IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 5 March 2024, accepted 14 May 2024, date of publication 3 June 2024, date of current version 11 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3408672

== RESEARCH ARTICLE

SM-FPLF: Link-State Prediction for
Software-Defined DCN Power
Optimization

MOHAMMED NSAIF 12, GERGELY KOVASZNAI“3, ALl MALIK“4, AND RUAIRI DE FREIN“*4

I Department of Information Technology, Faculty of Informatics, University of Debrecen, 4032 Debrecen, Hungary
2Department of Computer Science, University of Kufa, Kufa 540011, Iraq

3Department of Computational Science, Eszterhazy Karoly Catholic University, 3300 Eger, Hungary

4School of Electrical and Electronic Engineering, Technological University Dublin, Dublin, D07 EWV4 Ireland

Corresponding author: Ruairi de Fréin (ruairi.defrein @tudublin.ie)

This work was supported by the Science Foundation Ireland under Grant 13/RC/2077_P2 and Grant 15/SIRG/3459.

ABSTRACT Efficient monitoring systems that optimize resource allocation, reduce energy usage through
machine learning and flow aggregation routing techniques, are needed due to the escalating power
consumption of data center networks, which, as has been recently reported, account for up to eight percent
of global energy consumption, posing environmental operational concerns. We propose a software-defined
data-center monitoring algorithm that reduces power consumption by: 1) using a GPU implementation of a
Stacked Long Short-Term Memory Recurrent Neural Network (RNN) model for link utilization prediction,
thus reducing monitoring overhead; and 2) utilizing a flow aggregation routing algorithm with feedback from
online, OpenFlow-powered monitoring and machine learning modules. This combined approach results in
a new algorithm called SMart-Fill Prefer Path First (SM-FPLF). In the context of SM-FPLEF, the objective
of this paper is to compare the: 1) training and validation loss curves for various models; 2) to evaluate the
prediction accuracy of learning approaches for a range of prediction horizons; 3) to assess the time-cost and
accuracy for different models, with a specific focus on the GuSLSTM and GuGRU models; 4) to analyze
OpenFlow traffic with and without using the preferred prediction algorithm, the GuSLSTM model, assessing
the accumulated power consumption per OpenFlow channel in the data-centre when SM-FPLF is applied.
Our findings indicate that the GuSLSTM outperforms rival algorithms in terms of link utilization prediction
accuracy over varying input sequence lengths. This accuracy is achieved whilst satisfying the SDN domain-
specific requirement of a small computation time in a real-time implementation. Embedding a GuSLSTM
in the SM-FPLF algorithm offers a power saving of 372 watts per OpenFlow channel, which is achieved in
part due to a 13.7% CPU usage reduction in controllers and switches. These findings provide a valuable
perspective into the performance and suitability of RNNs for real-time implementation as part of SDN
solutions. They also shed light on their practical implications and benefits of using link utilization prediction
in SDN management and power consumption optimization solutions.

INDEX TERMS Data center networks, software-defined networks, power consumption, machine learning,
OpenFlow, monitoring, prediction, overhead.

I. INTRODUCTION The demand for information services is causing a dramatic
The increasing power consumption of Data Center Networks increase in the usage of DCNs around the globe. The energy
(DCNis) is becoming a major concern for network operators. usage of DCNs accounts for between 1% and 1.5% of
worldwide power consumption according to [1], [2], and this

The associate editor coordinating the review of this manuscript and fraction is expected to grow to 8% by 2020 [2], [3]. Koomey
approving it for publication was Sangsoon Lim . reports that the increase in power consumption in DCN

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
79496 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-6768-4644
https://orcid.org/0000-0001-8455-0218
https://orcid.org/0000-0002-2866-0743
https://orcid.org/0000-0002-3912-1470
https://orcid.org/0000-0001-9924-7115

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

IEEE Access

was 56 % between 2005 and 2010 in [2] and [4]. Projections
suggest a continued upward trend in the future. Current
estimates suggest that by 2020, the energy consumption
of DCNs in the US exceeded 139 billion kWh, and that
interconnection devices (switches and links) consumed from
10 % to 20 % of the energy [2], [5]. The power consumption
of switches and links in DCNs depends on the design of the
device. It also depends on the network traffic and workloads
transmitted by the device. This paper addresses the following
problem: how can the power consumption of DCNs be
optimized using a real-time monitoring system that collects
the network statistics periodically and that predicts future link
utilization of DCN links.

Recent studies have focused on optimizing the power
consumption of links between switches in fat-tree and
B-cube DCN topologies. These studies explored two distinct
approaches. The first approach involved identifying a subset
of the topology to support the traffic, while the second
approach considered traffic scheduling. On one hand, in the
case of the fat-tree and B-cube DCN topologies, the
amount of traffic consolidation was increased, allowing for
transmission over a selected portion of the topology instead
of the entire network [6]. This led to significant power
savings, particularly during periods when the traffic demand
was low [7]. On the other hand, several studies advocated
for the implementation of scheduling strategies to manage
traffic flows in queues with different priorities. Each flow
occupied a link’s full bandwidth until its completion time
or until it was preemptively suspended by other flows with
higher priority [8], [9], [10]. Although scheduling strategies
demonstrated the potential to improve flow control and net-
work efficiency, they did not contribute to enhancing power
consumption in comparison with the traffic consolidation
strategies.

Compared to legacy networking systems, such as SNMP
(Simple Network Management Protocol), which is used
to manage and monitor network devices performance, and
the Border Gateway Protocol (BGP), which is used as a
routing protocol, Software-Defined Networking (SDN) is
becoming increasingly popular for network provision and
management tasks. In SDN, the forwarding elements are
managed by a central controller which serves as the network’s
brain, and is responsible for the network’s activities. Due
to its flexibility, programmability and adaptability, SDN
has the potential to solve many problems associated with
traditional networks [11]. In the context of building an
efficient network monitoring system, legacy networking
systems suffer from the following issues: (1) the collection
of inappropriate statistics due to variations in the types of
distributed forwarding elements and (2) the inability of the
monitoring system to cope with dynamic network changes,
such as topology and routing changes [12].

In contrast, SDN’s global view of the network allows
it to perform efficient monitoring to gather statistical data
about network flows, traffic per port, flow table status

VOLUME 12, 2024

and so on. SDN’s controller can monitor the forwarding
elements residing on its domain using either an active or a
passive approach. In the active approach, polling messages
are periodically issued by the controller to obtain flow
statistics. In the passive approach, the controller receives flow
statistics from the forwarding elements when the flow tables
encounter flow completions. Both active and passive moni-
toring techniques suffer from deficiencies. A large network
overhead is the primary disadvantage of active monitoring.
It causes a significant increase in controller resource usage.
A disadvantage of passive monitoring approaches is that they
cannot provide instantaneous measurements about the state of
flows, which are currently in operation because the statistics
relating to these flows are only sent to the controller after a
flow has been terminated. In terms of configuration, the out-
of-band deployment of SDN controllers is the most common
deployment approach. In this scenario, the controller is
connected to the data plane switches via a single hop and
hence control messages can be sent immediately [13].

We focus on optimizing the power consumption by
considering the control channel between data plane elements
and the SDN controller. We contribute a new algorithm called
SMart Fill Prefer Path First (SM-FPLF) that optimizes power
consumption by considering use of this control channel. This
is significant because these links can contribute meaningfully
to the overall energy consumption of DCNs especially when
they are utilized in the monitoring process.

Developing intelligent network applications using artificial
intelligence and Machine Learning (ML) is becoming more
practical [14]. Recently, ML techniques have been applied
as a part of new solutions for a wide range of networking
issues, including but not limited to traffic classification,
routing optimization, security and Quality of Service (QoS)
prediction [15].

Passive monitoring is not an effective monitoring strategy
when the goal is to minimize the network power consumption
in real time. This is due to the delay that typically occurs
between an event of interest and when the monitoring report
about it is transmitted. Consequently, we consider active
network monitoring approaches when tackling the problem
of power consumption reduction. Motivated by the advance
of ML and its application to various computer networking
challenges, as well as the programmability of SDNs, we
contribute an approach that uses ML algorithms to predict
the network traffic state, and then use these predictions to
allocate the data plane resources efficiently. In summary,
we contribute (1) a new ML model that receives the current
state of data plane statistical monitoring reports and predicts
the pattern of the next epoch, which also (2) reduces the
network overhead required to obtain these reports when a
periodic polling strategy is used.

A review of related approaches is provided in Sec-
tion Il to provide context for the SM-FPLF algorithm.
Sections III, IV and VI provide the problem description,
the switch energy model used to develop the SM-FPLF

79497

IEEE Access

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

algorithm in this paper, and the SM-FPLF problem for-
mulation respectively. The SM-FPLF framework and its
constituent algorithms are described in Section VI. The
experimental setup used in this paper is described in VIIL
Section VIII introduces two models, based on the Gated
Recurrent Unit (GRU) and Long Short-Term Memory
(LSTM) networks, which are used as baseline algorithms in
this paper. It also describes how Bidirectional LSTMs and
GRUs, and Convolutional Long-term Recurrent Networks
(CLRN) are evaluated using Graphics Processing Units
(GPUs). Section IX describes the performance characteristics
of the training and prediction routines used for the learning
algorithms. A particular focus is placed on the convergence
rate of the loss function, the accuracy of future prediction
stops, and the computation time. We provide context for these
results by referring to the limitations of applying SM-FPLF
for power optimization. Finally, we conclude by highlighting
the paper’s main findings and outlining potential future
directions in Sections X, and XI.

Il. RELATED WORK

We discuss the state-of-the-art in power optimization and
traffic prediction strategies that aim to improve energy usage
in DCNs.

A. POWER OPTIMIZATION

There are two main approaches to reducing the power con-
sumption of DCN-based Routing-Aware techniques: 1) Flow
Aggregation Techniques (FATs); and 2) Flow Scheduling
Techniques (FSTs). We identify and introduce FATs and FSTs
approaches that demonstrate promise in the remainder of this
section.

1) FLOW AGGREGATION TECHNIQUES

FATs consolidate as much traffic as possible in a subset of
the DCN topology and turn off the other forwarding devices,
subject to QoS constraints. An early example of this type of
approach is the ElasticTree algorithm, which was introduced
in [16]. The authors showed how the ElasticTree shrank and
extended the topology according to the traffic demand. When
the traffic level was low, the ElasticTree was shown to save
a significant amount of energy. The study in [16] did not
take into account the correlation between flows, which could
affect the method’s efficiency. The CoRrelation-aware Power
Optimization (CARPO) approach presented in [17] aimed to
address the correlation between flows and to dynamically
aggregate them in a small subset of the DCN. This approach
was designed to improve the latency of the DCNGs.

To test the effect of the over-subscription factor on power
usage in DCNs, the study presented in [6] examined a large
number of over-subscription factors and introduced three
algorithms, namely First-Fit, Best-Fit, and Worst-Fit, to find
the most energy-efficient path in the DCN. The experiments
were conducted using different DCN workloads, and the
results indicated that the algorithms were able to save more

79498

energy by increasing the over-subscription factor of the DCN
topology.

One recent study in [18] proposed an adaptive algorithm
based on link utility and switch power consumption. The
authors used an Integer Linear Program (InLP) to formulate
an optimization problem that consisted of a linear objective
function which was subject to multiple constraints on
bandwidth, dropped packets, etc. Results showed that solving
the InLP had a high time cost. Consequently, the authors
proposed the Fill Prefer Path First (FPLF) algorithm to find
the shortest-efficient energy paths in DCNs as a solution to
the power reduction problem in DCNs. The power saving
results achieved were promising, however, using the FPLF
incurred a high CPU utilization cost on the controller. This
was due to additional overhead costs which arose due to
periodic monitoring. Finding optimal solutions for the power
consumption optimization problem was also explored in [19].
The InLP model used in this paper aimed to minimize the
number of active links while satisfying the traffic demands
of the flows. Similar to the approach in [18], the InLP
model incorporated several constraints, such as flow routing,
link capacity, flow conservation, and link utilization. The
authors evaluated a number of InLP solvers to find the best
approach for the power consumption optimization problem.
They demonstrated that the Gurobi solver exhibited superior
performance in terms of scalability and runtime compared to
other InLP solvers.

2) FLOW SCHEDULING TECHNIQUES

FSTs are used to manage requested flows in a queue based
on their priority and to send them sequentially. FSTs aim
to use the full bandwidth along the selected path when
sending a flow. This approach is commonly called ‘“‘path
monopolization™.

A collision-free domain and energy-efficient method was
presented in [10]. The study sorted flows based on their size,
i.e. from the smallest to the largest, and divided them into
two lists: 1) a sending list; and 2) a waiting list. If a small flow
arrived in the DCN, it preempted the larger one, monopolized
the path, and was moved to the sending list. The lists were
checked periodically for updates.

The authors in [20] claimed that FATs were not suitable for
DCNs that had a limited number of flows. This scenario can
occur when applications generate flows with a high bit rate,
i.e. bandwidth-hungry applications. To resolve this problem,
the authors proposed an approach named Willow, which
considered the number of switches used and the time duration
required to manage power optimization in DCNs. The authors
of [21] aimed to optimize the greedy selection method used
by Willow [20]. They proposed an algorithm called BEERS to
find flows with similar sizes at each interval of time, which
they called a harmonic set, and to schedule them with high
priority. The results showed that the BEERS algorithm could
save more power compared to the [20]. However, searching
for candidate members of the harmonic set at specific times
increased the complexity of the algorithm.

VOLUME 12, 2024

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

IEEE Access

To improve the quality of flow delivery a Dynamic Flow
Scheduling (DFS) approach was proposed in [9]. DFS aimed
to balance the workload on network switches to reduce power
consumption. To achieve this goal, the authors introduced a
waiting time threshold in the queue line, which meant that
the flows were scheduled based on whether the threshold
time satisfied a QoS requirement. This class of technique is
suitable for real-time protocols.

The links between the switches in DCNs was the focus of
research that has been reviewed so far. It is also important
to consider the OpenFlow channel, especially for the
OpenFlow1.3 specification, which is described in [22]. The
OpenFlow channel uses Ethernet. The OpenFlow protocol
is designed to work on top of existing Ethernet networks
and uses the same Ethernet frame format and communication
mechanisms as traditional Ethernet. Although the power
consumption of the OpenFlow channel in SDNss is relatively
low compared to other networking components, it is still
important to consider the power requirements of the entire
SDN system when designing and deploying it, especially
in many cases of Software-Defined-Data Center Network
(SD-DCN) design where multiple OpenFlow channels are
used. In conclusion, this paper aims to minimize the use of the
OpenFlow channel for efficient energy usage and to reduce
the overhead of SDN controller functions.

B. TRAFFIC PREDICTION

Given that many monitoring models use a traffic matrix to
build the utilization matrix, we now discuss methods that have
been used to predict the traffic matrix.

We categorize methods for network traffic prediction
into two categories: linear prediction methods and non-
linear prediction methods. Successful linear prediction has
traditionally been carried out using a member of the
Autoregressive Moving Average (ARMA) family of methods
which was developed by the financial time-series community
and under the guise of Infinite Impulse Response (IIR)
filtering by the Signal Processing community [23]. ARMA
combines AutoRegression and Moving Average components
to model stationary time-series data. The Autoregressive
Integrated Moving Average (ARIMA) is used when the data
is assumed to be non-stationary. AutoRegressive Conditional
Heteroskedasticity (ARCH) is an appropriate assumption
when the traffic exhibits volatility. ARCH captures this
volatility by assuming that the variance of last error term is
related to the square of previous innovations [24]. The Holt-
Winters (HW) algorithm uses a combination of exponential
smoothing and trend estimation, to make predictions [25],
[26]. For video quality prediction, trend removal via an IIR
filter combined with fitting periodic, decaying exponentials
to the time series has yielded good results [23].

On the other hand, nonlinear forecasting methods fre-
quently utilize Neural Networks (NNs) as shown in [27].
Domain expertise is required to apply the more sophisti-
cated linear models introduced above. The authors of [28]
showed that nonlinear traffic prediction modes based on

VOLUME 12, 2024

NN performed outperformed the linear forecasting models,
ARMA and HW, they investigated. One advantage of NNs
is that many algorithms can now be applied with minimal
domain expertise, resulting in good performance. However,
the authors of [29] demonstrated that additional novel
feature domain transforms are can be used to enhance
the quality of prediction and classification of future video
jitter measurements using an algorithm called, FEATjitter.
The enhancement was achieved via significant tuning of
the learning algorithm, which may not always be possible.
Moreover, a disadvantage of NN-based approaches is that
training these models is computationally costly. However,
an appealing characteristic of the approach in [23] is that
modelling fitting is inexpensive. For example fitting the
exponential model parameters incurs the cost of inverting a
2 x 2 matrix.

Recurrent Neural Networks (RNNs) are a type of NN that
has recently experienced a big boom in natural language
processing tasks and time-series analysis due to its ability to
capture long-term dependencies in the data. The study in [28]
used LSTM architectures to predict the Origin-Destination
(OD) traffic matrix, i.e., the flow sequence, separately. The
results showed that LSTM were well-suited for traffic matrix
predictions and outperformed a number of linear methods
and FeedForward Neural Networks (FFNNs) by many orders
of magnitude. The study discussed in [30] explored the
performance of three different types of RNNs: LSTM, GRU,
and Bidirectional LSTM (BiLSTM), on both real-world, (i.e.,
GEANT backbone network traffic) and artificial datasets (i.e.,
generated using a testbed). The findings were encouraging.
Each model exhibited unique strengths and weaknesses
depending on the type of data being analyzed.

The authors of [31] employed hybrid models which
comprised of multiple layers, including Convolutional Neural
Networks (CNNs) and LSTMs, to enhance the accuracy of
the OD output. Results showed that the model achieved
substantially higher accuracy than state-of-the-art models.
A few recent studies, including the one described in [32],
focused on predicting the entire traffic matrix, which offers
benefits for various network functionalities.

In conclusion, it is important to consider multi-step predic-
tion models to optimize power consumption. Consequently,
an objective of this research is to develop a multi-step
prediction model for entire links in the DCN. This model
will be integrated with our contribution in [18] in this paper,
to further enhance the power consumption and network
overhead in SD-DCNs environment.

1ll. PROBLEM DESCRIPTION AND SOLUTION

This paper is part of an ongoing project to optimize the
power consumption in DCNs. In a previous contribution [18],
we introduced the FPLF algorithm, a dual-direction algorithm
for reducing power consumption and keeping the QoS
at an acceptable level. This algorithm consisted of three
components, a (1) Link-Utility, (2) Link-Cost, and (3) Fill-
Shortest Path component.

79499

IEEE Access

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

Fat-Tree
topology
G
Utilization
matrix U
Link-Cost
Link-
Cost
matrix C
energy-saving Shortest demand
paths set P Path &
Fat-Tree
topology
(&)

FIGURE 1. The FPLF algorithm (illustrated as the root node, in the centre)
consists of three components: the link-utility, link-cost, and fill-shortest
path components (which are illustrated as first-level leaf nodes). The
parameters used by each of these components are illustrated as
second-level leaf nodes. They include matrices representing the edge
cost, C, and edge utilization U, as well as the traffic demand set, F. These
components are then combined to produce the final output, an energy
saving path, P..

Fig. 1 shows that a Link Utilization matrix, U, is produced
by the Link Utility component. It is an input to the Link
Cost component. To construct the Link Utilization matrix,
statistics must be collected from the switches in the DCN.
This is done periodically, with a period of 1 second. This
monitoring process is costly. It consumes power and reduces
the performance of the DCN. This reduction is explained
by the fact that resources used for monitoring and then
optimization cannot be used for other DCN-critical functions.

FPLF uses a consolidation strategy to optimize power
usage in SDN-based DCNs by minimizing the count of ports
that are in use. This optimization is performed subject to
a “maximum link utilization threshold”, to maintain link
reliability, i.e., to prevent links from becoming overloaded
and more susceptible to unplanned failures [33]. Additionally,
it increases the number of active ports in proportion to
the DCN workload to prevent performance degradation.
However, FPLF only considers links between switches.
It does not consider the switch-to-controller link. This
approach is reasonable because the majority of links in a DCN
are switch-to-switch, and thus, the payoff in terms of power
saving is large if it considers these links.

Switches typically have one or more connections with the
SDN controller. Reducing the usage of this connection may
result in more efficient usage of SDN controller resources and
reduce the power usage. Decreasing CPU usage is a potential
saving from minimising the usage of this link. Given that

79500

messages (relating to flow modification, termination, etc.)
from the switches invoke actions in the controller, the level
of usage of the switch-to-controller link is a good proxy for
CPU usage imposed on the controller due to changes in the
network and minimising usage of this link has the potential
to reduce controller workload.

Considering the potential for power saving from the
strategies outlined above, in this paper, we apply Deep
Learning (DL) approaches, specifically a RNN to predict
the utilization matrix, U,for multiple steps of events in real-
time. The proposed model is trained offline with different
traffic patterns, which are characteristic of the DCN. The
trained model is integrated with the rest of the system.
This facilitates real-time testing by synchronizing it with the
periodic monitoring function.

To quantify the performance of the integrated system we
define the number of switch ports in the DCN to be M.
The number of request and response ports state messages
delivered over the i port is denoted, Rps(7). The total number
of request and response messages in the DCN is the sum

M
minimize Z Ry (D). (D)

i=1

The number of request and response messages in Equation (1)
is subject to a threshold and the idle time of the link. The goal
of this paper is to minimize the sum in Equation (1).

This paper makes the following contributions. (1) Dataset:
We propose a method to generate the Utilization Matrix
by utilizing realistic traffic distributions. To achieve this,
we employ the D-ITG (Distributed Internet Traffic Gener-
ator) tool [34], to generate traffic between switches within
the fat-tree topology while scheduling PortState OpenFlow
messages. This approach facilitates the collection of training,
validation, and testing data for our analysis. (2) Modeling:
A DL model is produced to meet the requirements of the
FPLF algorithm and to reduce the overhead while optimizing
power usage for both controllers and switches in a DC-SDN
architecture. (3) Real-time implementation: Using a series
of simulation studies in the Mininet emulator, we evaluate
our model and demonstrate that it achieves higher prediction
performance and reduces overhead and energy in real-time.

IV. SWITCH ENERGY MODEL

The topology of a DCN can be either homogeneous or
heterogeneous. In a homogeneous topology, all switches
in the network are of the same type, which can provide
advantages in terms of simplicity and ease of management,
because all switches can be configured and managed in a
similar way. On the other hand, in a heterogeneous topology,
switches from multiple vendors or switches with different
capabilities or configurations are used. This can provide
greater flexibility and functionality, but it can also make
the network more complex to manage and to troubleshoot.
Therefore, DCNs are often designed to be homogeneous [35].

VOLUME 12, 2024

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

IEEE Access

TABLE 1. List of notation.

Symbol Description

Set of nodes, where S = {s1,...,sn}-

Set of energy-efficient shortest paths, where a path.

Interval of prediction ¢, t + 1,t 4+ 2,...,T.

AN cRcEE®

Link-cost matrix where C;; denotes the cost of the link e;;.

Set of the edges between switches, where E C {e;;, e;; | 5,55 € S}.
Set of flows, where a flow f = (sr, Sd,)\f) € F is represented by source s, € S, destination s4 € S, and bit rate Ay € N.
Utilization matrix where U;; represents the utilization of the link e;;;.

Utilization matrix at time-step t, where Uj;_; () represents the utilization of the link e;; at time-step t.
t) Prediction matrix at time-step ¢, where U; ;(t) represents the predicted utility of the link e;;.

AT Amount of time required for the controller to discover the graph G.

AT,, Time required to perform periodic polling.
AT, Time required to predict future link utilizations.
AT Future state of each link.
ATyreq Controller-to-switch request time.

Trep Switch-to-controller reply time.
AT, Time required to update the cost of each link.

The power consumption of DCN switches can be measured
dynamically or statically. Dynamic measurement measures
the power consumption of active links and the power depends
on the speed of the link. Different devices have different
power profiles. The power profile of a device characterizes
the power it consumes as a function of the bit rate of
the switch port under consideration. To provide benchmark
values for the power involved, we cite the authors of [36]
who state that the power consumed per port, when the
switch port is operating at the speeds 10 Mbps, 100 Mbps,
and 1 Gbps, is 63 mW, 260 mW, and 913 mW, respectively.
The switch considered was the commercial Pronto switch,
which has OpenFlow capabilities. In contrast, the NEC
ProgrammableFlow Networking Suite PF5240 OpenFlow
switch consumes significantly more power, consuming
approximately 0.2 W/port, when it operates at 10 Mbps.
In conclusion, the design of the switch plays a large role in its
power consumption. In this case the Pronto switch consumes
31.5 % of the power of the NEC switch when operating at
the same data rate. Given that the network manager may
not have a choice in the equipment at their disposal, the
network manager’s focus should be on the manner in which
the switch is used, to reduce power consumption. The present
contribution looks to optimize switch usage to reduce power
consumption.

The static measurement approach involves assessing the
power consumed by the components that are responsible
for keeping the system operational, maintaining connectivity,
and performing background tasks. This includes considering
the power consumed by components such as chassis, fans, and
switching fabric. The components involved in both dynamic
and static measurement are now listed and described.

We base our switch energy consumption on the work
of [37] which presented measurements and derived a power
consumption models for OpenFlow SDN devices. The model
consisted of four parts. (1) the base power required to operate
the switch component was denoted Ppaee; (2) the power
consumption of the control traffic (Packetln, FlowMod,
and PortState messages), was denoted Pgone; (3) the power

VOLUME 12, 2024

consumed by active links and the configuration of line
speed (the underlay of links, which represents two ports
between two switches), was denoted, P.onf; and (4) the power
consumption of the processed OpenFlow traffic (power to
process and forward packets, where a number of matches
and actions are possible), was denoted Poyr. The total power
consumption of the switch was defined to be the sum

Py = Ppase + Peont + Peonf + PovE. (2)

We focus on the dynamic component of switch power
consumption, specifically Pcont and Pgopr. To minimize the
Pcont component, the number of PortState messages used
in the monitoring models of the FPLF algorithm must be
reduced.

To minimize the P, component, it is necessary to ensure
that the OpenFlow channel remains idle for the longest
possible time without compromising the FPLF algorithm’s
performance. This affects the power usage of the SDN
controller and the links from the OpenFlow switch to
the controller. The number of active ports is denoted N,.
We assume that the power consumption of the port at full
speed is Ppqx. When the port is operating at a lower speed
the power consumed is determined by scaling P, by a
factor, F;(r), which is a function of the bit rate, r for the
i-th port. We consider the set of configured speeds, r =
{10, 100, 1000} Mbps, for the i-th port.

The NEC ProgrammableFlow Networking Suite PF5240
OpenFlow switch consumes approximately 0.2 W/port when
it operates at 10 Mbps. This power approximated by taking
the product of the power consumption at full speed and the
relative power consumption of the configured speed, Pqy X
Fi(r) =0.3761 x 0.5295 ~ 0.2 W/port, as reported in [37].

The power consumed by active links and the configuration
of line speed Pconf, is calculated by summing the scaling
factor for the appropriate speed on each port, Fi(r), and
scaling it by the maximum speed power, Py,qx,

Na
Peont = Prax Y Fi(r). 3)
i=1

79501

IEEE Access

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

We assume that switches can turn on or enter sleep mode
based on local traffic states, using Wake-on-Arrival (WoA)
to wake up the switch when needed for forwarding packets
and the Sleep-on-Idle (Sol) technique, for switches to save
power when idle, without considering the transition time in
the evaluation [20].

V. PROBLEM FORMULATION

FPLF is a Traffic Engineering Algorithm (TEA) that
establishes routing in DCNs so that only a subset of links
and switches are used, and consequently, power consumption
is optimized. Similar to other TEAs, it uses a traffic matrix
to calculate the utilization matrix, U(¢), at time ¢ as part
of the routing process. The ability to be able to predict
future utilization mAatrices, for example the utilization at time
t, is denoted as U(z), and can be used to reduce power
consumption and SDN controller overhead. In our approach,
the FPLF link-cost component is supplied with the utilization
matrix, U(?), every second. The workload time is divided
into consecutive intervals. Each interval lasts one second.
We assume that the utilization matrix remains constant during
each one second interval.

We summarize the notation used to model the problem
in Table 1 and we describe it in this section. We model the
network topology using a directed weighted graph to capture
the forward and backward direction of flows. The topology
is described by the graph, G = (S, E). It is composed of a
vertex-set, S, and an edge-set, [E. Each switch in the network
is a member of the vertex-set. It is denoted as, s;, and it
functions as an OpenFlow switch, facilitating the routing
of information through the path determined by the SDN
controller.

Given a topology which consists of a set of N switches.
The utilization matrix U(¢) has dimensions N x N. The
(i,))-th entry of U, which is denoted U; ;(t), represents the
link utilization of the link connecting switch s; to switch s;.
To capture the dynamics of the network, we increment the
time stamp each time the utilization matrix is estimated. This
process results in a 3D tensor of dimension, N x N x T.
The entry U; j(¢) denotes the value of the utilization between
switches s; and s; at time step .

Utilization matrix prediction is the process of finding a
prediction of U(#), which is denoted as U(#). This prediction
is obtained using a set of historical values. The SM-
FPLF algorithm uses the developed prediction, U(#), as an
input to the process that calculates the routing strategy for
future time intervals. The challenge in developing accurate
predictions lies in being able to accurately model the inherent
relationships among the utilization data set.

Vi. PROPOSED FRAMEWORK AND ALGORITHMS

The architecture of the proposed solution is illustrated
in Fig. 2. The framework consists of three main layers:
(i) the infrastructure layer that represents the network
topology, which is a fat-tree in this paper, (ii) the control
layer that represents the network central management and

79502

___ R
I" P k
EC Traffic Manager Topology Discovery .
i 2 (D-ITG) and Manager :
(R '
[AT y i
L Sl - '
T ™ v
o= 4 i
= & Monitoring and ;
5| & et SM-FPLF :
2| Prediction Model i
Q [1
E | h ¥
© i
i /
T g S ————————
L f
a b
0w Northbound
= API
7]
M e e 3
= . Network Information center and
q 1 i
3 ! Global View
P e
S
g -
5 i POX
ool _/‘
Southbound
API
] ™~ ~
L.
6 . TR\
2} @ F 74_,_,«” P e ¥
1= e L N N
n T
g = Ll - (- (-
U TN
=
=

\ Data Plane /

FIGURE 2. The architecture of the proposed framework and its main
components. The contributions of this paper include the SM-FPLF and the
Monitoring and prediction components.

information center, and (iii) the application layer. The
novel aspects of this framework are the SM-FPLF and the
Monitoring and Prediction Model modules, which are located
in the application layer.

A. CONTROL LAYER

The SDN controller implements management policies in
response to network activity. Use of the POX controller is
motivated by the fact that it is well-suited to the task of
developing solution prototypes quickly [38]. The standard
OpenFlow protocol [39] was used as a southbound interface
to define the communication between the POX controller
and the infrastructure’s elements. POX’s APIs were utilized
on the northbound interface to develop the application layer
modules.

B. APPLICATION LAYER
The application layer consists of four modules, which are now
described.

1) TRAFFIC MANAGER (D-ITG)
In order to generate traffic that is similar to the traffic
delivered on DCNs, we used the Distributed Internet Traffic

VOLUME 12, 2024

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

IEEE Access

TABLE 2. Characteristics of the traffic used to generate training data:
Weibull and pareto distributions were chosen to generate DCN-style
diurnal traffic.

Characteristics Type of Distribution

OFF periods Weibull

ON periods Pareto

Arrival times of packets Weibull
o, | @ 4T, @ AT,

istart up ! gl
: P i ATreq b | ATrep :@:3 o

VB

T

FIGURE 3. A breakdown of the time costs associated with the different
subtasks in SM-FPLF. Two of the most expensive tasks are online link
monitoring, which has a time denoted as ATp,, and prediction, denoted
as ATp.

Generator (D-ITG) [34]. D-ITG is a tool that can be used
for producing a realistic packet-based network traffic by
accurately emulating the workload of real world traffic [40].
The study in [41] showed that the lognormal, Weibull and
Pareto distributions were suitable choices for generating
DCN-style diurnal traffic. D-ITG is flexible enough to
generate traffic patterns according to these distributions at
both macroscopic and microscopic scales. Compared to other
traffic generation tools, D-ITG is considered to be more
reliable [42]. A range of types of traffic can be generated by
D-ITG, for example, TCP, UDP, DNS and VoIP traffic.

Bursty ON-OFF traffic patterns are prevalent in DCNs
according to [41]. Bursty ON-OFF traffic was generated
when preparing training data, using D-ITG. The use of D-ITG
allows for the customization of the characteristics of the
generated bursty traffic. The duration of both ON and OFF
periods was set using the distributions commonly observed
in DCN, i.e., the Pareto or Weibull distribution, in order to
simulate real-world DCN traffic patterns. Table 2 summarizes
the traffic generation strategy.

2) TOPOLOGY DISCOVERY AND PARSER

This module is responsible for detecting the current oper-
ational elements of the infrastructure layer, i.e. switches
and links. Topology discovery is essential for the network
controller as it allows it to build a global view of the network.
We used the standard POX discovery module. To represent
the network information as a graph for easy management and
manipulation, the NetworkX tool [43] was used.

3) MONITORING AND PREDICTION MODEL

Flow aggregation based techniques for minimizing the net-
work power consumption require a fine-grained monitoring
system that reflects the actual state of the traffic being
transmitted over the network. By knowing the current state
of each link, a precise cost (or weight) can be determined.
However, collecting the statistics required to acquire this
state information with high accuracy typically involves a high
frequency of messaging, which may increase the controller

VOLUME 12, 2024

Algorithm 1 Monitoring and Predicting Utilization

Input : Network topology G(S, E)

1 while T do

2 Utilization = [:[]]

3 x=0

4 while mode = AT,, A k < threshold do

5 x<«<—x+1

6 foreach s; € S do

7 s; < polling statistics > ATy
8 Calculate: A

9 foreach ¢;; € E do

10 Calculate: Uj;

1 Utilization[e;;:] < [U;j(x)]

12 Update: Cj > AT,
13 end

14 end

15 end

16 while mode = AT, A k < threshold do

17 foreach ¢; € E do

18 foreach x € Utilization[e;;] do

19 Ujj(x) < predicted value > ATy
20 Update: Cj > ATy,
21 end

22 end

23 end
24 end

overhead. To address this issue, a new online prediction based
system is developed in this paper to reduce this overhead.

Fig. 3 illustrates how our proposed monitoring system
operates. The illustrated approach is a hybrid monitoring
system which collects statistics from a periodic polling
function and develops predictions using an online approach
from another process. Fig. 3 focuses on the different time
periods involved in monitoring. The time required to discover
the underlay elements and to construct the network graph,
G, by the controller is denoted AT,. The time required
for periodic polling, which is used to collect the real-
time statistics, is denoted as AT,,. It accounts for the time
taken to run a number of processes. The controller-to-switch
request time is, ATy, and the switch-to-controller reply
time is AT}p. The time required to update the cost of each
link according to the actual or predicted state is AT,. The
monitoring time is denoted ATy,. It is the sum of the times
ATyeq, ATyep, and AT,

The time taken to predict the future state of links is denoted
as AT,. It accounts for the time taken to run two sub-
processes. The time taken to forecast the future state of each
link is AT;. The time required to update the cost of each
link according to the actual or predicted state is denoted as
AT,. The quality of the prediction delivered during the time,
AT, is evaluated in this paper using the Root Mean Squared
Error (RMSE). This entire monitoring approach process is
re-run every 7 seconds.

79503

IEEE Access

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

The online link state monitoring function is developed
as a module, which is incorporated in the implementation
framework. Pseudocode for this module is presented in the
listings in Algorithm 1. The main objective is to calculate
link utilization and to update the cost accordingly. Utilization
is represented as a list of lists in which each operational link
in the network preserves the utilization value for x samples.
Attime x+1, alink e;; with the utilization sample time indices
1,2,...,xisexpressed as, [e;; : [U;i(1), Uy(2), ..., Uj(x)]].

The controller starts by collecting the flow statistics from
each switch, s;, belonging to the network. The aggregated
traffic matrix, A, is calculated. This step represents the
online monitoring period in lines 6-8. The collected data is
subsequently analyzed and the utilization, Uj;, of each link,
ejj, is calculated in lines 9-10. In practice, the utilization
value, Uy, is the ratio of flow rates traversing the link, e;;, with
the bandwidth. The utilization value of each link is recorded
in line 11. These values are used at the prediction stage.

Every time a new value of the utilization is calculated
for a link, the cost is updated (in line 12). Once the
periodic polling process has been run k times, then the
monitoring process is switched off, and the prediction
process is activated. In the prediction phase, which is
described in lines 16-23, the future state of utilization of
each link is predicted. The presented implementation is
able to predict x future values. This equals the length
of the utilization list of each link given in line 18-19.
Every time when a new prediction value of utilization is
calculated for a link, the cost is updated (in line 20).

4) SM-FPLF

The FPLF algorithm, introduced in [18], uses Dijkstra’s
algorithm [44] after a link-cost calculation step to determine
the Energy-Efficient Shortest Path (ESP), IP. This selection
process aims to identify the least-cost path. It optimizes
energy consumption by favoring underutilized links and
enhances forward energy optimization by setting the state
of as many switches and ports as possible to be off (or in a
sleep state). In this algorithm, the initial weight, wy;, is 1 for
all links in the graph. This weight configuration enables the
selection of the shortest path between the source node, s,
and the destination node, s;, as the initial condition value.
Once the first path is determined, the algorithm utilizes the
active link cost, denoted as Cj;. This cost is a function of the
link utilization. It is denoted by p(U; ;(¢)). It adjusts the link
cost based on its utilization over time. It is parameterized by
an upper bound parameter, M, which is a positive number
that prevents p(U; ;(¢)) returning a negative value. Guidance
on the selection of M and a threshold parameter, T,, is given
in [18]. In this paper, the threshold T}, is set to 90 %. The link
utilization cost is computed using,

M — (T, —U;j(®), 0<U;t)<T,,
pU; () = § oo, Uijt) =2 T,,
M, Ui @) =0.
4

79504

Algorithm 2 Routing With Dijkstra’s Algorithm
Input : Network topology G(S, E)
1 V(ej € E):we; = 1> initial weight
2 V(ej € E): Cjj = Ujj> the output of first
two components of FPLF
3 foreach new request do
4 Run Dijkstra’s algorithm to find the shortest path
with minimum link costs (Cj;)

5 end

The strategy taken by the FPLF algorithm is to force all
switches to use the specified link as long as it is underutilized.
However, when the link utilization exceeds T,, the FPLF
algorithm redirects flows to the alternative ESP path. The
changes in link weight are subject to traffic aggregation to
maximize U, j(t) for each link. The link utilization matrix,
Ui j(t), at time ¢, is computed by summing the traffic during
the -th time period, e.g. Tj;(¢), where the traffic is the sum
of different applications’ flows, and dividing this sum by the
bandwidth, Bj;, of the link, e;;,

2 eyer Tij(0)
Bjj

The path cost of a path from the source node, s;, to the
destination node, s,,, which consists of the sequence of links,
€ij, €j k, - - - €y m, is the sum of the costs of each of the links

U,',j(t) = s Ve,-j. @)

Cpath = Cij + Cjk + ... + Cym. (6)

In the new algorithm, SM-FPLF, the costs of links are
dynamically adjusted according to Algorithm 1. The least
cost path for new requests are determined by Algorithm 2
depending on the network state at the time of the request.

Vil. EXPERIMENTAL SETUP

In this section, we describe the testbed, the data generation
process and the data collection process which is used to train
the ML models.

A. NETWORK EMULATION

A fat-tree topology, constructed with 4 cores, 16 hosts and 20
switches was modelled to represent the data plane during the
evaluation process. The Mininet emulator [45] was used to
emulate the proposed framework in the validation process.
Mininet supports real and synthetic network topologies,
running real kernel and application code on a single machine.
Each host of the fat-tree topology was connected to an
OpenvSwitch (OvS). Given that the proposed system is
concerned with the out-of-band configuration, each OvS was
connected to the controller by a secure OpenFlow channel.

B. TRAFFIC MATRIX GENERATION

Established methods were used to generate traffic matrices
and produced nine sequence matrices with varying loads,
including peak and valley traffic loads, by applying the

VOLUME 12, 2024

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

IEEE Access

4 N

Timer ON

Flag =0

Pooling

Port State reguest |«

A 4

)]
Loop
Flag=1 Flag=10
sleep (1s) Receive Ports sleep (1s)
A State A
Yes No C%V]
lag ==0Q

utilization matrix
calculation

Ranking Metrics Heuristic method proposed by Nucci in
[46]. To create these matrices, we utilized the Fast Network
Simulation Software (FNSS) [47], which is a Python-based
toolchain simulator. Each sequence was simulated individu-
ally for approximately two hours using D-ITG, with the traffic
characteristics set according to the approach outlined in [41].
We obtained 7250 observations for each OD pair using this
simulation process.

All the counters in OvS, including Port Counters, Flow
Counters, Group Counters, and others, typically represent
cumulative values. They maintain a record of the total count
or total amount of a specific metric since the counter was last
reset or initialized. Consequently, the collection matrix at any
given point in time is essentially an aggregated traffic matrix.
In our case, the aggregated traffic matrix, A, is generated
during the monitoring phase, specifically within the time
period AT,.

Fig. 4 shows how this matrix is generated. At time f,
a polling statistics message is issued by the controller. The
aggregated traffic represented by A(r) is then temporarily
stored until the subsequent time frame ¢ 4+ 1, when a new
traffic aggregated traffic matrix, A(z + 1), is constructed. The
controller then accurately calculates the traffic matrix for a
specific time frame. It uses it to calculate the link utilization
matrix, U(¢), for each period and exports it to a CSV file. The
link utilization matrix is normalized between 0 and 1.

@orary Saving

FIGURE 4. Utilization matrix generation.

C. LINK UTILIZATION TRANSFORMATION
The input sequence of data to the ML model consists of a
sliding window of the previous ten samples of U(#). The

VOLUME 12, 2024

output sequence predicts ten seconds of values for U(?). Since
the SM-FPLF algorithm depends directly on the adjacency
matrix of the topology graph, we only consider the adjacent
values of U(¢) when training the model.

The link utilization matrix is transformed into a vector
of values for each time sample. This vector consists of the
adjacent values of U(z), e.g. U, (t) at sample time ¢. Nine
vectors were generated, one vector for each of the nine
consecutive samples of the DCN workload that we generated
and described in Section VII-B.

These vectors are used as inputs to a range of RNN models.
We do not consider the remaining part of the link utilzation
matrices at each time sample, U(¢). This approach has two
benefits which were determined from empirical evaluation of
the system. Training the RNNs on the subset of the input data
rather than the entire dataset, as described above, enhances
the performance and accuracy of the DL model. The reason
for this enhancement is that the model only considers the
relevant adjacent values of U(#) when making predictions.
It also helps to reduce the complexity of the model. This
reduced complexity makes it easier to train and faster to
execute the models. In summary, this strategy achieves better
performance and accuracy while minimizing the overhead of
DC-SDN networks.

VIII. RNNS: LINK UTILIZATION PREDICTION

We introduce the two baseline RNNs models for link utiliza-
tion prediction, the GuGRU and GuLSTM models, which are
GPU implementations of the GRU and LSTM, along with
the challenges of using them for link utilization prediction.
We then describe Bidirectional LSTM and GRU models,
Stack LSTM (SLSTM) models and CLRNs. We compare and
contrast these models qualitatively using a set of tables, e.g
Table 3, 4, 5 and 6. We evaluate these Deep Neural Networks
(DNNG5) quantitatively using GPUs.

Training conventional RNNs poses challenges due to the
problem of vanishing and exploding gradients. Vanishing
gradients occur when the effect of input data at the very
beginning of a long sequence is gradually lost. The result
of this phenomenon is that the associated gradient values
approach zero, which causes training progress to slow.
Conversely, the exploding gradient phenomenon occurs when
the gradients increase to a very high value, which causes large
updates in the weights, and potential model instability. We use
variants of RNNs, such as the LSTM [48] and GRU [49],
which have been proposed as solutions to these problems,
when the training data consists of sequences of link utilization
data.

In terms of computation speed, GuDNN are DNNs which
can be trained and used for inference on GPUs. GuDNNs
can perform computations in parallel across multiple GPU
cores, enabling faster training and inference times than
traditional CPU-based NNs. The GuDNN library provides
GPU-accelerated implementations of DL operations, includ-
ing matrix multiplications and convolutions, which form a
part of RNNs such as LSTMs and GRUs [50]. Given that

79505

IEEE Access

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

' ™
@O——0O
Last hiden Y o Ny Output
state ‘
(@ Reset Update
gate gate
| g | | o |tanh|-----
Candidate
! I hiden state
>—
A\
N J
Input

FIGURE 5. The structure of a GRU cell: The element-wise multiplication
and sigmoid functions are denoted as ® and o, respectively. The GuGRU
and GuLSTM models serve as baseline algorithms, setting a standard for
link utilization prediction performance against which other algorithms
are compared.

(& N

Output vector

| Output layer with 10 neurons ‘

| Dense layer with 50 neurons |

f

Last memory
cell

Last hiden
state

Forget
gate

@
Input
gate t

Memory

cell

Hiden

| Dense layer with 100 neurons |

/T

hzt h21+n

GRUILSTM GRU/LSTM GRU/LSTM
Cell €17 Cell €777 Cell

h1t—n h1t h1t+n

GRULSTM| | _|GRULSTM| GRU/LSTM
Cell Cell Cell

A

A

t+n

|o||cr| tan
S R S R U

N If y,
Input

FIGURE 6. A three-gate architecture employed by the LSTM is illustrated
for the purpose of comparison with the two-gate structure of the GRU cell
shown in Fig. 5.

the goal of link state prediction is to train models suited to
the different DCN patterns and traffic workloads that arise in
dynamic networking situations, we run the proposed models
using GuDNN. This allows us to speed up the training time
and to handle large amounts of computation in parallel, which
is a crucial requirement in our case.

A. BASELINE MODELS: GuGRU AND GuLSTM

GuGRUs and GuLSTMs are used when the flow of informa-
tion must be controlled to avoid the vanishing and exploding
gradient problems. The following notational conventions are
used when describing their component gates. The sigmoid
activation function is denoted, o (-). Bias terms are denoted
b, and weight matrices, W, and Q,, where the subscript, x,
identifies the gate the associated parameter pertains to. For
example, the GRU shown in Fig. 5 and described in [49]
consists of two gates, the update gate and the reset gate.

In the update gate, the bias term is b,.. The update gate uses
two weight matrices, W, and Q,, to scale the current input and
previous hidden state, which is denoted, i(t — 1). The update
gate output, r(¢), is defined as

r(t) = o (W, Ui j(1) + Qrh(t — 1) + by), (N

and it is used to determine how many of the past time steps
should be passed to future processing steps.

79506

FIGURE 7. Bidirectional LSTM/GRU cell: this network processes the link
utilization sequence in both directions, combining the forward and
backward hidden states to create a final hidden state that incorporates
information from both directions.

The role of the reset gate is to decide how many past
samples of the past information to forget at the current time
step. It produces the output, z(z), by computing

2(t) = o (W Ui (1) + Q:h(t — 1) + by). ®)

The weights, W, and Q;, and bias term, b,, play a similar role
to the corresponding terms in the update gate. The GuGRU
generates candidate hidden states as follows

H(t) = gWU, j(t) + r(t) © Qh(t — 1) + b).

Acceleration of GRU/LSTM layers is possible if certain crite-
ria are met. For example, the LeakyReL U activation function,
g(+), cannot be used. The implementation documentation
in [51] states that the CUDNN LSTM/GRU acceleration
currently works when the activation function is set to tanh(-).
The final hidden state is defined as,

h(t) =z(t) © h(t — 1) + (1 — z(1)) © K (2).

The three gate architecture used by the LSTM model are
illustrated in Fig. 6 for easy comparison with the two gate
architecture used by the GRU in Fig. 5. The gates used by
the LSTM are the input gate, i(¢), the forget gate, f(¢), and
the output gate, o(¢). These gates work together in the LSTM
to control the flow of information into, out of, and through
the cell, respectively. The weights, W;, Wy, Wy, Q;, O and

VOLUME 12, 2024

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

IEEE Access

TABLE 3. CuDNNLSTM/CuDNNGRU model parameters overview.

TABLE 4. BiSLSTM/BiSGRU model parameters overview.

Vector output technique

Vector output technique

Layer type Output Shape Number of the pa- Note
rameters
CuLSTM/CuGRU (None, 200) 162400 For CuGRU
121800
Dense (None, 100) 20100
Dense (None, 50) 5050
Dense ((None, 10) 510

LSTM trainable params: 188, 060
GRU trainable params: 147,460
Non-trainable params: 0

Qo, and the bias terms, b;, by and b,, play a similar role to
the weights and bias terms in the gates introduced previously,
and the gates are defined as follows,

i(t) = o(W;U; j(1) + Qih(t — 1) + b)), 9
f@) = oW U j(t) + Qph(t — 1) + by), (10)
o(t) = o (W,U; j(t) + Qoh(t — 1) + by). (11)

Each LSTM cell receives a candidate cell state from the last
LSTM cell,

c(t) = tanh(W U j(1) + Qch(t — 1) + be), (12)

and the memory cell state, c(¢), and the final hidden state, A(¢)
by computing

) =) @ c(t — 1)+ i(t) © &(t), and (13)
h(t) = o(t) © tanh(c(r)). (14)

The GuLSTM and GuGRU models were implemented as
baselines to compare the results with other more advanced
models. Table 3 shows the parameters for both the GuLSTM
and GuGRU models. The models differ in terms of the
number of parameters in the first layer. Both models use
one LSTM/GRU layer with 200 cells, followed by two fully
connected layers with 100 and 50 neurons, respectively. The
output layer produces a vector of 10 values representing the
next 10 seconds.

B. BIDIRECTIONAL, STACKED AND CONVOLUTIONAL

Fig. 7 shows the structure of the BILSTM and the BIGRU
models [52]. During training, these networks process the link
utilization sequence in both directions and concatenate the
forward and backward hidden states to create a final hidden
state that contains information from both directions. This
approach can improve the model’s performance and provide
additional information to the network for better predictions.
However, these models are more computationally expensive
than their unidirectional counterparts, as they require twice
the number of training parameters as shown in Table 4.
Both models use one GUBILSTM/GUBIGRU layer with
200 cells, followed by two fully connected layers with
100 and 50 neurons, respectively. The output layer produces
a vector of 10 values representing the next 10 seconds of link
utilization.

VOLUME 12, 2024

Layer type Output Shape Number of Note
Parameters
GuBiLSTM/GuBiGRU (None, 10, 400) 324800 243600 for
GuBiSGRU
BiLSTM/BiGRU (None, 400) 963200 722400 for
BiGRU
Dense (None, 100) 40100
Dense (None, 50) 5050
Dense (None, 10) 510
BiLSTM trainable params: 1, 333, 660
BiGRU trainable params: 1,011, 660
Non-trainable params: 0
Qutput vector
| QOutput layer with 10 neurons|
| Dense layer with 50 neurons |
‘ Dense layer with 100 neurons |
A A
hal—n h3t hatm
CBT n C3t c3t+n
fffffff > [REETEEE = —>
LSTM Cell |, tn LSTM Cell | | ¢ LSTM Cell |}, t+n
n n n
fffffff > (REEREEE = —>
Thzt—n Thzt Thztm
Czt—n Czt Cth
........ * | — * _)
LSTM Cell |[hyt" LSTM Cell h,! LSTM Cell | hot*?
........ > I —>
Tmt-n T h1t T h1t+"
C 1I—n I 1t C1t+r|
_______ } b e * ‘}
LSTM Cell h1t 1 LSTM Cell h11 LSTM Cell mt+n
——————— > R e —>

FIGURE 8. Visualization of the SLSTM model architecture.

Fig. 8 depicts the structure of the Stack LSTM model.
Multiple LSTM layers are stacked on top of each other to
create a deeper network. Each layer takes the output from
the previous layer as an input. We evaluate this structure to
determine if it can extract more complex patterns from the
different sequences of DCN workloads. We also evaluate the
associated computation time in real-time testing on an SDN.
In these experiments, we stacked three LSTM layers followed
by three fully connected layers. The parameters of the model
are listed in Table 5.

CLRNs were proposed in [53] as a way to generate textual
descriptions of videos and images. CLRNs leverage CNN
layers for image feature extraction and LSTMs for sequence
prediction. They have also recently been used for predicting

79507

IEEE Access

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

TABLE 5. SLSTM model parameters overview.

Vector output technique

Layer type Output Shape Number of Note
Parameters
CuDNNLSTM (None, 10, 200) 162400
CuDNNLSTM (None, 10, 200) 321600
CuDNNLSTM (None, 100) 120800
Dense (None, 100) 10100
Dense (None, 50) 5050
Dense (None, 10) 510
SLSTM trainable params: 620,460
Non-trainable params: 0
7 Pooling layer []
Pooling size 2
uj! g o 9
- 3 g 3 £
- SN
: gl |g| 3| &
LSTM g 3 g B
1
1D CNN layer —
with 64 fillers and ReLU Flatten layer L
function. —

FIGURE 9. Visualization of the CLRN Model architecture.

traffic matrices [54]. To use CLRNs with link utilization
matrices, we transformed the normalized link utilization
matrix, U, into a time-series prediction problem for grayscale
images, and used a CLRN model for sequence prediction
in the following manner. Figure 9 illustrates the CLRN
model used and Table 6 summarizes the characteristics of the
model used. The CLRN models evaluated for link utilization
prediction contained one CNN layer with one max pooling
layer that interpreted sub-sequences of the input, which was
provided as a sequence. When using the CLRN, we split
the input sequences into two sub-sequences. For example.
the sequence U (1), U;;(2), ... U;j(T), was split into two
sub-sequences of five samples, that the CNN model could
process.

The TimeDistributed wrapper takes a layer as its argument
and applies that layer to every time step in the input sequence.
We applied it to the CNN layers, which allowed us to use
the same CNN layers for each sub-sequence. This meant
that we avoided using separate layers for each sub-sequence,
which would have been computationally expensive. The
CNN required several filters and the kernel size to be
specified. The number of filters represents the number of
interpretations of the input sequence. We set the number
of filters to be 64. Increasing the number of filters did not
always improve performance due to the small size of the
input sub-sequences. The kernel size represented the number
of time steps included in each interpretation operation of
the input sequence. A kernel size of 1 or 2 was found to
be appropriate when the ReLu function was used. Then
we converted the output into a single long vector using a

79508

flattening layer to feed the GuLSTM layer. This architecture
applied the convolutional and pooling layers as a local feature
extractor that operated on the input sequence and identified
local patterns and features in it. These local features were
then passed to the LSTM layer, which was responsible for
learning the long-term dependencies between these features
and making predictions based on them.

IX. NUMERICAL EVALUATION

In this section we initially describe the computational
environment used for evaluating link utilization prediction.
We then evaluate the performance characteristics of the
training and prediction routines used for each learning
algorithm, focusing particularly on the convergence rate of
the loss function, the accuracy of subsequent prediction steps
and also the associated computation time. Having identified
the most appropriate learning algorithm, we analyze real-time
implementation considerations by integrating the selected
ML model with the SM-FPLF algorithm and we analyze the
level of activity on the OpenFlow channel to determine the
level of power saving that is possible.

A. MODELS PERFORMANCE AND COMPUTATION TIME
The models used in the training phase were implemented
in Python 3.8 using GPU-TensorFlow 2.6. The Windows 11
operating system was used with 16 GB RAM, on a Core i7
processor with 12 logical processors. The NVIDIA GeForce
GTX 1650 GPU was used with 4 GB RAM.

All models were trained on the first eight sequences of
DCN workloads and tested on the last sequence. Models were
trained using the ADAM optimizer and the Mean Absolute
Error (MAE) loss function was used. A validation data size
of 20% was used for all models. The number of epochs was
set to 50 and the batch size was set to 256.

Fig. 10 shows the different learning curves of models
during training. Models were compared using the MAE as
the loss function, which was evaluated as a function of the
number of epochs. The best learning curve, in terms of speed
of convergence and minimization of the MAE, was observed
for the GuSLSTM in Fig. 10 The worst convergence function
was observed for the GuCLRN in Fig. 10. We believe that the
poor performance for the GuCLRN may be explained by the
small size of the input sub-sequence, which was 5 x 5. The
CLRN model showed an improvement in the results when
the size of the input sequence was 30. Evidence supporting
this result is illustrated in Fig. 12. However, increasing the
input sequence size is problematic, particularly, in light of
the SDN domain-specific requirement we have regarding a
small computation time, due to its long look-back sequence
dependency. Performance improvements for other models
was also observed when the input sequences were increased
in length. Significantly, the performance of the GuBiLSTM
and GuBiGRU models, which are illustrated in Fig. 10 did
not outperform the unidirectional models, e.g. the GuLSTM
and the GuGRU, despite having more training parameters.

VOLUME 12, 2024

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

IEEE Access

TABLE 6. CLRN model parameters overview.

Vector output technique

Notes

Layer taype Output Shape Number of Parameters
TimeDistributed(Conv1D) (None, None, 2, 64) 2112
TimeDistributed(MaxPooling1D) (None, None, 1, 64) 0
TimeDistributed(Flatten()) (None, None, 64) 0

CuDNNLSTM (None, 200) 212800

Dense (None, 100) 20100

Dense (None, 50) 5050

Dense (None, 10) 510

The flattening layer uses to
transform 2D arrays resulting
from pooling feature maps
into a single linear vector.

Trainable params: 240,668
Non-trainable params: 0

0.0040

---- train-GuCLRN
train-GuGRU
---- train-GuLSTM
---- train-GuSLSTM
---- train-GuBiGRU
---- train-GuBiLSTM

0.0035 o

0.0030 o

0.0025 o

Loss function

0.0020 4

0.0015 o

Epochs

\ ---- valid-GuCLRN

0.0022 4 E‘\'\\\ valid-GuGRU
SRR T == valid-GuLSTM
0.0020 ---- valid-GuSLSTM
---- valid-GuBiGRU

valid-GuBiLSTM

0.0018 4

0.0016 4 .

Loss function

0.0014 4 \

0.0012 4 ~~ *

0.0010

Epochs

(a) Training Loss Progression Over Epochs: The GuSLSTM has (b) Validation Loss Trends During Model Training: The GuSLSTM

the lowest cost.

has the lowest loss function value.

FIGURE 10. Comparison of model learning curves in terms of training loss progression and validation loss trends. All curves exhibit improvement
with each epoch, which leads to a decrease in error values. The learning curves support the preference for the GuSLSTM model. Utilizing the mean
absolute error criteria, the GuSLSTM'’s learning curve is characterized by faster convergence and effective objective minimization. Even though they
have more training parameters, the GuBiLSTM and GuBiGRU models, do not outperform the unidirectional models, e.g. the GULSTM and the
GuGRU. This provides evidence that unidirectional models, which have smaller computational burdens, may be sufficient.

We conclude that using unidirectional models, which impose
smaller computational burdens, may be sufficient.

To assess the performance of the RNN models in predicting
link utilization, we conducted a comparison between the
predicted and actual values. This comparison involved
analyzing both the predicted and the ground-truth time series
data for link utilization. These datasets were obtained from
observations made on the Software-Defined Network (SDN).

To facilitate this evaluation, we serialized and stored all
the trained algorithms using the Hierarchical Data Format
(HDF5). This choice of storage format ensures efficient
retention and easy retrieval of the models. In the subsequent
testing phase, we invoked these serialized models within the
same Python environment. This step exposed the models to
previously unseen data, enabling us to test their performance
on a new nine-sequence dataset (which we generated
in VII-C). This dataset comprises approximately 378,000
observations. We summarize our findings as follows. All
models had the ability to track the link utilization over time,
but they produced errors when the link utilization changed
suddenly, either by producing a sudden peak or a sudden
trough. Fig. 11 plots the first true and predicted time step for
each algorithm.

To quantify the error associated with each learning
algorithm, for each time step, we computed the Root Mean

VOLUME 12, 2024

Square Error (RMSE) between the ground-truth values and
the predicted values,

| R 2
RMSE = - Z (Ui,j([) — Ui,j(t)) .

i=1

15)

In Fig. 11 the GuSLSTM model produced the most accurate
predictions, even when the link utilization fluctuated quickly.
In particular, it performed well when predicting sudden
changes in link utilization values. We conclude that the
GuSLSTM model was the best choice for the prediction
component of the SM-FPLF algorithm. The SM-FPLF
algorithm requires that a prediction algorithm used to perform
link utilization prediction should be able to generate accurate
prediction of what true future link utilization values will be.
This allows the SM-FPLF algorithm to accurately change
the cost of the links. The disadvantage of choosing a
learning algorithm that yields inaccurate predictions is that
this predictions might degrade the performance of SM-FPLF,
particularly when the link utilization value fluctuates around
the threshold.

Barplots in Fig. 13 summarize the RMSE results as the
number of prediction steps into the future increases. The
GuSLSTM model yielded the smallest error. As expected,
the error increased gradually as the number of steps into

79509

IEEE Access

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

5 w’ [N r"ﬂ' YM"W m;

g i | — Truth
Y
% | L — s
% . |b\|M "N' p 'l"M ' qﬂ U

Timesteps

Sl 1r|
o] VTR
N \
E | \ |
0.50 - Hl _;:.L:?M
0 200
Timesteps
(TR A B
:...| VAR
0.50 _eruRt:
0 200
Timesteps
1.0
oy
0.5 - — Eicn
2(I)0

Timesteps

FIGURE 11. Prediction accuracy: The RMSE is plotted as a function of the time-step for each algorithm. Notably, the GuSLSTM generated
superior prediction performance, characterized by its faster convergence and lower MAE during training. However, it is worth noting that all
algorithms face challenges when accurately predicting abrupt changes in the link utilization time series.

the future for which we generated predictions increased.
As a first impression, the current testing of the learn-
ing algorithms on unseen sequences, which originated
from the same traffic characteristics and distribution but
involve different DCN workloads, as detailed in Sec-
tion VII-B, indicates their success in predicting the trend
of link utilization. However, further evaluations of the
nominated model (GuSLSTM) on real-time testing traffic,
as presented and demonstrated in Section IX-E, are also
provided.

Prediction error is a significant performance indicator,
however, in a real-world setting the computation time is also
determines if deploying an algorithm is feasible. We con-
sidered the prediction overhead of each prediction method
to determine the best choice for a real-time implementation
as a component of the SM-FPLF solution. Table 7 tabulates

79510

the training time, prediction time and prediction errors. The
RMSE in the table represents the standard deviation of the
residuals, revealing how tightly the observed data clusters
around the predicted values, of the different prediction
algorithms considered, for both the first and last prediction
steps.

The GuCLRN, GuLSTM, and GuGRU models outper-
formed the other models in terms of training time and
prediction time. These smaller training and prediction times
are explained by the fact that they have fewer parameters than
the other models. The GuSLSTM had a higher prediction
time and training time; however, it outperformed the other
models in terms of its prediction error. On the other
hand, the GuBiGRU and GuBiLSTM models had the worst
performance due the overhead imposed by their training and
prediction time.

VOLUME 12, 2024

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

IEEE Access

TABLE 7. Time-cost, trainable parameters, and RMSE measurement comparison. The GUSLSTM achieves the best first and last time-step RMSE
measurement. The best scores are highlighted with bold font. The GuGRU has the lowest training and prediction time.

Metrics

GuLSTM

GuGRU

GuBiLSTM

GuBiGRU

GuSLSTM

CLRN

Number of trainable parameters
RMSE (First Time-Step)
RMSE (Last Time-Step)
Training time (sec)

Prediction time (sec)

188,060
0.04348
0.05309
2981

17

147,460
0.04491
0.05407
2701

16

1,333,660
0.04277
0.05265
5044

29

1,011, 660
0.04477
0.05412
4393

30

620, 460
0.03521
0.04497
7015

26

240, 668
0.05626
0.06450
2449

17

\ ---- ftrain
valid

N ——

0.004 v

Loss function

0.002 TS

Epochs

FIGURE 12. Effect of input sequence length on prediction accuracy: MAE
error for 30-step input and 10-step prediction for the CLRN.

Prediction Error Across Time

E GuCLRN
s GuLsTM

s GuBiLSTM
BN GuSLSTM

. GuGRU
B GuBiGRU

0.05 -

RMSE

5 10
Time Steps

FIGURE 13. RMSE of the prediction generated by each algorithm
compared to the ground-truth time series value. Predictions are
compared for increasing numbers of time steps into the future. The
GuSLSTM achieves the best performance. Predictions achieved by all
values decrease as the prediction horizon increases.

In conclusion, this empirical evaluation demonstrated
that the GuSLSTM was the most suitable RNN model
for predicting link utilization in SD-DCNs networks. The
model accurately predicted future values within an accept-
able computation time. Evidence was obtained to support
this result using a demanding scenario. The result in
Table 7 shows the computation time was approximately
26 seconds and the first-step RMSE obtained was 0.03521.
This makes GuSLSTM a viable option for real-time
dynamic network management to optimize power usage
using SM-FPLF.

VOLUME 12, 2024

B. MULTI-STEP SIZE AND RMSE VALUE

Two criteria that should be considered when the learning
model is deployed in a real-time scenario are given as
follows: (1) the number of predicted time-steps; and (2) the
accuracy. Increasing the number of prediction time-steps
causes the off time of the controller-OpenvFlow channel to be
increased, which has the benefit of increasing power savings.
We take the following approach with regard to the second
consideration. To justify choosing a ten time-step prediction
model, we adopt the strategy of increasing the number of
time-steps and measuring the RMSE of each outcome. The
results are compared with the results of the ten time-step
model.

Increasing the number of prediction time-steps in multi-
step time series problems may introduce more errors; a more
in-depth treatment of this topic is given in [55]. We trained the
GuSLSTM to predict twenty time-steps to assess the effect of
doubling the number of time-steps on the RMSE value and
compared the error with the error reported in Fig. 13 for ten
time-steps.

The results in Fig. 14 indicate that the RMSE of the
GuLSTM predictions increases as the time-step number
increases in the twenty time-steps case. The RMSE increases
even during the first ten time-steps, however, the RMSE
is typically larger in the twenty time-step case than in
the ten time-step case. This evidence suggests that the
model may face challenges in learning and generalizing
over the longer time-horizon. The time-cost of prediction for
378 x 103 observations (several thousands of link-states)
increased to approximately 40 seconds for the twenty time-
steps cases, compared to 26 seconds for the ten time-step
scenario.

These results are consistent with those reported in the
literature. According to [55], decreasing the number of
prediction time-steps tends to reduce the error value.
It is important to consider that the off time of the
controller-OpenvFlow channel is a critical factor that we aim
to maximize.

Following from the evaluation presented, we conclude
that incorporating a ten time-step GuSLSTM prediction
model in SM-FPLF, as demonstrated in Section IX-F,
provides a good compromise between accuracy and
time-cost. This claim is backed-up with empirical evi-
dence. The accuracy of the model enabled SM-FPLF to
achieve the same performance as the base-line algorithm,
FPLE

79511

IEEE Access

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

RMSE Measurement Over Time Steps

0.06
B RMSE Over 20-Time Steps

s RMSE Over 10-Time Steps
0.05 A

0.04

RMSE
o
&

0.02 A

0.01

0.00 -
0.0 2.5 5.0 7.5 10.0 1255 150 17.5 20.0

Time Steps
FIGURE 14. RMSE measurement for ten and twenty time-steps models as

a function of time-step index. The RMSE increases as a function of the
time-step index. The RMSE is larger for the twenty time-step model.

RMSE for Different Numbers of Training Sequences

0.10 4

0.09 1

0.04

2 4 6 8 10
Number of Training Sequences

FIGURE 15. The average ten-step RMSE against the size of training
sequences.

C. DATASET SIZE AND MODEL ACCURACY ANALYSIS

We adopt an empirical approach to determine the amount of
training data required by SM-FPLF to be able to accurately
track traffic patterns. A consequence of determining the
appropriate training data set is that this allows SM-FPLF to
perform and execute monitoring decisions correctly. We now
describe how we determined that eight was an appropriate
number of training sequences.

We trained the GuSLSTM for a set of different training
sequences, {1, 2, 3, ... 10} and computed the average RMSE
obtained. Fig. 15 shows the average value of the RMSE
obtained as a function of the number of training sequences.

The average RMSE decreases as a function of the number
of sequences. The slope of this reduction is large for one up
to six training sequences. The slope is greatly reduced when
eight or more training sequences are used. We use the rate
of change in RMSE as a function of the number of training
sequences as a criteria for selecting eight as the appropriate

79512

value. The rate of decrease of the RMSE becomes small as
we increase the number of sequences, which suggests that
the increased computational effort, in terms of training and
computing time, will not lead to significant increases in the
algorithm’s ability to track traffic trends.

D. WORKFLOW OF REAL-TIME IMPLEMENTATION

Before conducting real-time experiments, we introduce the
workflow carried out by our real-time implementation of
our hybrid model in Fig. 16. This figure emphasizes the
interconnectedness between the polling scheme and the
GuSLSTM model, along with the time required for the
continuous processing of the statistics stream. It illustrates
that the polling scheme and the learning model operate
alternately, employing a time synchronization function to
control the streaming direction of link state statistics.

Monitoring starts with a statistics collection process, which
incurs a cost which is the sum of the execution times,
ATy = ATy + ATyp. Consider the example where the
execution time is ATy = 1.808 ms for twenty OpenFlow
switches. This time corresponds to the difference between the
timestamps of the first “SATAS-REQUEST” message and
the last “SATAS-REPLY” message from twenty OpenFlow
switches.

The calculation in Equation (5), incurs the time-cost of
AT,. This time-cost is in the order of nanoseconds and
is considered to be negligible. We use the approximation,
AT,, ~ 1.808 ms, in the remainder of this discussion.

This operation is performed every second to faciltate the
collection of the statistics necessary to perform predictions
for ten time-steps. During this period, the polling scheme
gathers the statistics that allow the SM-FPLF algorithm to
calculate the energy saving paths set, P. The polling scheme
also provides the same values to the learning model. Once
this step has been completed, polling is turned off. The values
passed to the learning model are then used to predict the link
states for future time-steps. The time-cost due to predicting
the link states of the entire topology, AT, which consists of
48 links in a 4-ary fat-tree, is approximately 84.089 ms. This
value was obtained empirically. Consequently, predictions
of the next time-steps are available for the SM-FPLF
algorithm, and the entire monitoring system pauses for the
next period, 7. This process ensures that the polling scheme
and the GuSLSTM model interoperate seamlessly during
real-time deployment, incurring an acceptable time-cost, and
achieving an accurate prediction.

E. REAL-TIME IMPLEMENTATION

We consider the feasibility of integrating ML models with the
SM-FPLF algorithm in this section. The goal is to minimize
the level of communication activity on the OpenFlow
channel, in the belief that minimizing traffic on this channel
will lead to a reduction in power usage and SDN-controller
overhead. In addition, we aim to achieve this reduction
without causing a degradation in the performance of the

VOLUME 12, 2024

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

IEEE Access

Workflow of Real-Time Implementation

Actual Poling

OF Statistics
SDN-Controller-switch messages
(Port state request)

Prediction

GuSLSTM Model

FPLF
SYNC FUNGHON frrvveeseressssnerine ‘,

Energy Saving Paths

¢ Link-Cost Component
« Fill Shortest Path Component

—

FIGURE 16. Workflow synchronization in the hybrid monitoring algorithm.

SM-FPLF algorithm components. We motivate some of the
design decisions made in the implementation phase.

The following methodology was employed to evaluate the
prediction accuracy of the learning approaches considered
for SM-FPLF. We used the trade-off between accuracy
and computation time-cost as a criterion to select the
GuSLSTM to be the learning algorithm for SM-FPLF. This
trade-off was performed using the model evaluation results
presented in Fig. 11 and Table 7. The GuSLSTM accurately
tracks the traffic, particularly when sudden changes occur.
In addition, its moderate time-cost, in comparison with other
learning models, qualify it for integration into SM-FPLF.
We determined that implementing the GuSLSTM model
would be the most suitable approach for predicting the next
ten time-steps using recently recorded polling values.

To test the effectiveness of this approach, we reused the
same test-bed that was described in Section VI. We integrated
the GuSLSTM version of the SM-FPLF model into the
SDN-controller for analysis. The purpose of this analysis
was to determine the viability of our approach in terms
of network performance, overhead reduction, and power
usage. Before we could test the integrated model, we needed
to synchronize the work of the polling scheme with the
GuSLSTM. To achieve this, we implemented a scheduling
algorithm and utilized multiple threads.

F. IMPLEMENTATION AND RESULTS

The experiments in [18] demonstrated that the FPLF
algorithm could save power during periods of low traffic
while maintaining reasonable QoS, such as by dropping
packets. To test the performance of the algorithm with and
without a prediction scheme and to determine whether the
prediction model met the algorithm’s requirements, we used
a low-workload SDN network. We used the same traffic
characteristics as described in Section VI-B1, but with new
patterns of source and destination, which were generated
using the Ranking Metrics and D-ITG approach. Multiple
flows were gradually injected, and after approximately

VOLUME 12, 2024

35 minutes of the experiment, we recorded all port usage
between the interconnecting switches. We implemented the
experiment for both the actual scheme and the hybrid scheme.
The results in Fig. 17a show that the algorithms consumed
the same amount of power, during the simulation time,
when the port speed was 10 Mbps, i.e., power consumption
0.2 watts. The results reaffirmed that the SM-FPLF model
accurately predicted the utilization trend. Furthermore, SM-
FPLF exhibited behavior similar to that of FPLF in opti-
mizing power, with no discernible difference in the active
topology subset. On the other hand, when we consider
the OpenFlow channel, i.e., control plane, the results show
a significant difference in power usage between the two
algorithms in the time dimension. Fig. 17b shows the different
accumulative power consumption in watts between the FPLF
and SM-FPLF algorithms after 35 minutes. The OpenFlow
channel power consumption using FPLF is denoted by Crprr
and the OpenFlow channel power consumption using SM-
FPLF is Cspy—pprr. The power saving achieved using SM-
FPLF is

AC = (CrpF — Csm—rFpLr) = 372 watts ~ (16)

per OpenFlow channel. We conclude that the GuSLSTM
model maintains the performance of the SM-FPLF algorithm
while reducing power consumption in the time dimension.
Wireshark was employed for the purpose of capturing
and analyzing messages transmitted through the OpenFlow
channel. This analysis considered the following packets:
OFPT_PACKET_IN, OFPT_STATS_REPLY, OFPT_STATS
REQUEST, OFPT_FLOW_MOD, OFPT_PACKET_OUT,
and so on, for both scenarios. The results in Fig. 18 illustrate
the difference in the number of transaction packets in the
two scenarios. Specifically, Fig. 18a shows the actual pooling
scheme scenario, where the number of packets reached up to
40 packets per second with frequent peaks of up to 80 packets
per second. Whereas in Fig. 18b the prediction scheme
scenario, the number of packets was approximately 40 with
idle intervals when the ports were not in use. This presents an

79513

IEEE Access

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

Power Consumption Over Time

—— SM-FPLF
—— FPLF

v
S
1

IS
S
1

Power Consumption (watts)
1

-
1)
1

0 -

. 1355 o 4000 " 800 ® 4800 N 4420 o 1420 @ |42° o 4430

(a) Power consumption of data plane (without counting the OpenFlow
channel).

Power Consumption

900
Power Reduction = 372.0 Watts, for each 35 Minutes

800

700 4

600 -

Watts

500

400 A

300 1

200 -

SM-FPLF FPLF

Columns
(b) Accumulated power consumption per OpenFlow channel in the
DCN.

FIGURE 17. Power usage for SD-DCN data plane and control plane.

opportunity to save more power by incorporating it into the
SM-FPLF algorithm.

The packets were then filtered to facilitate an analysis of
the contribution of SM-FPLF, which is quantified here as a
reduction in the port-state message overhead. As depicted in
Fig. 18c, the difference between both scenarios is evident,
where the number of packets remained approximately
constant. This indicates that port-state messages make up the
majority of transaction messages, in contrast to other types
like OFPT_PACKET_IN. This result is reasonable given that
the number of packets in our previous contribution [18]
was reduced using one of the POX controller features.
The optimization process in [18] involved sending the
OFPT_FLOW_MOD message to all switches involved in the
ESP instead of waiting for them to send OFPT_PACKET_IN
messages to obtain the flow entry. This optimization process
improved the installation of rules to the switches. The port
state messages represents a significant component of the
count of transaction messages, and the value remained at 40
packets/s. This result also serves to highlight the overhead
associated with the polling mechanism used for such a power
consumption optimization algorithms.

Conversely, with the SM-FPLP prediction scheme, the
number of packets was approximately halved. This result is

79514

shown in Fig 18d. This halving occurs because it is sufficient
to obtain ten actual utility values in the hybrid pooling scheme
to predict ten feature values that are ready to be used by the
SM-FPLF algorithm.

To measure CPU utilization with and without GuSLSTM,
we employed an open-source Python package named
psrecord [56]. This package provides a simple and effective
way to record and analyze the activity of processes on a Linux
system. We used psrecord to measure the CPU utilization
of the ovs-switch process, which manages and controls any
number of OpenvSwitch switches on the local machine. The
OpenvSwitch datapath kernel module must be loaded for ovs-
switch [57]. The tool tracked the CPU utilization during both
scenarios. We report the results in Fig. 19. This enabled us
to gain insights into the performance of the FPLF algorithm
under both scenarios, e.g. with prediction and without, and to
analyze the impact of GuSLSTM on the operation of the SM-
FPLF. By comparing the CPU utilization graphs of the two
scenarios, where Fig. 19b shows CPU usage with GuSLSTM
and Fig. 19a shows CPU usage without the prediction
scheme, we observed the performance improvements caused
by GuSLSTM. Using SM-FPLF resulted in a 13.674% CPU
usage reduction in the controller and the switches. Hence,
the use of an ML model to manage the network topology
and policies led to a lower processing requirement for
the OpenFlow controller, resulting in a reduction in power
consumption.

X. DISCUSSION AND LIMITATION

Despite the potential benefits of using hybrid actual/prediction
monitoring models, for example FLPF and SM-FLPF, it is
essential to take into account the upper and lower bounds for
the number of time steps used in predictions. On one hand,
this necessitates considering the algorithm’s sensitivity and
the potential for maximum/minimum errors. For example,
in our case, the SM-FPLF algorithm adjusts the cost of a link
based on its utilization value, as explained in Section VI-B4.
The cost penalty in Equation (4) facilitates link selection in
the next round of path installation or transitions links to an off
state. Therefore, to ensure that the algorithm makes correct
decisions, it should minimize errors in the vicinity of the
utilization threshold. On the other hand, the time transition
from idle or sleep mode to the ON state, which is out of
coverage of the current study, is another crucial metric in
this problem. For instance, we cannot take advantage of
very short idle intervals (one or two seconds) to save power.
This is why prediction techniques which successfully predict
over a longer horizon should be considered. In short it is
essential to achieve a trade-off between balancing the actual
and prediction time-frame intervals to minimize errors while
maintaining an acceptable prediction frame interval.

The scalability and traffic patterns of diverse data center
topologies should be considered. This study uses the
traffic patterns outlined in [41] as its benchmark. Applying
SM-FPLF to other data center topologies with variations in
load and traffic patterns could invoke the need for retraining

VOLUME 12, 2024

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization I EEEACC@SS

Packet VS. Time

— Packet

Number of packets
EFNWRARUION0O

[clololojololoNoloNe]

0 100 200 300 400 500
Time(s)
(a) All OpenFlow messages using a pooling scheme.

Packet VS. Time

— Packet

o
1

o

Number of packets
= N W B U

o O O O

0 100 200 300 400 500
Time(s)
(c) Request/Response messages using a pooling scheme.

Packet VS. Time

90 —— Packet
80

Number of packets

0 100 200 300 400 500
Time(s)
(b) All OpenFlow messages using the GuSLSTM model.
Packet VS. Time

— Packet

1

=

-]
=

|

- |

- |
s |
w— |

Number of packets
= N W B~ U

o O O O o o
I

0 100 200 300 400 500
Time(s)
(d) Request/Response messages using the GuSLSTM model.

FIGURE 18. Analysis of network OpenFlow traffic with and without using the GuSLSTM model.

100
r 140

80, I 120

T
=
o
[=]

}

60
‘ 80

CPU (%)

401 - 60

-ao
20+
20

1] 200 300 400 500
time (s)

(a) CPU utilization without the GUSLSTM model.

Real Memory (MB

CPU (%)

804 F 140

704 F120

60 L 100

504
r 80

401
L 60

Real Memory (MB)

304

L 40
20

20

|

| ‘ ‘
1] 200 300 400 500
time (s)

(b) CPU Utilization with the GUSLSTM model

FIGURE 19. Comparison of the CPU usage when the GuSLSTM model is and is not used.

the model. This process is crucial for enabling the learning
algorithm to adapt and recognize new patterns. Alternatively,
Transfer Learning techniques could be employed to reduce
training time. This approach would involve adding a few

VOLUME 12, 2024

sequences that the model did not train on before. The
authors of [58] reported that these techniques efficiently
reduce the training time and make the learning phase
easier.

79515

IEEE Access

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

On the other hand, in online prediction, time is crucial.
As the number of links increases, the computation time also
increases. For example, in Table 7, in the case of GuSLSTM,
we reported a time-cost of 26 seconds for several thousand
link-states. In such cases, computational resources in the data
center should be increased, and the load should be distributed
across multiple controllers to meet the system requirements
for which the learning model was developed.

Generally, decisions regarding the application of RNNs
in real-time SDN solutions are contingent upon the specific
context and requirements. The model’s capability to meet
sensitivity and accuracy criteria for the given application is
a crucial factor in this consideration.

XI. CONCLUSION

SD-DCN power consumption algorithms often rely on an
active monitoring model to periodically poll DCN statistics,
resulting in the following challenges: (1) a large SDN-
controller overhead, and (2) a large energy consumption.
The study presented in this paper proposes SM-FPLF as a
practical solution to address these challenges. To minimize
power consumption, our primary approach involves reducing
the number of packets exchanged between the OvS and SDN
Controller, with idle intervals when the ports are not in use.
Additionally, the proposed framework reduces CPU usage by
minimizing the use of the OvS-Controller link, thus reducing
the controller’s workload. In terms of theoretical implica-
tions, our study underscores the effectiveness of integrating
learning algorithms in power optimization frameworks for
DCNs. On a practical level, the proposed Smart SD-DCNs
framework demonstrates good benefits in terms of power
consumption reduction and monitoring efficiency.

We contribute a new algorithm called SM-FPLF that
optimizes power consumption by considering use of this
control channel. SM-FPLF complements the contribution
in [18], which is called FPLF, and advances the state-of-
the-art by incorporating learning algorithms into FPLF to
further optimize performance. This contribution is significant
because these links can affect the overall energy consumption
of DCNs especially when they are utilized in the monitoring
process. This contribution may be arranged into three cat-
egories: Dataset, Modelling and Real-time implementation.
The dataset component of the contribution is centred on a
new method for generating the Utilization Matrix by utilizing
realistic traffic distributions. This contribution facilitates the
collection of training, validation, and testing data for our
analysis, but will also yield a dividend for the community,
given the interest in the deployment of learning algorithms in
this setting. The modeling contribution focuses on the design
of a DL model that meets the requirement sof the FPLF
algorithm so that overhead is reduced whilst power usage
is optimized for both controllers and switches in a DC-SDN
architecture. The impact of this contribution is strengthened
by providing an evaluation of a real-time implementation
of SM-FPLF.

79516

The practical advantages of using SM-FPLF are given
as follows. In our evaluations using the RMSE metric,
GUSLSTM outperformed other learning algorithms in terms
of error reduction. Our real-time testing experimental results
demonstrate that the proposed framework can reduce the
network’s power consumption by 372 watts per OpenFlow
channel every 35 minutes of DCN operation, which repre-
sents a significant reduction in power consumption over time.
Furthermore, it significantly reduces monitoring overhead
by 13.674% when compared to the FPLF approach from
the state-of-the-art, thus mitigating SDN controller throttling
during peak times.

A common limitation of work which seeks to perform
predictions for data center traffic are the issues of algorithm
scalability and the time-varying traffic patterns that occur
in diverse data center topologies. The use of benchmark
datasets is often advocated as it ensures that the test scenarios
considered are widely cited, which indicates that there is a
broad consensus about their suitability. However this reliance
on benchmark data sets has the drawback that the available
benchmarks may not be sufficiently expressive to capture
all types of traffic behaviour. We have discussed remedial
actions such as retraining the model to ensure its effectiveness
in recognizing new patterns. We also commented on the
possibility of using transfer Learning techniques to expedite
training time.

As a part of our future work, we will consider the
performance benefits that might arise from deploying new,
faster implementations of existing ML and DL techniques.
An additional future research suggestions is to extend SM-
FPLF so that it scales with increasing data center size and
adapts to the traffic patterns of diverse data center topologies.
One potential research approach would be to apply Transfer
Learning techniques to reduce training time in the setting
where data center topologies, loads and traffic patterns vary
with time, in order to reduce retraining time for the model.
Alternatively, this time-cost issue could be addressed via a
multi-controller solution; the aim of this work would be to
reduce the energy usage by considering the placement of
multiple controllers. Finally, application layer components
such as smart traffic classification and congestion traffic
prediction could be used to improve real-time streaming
protocols and lead to better network performance [59]. The
ultimate goal is to develop a fully automated and intelligent
SDN network that can adapt to changing demands, and
optimize energy consumption while considering network
performance in real time.

Xil. ACKNOWLEDGMENT

The authors would like to express their sincere gratitude to
the Science Foundation Ireland for their generous support of
this research. They would also like to thank the Department
of Information Technology, University of Debrecen, and the
School of Electrical and Electronic Engineering, TU Dublin,
for providing them with the necessary resources and facilities
to carry out this study.

VOLUME 12, 2024

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

IEEE Access

REFERENCES

[1]

[2]

[3]
[4]
[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Y. Zhang, K. Shan, X. Li, H. Li, and S. Wang, “Research and technologies
for next-generation high-temperature data centers—State-of-the-arts and
future perspectives,” Renew. Sustain. Energy Rev., vol. 171, Jan. 2023,
Art. no. 112991.

M. Nsaif, G. Kovdsznai, A. Malik, and R. de Fréin, “Survey of routing
techniques-based optimization of energy consumption in SD-DCN,”
Infocommun. J., vol. 15, no. 1, pp. 3542, 2023.

X. Gao, A. Curtis, and B. Wong, “It’s not easy being green,” ACM SIG-
COMM Comput. Commun. Rev., vol. 42, no. 1, pp. 211-222, Aug. 2012.
J. Koomey, “Growth in data center electricity use 2005 to 2010,”
Completed Request New York Times, vol. 9, p. 161, Aug. 2005.

P. Sun, Z. Guo, S. Liu, J. Lan, J. Wang, and Y. Hu, “SmartFCT: Improving
power-efficiency for data center networks with deep reinforcement
learning,” Comput. Netw., vol. 179, Oct. 2020, Art. no. 107255.

M. D. S. Conterato, T. C. Ferreto, F. Rossi, W. D. S. Marques, and
P. S. S. de Souza, “Reducing energy consumption in SDN-based data
center networks through flow consolidation strategies,” in Proc. 34th
ACM/SIGAPP Symp. Appl. Comput., Apr. 2019, pp. 1384-1391.

G. Kovasznai and M. Nsaif, “Integer programming based optimization of
power consumption for data center networks,” in Proc. 13th Conf. PhD
Students Comput. Sci. Szeged, Hungary: Institute of Informatics, Univ. of
Szeged, 2023, doi: 10.14232/actacyb.299115.

F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
CPU energy,” in Proc. IEEE 36th Annu. Found. Comput. Sci., Oct. 1995,
pp. 374-382.

J.Luo, S. Zhang, L. Yin, and Y. Guo, “Dynamic flow scheduling for power
optimization of data center networks,” in Proc. 5th Int. Conf. Adv. Cloud
Big Data (CBD), Aug. 2017, pp. 57-62.

Y. Shang, D. Li, and M. Xu, “Greening data center networks with flow
preemption and energy-aware routing,” in Proc. 19th IEEE Workshop
Local Metrop. Area Netw. (LANMAN), Apr. 2013, pp. 1-6.

D. Kreutz, . M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, ““Software-defined networking: A compre-
hensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015.

P.-W. Tsai, C.-W. Tsai, C.-W. Hsu, and C.-S. Yang, “Network monitoring
in software-defined networking: A review,” IEEE Syst. J., vol. 12, no. 4,
pp. 3958-3969, Dec. 2018.

C. Huang, J. Zhang, and T. Huang, “Updating data-center network with
ultra-low latency data plane,” IEEE Access, vol. 8, pp. 2134-2144, 2020.
G. Xu, Y. Mu, and J. Liu, “Inclusion of artificial intelligence in
communication networks and services,” ITU J. ICT Discov. Spec, vol. 1,
pp. 1-6, Oct. 2017.

J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, and Y. Liu, “A survey
of machine learning techniques applied to software defined networking
(SDN): Research issues and challenges,” IEEE Commun. Surveys Tuts.,
vol. 21, no. 1, pp. 393-430, 1st Quart., 2019.

B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “ElasticTree: Saving energy in data center
networks,” in Proc. NSDI, vol. 10, 2010, pp. 249-264.

X. Wang, Y. Yao, X. Wang, K. Lu, and Q. Cao, “CARPO: Correlation-
aware power optimization in data center networks,” in Proc. IEEE
INFOCOM, Mar. 2012, pp. 1125-1133.

M. Nsaif, G. Kovasznai, A. Racz, A. Malik, and R. de Fréin, “An adaptive
routing framework for efficient power consumption in software-defined
datacenter networks,” Electronics, vol. 10, no. 23, p. 3027, Dec. 2021.

G. Kovdsznai and M. Nsaif, “Integer programming based optimization of
power consumption for data center networks,” in Proc. 13th Conf. Ph.D
Students Comput. Sci., 2022, pp. 76-80.

D. Li, Y. Yu, W. He, K. Zheng, and B. He, “Willow: Saving data center
network energy for network-limited flows,” IEEE Trans. Parallel Distrib.
Syst., vol. 26, no. 9, pp. 2610-2620, Sep. 2015.

G. Xu, B. Dai, B. Huang, and J. Yang, ‘“Bandwidth-aware energy
efficient routing with SDN in data center networks,” in Proc. IEEE 17th
Int. Conf. High Perform. Comput. Commun. 7th Int. Symp. Cyberspace
Saf. Secur., IEEE 12th Int. Conf. Embedded Softw. Syst., Aug. 2015,
pp. 766-771.

The Open Networking Foundation, OpenFlow Switch Specification
Version 1.3.3. Menlo Park, CA, USA: The Open Networking Foundation,
2013.

R. de Fréin, O. Izima, and A. Malik, ‘“Detecting network state in
the presence of varying levels of congestion,” in Proc. IEEE 31st Int.
Workshop Mach. Learn. Signal Process. (MLSP), Oct. 2021, pp. 1-6.

VOLUME 12, 2024

(24]

(25]

[26]

(27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

(43]

[44]

(45]

[46]

(47]

R. de Frein, S. Rickard, and K. Drakakis, “Extracting garch effects
from asset returns using robust NMFE,”” in Proc. IEEE 13th Digit. Signal
Process. Workshop 5th IEEE Signal Process. Educ. Workshop, Jan. 2009,
pp- 200-205.

J. Dai and J. Li, “VBR MPEG video traffic dynamic prediction based on
the modeling and forecast of time series,” in IEEE MTT-S Int. Microw.
Symp. Dig., Aug. 2009, pp. 1752-1757.

P. Cortez, M. Rio, M. Rocha, and P. Sousa, “Internet traffic forecasting
using neural networks,” in Proc. IEEE Int. Joint Conf. Neural Netw., 2006,
pp. 2635-2642.

V. B. Dharmadhikari and J. D. Gavade, ““‘An NN approach for MPEG video
traffic prediction,” in Proc. 2nd Int. Conf. Softw. Technol. Eng., vol. 1,
Oct. 2010, pp. 1-57.

A. Azzouni and G. Pujolle, “NeuTM: A neural network-based framework
for traffic matrix prediction in SDN,” in Proc. IEEE/IFIP Netw. Operations
Manag. Symp., Apr. 2018, pp. 1-5.

T. Lisas and R. de Fréin, “Sequential learning for modeling video quality
of delivery metrics,” IEEE Access, vol. 11, pp. 107783-107797, 2023.
D.-H. Le, H.-A. Tran, S. Souihi, and A. Mellouk, “An Al-based traffic
matrix prediction solution for software-defined network,” in Proc. IEEE
Int. Conf. Commun., Jun. 2021, pp. 1-6.

D. Aloraifan, I. Ahmad, and E. Alrashed, “Deep learning based network
traffic matrix prediction,” Int. J. Intell. Netw., vol. 2, pp. 46-56, Jan. 2021.
Z. Liu, Z. Wang, X. Yin, X. Shi, Y. Guo, and Y. Tian, “Traffic matrix
prediction based on deep learning for dynamic traffic engineering,” in
Proc. IEEE Symp. Comput. Commun. (ISCC), Jun. 2019, pp. 1-7.

A. Malik and R. de Fréin, ““A proactive-restoration technique for SDNs,”
in Proc. IEEE Symp. Comput. Commun. (ISCC), Jul. 2020, pp. 1-6.

A. Botta, W. de Donato, A. Dainotti, S. Avallone, and A. Pescapé, “D-ITG
2.8. 1 manual,” Comput. Interact. Commun. (COMICS) Group, pp. 3-6,
Oct. 2013.

M. S. Yoon and A. E. Kamal, ‘“Power minimization in fat-tree SDN data-
center operation,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2015, pp. 1-7.

T. M. Nam, N. H. Thanh, N. Q. Thu, H. T. Hieu, and S. Covaci, “Energy-
aware routing based on power profile of devices in data center networks
using SDN,” in Proc. 12th Int. Conf. Electr. Eng./Electron., Comput.,
Telecommun. Inf. Technol. (ECTI-CON), Jun. 2015, pp. 1-6.

F. Kaup, S. Melnikowitsch, and D. Hausheer, “Measuring and modeling
the power consumption of OpenFlow switches,” in Proc. 10th Int. Conf.
Netw. Service Manage. (CNSM) Workshop, Nov. 2014, pp. 181-186.

A. Malik, R. de Fréin, and B. Aziz, “Rapid restoration techniques for
software-defined networks,” Appl. Sci., vol. 10, no. 10, p. 3411, May 2020.
N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69-74, Mar. 2008.

M. R. Nsaif, M. F. Abbood, and A. F. Mahdi, “Detection and prevention
algorithm of ddos attack over the IoT networks,” TEM J., vol. 9, no. 3,
p- 899, 2020.

T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data
center traffic characteristics,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 1, pp. 92-99, Jan. 2010.

A. Botta, A. Dainotti, and A. Pescapé, “Do you trust your software-based
traffic generator?” IEEE Commun. Mag., vol. 48, no. 9, pp. 158-165,
Sep. 2010.

A. Hagberg, P. Swart, and D. S. Chult, “Exploring network structure,
dynamics, and function using NetworkX,” Los Alamos National Lab.
(LANL), Los Alamos, NM, USA, Tech. Rep. LA-UR-08-05495; LA-UR-
08-5495; TRN: US201006% %1254, 2008.

E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Math., vol. 1, no. 1, pp. 269-271, Dec. 1959.

B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proc. 9th ACM SIGCOMM
Workshop Hot Topics Netw., Oct. 2010, pp. 1-6.

A. Nucci, A. Sridharan, and N. Taft, “The problem of synthetically
generating IP traffic matrices: Initial recommendations,” ACM SIGCOMM
Comput. Commun. Rev., vol. 35, no. 3, pp. 19-32, Jul. 2005.

L. Saino, C. Cocora, and G. Pavlou, “A toolchain for simplifying network
simulation setup,” in Proc. 6th Int. Conf. Simul. Tools Techn., Brussels,
Belgium, 2013, pp. 1-10.

79517

http://dx.doi.org/10.14232/actacyb.299115

IEEE Access

M. Nsaif et al.: SM-FPLF: Link-State Prediction for Software-Defined DCN Power Optimization

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]

[59]

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and
J. Schmidhuber, “LSTM: A search space Odyssey,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 28, no. 10, pp. 2222-2232, Oct. 2017.

K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder—decoder for statistical machine translation,” 2014,
arXiv:1406.1078.

NVIDIA’s Documentation on CuDNN. Accessed: Jan. 30, 2023. [Online].
Auvailable: https://docs.nvidia.com/deeplearning/cudnn/index.html
NVIDIA’s Tf.Keras.Layers.LSTM. Accessed: Feb. 1, 2023. [Online]. Avail-
able: https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM
M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,”
IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673-2681, Nov. 1997.
J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, T. Darrell, and K. Saenko, “Long-term recurrent convolutional
networks for visual recognition and description,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 2625-2634.

V. A. Le, P. Le Nguyen, and Y. Ji, “Deep convolutional LSTM
network-based traffic matrix prediction with partial information,” in
Proc. IFIP/IEEE Symp. Integr. Netw. Service Manage. (IM), Apr. 2019,
pp. 261-269.

A. Venkatraman, M. Hebert, and J. Bagnell, “Improving multi-step
prediction of learned time series models,” in Proc. AAAI Conf. Artif. Intell.,
2015, vol. 29, no. 1, pp. 1-7.

Psrecord. Accessed: Mar. 1, 2023. [Online]. Available: https://pypi.org/
project/psrecord/

Ovs-vswitchd. Accessed: Mar. 1, 2023. [Online]. Available: https://
manpages.ubuntu.com/manpages/bionic/man8/ovs-vswitchd.8.html

F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He,
“A comprehensive survey on transfer learning,” Proc. IEEE, vol. 109,
no. 1, pp. 43-76, Jan. 2021.

M. Nsaif, G. Kovasznai, M. Abboosh, A. Malik, and R. D. Fréin, “ML-
based online traffic classification for SDNs,” in Proc. IEEE 2nd Conf. Inf.
Technol. Data Sci. (CITDS), May 2022, pp. 217-222.

MOHAMMED NSAIF received the M.S. degree
in infocommunication technologies and commu-
nication systems from Kazan National Research
Technical University, Russia. He is currently
pursuing the Ph.D. degree with the Department of
Information Technology, Faculty of Informatics,
University of Debrecen. His research interests
include software-defined networking, computer
networks, wireless sensor networks, and machine
learning.

79518

GERGELY KOVASZNAI received the Ph.D.
degree in formal methods and automated theo-
rem proving from the University of Debrecen,
Hungary, in 2007. He is currently an Associate
Professor and the Head of the Department
of Computational Science, Eszterhdazy Karoly
Catholic University, Eger, Hungary. Over the
years, he was a Research Fellow with the Aristotle
University of Thessaloniki, Greece; the Johannes
Kepler University Linz, Austria; and the Vienna
University of Technology, Austria. His research interests include formal
methods, formal verification, operations research, and machine learning.

ALl MALIK received the Ph.D. degree in com-
puting from the University of Portsmouth, U.K.,
in 2019. He was a Postdoctoral Researcher with
the FOCAS Research Institute, Technological
University Dublin, in areas related to data centers,
monitoring, and software-defined networking.
He is currently an Assistant Lecturer in computer
engineering with the School of Electrical and
Electronic Engineering, Technological University

- Dublin, Ireland. His current research interests
include software-defined networks, vehicular networks, traffic engineering,
machine learning, cybersecurity, microgrids, and power networks.

RUAIRI DE FREIN received the B.E. degree in
electronic engineering and the Ph.D. degree in
time-frequency analysis and matrix factorization
from University College Dublin (UCD), Ireland,
in 2004 and 2010, respectively. He is currently
a CONNECT Funded Investigator and a Lecturer
with the School of Electrical and Electronic Engi-
neering, Technological University Dublin, Ireland.
He held Marie Sktodowska-Curie fellowships at
the KTH Royal Institute of Technology, Stock-
holm, and Amadeus SAS, Sophia Antipolis, France. Over the past few years,
he has developed algorithms for predicting quality-of-delivery metrics for
network management and monitoring strategies for small cell networks, and
monitoring techniques for Internet Protocol TeleVision (IPTV). His research
interests include machine learning, sparse signal processing, software-
defined networks, vehicular networks, microgrids, and power networks.

VOLUME 12, 2024

