstrated that T-BERT outper-
formed the baseline methods in terms of both accuracy and
efficiency.

Mosel et al. [12] collected data from four different sources
in the software engineering domain and created a pretrained
model, seBERT. They subsequently compared pretrained
models such as BERTbase, BERTlarge, BERTOverflow, and
seBERT. They found that the models pretrained with software
engineering data predictedmaskedwordsmore precisely than
did those pretrained with general domain data. For example,
in the sentence ‘‘The [MASK] is thrown,’’ BERTbase
predicted ‘‘rule’’, while seBERT predicted ‘‘exception’’.
They concluded that the models pretrained with software
engineering data could better understand software engineer-
ing contexts than the other models.

Researchers have proposed models pretrained on software
engineering domain data and have evaluated the performance
of those models on software engineering tasks. However,
pretrained models have rarely been applied to issue clas-
sification tasks. In this paper, we focus on evaluating the
performance of pretrained models for binary and multilabel
issue classification tasks.

C. COMPARISON OF PRETRAINED MODELS
Similar to our study, other studies have compared several
pretrained models.

Hadi and Fard [21] focused on automatically classifying
app reviews. They used six datasets collected by other
researchers, which included 16 classification labels, such as
irrelevant, praise, aspect evaluation, feature request, and bug
report. They then compared the performances of pretrained
models in classifying app reviews on these datasets. ALBERT
and RoBERTa performed well in the experiment. However,
they did not consider models pretrained on software engineer-
ing domain data, such as CodeBERT.

Troshin and Chirkova [22] compared CodeT5, Graph-
CodeBERT, PLBART, and other pretrained models from
the perspective of code comprehension. They designed
and performed tasks related to code syntax, semantics,
namespaces, dataflow, and algorithm understanding to eval-
uate how well those models represent information about
various code properties. Their work provided insights into
the interpretability of the pretrained models’ code and its
different aspects. This work focused mainly on comparing
and evaluating existingmodels and introducing probing tools.

To the best of our knowledge, few papers have compared
models pretrained on software engineering domain data, and
none of those studies evaluated the performance of various
pretrained models on issue classification tasks.

III. EXPERIMENTAL SETUP
In this section, we develop a pretrained model, IssueBERT,
based on only issue data, and we compare various pretrained

models on issue classification tasks. We evaluate the per-
formances of IssueBERT and four other pretrained models:
RoBERTa, CodeBERT, BERTOverflow, and seBERT.

Fig. 1 shows the overall flow of our work. First, we create
IssueBERT by training BERTlarge with GitHub issue data.
Additional details are provided in Section III-B5. Next,
we perform binary and multilabel issue classification tasks
using the five pretrained models, including our IssueBERT.
Afterward, we compare the performances of the pretrained
models and analyze the results in detail.

Subsection III-A presents our research questions, Subsec-
tion III-B describes the pretrained models as our subjects,
Subsection III-C describes our research data, and Subsec-
tion III-D explains our experimental procedure, including
data preprocessing and the experiments for answering our
research questions.

A. RESEARCH QUESTIONS
We asked three research questions to identify a pretrained
model that outperforms the other models on issue classifica-
tion tasks:

RQ1. Which pretrained model performs well for binary
classification of issue reports?

RQ2.Which pretrainedmodel performs well for multilabel
classification of issue reports?

RQ3. To what extent is the multilabel classification
performance of IssueBERT higher than those of the state-of-
the-art approaches FastText and RoBERTa?

B. PRETRAINED MODELS
The pretrained models we used in our experiments were
RoBERTa, CodeBERT, BERTOverflow, seBERT, and Issue-
BERT. Table 1 lists the characteristics and hyperparameter
values of these pretrained models.

1) RoBERTa
The developers of RoBERTa (robustly optimized BERT
approach) [15] focused on the design of a model to improve
the performance of BERT, which is undertrained due to
overlooked design choices. RoBERTa was trained on the
English Wikipedia (16G), CC-News (Common Crawl News
corpus, 76G), Open Web Text (38G), and Stories (31G)
datasets; together, these datasets include 160 GB of text
data, which is almost 10 times greater than the amount
of text data used to train traditional BERT. RoBERTa
was trained with a larger byte-level byte-pair encoding
(BPE) vocabulary containing 50K subword units, without
any additional preprocessing or tokenization of the input.
RoBERTa was also trained with dynamic masking, sequences
of at most T = 512 tokens and full-sentences without next
sentence prediction (NSP) loss. RoBERTa was finally trained
for 100K steps in large mini-batches of 8K size.We chose this
model as the comparison model for this experiment since it
performedwell as amodel based on general domain data [23],
[24], [25].
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FIGURE 1. Process flow of our work.

TABLE 1. Characteristics and hyperparameter values of the pretrained models.

2) CodeBERT

CodeBERT [13] is a bimodal pretrained bidirectional trans-
former for natural language and programming languages.
CodeBERT was pretrained using a hybrid objective function
that combinesMLMandRTD tasks. The training data include
2.1M bimodal data pairs of code and the corresponding
documentation and 6.4M unimodal data of code. The
authors collected the data from GitHub repositories in six
programming languages. CodeBERT is based on RoBERTa.
The input was set as the concatenation of two segments
(NL-PL) with a special separator token. The model used
WordPiece tokenization. The maximum length was 512, and
the maximum number of training steps was 100K. We chose
this model as a comparisonmodel for this experiment because
it performs well as a model based on code domain data [26],
[27], [28].

3) BERTOverflow
BERTOverflow [14] is a pretrained BERT model specifically
designed for the computer programming and software
engineering domain and intended for tasks such as code
and named entity recognition, using StackOverflow data.
It was pretrained with a 64,000 WordPiece vocabulary, uti-
lizing 152 million sentences extracted from StackOverflow.
We selected this model as a comparison model for our
experiment because it was pretrained on natural language
data from the software engineering domain. Since there is
a significant similarity in vocabulary between GitHub and
StackOverflow, BERTOverflow is expected to perform well
for issue classification tasks.

4) seBERT
seBERT [12] is a pretrained model based on BERTlarge
that was specifically designed for the software engineering
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domain, similar to BERTOverflow [14]. Unlike BERTOver-
flow, seBERT was trained with approximately six times
more data, and the training data included StackOverflow,
GitHub, and Jira issues. In total, 119.7 GB of data was
used. seBERT was pretrained based on a 1024-dimensional
BERTlarge model with 30,522WordPieces and a set sequence
length of 128. seBERT was pretrained using the objective
function MLM and NSP tasks. seBERT showed vocabulary
capture ability related to the SE domain and improved fine-
tuning performance in prediction tasks. We selected this
model as a comparison model for our experiment since it
was pretrained on software engineering domain data and uses
the BERTlarge model, which is known to perform better than
BERTbase. Trautsch et al. [29] attempted to use seBERT to
predict issue types, such as bugs, enhancements, and features.

5) IssueBERT
IssueBERT is a pretrained model that we created from issue
data in GitHub. To train the IssueBERT model, we first
collected issue data from projects with more than 5,000
stars and more than 10,000 issue reports.1 For a fair
evaluation, we collected the issue data generated by April
1st , 2020, to create IssueBERT. We used 90% of the data as
training data and 10% as validation data. We then used the
BERT structure proposed by Devlin et al. [30]. These authors
achieved successful results in various language understanding
tasks. The BERTlarge model is available through the Hugging
Face library and is widely used to develop natural language
processing models. The BERTlarge model uses WordPiece
tokenization with a token vocabulary size of 30,522. The
maximum length of the tokens is 512, and any sequences
exceeding this length are truncated. Themasking ratio is 15%,
and the other parameters follow the default settings of the
BERTlarge model provided by Hugging Face. IssueBERT2

was trained for 40 epochs. The required scripts for pretraining
IssueBERT are available as part of our replication kit3

C. RESEARCH DATA
We selected projects as subjects that met the following criteria
as subjects.

We first sorted GitHub projects based on the number of
issues. We then manually inspected the top 20 projects.
Among these projects, we closely examined the labels
attached to issue reports and identified projects with labels
corresponding to bugs and features. Our experiment for RQ1
aims to classify issue reports into these classes. Finally,
we selected five projects by reordering the identified projects
based on the number of labeled issues. Our experiment for
RQ2 aims to assign multiple labels to issue reports. The

1Due to our limited computing capacity, we conducted the pretraining
process on a computer equipped with a 4x NVIDIA A100 Tensor Core GPU,
256 GB RAM, and a 64-core CPU, which took approximately 618.5 hours
to complete.

2https://huggingface.co/gbkwon/issueBERT-large
3https://github.com/qja1998/pretrain_issue_bert

numbers of issue reports and labels per project are shown in
Table 2.
We used issue reports collected from the following

five projects to evaluate the classification accuracy of the
pretrained models. Because we used the issue data created
before April, 1st , 2020 for the pretrained IssueBERT model,
we collected the data created after April, 1st , 2020 for our
evaluation to avoid the possibility of using the same issue
reports and their same linguistic structure in our evaluation.

To conduct the experiments for RQ1 andRQ2,we collected
data for the last three years, from 2020-04-01 to 2023-06-
21; these data were not used for pretraining. We used the
PyGitHub library to extract the issue data for five projects:
VS Code, Kubernetes, Flutter, Roslyn, and Ansible.

1) VS CODE
VS Code is a widely used text editor worldwide. The VS
Code repository contains numerous issues that have been
and continue to be generated. We collected 63,232 issue
reports from the VS Code repository.4 Those issue reports
had 454 labels.

2) KUBERNETES
Kubernetes is a container orchestration tool that is widely
used and supports various container runtimes. We collected
8,862 issue reports from the Kubernetes repository.5 These
issue reports had 129 labels.

TABLE 2. Numbers of issue reports used in the experiments.

3) FLUTTER
Flutter is a cross-platform GUI application framework that
is used primarily to develop Android, iOS, Windows, Linux,
andweb applications. Flutter is a relatively recent framework;
hence, historical data might be limited. We collected 41,486
issue reports from the Flutter repository.6 These issue reports
contained 344 labels.

4) ROSLYN
Roslyn is the.NET Compiler Platform, an open-source
compiler and code analyzer for Microsoft’s C# and Visual

4https://github.com/microsoft/VS Code/issues
5https://github.com/kubernetes/kubernetes/issues
6https://github.com/flutter/flutter/issues
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Basic languages. We collected 9,394 issue reports from the
Roslyn repository.7 Those issue reports contained 219 labels.

5) ANSIBLE
Ansible is an OSS tool that facilitates infrastructure as
code, encompassing capabilities for software provisioning,
configuration management, and application deployment.
We collected 4,719 issue reports from the Ansible reposi-
tory.8 Those issue reports contained 170 labels.

D. EXPERIMENTAL PROCEDURE
This subsection describes the data preprocessing and exper-
imental procedures used to answer the three research
questions.

1) DATA PREPROCESSING
When we preprocessed the issue data, we focused on the
title, body, and comments of the issue reports. We first
tokenized the text. We then changed uppercase letters to
lowercase letters. We removed stop words, emoticons, and
tokens with more than 30 characters. After preprocessing,
we also removed issue reports for which the total number
of tokens was less than 5. When a single issue report had
multiple comments, we concatenated them into a single
sequence.

For our evaluation, we preserved the labels attached to each
issue report.

2) RQ1. EXPERIMENT ON BINARY CLASSIFICATION
RQ1 measures the accuracy of a pretrained model on the task
of classifying issue reports into bugs or features. To answer
RQ1, we identified, selected, and consolidated the labels
that corresponded to bugs and features. For example, in the
VS Code project, we mapped the ‘‘bug’’ label to bug and
the ‘‘feature-request’’ label to feature. In Kubernetes, the
‘‘kind/bug’’ label was mapped to bug, and the ‘‘kind/feature’’
label was mapped to feature.
The ‘‘Binary Classification’’ row of Table 2 shows the

number of issue reports and labels for the task. To address
the class imbalance problem, we applied downsampling to
reduce the sample count of the majority category to that of
the minority category. Because the feature class typically
contains less data than does the bug class, we reduced the
number of issue reports that belong to the bug class by
selecting the most recent issue reports from the bug class.
Table 3 shows the number of issue reports in the

downsampled dataset. As Table 3 shows, the number of issues
per label was the same, andwe utilized the following numbers
of issue reports per project for the RQ1 experiment: VS Code
(16,520), Kubernetes (3,338), Flutter (8,294), Roslyn (1,976),
and Ansible (1,488).

We divided the dataset into training and evaluation sets
at a ratio of 8:2. By using the training data, we fine-tuned

7https://github.com/dotnet/roslyn/issues
8https://github.com/ansible/ansible/labels

TABLE 3. Sampled data distribution per label.

each pretrained model. We then applied the pretrained model
to the binary classification of issue reports and measured its
classification accuracy.

In the experiment, we applied RoBERTa, CodeBERT,
BERTOverflow, seBERT, and IssueBERT to the issue data
of each project. We evaluated the classification accuracy of
each fine-tuned model by referring to previous studies [30],
[31]. The hyperparameter values were as follows. First, the
loss function was CrossEntropyLoss. The number of epochs
for fine-tuning was set to 5. The learning rate was set to 2e-5.
The maximum length of an issue report was set to 300. The
batch size was set to 32.

3) RQ2. EXPERIMENT ON MULTILABEL CLASSIFICATION
RQ2 measures the accuracy of a pretrained model in
classifying issue reports with multiple labels.

As Table 2 shows, the total number of labels in each
project ranges from 129 to 454. If we were to consider all
the labels, there would be too many classes, and the accuracy
of predicting labels would be significantly low. Park et al. [7]
reported that issue reports with labels in the top 10% in terms
of usage yielded the highest F1-score for multilabel issue
classification. Therefore, we decided to use issue reports with
labels in the top 10% in terms of usage in each project.
As a result, the ‘Multilabel Classification’ row of Table 2
shows the number of issue reports and labels for the RQ2
experiment.

If an issue report contained not only glabels belongingg
to the top 10% in terms of usage but also other labels,
we removed the labels that were not applicable. Table 4 shows
the number of issue reports according to the number of labels
per project after processing the data.

We divided the dataset into training and evaluation sets
at a ratio of 8:2. We first fine-tuned each pretrained model
using the training data. To implement the multilabeling
classification task, we input the contextual information [CLS]
token in the last layer of the pretrained model into a linear
classifier. The shape of the output of the linear classifier was
determined by the size of the hidden layers and the number
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TABLE 4. Number of issue reports according to the number of labels.

of labels. A sigmoid function was used to represent the value
of each label between 0 and 1. We applied a threshold from
0.1 to 0.9 to the value of each label and identified the labels
attached to each issue report.

Second, we evaluated the multilabel classification
accuracy with each threshold using the evaluation data.
In the experiment, we fine-tuned RoBERTa, CodeBERT,
BERTOverflow, seBERT, and IssueBERT on the issue data
of each project. We evaluated the classification accuracy of
each fine-tuned model.

The hyperparameters used to fine-tune the pretrained
models were as follows: The loss function was BCEWithLog-
itsLoss. The number of epochs was set to 5. The learning rate
was set to 2e-5. The maximum length of an issue report was
set to 514. The batch size was set to 32.

4) RQ3. COMPARISON OF IssueBERT WITH
STATE-OF-THE-ART APPROACHES
In RQ3, we compared the accuracy of IssueBERT with
those of FastText and RoBERTa in multilabel issue clas-
sification tasks. FastText and RoBERTa achieved state-of-
the-art performance in previous work [7], [8], [11]. For
comparison, we considered to the performance of RoBERTa
and IssueBERT at a threshold of 0.2, which yielded the
best performance among the RQ2 experimental results.
We additionally experimented with the FastText model on the
same data used in the experiment for RQ2.

We set the hyperparameter K to -1, which indicates
multiple labels, according to previous studies [7]. We applied
it to a multilabel classification task and measured its
accuracy.

E. EVALUATION METRICS
Themetrics used for our evaluation were the precision, recall,
F1-score, and MCC. These metrics were calculated with the
respective equations.

For that, we first defined TP, TN, FP, and FN as follows:

• TP (number of true positives): The number of positive
samples that are correctly predicted as positive.

• TN (number of true negatives): The number of negatives
samples that are correctly predicted as negative.

• FP (number of false positives): The number of negative
samples that are incorrectly predicted as positive.

• FN (number of false negatives): The number of positive
samples that are incorrectly predicted as negative.

Based on these definitions, we defined the precision, recall,
and F1-score as follows:

Precision =
1
n

n∑
i=1

TP
TP+ FP

(1)

Recall =
1
n

n∑
i=1

TP
TP+ FN

(2)

F1 − score =
2 · Precision · Recall
Precision+ Recall

(3)

For RQ1 (binary classification), we defined n as the
number of classes predicted by the model. Additionally,
researchers [32], [33] reported that the Matthews correlation
coefficient (MCC) achieves higher prediction accuracy than
does the F1-score or other metrics, and they recommended
using the MCC metric for binary classification tasks. As a
result, we adopted the MCC as the primary metric for our
RQ1 experiment. We defined the MCC metrics as follows:

MCC =
TP · TN − FP · FN

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

(4)

For RQ2 (multilabel classification), we defined n as the
number of issue reports used in the evaluation. Previous
studies [7], [8], [11] measured multilabel performance on
a per-sample (issue report) basis, so we also measured
performance on a per-sample basis in our experiment. In the
case of multilabel classification, the precision (Equation 1)
and recall (Equation 2) values can be calculated for each issue
report. We adopted the F1-score as the primary metric for the
RQ2 and RQ3 experiments. In this case, the F1-score was
calculated as follows:

F1 − score =
1
n

n∑
i=1

2 · Precisioni · Recalli
Precisioni + Recalli

(5)

F1 − scoremicro =
2 ·

∑n
i=1 Precisioni ·

∑n
i=1 Recalli∑n

i=1 Precisioni +
∑n

i=1 Recalli
(6)

We also calculated another accuracy metric for multilabel
issue classification tasks, the micro average F1-score (F1-
scoremicro).9 F1-scoremicro (Equation 6) calculates the preci-
sion and recall simultaneously by accumulating TP, FN, and
TN for the entire test dataset.We considered the F1-scoremicro
because it is not affected by label imbalance and is often used
for multilabel classification tasks.

IV. EXPERIMENTAL RESULTS
This section discusses the experimental results for the three
research questions.

A. BINARY CLASSIFICATION
In this section, we present the experimental results for
Research Question 1 (RQ1), as shown in Figure 2.

9https://scikit-learn.org
/stable/modules/generated/sklearn.metrics.f1_score.html
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FIGURE 2. MCC of the models for binary classification.

TABLE 5. Results on the binary classification task.

Figure 2 shows that IssueBERT outperformed the other
models across all projects, followed by seBERT. The
IssueBERT model outperformed the other three models on
three projects, and it performed second best on the other two
projects. Both IssueBERT and seBERT were trained on issue
data. The difference between the two models in terms of
data is that seBERT was trained on data from a wider range

of sources, including not only GitHub issues but also Stack
Overflow posts, Jira issues, and GitHub commit messages.

In contrast, BERTOverflow had the lowest accuracy on all
projects except for one. BERTOverflow achieved the lowest
accuracy on four projects, namely, VS Code, Kubernetes,
Roslyn, and Ansible, with the highest accuracy on the Flutter
project. BERTOverflow was trained only on StackOverflow
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data. Different training data could affect the issue report
classification accuracy.

Moreover, RoBERTa and CodeBERT performed at the
middle level. Notably, these two models were trained on
much larger quantities of data than the other models.
Interestingly, RoBERTa performed moderately well despite
not being trained on specific software engineering data.
CodeBERT was trained on both code data and natural
language descriptions, as described earlier. Training on
dual data sources might have improved the accuracy of
CodeBERT.

Table 5 shows detailed information corresponding to
Figure 2. The ‘‘Project’’ column in Table 5 represents the
specific projects targeted for the experiments. The ‘‘Model’’
column indicates the kinds of pretrainedmodels employed for
each project. The accuracy evaluation metrics, including pre-
cision, recall, F1-score, and MCC, are presented in separate
columns, with all the values expressed as percentages (%) and
rounded to two decimal places. Additionally, we highlighted
the highest scores for each project in bold and underlined the
second-best scores.

Overall, Table 5 shows that the precision, recall, and
F1-score trends are similar to the trend in the MCC. For
example, in the whole row, IssueBERT yielded the highest
accuracy with 89.37%, 89.19%, 89.17%, and 78.56% for the
precision, recall, F1-score, and MCC, respectively. seBERT
yielded the second-highest accuracy, with 88.50%, 88.45%,
88.44%, and 76.95% for precision, recall, F1-score, and
MCC, respectively. CodeBERT and RoBERTa obtained the
3rd and 4th highest classification accuracies, respectively.
BERTOverflow achieved the lowest classification accuracy.

IssueBERT achieved the highest precision, recall, F1-
score, and MCC on three projects: Kubernetes, Roslyn, and
Ansible. In the case of VS Code, seBERT achieved the
highest accuracy across all the metrics, while IssueBERT
achieved the second-highest accuracy. In the case of Flutter,
BERTOverflow achieved the highest accuracy across all
the metrics, while IssueBERT achieved the second-highest
accuracy. Nevertheless, BERTOverflow was ranked the
lowest across all the projects except Flutter.

Overall, IssueBERT performed the best, followed by
seBERT. However, in one case, seBERT outperformed
IssueBERT. Additionally, in this experiment, the recall,
precision, and F1-score followed trends similar to that of the
MCC, suggesting that no model performed particularly well
in terms of any specific metric.

Therefore, the results measured by the four different
metrics in Table 5 lead to the same conclusions as the results
in Figure 2. With respect to the data used by the pretrained
models, the best-performing IssueBERT was trained on
issue-related data. In this regard, models trained with issue
domain-specific data may perform better because they better
understand the issue domain.

For the binary classification task, the issue classification
task for each pretrained model yields only one value for each
metric. Each label is classified as a ‘bug’ or ‘feature.’ TP, FP,

TN, and FN across the entire dataset for each project are used
to calculate the MCC and other metrics. Therefore, we could
not apply statistical validation to this experiment.

Summary: On all the projects, IssueBERT outperformed
the other pretrained models. Since these pretrained models
learn from issue domain-specific data, they may better
understand the issue classification task.

B. MULTILABEL CLASSIFICATION
In this section, we present the experimental results for
Research Question 2 (RQ2), as shown in Figure 3. When
we averaged the F1-scores of the five projects, IssueBERT
performed best, with seBERT, RoBERTa, and CodeBERT
performing in the middle and BERTOverflow performing the
worst.

IssueBERT performed well even though it learned from
less data than did the other pretrained models. One of the
reasons is because IssueBERT was pretrained on issue data
and because the vocabularies and contexts of the training
data correspond to the tasks of classifying issue reports with
multiple labels.

Additionally, IssueBERT and seBERT were trained on a
BERTlarge model with more layers and parameters, while the
othermodels were trained onBERT-basedmodels. Therefore,
IssueBERT and seBERT learned richer representations than
did CodeBERT and BERTOverflow. Additionally, both
models learned from issue data, which could also improve
their accuracy on issue classification tasks.

Overall, the accuracy of RoBERTa was similar to that of
CodeBERT. This similarity is interesting because RoBERTa
was not trained with software engineering domain-specific
data. It could be conjectured that RoBERTa was trained with
an enormous amount of data, which might have positively
affected the issue classification task accuracy.

BERTOverflow still achieved the lowest accuracy across
projects, even for the multilabel issue classification task.
BERTOverflow was trained on the StackOverflow data,
which are data from a community that aims to provide
questions and answers related to programming. In contrast,
the GitHub issue management system maintains bug, feature,
enhancement, and question reports that arise when using and
maintaining open-source projects. Therefore, we conjecture
that the characteristics of the StackOverflow data differ from
those of the issue data. The different data characteristics
might have affected the accuracy on the issue classification
task.

Table 6 shows detailed information corresponding to
Figure 3. Figure 3 shows the model accuracy for threshold
values between 0.1 and 0.9, where the best model accuracy
is obtained when the threshold is 0.2. Table 6 presents the
precision, recall, F1-score, and F1-scoremicro with a threshold
value of 0.2. The precision, recall, F1-score, and F1-
scoremicro are all expressed as percentages (%) and rounded to
two decimal places. For example, for the Kubernetes project,
IssueBERT yielded the highest accuracy with 79.7%, 89.2%,
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FIGURE 3. F1-scores obtained with various model thresholds for multilabel classification.

TABLE 6. Results on the multilabel classification task with a threshold of 0.2.

82.56%, and 83.26% for the precision, recall, F1-score, and
F1-scoremicro, respectively.

Here, we note that there are no significant differences in
the performances of the metrics F1-score and F1-scoremicro in

measuring the issue report classification accuracy, as shown
in Table 6. Therefore, we discuss the F1-scoremicro for the
experimental results in Table 6, and we discuss our result
based on the F1-score in other places in this paper.
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In total, IssueBERT yielded the highest accuracy with
65.12%, 78.49%, 68.52%, and 68.3% for precision, recall,
F1-score, and F1-scoremicro, respectively. In addition, Issue-
BERT achieved the best F1-score and F1-scoremicro for all
five projects. seBERT yielded the second-highest accuracy
with 62.6%, 77.99%, 66.78%, and 66.67% for precision,
recall, F1-score, and F1-scoremicro, respectively. RoBERTa
and CodeBERT showed the 3rd and 4th highest classification
accuracies, respectively. BERTOverflow achieved the lowest
classification accuracy.

We conducted a statistical test to determine whether
there were significant performance differences between
IssueBERT and the other models. We first collected
the F1-scores for the issue reports of the five projects.
We then applied the Wilcoxon signed rank test to the
data. Table 7 shows the results. We found that the perfor-
mance of IssueBERT differed significantly from those of
the other models, with p values < 2.2−16 for RoBERTa,
CodeBERT, and BERTOverflow, and p values < 6.5−13 for
seBERT.

In the case of IssueBERT, issue domain data were used to
pretraining, fine-tune, and evaluate the model. It differs from
other models pretrained on software engineering domain
data (seBERT and BERTOverflow) or code domain data
(CodeBERT). Conducting pretraining and fine-tuning with
the same domain data seems to be the reason that IssueBERT
had the best accuracy.

TABLE 7. Result of statistical tests.

Summary: Overall, IssueBERT outperformed the other
pretrained models, with seBERT exhibiting good accuracy
as the second-best model, indicating that the similarity
between the pretrained and target domains has a greater
impact on the multilabel issue classification accuracy than
does the quantity of data used for model pretraining.

FIGURE 4. F1-scores of FastText, RoBERTa, and IssueBERT at a threshold
of 0.2.

TABLE 8. Comparison of the state-of-the-art models and IssueBERT in
terms of multilabel classification accuracy at a threshold of 0.2.

C. COMPARISON WITH THE STATE-OF-THE-ART METHODS
In this section, we present the experimental results for
ResearchQuestion 3 (RQ3), as shown in Figure 4 and Table 8.
Here, we compare the accuracy of our method (IssueBERT)
with those of the FastText and RoBERTa methods used
in previous studies [7], [8], [11] related to issue label
classification tasks.

As shown by the trend in Figure 4, IssueBERT performed
the best among all the tested models, followed by RoBERTa
and FastText. For VS Code, the F1-score of IssueBERT was
10.06% greater than that of FastText and 3.61% greater than
those of RoBERTa. Similarly, the F1-score of IssueBERT
was consistently greater than those of FastText and RoBERTa
across other projects, such as Kubernetes, Flutter, Roslyn, and
Ansible.

Overall, IssueBERT outperformed FastText by amaximum
of 14.52% and a minimum of 7.59% and outperformed
RoBERTa by amaximum of 4.65% and aminimum of 2.73%.
In terms of the total average, the accuracy of IssueBERT was
10.06% better than that of FastText and 3.61% better than that
of RoBERTa.

In addition, we conducted a statistical test to evaluate
the significant differences between the IssueBERT and
RoBERTa models. We used the Wilcoxon signed rank test.
We used all the test data for each project and compared the
models’ F1-scores. The p value of the statistical test was less
than 2.2−16(<0.05) as shown in Table 7.

Summary: Overall, IssueBERT realized higher issue
classification task accuracy than the state-of-the-art
approaches. This improvement could have been because
IssueBERT uses contextual word embeddings and was
pretrained on issue domain data.

V. ADDITIONAL EXPERIMENTS
In this section, we report two additional experiments that
were conducted to determine the characteristics of Issue-
BERT and other pretrained models.

A. PREDICTION OF MISSING WORDS IN SENTENCES
We qualitatively investigated the ability of IssueBERT
and seBERT to predict missing words in sentences,
as Mosel et al. [12] did to investigate the capability of
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TABLE 9. Word predictions by IssueBERT and seBERT [12] for [MASK] tokens.

seBERT. Table 9 shows the results. In the table, the indices
from 1 to 7 indicate the sentences that we extracted from issue
reports in GitHub. The indices 8 to 10 indicate the sentences
that we obtained fromMosel et al.’s work [12]. The predicted
answers that matched the expected answers are marked in
bold.

We first reviewed sentences 1 to 8 in Table 9. For the
masked word in sentence 1, IssueBERT correctly predicted
the word disabled, as did seBERT. Similarly, IssueBERT
and seBERT demonstrated comparable accuracies for sen-
tences 2, 4, 5, and 7. Moreover, for the masked words in
sentences 3 and 6, IssueBERT correctly predicted closing and
documentation, respectively, while seBERT did not.

IssueBERT, our pretrained model specialized in the issue-
related domain, performed well in filling in the masks
of sentences commonly used in GitHub issue reports. Its
accuracy was comparable to that of seBERT and, in some
cases, even better. Interestingly, IssueBERT was trained on
a limited dataset (approximately thirteen times smaller than
that on which seBERT was trained). We can infer that
pretraining with specialized issue data helps predict masked
words in issue-relevant sentences.

Additionally, IssueBERT showed comparable accuracy
to seBERT in most cases, as presented in Mosel et al.’s
work [12]. In sentences 8 to 10, IssueBERT predicted the
correct word in the same order as seBERT did. Therefore,
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we conclude that a pretrained model based on issue data
performs exceptionally well in the software domain.

B. CROSS-PROJECT CAPABILITIES FOR PREDICTING
ISSUE LABELS
Readers might wonder about the cross-project capabilities of
pretrained models. However, as our main problem is predict-
ing custom labels, which differ among projects, this question
does not align well with our problem. To clarify, we present
the experimental results for binary classification with the
same labels across projects and multilabel classification with
different labels across projects as follows.

1) BINARY CLASSIFICATION
Wefirst evaluated the cross-project capabilities of IssueBERT
by training a binary classifier with cross-project datasets.
For that purpose, we combined the training datasets of five
projects and used the datasets to fine-tune a pretrained model.
There were 25,293 issue reports in the datasets. Afterward,
we evaluated the accuracy of the cross-project finetuned
model on the test dataset for the five projects.

Figure 5 shows the evaluation results. As shown in
Figure 5, the per-project finetuned models of RoBERTa,
CodeBERT, seBERT, and IssueBERT outperformed cross-
project finetuned models, while BERTOverflow did not.
Despite predicting the same labels across projects, the per-
project fine-tuned models outperformed the cross-project
finetuned model by a margin of 3.06 - 6.04% in terms of
F1-score.

One exception was BERTOverflow, where the cross-
project fine-tuned model outperformed the per-project
fine-tuned model.

FIGURE 5. Comparison of the binary classification results of IssueBERT
and IssueBERT_CP (CP: Cross-Projects).

2) MULTILABEL CLASSIFICATION
Second, we evaluated the cross-project capabilities of Issue-
BERT by training a multilabel classifier with cross-project

FIGURE 6. Comparison of the multilabel classification results of
IssueBERT and IssueBERT_CP (CP: Cross-Projects).

datasets. For that purpose, we collected the training datasets
of the five projects and used the datasets to fine-tune the
cross-project model. There were 124,322 issue reports in the
datasets, and 133 labels were used. Afterward, we evaluated
the accuracy of the cross-project fine-tuned model with the
test dataset for each project.

Figure 6 shows the evaluation results. All the per-project
finetuned models outperformed the cross-project fine-tuned
models by a margin of 3.18-5.69%. When we compared the
results in Figure 6 with the binary classification results in
Figure 5, we found that the trends were the same, except
for that of BERTOverflow. In BERTOverflow, the per-project
fine-tuned model outperformed the cross-project fine-tuned
model.

The reason for the poor accuracy of the cross-project fine-
tuned model in multilabel issue classification tasks could be
that developers use different custom labels for each project.
Therefore, if a model is trained across projects, the number
of labels to be predicted increases, and the accuracy on
multilabel classification tasks decreases accordingly. The
issue here is that the same trend also appeared in our binary
issue classification tasks. Thus, we propose that project issue
data can be quite different, which might impact the issue
classification task accuracy.

VI. DISCUSSION
Researchers have proposed many methods for classifying
issue reports, including deep learning methods and pretrained
models. However, the proposed methods have not achieved
sufficient issue classification accuracy for practical use.
Therefore, we explored several software engineering-specific
pretrained models through experiments to improve the
classification accuracy. As a result, we found that IssueBERT
and seBERT, which were trained on issue data, performed
better than did CodeBERT and BERTOverflow, which were
trained on code or StackOverflow data, and RoBERTa, which
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was trained on general data. Our results show that a model
pretrained on issue data is suitable for issue classification
tasks.

As large-scale data can be used to increase the reliability
of experimental evaluations, there could be a question as to
why we conducted our experiments on a project-by-project
basis. There are two reasons for this. The first reason is
that developers classify issue reports relevant to a project
on which they work. The second reason is that developers
create custom labels for each project on which they work.
These custom labels vary by project. For these reasons,
we conducted our experiments on a project-by-project
basis.

The implications of this study are as follows. First, the
accuracy on automated issue classification tasks should be
sufficiently high so that developers can adopt automatic
classification methods and tools in practice.

In this paper, we investigated whether and to what
extent using a software engineering-specific pretrainedmodel
could improve the issue classification task accuracy. We
found that the best-performing models were IssueBERT
and seBERT, which were trained on issue data. Therefore,
we expect that developers can achieve higher accuracy
on issue classification tasks by adopting these specialized
pretrained models.

Second, our research identified a pretrained model that
performs well on issue classification tasks, and we reported
that the model can lead to an improvement in accuracy
of 3.61%. Based on our results, researchers can adapt the
pretrained model to achieve improved accuracy. For example,
researchers could consider what features should be added
to the pretrained model or how they should fine-tune and
further train these models. Additionally, it is possible to
build a better-performing model for issue categorization
tasks by increasing the data size. Moreover, researchers
could use a good-performing pretrained model for other
issue-relevant tasks, such as summarizing or predicting
issues.

Third, we developed IssueBERT for companies, which
may be useful for issue classification tasks. Our issue
categorization model, IssueBERT, is available at https://
huggingface.co/gbkwon/issueBERT-large. Companies can
use our issue categorization model to classify issues in their
projects. By automatically classifying issues, companies can
reduce developers’ workload in classifying issue reports
while maintaining issues more systematically.

VII. THREATS TO VALIDITY
We report threats to internal and external validity.

A. THREATS TO INTERNAL VALIDITY
Several factors, such as the pretrained models, data, and
hyperparameters, might have affected the experimental
results. First, to create IssueBERT, we selected the masked
language model task (MLM) with a BERT-large model.

By training the model on a larger dataset, the accuracy of
IssueBERT increased.

Second, when pretraining IssueBERT, we constructed
the training data by concatenating the title and body of
each issue report. However, when classifying issue reports,
we additionally used the comments of the issue reports after
tokenization with 512 tokens. Differences in the data might
have negatively affected the accuracy of IssueBERT.

Third, for the hyperparameters, we used the values
recommended in the BERT-based pretraining study [30].
To minimize the impact of the hyperparameters, we did
our best to set parameter values similar to those of the
pretrained models used in our experiments. Nevertheless,
we acknowledge that we did not perform hyperparameter
tuning. We experimented with several different settings
but found that these different settings did not reverse
the overall trend in the experimental results during our
experiment.

B. THREATS TO EXTERNAL VALIDITY
There are threats to the validity of our experimental results.
First, we report the experimental results on five open-source
projects, which limits the generalizability of the experimental
results. In this respect, to select representative projects,
we selected projects with high numbers of stars, forks, and
issue reports.

Second, we selected open-source projects from GitHub,
which limits the generalizability of the experimental results
as well. Using different datasets from different issue man-
agement systems could lead to different experimental results.
However, GitHub is a very popular and common platform
for open-source projects, so it is reasonable in terms of
availability and accessibility to use GitHub issue data.

Third, as we focused on issue classification tasks when
evaluating IssueBERT, there might be limitations in gener-
alizing the model’s performance. To comprehensively assess
the performance of the proposed IssueBERT model, tasks
such as issue summarization, response generation, similarity
analysis, and keyword extraction can be considered. Future
research could evaluate the performance of IssueBERT across
various types of tasks related to issue reports.

Fourth, additional pretrained models are available. For
example, UniXcoder [34], CodeT5 [35], and Codex [36]
are models that are pretrained on code data. We used
CodeBERT as the representative model pretrained on code
data, but different code-based pretrained models could yield
different accuracies. However, we did not include these
models because we were interested in the accuracy of models
pretrained on issue data. According to our experimental
results, code-based pretrained models trained on data from
different sources are unlikely to produce higher accuracy than
IssueBERT.

VIII. CONCLUSION
In this paper, we developed IssueBERT, which was pre-
trained on only issue data, and we conducted comparative
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experiments with RoBERTa, CodeBERT, BERTOverflow,
seBERT and IssueBERT. We investigated which pretrained
model yields the highest accuracy for issue classification
tasks. Our experimental results showed that IssueBERT,
which we developed, yielded the highest accuracy in both
binary and multilabel issue classification tasks. seBERT
performed second best. RoBERTa and CodeBERT per-
formed moderately well. BERTOverflow performed poorly.
We found two interesting points, here. First, IssueBERT
was pretrained on much less data than were the other
pretrained models. Second, BERTOverflow, reported as an
outperforming model in Mosel et al.’s work [12], performed
poorly in our experiments. Based on our observations,
we attribute the outstanding performance of IssueBERT
to the homogeneity between the pretraining data and the
downstream task.

In our future work, based on our findings, we will
continue to construct pretrained models that perform best in
issue classification tasks. In this paper, we used issue data
collected from projects with 5,000 stars and 10,000 issues.
However, additional issue data are available. Therefore,
we can construct pretrained models with more issue data.
We could also consider training a large language model
(LLM) with more parameters or constructing a different
structure of the pretrained model that performs best for issue
classification tasks. However, given computing resources,
it may be more practical to lightweight an LLM and to create
a model specific to this issue classification domain.
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