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ABSTRACT Time series classification tasks play a crucial role in extracting relevant information from data
equipped with a temporal structure. In various scientific domains, such as biology or finance, this kind of data
comes from complex and hardly predictable phenomena. Therefore, classification algorithms for time series
should be able to deal with the uncertainty contained in data and capture the relevant statistical properties of
the underlying phenomenon. The main object of interest of this work is the development of a model for time
series that tackles the classification task by interpreting time series as realisations of stochastic processes, the
natural mathematical description of chaotic behaviour. The focus thus is on time series that can be thought
as signals of some nature, and that convey some kind of statistical information. We propose a data-driven
feature extraction model for time series built upon a Gaussian process based data augmentation and on the
expected signature. The signature is a fundamental object that describes paths, much alike Fourier or wavelet
expansion, but in a non-linear fashion. Likewise, the expected signature provides a statistical description of
the law of stochastic processes. One of the main features is that an optimal feature extraction is learnt through
the supervised task that uses the model. The model can be adapted to more complicated supervised tasks, as it
integrates seamlessly in a neural network architecture and is fully compatible with back-propagation, and
it can be easily accommodated to perform regressive tasks. The effectiveness of the model is demonstrated
with numerical experiments on some benchmark time series.

INDEX TERMS Expected signature, Gaussian process regression model, stochastic data augmentation, time
series classification.

I. INTRODUCTION
Whenever we are dealing with structured data, such as
images or time series, we need to deploy some feature
extraction mechanisms in order to solve both supervised
and unsupervised tasks. There are various well-known time
series features extraction approaches, such as Catch22 [1]
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or Tsfresh [2], which are widely used in general problems.
In this work, we are interested in analyzing problems where
the supervised task should be able to capture the values as
well as the statistical features of input data. We have in mind
problems coming from hardly predictable phenomena such as
classification of ECG traces, or of the motion of single cells,
see for instance [3], [4]. To this end, we focus on a collection
of mathematical tools that come from the analysis of irregular
signals, the so-called rough paths. In particular, we will use
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the signature of a path as the main device for detecting the
most significant features, in terms of the classification task,
of time series.

Signature has arisen in the context of rough path theory [5],
[6], [7], a theory initially developed to analyse irregular
signals and to construct solutions of differential equations
driven by such irregular signals. The signature has shown to
be a powerful tool to capture the peculiarities of path-like
data. In particular, it is able to characterize any path up to
adding the time component [8] (see also Proposition 5) and a
universal approximation theorem holds [9] (see Theorem 4).
As the signature is able to give a non-parametric description
of paths, the expected signature [10], [11] is the suitable
object to extract features from distributions on paths: the
expected signature is a well-suited transformwhenever a time
series is thought as a trajectory of a stochastic process thanks
to its capability of identifying the law of various random
processes [12].

A. ORIGINAL CONTRIBUTION
We propose a new time series classification model that
uses expected signature as feature extraction procedure. Our
method goes beyond an architecture of two models placed in
series, namely the feature extraction through the evaluation
of the expected signature, followed by the classification task
based on these features. In our architecture the two models
interact and our algorithm learns an optimal evaluation of the
expected signature through the feedback of the classification
task. The proposed new feature extraction approach can
be compared to the convolutional layers when working on
images [13]. Indeed, in both cases the features extraction
procedure is learned by the model itself based on the
prediction task at stake. So, it should be deployed to solve
supervised tasks, such as classification. The feature extraction
phase combines two main ideas. The first is a stochastic
data augmentation based on a generalized Gaussian process
regression model. The second idea is to capture the relevant
features of paths by means of the expected signature,
computed over the ensemble obtained in the phase of data
augmentation.

In conclusion, in the present work,
1) we show that the expected signature is an effective

tool for supervised tasks, for instance classification,
involving time series, when one wants to capture the
statistical features of the series and exploit them for
better accuracy;

2) we develop a data augmentation/Gaussian Process
regression/computation of expected signature module
that is fully compatible with back-propagation, and
thus can be seamlessly integrated into any neural
network architecture;

3) we find that signature normalization, which is a crucial
step to ensure that signature fully captures the statistical
properties of paths, turns out to be crucial to ensure
computational stability in the evaluation and use of
signature;

4) we show that the proposedmethod effectively increases
the performance of signature-based models.

B. RELATED WORK
Gaussian processes are a fundamental tool for non-parametric
models, which has found extensive application in the general
field ofmachine learning and in particular for time series [14].
Besides Gaussian processes, several strategies for data
augmentation of time series have been developed [15], [16],
mainly designed to address the problem of limited dataset
sizes. Our approach differs in that we aim to create a large
statistical ensemble, rather than a larger dataset.

The signature of a time series has recently emerged in the
machine learning community as a universal non-parametric
descriptor of a stream of time ordered data [17], [18]. The
signature transform has been used as features extraction
mechanism in neural network-like models [19] and has
been integrated in kernel-based models [20], [21]. More-
over, signature-based models have been applied in various
scientific domains, such as anomaly detection [22] and
handwritten text recognition [23].
In [24] a Gaussian laws based augmentation is combined

with the signature transform. Their model differs from ours
in two fundamental aspects. First, they augment any starting
time series using a classical GP model where the structure
of the mean and of the covariance functions are defined a-
priori. This a-priori choice imposes particular properties on
the Gaussian processes used, such as stationarity. Instead, our
model learns these quantities completely on its own without
any prescribed constraint on the laws we sample from. More
details on this are given in Section. II-B1. Second, they use
the signature transform instead of the expected signature
because in their augmentation phase randomness is ruled out
by passing only the posterior mean and/or variance. We are
able to exploit the expected signature since we combine it
with a stochastic augmentation based on the Gaussian process
(GP) regression model.

The expected signature has so far foundmore limited use in
machine learning in general and in time series classification
problems in particular. In [25] the expected signature has been
applied to solve distribution regression on sequential data
problems, namely the task of learning a function that takes
as input a group of time series and produces a single scalar
target. Therefore, they make use of the expected signature to
identify relevant features for any sample, a group of various
time series. In contrast in our model the expected signature
is used to characterize the ensemble generated through the
augmentation step starting from a single time series. So, our
usage of the expected signature is not directly related to any
specific task, but it can be deployed for various supervised
problems.

C. STRUCTURE OF THE PAPER
The paper is organised as follows. In Section II we describe
how to use the expected signature feature extraction module
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in a simple classification task. The module is flexible and
can be used in more complex classification tasks, as well as
regression problems.We discuss some experimental results in
Section III. The algorithm is analysed both on synthetic and
real world datasets, a description of the datasets we have used
is given in Section III-A. Finally, in Appendix we outline the
theoretical background and prove some additional results.

II. MODEL ARCHITECTURE
In this section we propose an extended description of the
easiest classification model that can be built using our new
feature extraction approach and point out various possible
architecture variations.

A. PRELIMINARIES
A time series that describes a phenomenon extended in time
and that includes the influence of random components can
be thought as a set of values sampled from a trajectory
of a stochastic process. We preliminary introduce a series
of ideas and notions that aim at modeling the description of
time-extended phenomena with random components and that
will help in illustrating our method.

1) SIGNATURE OF PATHS AND PROCESSES
We start with a short introduction of the signature of a
path and of the expected signature of a stochastic process.
Technical details are given in Appendix. The interest is in
paths, that are continuous functions, that in general have
poor properties of regularity, and so can be thought of as
functions with strong degrees of oscillations. The signature is
a universal object that describes the intrinsic nonlinear nature
of the path and the response of systems governed by the path.
The signature of a path (Xt )t∈[0,T ] is composed by the set of
all iterated integrals,

S(X )n =

∫
· · ·

∫
0<s1<s2<···<sn<T

dXs1 ⊗ · · · ⊗ dXsn , (1)

with the convention that S(X )0 = 1. Here ⊗ is the tensor
product. The expected signature of a stochastic process,
which is nothing else but the family of expectations of all
iterated integrals of the process, seen as a path, is able
to characterize, in a large number of interesting cases, the
law of the random signature, and in turns the statistical
properties of the process. More precisely, the expected
signature characterizes the law of the process only if properly
normalized. A (tensor) normalization λ is simply a function
that for a given signature S = (1, s1, s2, . . . ) returns
the new element (1,λ(S)s1,λ(S)2s2, . . . ), where λ(S) is a
suitable real value. Tensor normalization is fully illustrated
in Appendix B.

2) GAUSSIAN PROCESS REGRESSION MODEL
We briefly introduce the idea of the Gaussian Process regres-
sion model. A full description can be found in [14]. First,
recall that a Gaussian process is a family of random variables
(Xt )t∈[0,T ] such that all finite dimensional time-marginals

have a joint Gaussian distribution. The law of a Gaussian
process is completely determined by its mean and covariance
functions, namely m(t) = E[Xt ] and R(s, t) = Cov(Xs,Xt ).
Given a time series x = (xti )

N
i=1, we look for a function

or a set of functions that might have possibly generated the
known data and that can be used for interpolating the series
at unknown time instants. Let m(t) and R(s, t) be a mean and
a covariance function, the corresponding Gaussian process
induces a prior distribution over the set of functions. Roughly
speaking, this choice reduces the functions that we are taking
into account.

By binding together the data and the prior distribution
we obtain a set of possible interpolating functions and their
likelihood of having generated the time series. Indeed, the
possible values assumed by an interpolating function at
unknown time instants s = (sj)Mj=1 and the likelihood of each
possible set of values for that time instants are described by
the conditional law, that is the Gaussian law with mean and
covariance given respectively by

m(s) + R(s, t)R(t, t)−1(x − m(t)),

R(s, s) − R(s, t)R(t, t)−1R(t, s), (2)

where m(s) = (m(s1), ..,m(sM )) and

R(s, t) =

R(s1, t1) . . . R(s1, tN )
...

. . .
...

R(sM , t1) . . . R(sM , tN )

 . (3)

Typically the structure of the mean and covariance func-
tions is chosen a-priori, for instance the square exponential
covariance function R(s, t) = σ exp(− 1

2l2
(t − s)2), and it

remains only to estimate the parameters, which are σ and l
in the squared exponential covariance function case.

B. THE MODEL ARCHITECTURE
The architecture of the simplest model deploying the
module implementing the optimal evaluation of the expected
signature subject to the accuracy of the classification task is
made of two main parts.

The first element is constituted of three layers and produces
a sample of K time series evaluated in a set of new times.
The new series are sampled through a generalized Gaussian
Process regression model, whose mean and covariance
functions are not defined a-priori but they are parameters of
the architecture.

The second element is made of four layers, takes as
input the sample of K new time series and evaluates the
(normalised) expected signature.

A graphical representation of the architecture is shown in
Fig. 1. In the following we describe the elements of the model
in full detail.

1) DATA AUGMENTATION
We turn to the description of the first element, whose role
essentially is to perform data augmentation and sampling of
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FIGURE 1. Graphical representation of the model

K new time series which are coherent with the initial input.
This element is constituted by three layers.

The input layer receives the time series values and the
corresponding time instants, (xi, ti)Ni=1, and the sequence
(si)Mi=1 of new time instants. In principle, the set of new time
instants can be arbitrarily chosen. Nevertheless, we propose
two different choices in Section II-C.
The first hidden layer receives a vector m and a lower

triangular matrix V , the output of a linear transformation.
They should ideally represent respectively the mean and
the square root of the covariance of the conditional law
of Xs1 , . . . ,XsM given Xt1 = x1, . . . ,XtN = xN , that
is (Xs1 , . . . ,XsM ) conditional to (Xt1 = x1, . . . ,XtN =

xN ) has the multivariate Gaussian distribution N (m,VV T )
with mean m and covariance matrix VV T . The third layer,
finally, samples K vectors (yj)Kj=1 from N (m,VV T ). A full
description of how the sampling is performed can be found
in Section II-C. Any vector yj has M components and it
represents the values assumed at the new time instants (si)Mi=1

by a trajectory that might have generated the starting time
series (xi)Ni=1. Then, any vector yj is combined with the
original input by following the temporal order, ending upwith
a larger and richer time series.
We emphasize that the outcome of this part provides an

ensemble of time series that on the one hand are richer than
the original input, on the other hand are coherent with the
starting time series.
In other words, the first part of the model deploys a

data augmentation scheme that makes use of the sampling
procedure outlined above to obtain more information about
the original time series.
This scheme is strongly connected to the GP regression

model described above since they both exploit a Gaussian
process based interpolation procedure. We stress again that
the main difference between them is how the mean and the
covariance are tuned. In a classical GP regression model, the
mean and covariance structure are specified a-priori. In our
approach the mean and the covariance are fully learnt by the
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model. This different approach is both a necessity and an
improvement. Indeed, we cannot make use of hand-designed
mean and covariance functions since we would need one
for each time series. At the same time, this different tuning
procedure is a strength of our model because we are not
introducing any constraint on the Gaussian law we are
sampling from.

2) EVALUATION OF THE EXPECTED SIGNATURE
The second part of the model is responsible for the extraction
of the relevant features from the K enriched time series,
and is made of four layers. These layers estimate the
expected signature based on the ensemble provided by the
first part of the model. Clearly, the estimate becomes more
and more reliable as long as the size K of the sample
increases. A quantitative version of this statement is given by
Proposition 14.

The first layer of this phase receives the K enlarged time
series and applies a dimensional augmentation by adding the
time component. The following layer computes the signature
of each time series up to a truncation level L. Then, the
normalization procedure that allows the expected signature to
characterize the law of stochastic processes is applied to each
signature. The expected signature is estimated by averaging
component-wise. Finally, the expected signature estimate is
used by a softmax layer in order to classify the starting time
series.

At this stage we can appreciate that the normalization
procedure, which is a requirement to ensure that the expected
signature would characterize the law at the theoretical level,
turns out to be a crucial step also from a computational
point of view. Indeed, we will see that a loose normalization
can make the training unstable, see Section III-B1 for
experimental evidence.

In addition, the normalization procedure can also be
interpreted as a time series preprocessing technique. Indeed,
(λS1,λ2S2, . . . ,λLSL) is both the normalized signature of a
given time series z = (zti )i and the signature of the rescaled
time series λz. We point out that in the machine learning
literature one can find several time series normalization
methods. Here, they would not be equally effective, since
they are not able to preserve the fine theoretical properties
of the expected signature. See Remark 16 for further
details.

A technical novelty of our work is that the normalization
constant λ is found using only the truncated signature.
In Corollary 10 we show that the value λ we use is a proper
approximation of the theoretical value λT . In particular,
we prove that λ converges to λT , as the truncation threshold
of the signature diverges to infinity, and we find an estimate
of the convergence rate.

C. TRAINING PROCEDURE AND ARCHITECTURE
MODIFICATIONS
One of the main features of the model is that it can be trained
by using any classical gradient based optimization scheme

(e.g. SGD) since back-propagation can be performed. Indeed,
the sampling layer does not interfere with the gradient com-
putation because we are exploiting a well-known Gaussian
laws property (if X ∼ N (0, I ), then Y = VX + m ∼

N (m,VV T )) in order to take samples of N (m,VV T ) by just
sampling from a standard Gaussian distribution.1

The signature layer and normalization procedure are
both differentiable thanks to formula (18) and the gradient
computed in Corollary 11.
The usage of back-propagation suggests that the proposed

model can be easily introduced in more complex and deeper
architectures. The easiest possible modification of our model
architecture can be obtained by increasing the number of
layers in the prediction phase.

There are other possible changes that can be easily
implemented. For example, we can introduce any different
signature computation algorithm, such as the log-Signature
transform [18], or any time series transformation. Indeed,
we have been using the time augmentation because it has a
relevant role in various theoretical results (Proposition 3 and
Theorem 4), but it can be replaced by various transformations.
An extended list of possible and useful time series transfor-
mations can be found in [27].
Another possible modification can be obtained by intro-

ducing a limitation on the square root V of the covariance
function of the conditional law, in order to reduce the
computational burden. For instance a reasonablemodification
is to set to zero some sub-diagonals, that is, if V = (vi,j)M

′

i,j=1,
to set vi,j = 0 for all (i, j) such that i < j and i < α.
The parameter α can be interpreted as a control on the
correlation time-scale. Indeed, with this choice, Xsl and Xsm
are correlated if |l − m| < α.

Lastly, we indicate two possible strategies to select the new
time instants (si)Mi=1. The first one considers the middle points
of the sub-intervals [ti, ti+1] for i = 1 . . .N − 1 as new time
instants. A second choice takes time instants smaller than
t1 or/and bigger than tN together with the middle points. Even
if these two possibilities look quite similar, they produce a
substantial difference: all the time series generated using the
first strategy have some components of their signature that
are shared by all the other time series. For example, they all
have the same components of the first level of the signature
since these components depend only on the first and last value
of each time series and they all have as first and last values
the corresponding values of the original time series. Instead,
the second strategy makes all the components of the signature
affected by the sampling procedure.

III. EXPERIMENTAL RESULTS
In this section we perform some experiments on real and
synthetic datasets in order to analyze the effect of the new
hyperparameters and to assess the inference capability of the
model described in Section II-B.

1In the machine learning community this trick is also known as ‘the
reparameterization trick’ [26].
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A. IMPLEMENTATION DETAILS
All models have been trained using the SGD optimizer as
implemented by Pytorch [28]. Signature computations
were done using the package signatory [29]. The hyper-
parameters have been tuned using a grid search strategy and
cross-validation as validation procedure. Weighted accuracy
has been chosen as validation metric due to the strong
unbalance of some datasets. The code implementing the
model and the generation of the synthetic datasets used is
available on a dedicated GitHub page [30].

1) DATASETS
The datasets used are of two different types. We have created
three synthetic datasets sampling time series with length
equal to 100 from trajectories of the following stochastic
processes over the time interval [0, 1] (see for instance [31]
for further details on the definition of these mathematical
objects),

• standard Brownian motion;
• fractional Brownian motion, sampled using the package
fbm;

• geometric Brownian motion, namely the solution of

dXt = µXt dt + σXt dBt , (4)

which has an explicit solution given by the formula

Xt = X0 exp
((
µ−

σ 2

2

)
t + σBt

)
; (5)

• Ornstein-Uhlenbeck process, namely the solution of

dXt = α(γ − Xt ) dt + β dBt , (6)

with the explicit solution given by the formula

Xt = X0e−αt + γ (1 − e−αt ) +

∫ t

0
βeα(s−t) dBs; (7)

• the solution of a stochastic differential equation with
non-linear coefficients,

dXt =
(√

1 + X2
t +

1
2Xt

)
dt +

√
1 + X2

t dBt , (8)

with the explicit solution given by

Xt = sinh
(
log(

√
1 + X2

0 + X0) + t + Bt
)
; (9)

• white noise perturbations of the following smooth
function

f (t) = 6 sin3(4π t) cos2(4π t). (10)

In particular, the first two synthetic problems, called
FBM and OU, aim at discriminating two different fractional
Brownian motions and two different Ornstein-Uhlenbeck
processes, respectively. Instead, the third dataset, called
Bidim, is composed by bidimensional time series obtained
from all the stochastic processes listed above, where first and
second components of any time series are trajectories of the
same random process.

The second group of datasets has been collected from
the Time series classification website [32]. We have chosen
datasets with not too many observations, in order to reduce
the computational burden, while keeping reliable results.
At the same time, we have tried to use datasets coming from
different topics (Ecg, Sensor, . . . ). In particular, we have used
the following datasets: ECG200 (electrical activity recorded
during one heartbeat. Here the classes are normal heartbeat
and Myocardial Infarction), Epilepsy (tri-axial accelerometer
data of healthy participants performing one of four class
activities), PowerCons (household electric power consump-
tion in warm/cold season), FacesUCR (rotationally aligned
facial outlines of 14 grad students), Ham (spectrographs of
French or Spanish dry-cured hams). A full description of
these datasets can be found on the Time series classification
website [32].

2) BENCHMARK MODELS
We have used a series of benchmark models in order
to compare deterministic augmentation schemes with the
stochastic scheme proposed here. The benchmark models
used are the following ones:

• NoAug model: no augmentation scheme,
• FFT model: fast Fourier transform,
• CS model: cubic spline interpolation,
• GP model: Gaussian Process regression model.

In particular, NoAug model receives as input the signature
of each time series and applies the normalization procedure
discussed in Appendix B and a linear layer with a softmax.
Instead, FFT model, CS model and GP model apply
the NoAug model after the preprocessing phase of the
time series. Indeed, any time series is augmented using
Fast Fourier transform, cubic spline interpolation or classical
GP regression model, respectively. In particular, in the GP
model each time series is augmented using the posterior
mean obtained by a GP regression model assuming that the
mean is a constant function and that the covariance is a
squared exponential function.

B. RESULTS
In this section we firstly analyze how the new hyperpa-
rameters introduced by the proposed data augmentation
scheme can affect model performance and stability. Then,
we compare the performance of our model with well-known
models in the literature and the benchmark models we
have introduced in Section III-A2. The comparison with
these last models will indicate that our stochastic aug-
mentation module can strongly improve signature-based
models.

We preliminary point out that since our model is intrin-
sically stochastic, we have estimated its performance by
running it multiple times with the full test set, and by
averaging the obtained accuracy and weighted accuracy.
The variance of the output was estimated in the following
way:
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• The trained model receives 50 times each time series
of the test set producing as output 50 vectors of length
equal to the number of possible labels, where each vector
is a probability distribution over the set {1, . . . ,D}, and
where D is the number of possible labels.

• Every time series in the test set is associated with aD×D
covariance matrix obtained from the 50 corresponding
vectors;

• The empirical density of the 2-norm of the covariance
matrices is computed.

1) HYPERPARAMETERS TUNING AND NORMALIZATION
Our model raises the problem of analysing the effect of
a new set of hyperparameters on the performance of the
supervised task. As in all signature based models, the level
L of the signature truncation is a hyperparameter. Likewise,
the data augmentation phase introduces the number M of
new time instants that interpolate the original time series. Our
model requires two new hyperparameters: the sample size K
required for the statistical estimates of the expected signature,
and the shape parameter C for the tensor normalization
of the signature, whose role is explained below. In this
section we focus in detail on K and C , and show that they
should be properly chosen in order to achieve competitive
results.

We first consider the shape parameter C . We recall
that the introduction of a normalization procedure allows
the expected signature to characterize the law of the
corresponding stochastic process, see Appendix B for
further details. In particular, the normalization takes the
signature S = (1, s1, s2, · · · ) and produces the vector
λS = (1,λ(S)s1,λ(S)2s2, · · · ), with λ(S) that is chosen
as the only scalar such that |λS| is equal to ψ(|S|). The
function ψ should satisfy various theoretical properties,
as stated in Proposition 8. A possible ψ function is given
by

ψ(
√
x) =

{
x, if x ≤ C,
C + C2(C−1

− x−1), otherwise.
(11)

We wish to emphasize that the actual value of C , and thus the
tensor normalization, does not play a significant role in the
characterization of the law of a stochastic process by means
of the normalized expected signature (Theorem 12). In other
words, any normalization would fit. On the other hand, our
results shown below prove that the shape parameter C plays
a relevant role from an experimental point of view. Indeed,
it actually determines if the deployed normalization is too
strict or too loose and in turn, if the model may underperform
or show instabilities. Both these cases should be avoided
when training the proposed model.

Fig. 2 shows that when C is close to 1, that is in the case
the normalization is very rigid, the model can strongly under-
perform. In contrast, Fig. 3 shows that a loose normalization
can make the training process quite unstable. In particular,
the appearance of instabilities even when working with the

FIGURE 2. Accuracy on Bidim dataset depending on the shape
parameter C .

TABLE 1. Accuracy results on real datasets. Accuracy and variance
averaged over the test set are reported for our model.

NoAug model defined in Section III-A2, the easiest model
that can be built using the signature as feature extraction
mechanism, suggests that the normalization procedure should
be deployed and tuned whenever the signature transform is
used.

We turn to the analysis of the number K of generated
augmented time series. Proposition 14 shows that the
empirical mean of the K signatures obtained by the K
enlarged time series is a good approximation of the expected
signature as long as K is sufficiently large. Fig. 4 empirically
shows that by increasing K , that is by getting a better and
better approximation of the expected signature, the output of
the model becomes more and more stable with respect to the
sampling procedure. Indeed, if themodel is fedmultiple times
with the same input, then the variance in the output is small
for K big enough.
At last, we highlight that a large value of K can slow down

the training phase. Hence, we suggest looking for the smallest
K up to a reasonably low variance in the output.

C. MODEL PERFORMANCE
In this section we compare the results of our model with
some other models on the dataset described in Section III-A1.
In particular, we compare the proposed model with two
well-known models, 1NN with DTW [33] and Hive-Cote 2
[34], which are considered state-of-the-art models for time
series classification problems, see for instance [35], and
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FIGURE 3. Results obtained working on Bidim dataset.

FIGURE 4. Variance in the output.

FIGURE 5. Performance values in synthetic and real data.

with the benchmark models introduced in Section III-A2,
in order to show the effectiveness of the stochastic

augmentation. The results are summarised in Table 1 and
Fig. 5.
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The comparison with the benchmark models indicates
that the stochastic augmentation can strongly increase the
inference capability with respect to the model that uses the
signature instead of the expected signature, i.e. the NoAug
model.

In addition, these results suggest that classical determinis-
tic interpolation schemes are not as effective as the Gaussian
processes based augmentation introduced here. For the sake
of completeness we have shown the results of HC2 and
1NN-DTW. Clearly, we cannot state that the proposed model
is statistically comparable to HC2, but the results indicate that
the introduced ideas can strongly increase the performance of
signature based models.

IV. DISCUSSION AND CONCLUSION
In this study, we proposed a new time series classification
model that can be integrated into any neural network
architecture and can be easily modified in order to tackle
any supervised task. The main idea is the construction of a
novel feature extraction scheme based on the combination
of a stochastic data augmentation and the expected signature
transform. This module is interesting because it has strong
theoretical foundations and it allows to increase the perfor-
mance of signature-based model.

This work can stimulate various future research both from
a theoretical and a computational point of view. In particular,
it would be extremely useful to look for a differentiable
formula for the expected signature of Gaussian processes.
A similar result can reduce the computational burden of our
model since it will allow to avoid the sampling procedure.
We highlight that a first result in this direction can be found
in [36]. It could be also interesting to try to understand if a
different family of stochastic processes can be deployed in the
stochastic augmentation scheme. Such a result will make our
model even more flexible and effective. At last, we report that
it can be worth introducing our feature extraction module in
more complex signature-based architectures, such as the one
proposed in [19], in order to improve the performances and
obtain additional statistical comparisons with state-of-the-art
models for time series classification task.

APPENDIX
THEORETICAL BACKGROUND AND SOME RESULTS
The first part of this appendix contains the definition and
property of the signature. The second part introduces the
expected signature.

A. SIGNATURE
Almost all the results contained in this section can be found
in [5] and in [7]. Firstly, we need to introduce the tensor space
and the truncated tensor space.
Definition 1: The tensor product space of Rd is

T (Rd ) = {(an)n∈N | an ∈ (Rd )⊗n}, (12)

the set of the formal series of tensors of Rd . The truncated
tensor product space at degree N is the set

T (Rd )L = {(an)n≤L | an ∈ (Rd )⊗n}. (13)

They are algebras w.r.t the component-wise addition, the
component-wise multiplication by scalars and the tensor
product

a⊗ b =

( n∑
i=0

an−i ⊗ bi
)
n∈N

. (14)

Any tensor component an can be represented by its
components with respect to the canonical basis of (Rd )⊗n.
In other words an can be identified by a set of scalar values
(ai1,...,in )i1,...,in=1,...,d .

Moreover, the set T1(Rd ) defined by{
a ∈ T (Rd )

∣∣∣ a0 = 1,
∞∑
n=0

d∑
i1,...,in=1

|ai1,...,in |2 < ∞

}
, (15)

is actually a Banach space.
Definition 2: Consider X : [0,T ] → Rd a continuous

function with bounded variation. The signature of the
path X is the sequence of iterated integrals S(X )0,T =

(1, S(X )1, S(X )2, . . . , S(X )n, . . . ), where for every n ≥ 1,
S(X )n ∈ (Rd )⊗n is defined through its components with
respect to the canonical basis by

S(X )n =

(∫ T

0
· · ·

∫ u3

0

∫ u2

0
dX i1u1 dX

i2
u2 . . . dX

in
un

)
, (16)

with indices i1, . . . , in running over the set {1 . . . , d}.
The signature has various properties that make it

well-suited for dealing with path-like data.
Proposition 3: Let X ,Y : [0,T ] → Rd be BV and

continuous functions and φ : [0,T ] → [0,T ] be a C1,
increasing and surjective function. Then:

1) S(X )s,t = S(X )s,u ⊗ S(X )u,t for all s < u < t;
2) S(X ) = S(X ◦ φ);
3) |S(X )n| ≤

1
n! |X |

n
1,[0,T ], for all n ∈ N;

4) S(X ) = S(Y ) if and only if X = Y (see [8]).
Here, S(X )s,t stands for the signature of X restricted to the
interval [s, t], |X |1,[0,T ] is the total variation of X on the
interval [0.T ], and X t = (Xt , t).

The third property in Proposition 3 shows that by
truncating the signature we do not lose a huge amount
of information. The fourth property in Proposition 3 on
the other hand shows that, up to adding the time com-
ponent, the signature uniquely identifies the corresponding
path.

Moreover, it holds a universal approximation theorem.
Theorem 4: [(I.P. Arribas, [9])] Let F : K → R be a

continuous function defined over a compact set K , composed
by continuous and BV functions from [0,T ] to Rd . Then, for
any ϵ > 0, there exists a linear map L such that for all
X ∈ K,

|F(X ) − L(S(X ))| ≤ ϵ. (17)
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At last, we indicate how to compute the signature of a time
series.
Definition 5: Let x = (xti )

N
i=0 be a time series. Its signature

is given by the signature of a linear interpolation of x.
A-priori the definition depends on the choice of the linear

interpolation (that is the speed at which one traverses the
gap between the xi), but Proposition 3 ensures that the
definition of signature for a stream of data is well-defined
and independent from the choice of the linear interpolation.
Moreover, Proposition 3 allows to easily compute the
signature of a time series. Indeed,

S(x) = exp(x1 − x0) ⊗ · · · ⊗ exp(xN − xN−1), (18)

where we recall that exp(a) =
∑

∞

n=0
1
n!a

⊗n.

B. EXPECTED SIGNATURE
All the results without proof can be found in [12].
Definition 6: Consider a stochastic process (Xt )t∈[0,T ]

such that almost every trajectory is continuous with bounded
variation. The sequence (E[S(X )i1,...,in ])i1,...,in=1,...,d is called
the expected signature of X .
The expected signature is able to identify the law of the

corresponding stochastic process only if it is properly
normalized.
Definition 7: A continuous and injective map λ :

T1(Rd ) → T1(Rd ) is called a tensor normalization if there
is λ : T1(Rd ) → (0,∞) such that:

• λ(t) = δλ(t)(t) := (1,λ(t)t1,λ(t)2t2, . . . ) for all t ∈

T1(Rd ),
• |λ(t)| ≤ R for all t ∈ T1(Rd ).

Let us show how such a tensor normalization can be built.
Proposition 8: Let ψ : [1,∞) → [1,∞) be a bounded,

injective and K-Lipschitz function such that ψ(1) = 1 and
supx≥1

ψ(x)
x2

≤ 1. Given t ∈ T1(Rd ), let λ(t) be the only
non-negative value such that |δλ(t)(t)|2 = ψ(|t|). Then, the
map λ(t) = δλ(t)(t) is a tensor normalization and there exists
a constant c > 0 such that for all s, t ∈ T1(Rd ),

|λ(s) − λ(t)| ≤ cmin(
√

|t − s|, |t − s|). (19)

Example 9: The function

ψ(
√
x) =

 x ifx ≤ C,

C +
C1+a

a
(C−a

− x−a) otherwise,
(20)

a > 0 and C ≥ 1 meets the assumptions of the previous
proposition.
Corollary 10: Let ψ be a function as in the previous

proposition, M ∈ N∗, t ∈ T1(Rd ) and tL =

(1, t1, . . . , tL , 0, . . . ). Then,

λL := λ(tL) → λ(t),

as L → ∞.
Moreover, suppose that t = S(X ) for some con-

tinuous function with bounded variation and consider

r = min{j ∈ N : t j ̸= 0}, then for all L ≥ r,

|λL − λ|

≤ C min
(

4

√√√√ ∞∑
j=L+1

1
j!

|X |
j
1,[0,T ],

√√√√ ∞∑
j=L+1

1
j!

|X |
j
1,[0,T ]

) 1
r

.

(21)

Proof: If r = 0, then t = (1, 0, . . . , 0, . . . ) = tL and the
result is trivial. Suppose that r ̸= 0 and consider L ≥ r , then

|λrL − λr |2 =
1

|tr |2
|λrL t

r
− λr tr |2

≤
1

|tr |2

( L∑
j=r

|λ
j
L t
j
− λjt j|2 +

∞∑
j=L+1

|λjt j|2
)

=
1

|tr |2
|λ(tL) − λ(t)|2.

Therefore, the convergence follows from the continuity of λ.
The inequality Eq. (21) follows from Proposition 3 and the
inequality Eq. (19). □
Since the normalization procedure is introduced in the

proposed model, we need to be able to compute the gradient
of λ(t).
Corollary 11: Let ψ be a C1 function that satisfies the

assumptions of Proposition 10, and consider the correspond-
ing λ(t) function.
Given s ∈ T1(Rd )L such that s ̸= (1, 0, . . . , 0), there exists

an open neighbourhood U of s in T1(Rd )L such that λ|U is a
C1 function and

∇λ(s) =

( s
i1,...,ij
j (λ(s)2j − 1

2|s|
d
dxψ(|s|))∑L

k=1 kλ(s)2k−1
∑d

i1,...,ik=1 |si1,...,ikk |2

)
, (22)

with indices j = 1, . . . ,L and i1, . . . , ij = 1, . . . , d.
Proof: Consider the function F : (0,∞) × T1(Rd )L →

R defined by F(λ, t) = |δλ(t)|2 − ψ(|t|). Its derivatives are
given by the following formulas:

∂λF(λ, t) =

L∑
k=1

2kλ2k−1
d∑

i1,...,ik=1

|t i1,...,ikk |
2,

∂
t
i1,...,ij
j

F(λ, t) = 2t
i1,...,ij
j

(
λ2j

−
1
2|t|

d
dx
ψ(|t|)

)
.

Hence, the result follows directly from the implicit function
theorem. □
We can finally state the main property of the expected

signature.
Theorem 12: Consider a tensor normalization λ and let

µ and ν be the laws of (Xt )t∈[0,T ] and (Yt )t∈[0,T ], stochastic
processes with continuous and BV trajectories. Then, µ = ν

if and only if E[λ(S(X ))] = E[λ(S(Y ))]
Since we estimate the expected normalized signature

by averaging the normalized signature of K trajectories,
we report a concentration inequality.
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Lemma 13: (Hoeffding’s inequality, [37]) Let Y1, . . . ,Yn
independent random variables such that Yi takes values in
[ai, bi] almost surely for all i ≤ n. Then for every σ > 0,

P
[ n∑
i=1

(Yi − E[Yi]) ≥ σ
]

≤ exp
(

−
2σ 2∑n

i=1(ai − bi)2

)
. (23)

Proposition 14: Let λ be a tensor normalization and
(Xt )t∈[0,T ] a stochastic process with continuous and BV
trajectories. Consider Y1, . . . ,YK iid random variables with
values in T1(Rd ) such that any Yi has the same law of the
random variable λ(S(Xt )). Then for all σ > 0,

P
[
|

K∑
i=1

Yi − E[Yi]
K

| ≥ σ

]
≤ exp

(
−
2σ 2K
(2R)2

)
. (24)

Proof:We have

P
[
|

K∑
i=1

Yi − E[Yi]
K

| ≥ σ
]

≤ P
[ K∑
i=1

|Yi − E[Yi]|
K

≥ σ
]

≤ exp
(
−

2σ 2K 2∑K
i=1(2R)2

)
,

where the last inequality is due to Hoeffding’s inequality
applied to the random variables {

1
K (|Yi − E[Yi]|)}i=1,...,K .

Indeed, any 1
K (|Yi − E[Yi]|) takes values in [0, 2RK ] since λ

is a tensor normalization. □
At last, we report a concrete example where the normaliza-

tion is crucial.
Example 15: Consider two R2-valued stochastic

processes

(Xt )t∈[0,1] = (tN1, tN2)t∈[0,1],

(Yt )t∈[0,1] = (tM1, tM2)t∈[0,1], (25)

where N = (N1,N2) and M = (M1,M2) have, respectively,
density

p(n1, n2) =

2∏
i=1

1

ni
√
2π

exp(− 1
2 log

2(ni)),

q(m1,m2) = p(m1,m2)
2∏
i=1

(1 + sin(2π log(mi))). (26)

These two stochastic processes have the same expected
signature. The proof is an elementary consequence of the
following equalities:

• S(X )m =
1
m!
((X (1) − X (0))⊗m), for all m ∈ N;

• S(X )m =
1
m!
((Y (1) − Y (0))⊗m), for all m ∈ N;

• E[(X (1) − X (0))⊗m] = E[(Y (1) − Y (0))⊗m], for all
m ∈ N.

Remark 16: We have already highlighted that the normal-
ized signature of a path is, actually, the signature of the
path multiplied by a constant. Indeed, (λS1,λ2S2, . . . ,λLSL)
is both the normalized signature of a given path (Zt )t and
the signature of the rescaled path (λZt )t . So, the normal-
ization procedure can be thought as a path preprocessing

mechanism. We point out that normalization procedures
that are well-known in the machine learning field, such as
z-normalization or min-max normalization, are not able to
produce a result such as Theorem 12. This can be easily
shown by applying them to the previous example.
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