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ABSTRACT A battery management system needs a robust algorithm for online state-of-charge estimation
of batteries in different dynamic systems. Due to the ease of implementation, model-based state-of-
charge estimation using the extended Kalman filter is popularly used in battery management systems for
online state-of-charge estimation. However, the accuracy of the extended Kalman filter depends on the
appropriate initialization of noise covariance. In this paper, a robust modified adaptive extendedKalman filter
(RMAEKF) is proposed that enhances the state-of-charge estimation accuracy by incorporating recursive
adaptive correction rules for process andmeasurement noise covariancematrices. The adaptive rule considers
the predicted terminal voltage error and the state prediction error in each time step to provide the necessary
correction of measurement noise covariance and process noise covariance respectively. Further, to validate
the state-of-charge estimation accuracy of the proposed RMAEKF, its performance indices for LA92, US06,
and mixed drive cycles are obtained at different operating temperatures and compared with the performance
indices of the extended Kalman filter and forgetting factor-based adaptive extended Kalman filter. Moreover,
the robustness of the proposed RMAEKF is examined with different initial values of state-of-charge, noise
covariance matrices, offset current and bias voltage. In addition to that, an experiment using the OPAL-RT
real-time simulator is also performed to validate the proposed methodology for online SOC estimation.
Concurrently, mean execution time and computational complexity analyses of the proposed RMAEKF are
performed to check its applicability in real-time battery management system applications. From the result
analysis, it is observed that the proposed RMAEKF shows better robustness and higher state-of-charge
estimation accuracy than other compared algorithms under dynamic operating conditions.

INDEX TERMS Adaptive noise correction, battery electric vehicle, battery management system,
state-of-charge.

I. INTRODUCTION
Increasing demand for electrical energy generation is attract-
ing researchers to look for low-carbon, clean, and sustainable
energy sources like solar energy, wind energy, bio-energy, etc.
The electricity generated from the aforesaid sources needs
a storage device or battery for future utilization. Recently,
lithium-ion or polymer batteries got more attention due to
their long life cycle, low maintenance, no memory effect,
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approving it for publication was Enamul Haque.

low self-discharge rate, and high specific energy density [1],
[2]. In spite of all these advantages, lithium-ion or polymer
batteries are expensive as compared to lead-acid and nickel-
metal hybrid batteries and possess complicated chemical
dynamics during the charging and discharging process. Due
to this, it is difficult to assume the internal state of the battery
during operating conditions. To ensure the safe and reliable
operation of battery-powered systems, an efficient battery
management system (BMS) is essential that can accurately
estimate the internal state of the battery. BMS measures
all the essential parameters of the battery or battery pack
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for handling thermal degradation and cell balancing. It also
senses the temperature, measures terminal voltage, battery
current, and different states of the battery during on-load
conditions [3]. The state-of-charge (SOC) of the battery
gives an indication of the available useful energy left for
utilization with respect to the rated capacity of the battery.
However, SOC cannot be measured directly but can only be
estimated by observing the current, voltage, and operating
temperature of the battery. The service life of the battery can
be enhanced by operating it within a certain range of SOC.
Hence, accurate estimation of SOC becomes an important
task in all battery-dependent systems, such as battery electric
vehicles (BEVs) and hybrid electric vehicles (HEVs). Electric
vehicles (EVs) have a very dynamic power demand profile.
So, BMS should have a robust and accurate online SOC
estimation technique to deal with such a dynamic operating
condition.

A. LITERATURE SURVEY
In recent times, many SOC estimation techniques have
been developed, such as the coulomb-counting method
(CCM), the model-based estimation method (MEM), and the
data-driven method (DDM). [4]. However, due to its ease of
implementation, theMEM is widely used for SOC estimation
in BMS applications [5]. For MEM, many equivalent models
of batteries are proposed, such as the empirical model
(EM), the electrochemical impedance model (EchIM), and
the equivalent circuit model (ECM) [4]. Compared to other
models, ECM is easy to implement in embedded electronics
systems with acceptable modeling accuracy and moderate
computation complexity. ECM consists of a voltage source
connected in series with a resistor and with a number of
resistor-capacitor (RC) parallel branches to represent the
cell dynamics [6], [7]. It is found that, with moderate
computational stress on the estimation process, the 1-RC
and 2-RC models with KF-based SOC estimation algorithms
show good accuracy in SOC estimation.

Recently, many variants of KF, such as the extended
Kalman filter (EKF) [8], the unscented Kalman filter (UKF)
[9], the cubature Kalman filter (CKF) [10], [11], and the
sigma-point Kalman filter (SPKF) [12], were proposed for
online SOC estimation of the battery. Out of which, EKF
shows a good trade-off between estimation accuracy and
computational complexity among other advanced variants
of KF. However, the performance of the KF is contingent
upon the accuracy of the noise statistics. This requires
an adaptive extended Kalman filter (AEKF) capable of
performing adaptive correction of the noise covariancematrix
(NCM) in accordance with the change in state prediction
error and innovation. Article [1] proposed an affine iterative
AEKF that considers non-Gaussian white noise and estimates
the innovation covariance matrix (ICM) using a sliding
window technique with a fixed window size. In [13], the
NCM is updated using Sage-Husa adaptive filtering, and
the ICM is modified using the variable sliding window
technique with upper and lower threshold values taken

into account. Furthermore, [13] analyzed the actual and
theoretical ICMs in order to create an adaptive correction
factor for updating the predicted state error covariance
matrix (SECM). Adaptive correction of SECM significantly
enhances SOC estimation precision. Similarly, in order to
identify the ICM, [14] employed the variable sliding window
technique by considering the change in error innovation
sequence (EIS) in each iteration. Consideration of the EIS
seems more persuasive than consideration of a specific
threshold value. The implementation of the sliding window
technique improves the SOC estimation accuracy, but at the
expense of an increase in computational burden. To minimize
the computational burden during SOC estimation with the
sliding window method, [15], [16] proposed a forgetting
factor-based AEKF (FFAEKF) that includes a weighted
coefficient to update the noise matrices. Reference [15]
determines the innovation and residual of estimated terminal
voltage using posterior and prior SECM, whereas [16]
used posterior and prior estimates for the determination
of innovation and residual of estimated terminal voltage.
The comparative statistical analysis infers that FFAEKF-II,
proposed in [15], has better estimation accuracy than
FFAEKF-I, which is proposed in [16]. In FFAEKF, the
inclusion of the forgetting factor provides more fluctuation to
Kalman gain during SOC estimation by emphasizing themost
recent data samples, which reduces the computational burden
of the overall SOC estimation process. However, selecting
the appropriate forgetting factor value can be a burdensome
task. To resolve this issue, [17] incorporated a fuzzy logic
controller for the selection of forgetting factors. However, the
implementation of a fuzzy logic controller for determining
the forgetting factor increases the computational complexity
and memory requirements. Though the incorporation of the
forgetting factor enhances the SOC estimation accuracy, the
performance of FFAEKF under the influence of operating
temperature variation, measurement bias, and improper
initialization of noise covariancematrices were not examined.
These aforementioned operating conditions may reduce the
robustness of the estimation algorithm.

B. PROBLEM FORMULATION
In the model-based estimation, a non-linear dynamic system
is represented by the following state space model:

Sk = g(Sk−1, ck−1) + pk−1 (1)

Ok = h(Sk , ck ) + mk (2)

where ck is the known input control variable, Sk is the
unknown model state vector, Ok is the measured output
of the system, pk ∼ N (0,Pk ) represents the unknown
and immeasurable process noise vector with zero mean
and covariance Pk , and mk ∼ N (0,Mk ) represents the
measurement noise vector with zero mean and covariance
Mk . KF has mainly two runtime processes, i.e., prediction
and correction. The prediction process can be expressed as
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follows:

Ŝk|k−1 = Gk−1Ŝk−1|k−1 + Hk−1ck−1 (3)

Ek|k−1 = Gk−1Êk−1|k−1GTk−1 + Pk−1 (4)

where Sk|k−1 and Ek|k−1 are the predicted state vector matrix
(SVM) and predicted state error covariance matrix, Gk−1
is the state transition matrix, and Pk is the process noise
covariance matrix. In the next step, the KF updates the
predicted SVM and SECM as follows:

Ôk = Wk Ŝk|k−1 + Vkck (5)

zk = Ok − Ôk (6)

Zk = E[zkzTk ] = WkEk|k−1W T
k +Mk (7)

Kk = Ek|k−1W T
k Z

−1
k (8)

Ŝk|k = Ŝk|k−1 + Kkzk (9)

Ek|k = (I − KkWk )Ek|k−1 (10)

where Ôk is the predicted output, zk gives the predicted output
error or innovation,Wk is the output state transitionmatrix, Zk
is the ICM,Kk is the Kalman gain, andMk is themeasurement
noise covariance matrix.

The standard EKF algorithm leverages the noise statis-
tics to modulate the Kalman gain, which is subsequently
employed to correct the filter innovation error [18]. This
adjustment leads to the refinement of the process information,
ultimately resulting in an improved estimation. However, the
stability and reliability of the EKF are contingent upon the
accurate estimation of the parameters of the stochastic battery
model [19]. In EKF-based SOC estimation, the modeling
uncertainty caused by the linearization of the non-linear
battery model is represented by the process noise covariance
matrix (PNCM). Inaccurate initialization of PNCM in EKF
may lead to filter divergence. Similarly, in EKFmeasurement,
the noise covariance matrix (MNCM) represents the uncer-
tainty in estimation due to noisy measurement. Inaccurate
initialization of MNCM in EKF leads to inaccuracy in SOC
estimation and reduces the filter convergence speed.

In practice, batteries work under uncertain operating con-
ditions, which affect their physical and chemical characteris-
tics. In addition to that, noise in sensor measurement during
on-load conditions may result in inappropriate Kalman gain
for the EKF algorithm. Hence, the selection of fixed values
of P and M may degrade accuracy in SOC estimation
under dynamic operating conditions. The aforementioned
limitations demand an adaptive extended Kalman filter
(AEKF) with adaptive correction of P andM matrix elements
in each time step for an accurate state estimation. Moreover,
the adaptive algorithm needs to be computationally efficient
and robust enough to be implemented on a BMS for real-time
operation. Therefore, a robust modified adaptive extended
Kalman filter (RMAEKF) is proposed in this work.

C. CONTRIBUTION OF THE WORK
In order to address the aforementioned problems in SOC
estimation, a noise covariance regulated modified AEKF is

proposed in this article. In the proposed RMAEKF process
and measurement noise covariance matrix are regulated with
state prediction error and change in innovation sequence
respectively. The contributions made in this article are as
follows:

• An adaptive correction factor is designed by considering
the estimated state error and mean state error covariance
in each time step to update the PNCM. The adaptive
design of PNCM enhances the robustness of the filter
during parametric uncertainty due to the variation in
battery operating temperature.

• The design of adaptiveMNCM incorporates a correction
factor by evaluating the difference between the actual
innovation covariance matrix and the theoretical innova-
tion covariance matrix in each iteration. The aforesaid
adaptive tuning of Kalman filter gain increases the
convergence speed and provides high SOC estimation
accuracy in the presence of offset current and bias
voltage in sensor measurement.

• The mean execution time and worst-case computational
complexity of the proposed RMAEKF are evaluated to
ensure cost effectiveness in practical BMS applications.

• Finally, the efficacy of the proposed RMAEKF in SOC
estimation is validated by performing an OPAL-RT
based real-time simulation.

D. ORGANIZATION OF THE PAPER
The rest of the article is organized as follows: Section II
describes the 2-RC ECM architecture and battery parameter
identification procedures. In Section III, the steps of the
proposed SOC estimation technique are elaborated briefly.
The details of the experimental setting and the test data set
used in this work are reported in Section IV. Section V
shows the comparative result analysis, computation time,
and computational complexity analysis of the proposed
work. Section VI describes the details of the real-time
experimentation performed and its corresponding result
analysis. Finally, the conclusion is specified in Section VII.

II. BATTERY MODEL ARCHITECTURE AND SOC
DEFINITION
Fig.1 represents the equivalent circuit model (ECM) of
the battery, where R0 is the internal resistance of the
battery. The two parallel RC branches, i.e., Rst , Cst and Rlt ,
Clt represent the short-duration and long-duration transient
effects, respectively. Voc is the open circuit voltage as a
function of SOC and temperature, and Vt represents the
terminal voltage of the battery. V1 and V2 are the polarization
voltages across RstCst and RltClt , respectively. IB is the
battery current and is considered to be+ve during discharging
and −ve during charging.

Applying Krichhoff’s voltage law to the circuit depicts in
Fig.1, the terminal voltage can be represented as follows

Vt = Voc(SOC,T ) − V1 − V2 − IBR0 (11)
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FIGURE 1. Equivalent circuit model (2)-RC model) of battery.

where V1 and V2 expressed as

V̇1 = −
V1

RstCst
+

IB
Cst

(12)

V̇2 = −
V2

RltClt
+

IB
Clt

(13)

State of charge (SOC) can be accurately calculated using
open loop Ampere-hour integral (AHI) [5] method as given
in (14)

SOCt = SOC0 −

∫ t

t0

ηIB(t)dt
CB

(14)

where SOC0 is the initial SOC, t0 is the initial time, η is the
coulombic efficiency, CB is the battery nominal capacity.

In this work SOC,V1 andV2 are considered as the unknown
states that needs to be estimated. The state space model
representation of ECM can be described as SOCk+1

V1,k+1
V2,k+1

 =

 1 0 0

0 exp
−1T
Rst Cst 0

0 0 exp
−1T
Rlt Clt


 SOCk

V1,k
V2,k



+


−

1T
CB

ηk

Rst
(
1 − exp

−1T
Rst Cst

)
Rlt

(
1 − exp

−1T
Rlt Clt

)
 [IB,k ]

(15)

[
Vt,k

]
=
[

∂VOC
∂SOC −1 −1

] SOCk
V1,k
V2,k

+ [−R0] [IB,k ]

(16)

where 1T is the sample time.

A. SOC VS. OCV CURVE
The open circuit voltage (OCV) of the battery can’t be
measured directly; hence it is approximated by knowing
the corresponding SOC value. The SOC-OCV relation for a
particular operating temperature is obtained by performing
low current test that keep the cell in equilibrium state all time.
In low current test, the fully charge battery (SOC= 100% ) is
slowly discharged with a C-rate of C/20 to its cutoff voltage
value (SOC= 0%) followed by slowly charging the battery to
its maximum operating voltage. Lastly, the obtained charging

FIGURE 2. SOC-OCV curve at 00C, 250C and 400C.

and discharging SOC-OCV curve is averaged to obtain the
required SOC-OCV curve for a given operating temperature.
The SOC-OCV curve for 00C, 250C and 400C is shown in
Fig.2.

B. BATTERY MODEL PARAMETER IDENTIFICATION

FIGURE 3. a) Parameter identification from a pulse response b)
corresponding current.

In model-based SOC estimation, the accuracy of the
predicted state value depends significantly upon the battery
model parameters [20]. The internal state of a lithium
battery (LIB) is affected by the cell chemistry, ambient
temperature, and residual capacity of the battery. Hence,
the battery model parameter changes with variations in
operating temperature, C-rate, charge / discharge cycle, and
SOC of the battery [21]. One of the most common methods
of parameter identification is offline calculation of battery
model parameters. In offline parameter estimation, the battery
is subjected to a hybrid pulse power characterization (HPPC)
test at different operating temperatures [7].
Fig.3a & 3b shows the voltage and current for the first

pulse response obtained from the HPPC test. In Fig.3a,
1v0 represents the instantaneous change in voltage when
pulse current is removed and 1v∞ represents the steady
state voltage response. Similarly, 1IB is the change in
battery current and Rd Cd represents diffusion resistance
and capacitance respectively. Referring to Fig.3a the internal
resistance R0 and diffusion resistance Rd can be found
using (17) & (18) respectively.

R0 =|
1v0
1IB

| (17)

Rd =|
1v∞
1IB

| −R0 (18)

Furthermore, it can be observed that the voltage converges
to a steady state in about 20 minutes. Considering the
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FIGURE 4. Battery parameters with respect to variation in SOC at 00C,250C and 400C: (a) R0,(b) R1,(c) R2, (d) C1 and (e) C2.

time constant of the RC circuit, Cd can be calculated.
However, considering the real-time application, it is essential
to estimate the battery model parameter online. In this
proposed work, a new 5Ah Turnigy cell (Turnigy Graphene
5000mAh 65C cell) is used to perform an HPPC test [22],
and the obtained test data is processed in MATLAB /
Simulink-based model-based parameter optimization at dif-
ferent temperatures as a function of SOC. The obtained
ECM parameter values of the battery are then determined
in each iteration using the scatteredInterpolant function of
MATLAB, as discussed in [23] and [24]. The results of
the identified battery parameters for different SOCs at 00C,
250C, and 400C temperatures are shown in Fig.4. It is
observed that the discharge capacity of LIB reduces at low
temperatures and increases at high operating temperatures.
Further, li-ion batteries have fast electrolyte response in
high operating temperatures and slow electrolyte response
at low operating temperatures due to variation in battery
internal resistance [25]. The aforesaid reason leads to change
in battery parameters with respect to changes in SOC and
temperature, which can be observed from Fig.4.

III. PROPOSED METHOD FOR SOC ESTIMATION
This section explains the design of adaptive rules that
are incorporated in the proposed RMAEKF. The working
structure of the proposed SOC estimation method is shown
in Fig.5. The process and measurement noise are corrected
using the adaptive rule as discussed below.

A. ADAPTIVE NOISE COVARIANCE UPDATE RULES
From Section I-B, it is clear that the accuracy of a KF-based
state estimator degrades when the noise covariance matrix
values are too large or too small relative to their true
value. Hence, two recursive noise correction rules Rule − I
and Rule − II are incorporated in the proposed RMAEKF

to update both P and M adaptively in order to achieve
better accuracy in SOC estimation. For the given non-linear
dynamic system in Eq.1 & 2 the SOC estimation is carried
out by considering the following assumptions:

Assumption1: Process noise (pk ) and measurement noise
(mk ) are assumed to be independent and uncorrelated to
each other, i.e., E(pk ) = E(mk ) = E(pmT ) = 0. Where E(.)
represents the expected value of (.).

Assumption2: The input current IB is considered to have a
sample time interval of T , i.e IB(t) = IB,k−1, tk−1 ≤ t < tk .
Where tk = tk−1 + T . further, both pk and mk should have
same sampling time interval.

With the above mentioned assumption, for a given initial
value of P0 and M0 the proposed RMAEKF incorporates
two positive constants CP and CM and the noise covariance
error 1P and 1M to update the noise covariance matrices
recursively utilizing the following rules [26].

• Initialization:

d̄0, z̄0, Ŝ0,E0 > 0,P0 > 0,M0 > 0 (19)

• Rule-I: For Process noise covariance correction

β1 =
CP − 1
CP

(20)

d̂k = Ŝk|k − Ŝk|k−1 (21)

d̄k = β1d̄k−1 +
1
CP

d̂k (22)

1Pk =
1

CP − 1

(
d̂k − d̄k

) (
d̂k − d̄k

)T
+

1
CP

(
Ek|k−1 − GkEk−1|k−1GkT

)
(23)

Pk =| diag (β1Pk−1 + 1Pk) | (24)

78438 VOLUME 12, 2024



S. Rout, S. Das: Noise Covariance Regulated Robust Modified Adaptive Extended Kalman Filter

FIGURE 5. Working structure of proposed SOC estimation.

FIGURE 6. Flowchart of proposed RMAEKF.

• Rule-II: For measurement noise covariance
correction

β2 =
CM − 1
CM

(25)

z̄k = β2z̄k−1 +
1
CM

zk (26)

1Mk =
1

CM − 1
(zk − z̄k)

(zk − z̄k)T −
1
CM

WkEk|k−1W T
k (27)

Mk =| diag (β2Mk−1 + 1Mk) | (28)

where d̂k is the state prediction error and zk is the output
prediction error.
From (24) and (28) it can be observed that the rule used
to update noise covariance matrices always keeps the Pk
and Mk matrix as positive definite for all k. Here, to add
more flexibility to the noise covariance update rule, the value
of CP and CM are user defined based on the system noise
characteristics. These two positive constants can be set to
have a big value for a noisy system or a smaller value for
a less noisy system without losing generality. Furthermore,
the proposed adaptive rule reduces computational burden as
the noise covariance matrices can be updated only by tuning
CP and CM value instead of tuning all the diagonal elements.

B. PROOF OF ADAPTIVE COVARIANCE UPDATE RULE
To prove the proposed Rule-I and II as discussed in
Section III-A, the true value of state and the actual value of
terminal voltage need to be known. However, during online
SOC estimation only the sensor measured battery terminal
voltage is known. Hence, the proof of measurement noise
covariance update rule is illustrated first. In EKF, estimated
terminal voltage can be evaluated as per (5) and (16). Now
considering the predicted output voltage and actual terminal
voltage, one can find the predicted output error covariance
as per (7). In (7), Mk is the assumed value of MNCM and
considered to be constant. Suppose there exists an uncertainty
in M and let it be termed as 1M. Then (7) can be rewritten as

Zk = WkEk|k−1W T
k +Mk − 1M (29)

Now, 1M value can be determined from (6) as it gives the
information regarding the innovation. For a set number CM
of output observations, the mean and covariance of the output
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terminal voltage can be described as

z̄k =
1
CM

CM∑
i=1

zi (30)

1M =
1

CM − 1

CM∑
i=1

(zi − z̄i)(zi − z̄i)T (31)

Putting the value of 1M from (31) in to (29) and performing
mathematical simplification M can be obtained as

M =
1

CM − 1

CM∑
i=1

(zi − z̄i)(zi − z̄i)T −
1
CM(CM∑

i=1

(WkEk|k−1W T
k )i

)
(32)

(32) indicates that the MNC are updated in each time index,
which infers the correlation between the present and previous
covariance samples. This relationship between the recent
noise covariance can be found by separating them into two
groups i.e., group-1 containing covariance from i = k−CM to
i = k − 1 and group-2 containing only the covariance at time
k . Further, after a fewmathematical manipulation, the sample
covariance in group-1 can be approximated with a large value
of CM as

CM
(CM − 1)2

×

k−1∑
i=k−CM

(zi − z̄i)(zi − z̄i)T (33)

and (32) can be expressed as

Mk =
CM − 1
CM

Mk−1 + 1Mk (34)

Mk−1 ≈
1

CM − 2

k−1∑
i=k−CM

(zi − z̄i)(zi − z̄i)T

−

 1
CM − 1

k−1∑
i=k−CM

(WkEk|k−1W T
k )i

 (35)

1Mk =
1

CM − 1
(zk − z̄k )(zk − z̄k )T −

1
CM

(
WkEk|k−1W T

k

)
(36)

As shown above, (34) implies the proof of adaptive rule of
MNCM as given in (28).
Using the same methodology z̄k can be computed as

z̄k =
1
CM

k∑
i=k−CM

zi =
1
CM

k−1∑
i=k−CM

zi +
1
CM

zk (37)

which can be reduced to

z̄k =
CM − 1
CM

z̄k−1 +
1
CM

zk (38)

In the same manner, the adaptive rule for PNCM can also
be proved by using the same approximation and initiating
the derivation by considering the SECM as expressed in (4)

along with the one-step state prediction error as given in (21).
Moreover, as the true value of state is unknown, so the
initialized state value can be considered to start the derivation
of the adaptive rule for PNCM. The flowchart of the proposed
RMAEKF is shown in Fig.6.

IV. EXPERIMENTAL SETTINGS AND DATA SET
REQUIREMENT
A. EXPERIMENTAL SPECIFICATION

FIGURE 7. Dynamic load current profile of a) LA92, b) US06 c) UDDS and
d) Mixed at 250C.

In order to check the efficacy of the proposed RMAEKF,
a fully charged 5Ah Turnigy Graphene battery is considered,
whose specifications are listed in Table-1. The battery model
parameters are obtained by performing a four-pulse discharge
HPPC test at 1, 2, 5, and 10 C-rate for both charging and
discharging current, with a reduced value at low temperatures.
The tests were carried out by covering the SOC range from
100% to 5% with an interval of 5%. After completion of each
test, the battery is further charged at a 1C rate to 4.2V with a
5mA cut-off charge current at room temperature. [22].

TABLE 1. Battery specification.

Once all the required battery test data sets are prepared, the
proposed algorithm is processed in aMATLAB / SIMULINK
environment. Here, the SOC calculated by the coulomb
counting method is considered the reference SOC. The
proposed online SOC estimation process began with the
initialization of state, state covariance, noise covariance, and
simulation parameters as mentioned in Table-2. To examine
the estimation accuracy, the current profiles of three different
drive cycles, i.e., LA92, US06, UDDS, and mixed drive
cycles at 00C, 250C and 400C operating temperatures are
considered in this work. The dynamic current profile of
LA92, US06, UDDS, and mixed drive cycles at 250C is
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TABLE 2. Initialization and simulation parameters.

shown in Fig.7 for reference. LA92 is a drive cycle that has
high acceleration with less ideal time and is used for light-
duty vehicles. Similarly, US06 represents high-acceleration
and high-speed drive cycle where as, UDDS represents
city driving condition. Both US06 and UDDS drive cycles
are developed by the US Environment Protection Agency
(EPA) for aggressive driving studies. [15]. Apart from that,
a mixed drive cycle consisting of random mix of LA92,
US06, HWFET, and UDDS is also considered in this
work to check the robustness of the proposed RMAEKF
under different working currents. In order to check the
accuracy of SOC estimation, the performance indices of
the proposed RMAEKF are compared with performance
indices of EKF [27], FFAEKF-I [16] and FFAEKF-II [15]
under the influence of variable operating temperatures, the
improper initialization of noise covariance, and the sensor
measurement bias. In this work, influence of incorrect
initialization and presence of sensor measurement bias during
SOC estimation is analyzed for 250C operating temperature.
Moreover, the current profile of Mixed drive cycle is used
for detailed analysis of SOC estimation result during the
aforementioned malicious working conditions.

B. EVALUATION INDEX FOR PERFORMANCE ANALYSIS
In this article, root mean square error (RMSE) and maximum
absolute error (MAE) are considered as the evaluation criteria
to reflect the accuracy in SOC estimation of the proposed
RMAEKF. RMSE represents the standard deviation of the
difference between the true and estimated value of SOC
to evaluate the estimation accuracy of an algorithm [17].
Similarly, MAE reflects the error in predicted SOC by
computing the absolute error between the true and estimated
values of SOC. The RMSE and MAE for predicted SOC can
be expressed as shown in (39) and (40) respectively.

RMSE =

√√√√ 1
N

N∑
i=1

[(SOCTrue)k − (SOCEstimated )k ]2 (39)

MAE = max |(SOCTrue)k − (SOCEstimated )k | (40)

In this work, the RMSE andMAE of the proposed RMAEKF,
EKF, FFAEKF-I and FFAEKF-II are evaluated to check the

SOC estimation accuracy, and a detailed comparative analysis
is reported in Section V.

V. COMPARATIVE RESULT ANALYSIS

FIGURE 8. Estimated SOC result: (a) LA92,(b) US06 (c) UDDS and
(d) Mixed drive cycle at 00C.

FIGURE 9. Estimated SOC result: (a) LA92,(b) US06 (c) UDDS and
(d) Mixed drive cycle at 250C.

FIGURE 10. Estimated SOC result: (a) LA92,(b) US06 (c) UDDS and
(d) Mixed drive cycle at 400C.

In this section, the estimation accuracy of the proposed
RMAEKF is analyzed by comparing its RMSE and MAE
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TABLE 3. Statistical result analysis of SOC estimation at 00C, 250C and 400C.

with EKF, FFAEKF-I, and FFAEKF-II. Further, the efficacy
and robustness of the proposed RMAEKF is examined under
erroneous initialization of state and noise covariance. More-
over, the computational cost and matrix operation complexity
analysis of proposed RMAEKF, EKF and FFAEKF (I & II)
are analyzed to check the efficacy in SOC estimation. Apart
from that the effectiveness of the proposed RMAEKF for
SOC estimation is examined in the presence of offset current
and bias voltage. The detailed analysis is reported as follows.

A. SOC ESTIMATION AT DIFFERENT TEMPERATURE
Fig.8, 9, and 10 shows the estimated SOC obtained by EKF,
FFAEKF-I, FFAEKF-II and Proposed RMAEKF under the
current profile of LA92, US06, UDDS and mixed drive
cycle at 00C, 250C and 400C operating temperatures. The
performance indices of the obtained SOC estimation results
are listed in Table-3. From Table-3, it is observed that
the proposed RMAEKF gives better estimation accuracy
as compared to EKF, FFAEKF-I and FFAEKF-II with a
comparatively minimum RMSE of 1.370%, 3.954%, 1.398%
and 2.472% for LA92, US06, UDDS and mixed drive
cycle respectively, at 00C. Similarly, the least MAE values
of proposed RMAEKF i.e. 1.941%, 4.808%, 1.924% and
5.145% for LA92, US06, UDDS and mixed drive cycle
respectively, infer high estimation accuracy. Fig.9a, 9b, 9c
and 9d shows comparative SOC estimation results for LA92,
US06, UDDS and mixed drive cycle at 250C respectively.
For the LA92 drive cycle at 250C, the proposed RMAEKF
shows better estimation accuracy as compared to EKF,
FFAEKF-I and FFAEKF-II with a minimum RMSE and
MAE of 0.506% and 0.122% respectively. For the US06
drive cycle at 250C operating temperature, the proposed
RMAEKF shows superior estimation accuracy as compared
to EKF, FFAEKE-I and FFAEKF-II with a RMSE and MAE
of 0.778% and 0.042% respectively. Similarly for the UDDS
drive cycle at 250C, the proposed RMAEKF outperform other
compared algorithms with a RMSE and MAE of 0.241%
and 0.310% respectively. Moreover, for mixed drive cycle

the proposed RMAEKF shows significant improvement in
SOC estimation accuracy with a RMSE and MAE of 0.881%
and 0.287% respectively, as compared to EKF, FFAEKF-I
and FFAEKF-II. In EV application, high efficiency and peak
charge/discharge power can be achieved at an operating
temperature of 40 − 500C without any damage to the
battery module [28]. So, the thermal management system
of the BMS is set to maintain the operating temperature
of the battery module around 400C. From the performance
indices listed in Table-3, it can be observed that at 400C
the proposed RMAEKF gives better estimation accuracy than
EKF, FFAEKF-I and FFAEKF-II with an RMSE of 0.270%,
0.928%, 0.392% and 0.925% for LA92, US06, UDDS and
mixed drive cycle respectively.

B. SOC ESTIMATION WITH INCORRECT INITIAL SOC
VALUE

FIGURE 11. Estimated SOC result for Mixed drive cycle at 250C: (a) 20%
SOC initialization error, (b) 30% SOC initialization error.

In this section, the performance of the proposed RMAEKF
is examined under the influence of error in initialization of
SOC value by setting an SOC initialization error of 20% and
30% respectively. Further, the SOC estimation accuracy of
the proposed RMAEKF is evaluated and compared with EKF
[27], FFAEKF-I [16], and FFAEKF-II [15]. The results are
shown in Fig.11 and listed in Table-4.

• SOC estimation with 20% error in initial value: As
mentioned in Table-2, the actual initial SOC of the
battery is 100%. To check the efficacy of the proposed
RMAEKF, the initial value of SOC is set to 80%
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i.e. an initialization error of 20% is introduced. From
the statistical analysis listed in Table-4, it is observed
that with a 20% SOC initialization error, the proposed
RMAEKF have a RMSE of 1.078% which is 1.467%
less than EKF, 0.953% less than FFAEKF-I and 0.484%
less than FFAEKF-II.

• SOC estimation with 30% error in initial value:
Similarly, the initial SOC value is set to 70% i.e.
an initialization error of 30% is applied to RMAEKF,
FFAEKF-I, FFAEKF-II an EKF to compare the supe-
riority of the proposed method. From Table-4, it is
observed that, with an 30% SOC initialization error, the
proposed RMAEKF outperform EKF, FFAEKF-I and
FFAEKF-II with a minimized RMSE error of 1.347%.

TABLE 4. RMSE of estimated SOC with error initialization at 250C for
Mixed drive cycle.

C. SOC ESTIMATION WITH ERROR IN INITIALIZATION OF
PROCESS AND MEASUREMENT NOISE COVARIANCE
In EKF-based SOC estimation, the selection of Pk and
Mk depends upon how much the filter trusts in the model
prediction and measurements. A high value of M implies
the filter expects a higher noise level in measurement and
a high value of P means the filter expects a large variation
in state transition. In this work, the P0 and M0 are set with
a value as listed in Table-2. These values may be smaller
or larger as compared to the exact noise covariance values.
This uncertainty in the noise covariance value may affect the
performance of the proposed RMAEKF. So, to examine the
performance of proposed RMAEKF in SOC estimation under
the aforementioned condition. small (i.e. Psmall and Msmall)
and large (i.e. Pbig and Mbig) values of noise covariance
matrices are chosen from Table-2 for initialization purpose.
The SOC estimation accuracy of the proposed RMAEKF is

TABLE 5. RMSE (%) of estimated SOC under current profile of Mixed
drive cycle at 250C for different initial value of P and M.

verified by comparing its RMSE with EKF, FFAEKF-I and
FFAEKF-II, while considering different combinations of P
and M values during initialization of the filter algorithm.
The estimated SOC results are shown in Fig.12 and

corresponding statistical analysis is listed in Table-5. From
Table-5 it is observed that, the proposed RMAEKF shows
better estimation accuracy than other compared algorithms

FIGURE 12. Estimated SOC result for Mixed drive cycle at 250C: (a) Psmall
& Msmall , (b) Psmall & Mbig, (c) Pbig & Mbig, (d)Pbig & Msmall .

with RMSE of 0.894% for Psmall and Msmall , 0.864% for
Psmall and Mbig, 0.877% for Pbig and Mbig, and 0.894% for
Pbig and Msmall .

FIGURE 13. Estimated SOC result for Mixed drive cycle at 250C: (a) in
presence of offset current, (b) in presence of bias voltage.

D. SOC ESTIMATION IN PRESENCE OF MEASUREMENT
BIAS
During online SOC estimation, the presence of offset current
and voltage bias in BMS sensor leads to an erroneous
estimation of SOC due to large terminal voltage estimation
error. Considering the aforementioned faulty operating con-
dition, the efficacy of the proposed RMAEKF is examined
by incorporating offset current and voltage bias with actual
measured current and terminal voltage as shown in (41)
and (42).

IB = Imeas + Ioffset (41)

VT = Vmeas + Vbias (42)

To verify the effectiveness of the proposed RMAEKF in
the presence of measurement bias, current profile of mixed
drive cycle at 250C is considered. Further, a current offset
of ±0.1A and ±0.05A and a voltage bias of ±10mV and
±5mV are incorporated with the actual drive cycle data.
The SOC estimation results in the presence of current offset
and voltage bias are shown in Fig.13a and 13b respectively.
The performance indices for EKF, FFAEKF-I, FFAEKF-II
and the proposed RMAEKF in the presence of offset current
and voltage bias are listed in Table-6. From Table-6, it can
be observed that the proposed RMAEKF shows an average
estimation accuracy of 1.96% and 1.56% in the presence
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TABLE 6. RMSE (%) of estimated SOC for current profile of Mixed drive
cycle at 250C in presence of offset current and bias voltage.

of offset current and bias voltage respectively. Moreover,
it can be observed that the impact of offset current and bias
voltage is more prominent on the estimation accuracy while
the battery is operating in its lower SOC range. Hence, it is
recommended to operate the battery in the SOC range of
20-80% for better estimation accuracy as well as for longer
battery life [29].

TABLE 7. RMSE(%) in SOC estimation due to battery capacity degradation
at 00C, 250C and 400C for Mixed drive cycle current profile.

E. EFFECT OF TEMPERATURE VARIATION AND BATTERY
CAPACITY DEGRADATION ON PROPOSED RMAEKF
The battery capacity (CB) degrades due to cyclic aging
and calendar aging [30]. In this work, three values of
battery capacities, such as 4.81Ah, 4.71Ah and 4.58Ah are
considered to represent the degradation of capacity due to
the aging effect. Further, RMSE in SOC estimation due
to capacity degradation are obtained by applying EKF,
FFAEKF-I, FFAEKF-II and the proposed RMAEKF with
mixed drive cycle at 00C, 250C and 400. The performance
indices of the aforementioned SOC estimation algorithms are
listed in Table-7. From Table-7, it is observed that with degra-
dation in battery capacity and with change in temperature,
the proposed RMAEKF exhibits superior performance as
compared to EKF, FFAEKF-I and FFAEKF-II with the least
RMSE.

F. ROBUSTNESS ANALYSIS OF PROPOSED RMAEKF
In this section, the robustness of the proposed RMAEKF
is examined by incorporating all the aforementioned faulty
conditions, i.e., incorrect initialization of SOC and noise
covariance, presence of offset current and bias voltage at
the same time. For the proposed robustness analysis, mixed
drive cycle current profile at 250C along with 20% error in
the initial SOC value, Pbig and Mbig as noise covariance,
an offset current of +0.1A and a bias voltage of +10mV
are considered. The estimated SOC and corresponding SOC
error results are shown in Fig.14. Moreover, the performance

FIGURE 14. Comparative robustness analysis in SOC estimation for Mixed
drive cycle at 250C: (a) estimated SOC, (b) SOC estimation error.

indices (RMSE and MAE) are listed in Table-8. The result
of robustness analysis indicates that with a RMSE of
4.483%, the proposed RMAEKF have superior performance
as compared to EKF, FFAEKF-I and FFAEKF-II. Further,
it implies that the proposed RMAEKF can handle bias in
sensor measurement and perform better under erroneous
initialization of state and noise covariance.

TABLE 8. RMSE & MAE of estimated SOC at 250C for current profile of
Mixed drive cycle under faulty working condition.

G. COMPUTATIONAL COST AND MATRIX OPERATION
COMPLEXITY ANALYSIS OF THE PROPOSED RMAEKF

TABLE 9. Mean Execution Time (TME ) comparision between EKF, FFAEKF
and RMAEKF.

The evaluation of mean execution time (TME ) helps to
determine the computational cost of a SOC estimation
algorithm during real-time BMS implementation [31]. The
TME of an algorithm can be evaluated as per (43).

TME =
1
n

n∑
i=1

(TME )i; i = 1, 2 . . . .n (43)

In this work, the computing power of an Intel(R) Core(TM)
i3-6006U CPU @ 2.00 GHz processor along with MAT-
LAB2021a version, is used for the execution of EKF,
FFAEKF (I $ II) and the proposed RMAEKF. Moreover, the
aforementioned algorithms are executed for i = 1, 2,. . . 10
under the current profile of mixed drive cycle at 250C and
the TME is evaluated and listed in Table-9. From Table-9, it is
observed that both FFAEKF (I & II) and proposed RMAEKF
have approximately the same TME of 4.30 sec and 4.31 sec
respectively. On the other hand, due to the absence of an
adaptive correction step for noise covariance matrices, EKF
takes a TME of 4.25 sec which is around 0.06 sec less as
compared to FFAEKF and RMAEKF.
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TABLE 10. Step-wise Matrix computational complexity of the proposed RMAEKF depending upon n, m, p.

Apart form mean execution time, the performance of
an algorithm in real-time applications can be effectively
analyzed by its worst-case complexity (bigO). In a KF based
algorithm, matrix complexity depends on the number of
matrix multiplications (M (.)) and matrix additions (A (.)) in
each step. Further, the total complexity (T (.)) of the algorithm
can be evaluated by summing the total number of M (.) and
A (.) in each iteration [32].

TotalComplexity =

∑
M (n,m, p) +

∑
A(n,m, p) (44)

where, n is state vector size, m is size of measurement vector
and p represents command vector size.

Table-10 shows the M(.) and A(.) involved in each step
of the proposed RMAEKF, followed by T(.) as per (44).
The step-wise bigO of EKF, FFAEKF-I, FFAEKF-II and the
proposed RMAEKF are listed in Table-11. Further, the T(.)
and bigO of the aforementioned algorithms are compared in
Table-12. From Table-12, it is observed that all the afore-
mentioned algorithms possess same worst-case complexity
of 6n3. Hence, it can be inferred that, with a moderate
increment in computation cost and with the same worst-
case complexity, the proposed RMAEKF provides higher
SOC estimation accuracy compared to EKF, FFAEKF-I and
FFAEKF-II.
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TABLE 11. Big O complexity analysis of EKF, FFAEKF and Proposed RMAEKF depending upon n, m, p.

TABLE 12. Comparative analysis for T (.) & O(.) of EKF, FFAEKF and
Proposed RMAEKF Algorithm.

VI. REAL-TIME IMPLEMENTATION OF THE PROPOSED
RMAEKF
To ensure the practicality of the proposed RMAEKF in
online SOC estimation, an experimental test bench is
designed as shown in Fig.15. The aforementioned test
bench is built using a host computer, a FPGA based
real-time simulator (OPAL-RT OP5700), a portable scope-
corder (YOKOGAWA DL350), a LAN communication
channel, probes (KEYSIGHT N2843A), a PCB with I/O
connectors (PCB-E06-0560) and connecting wires. The real-

FIGURE 15. Experimental setup using OP5700 real-time simulator.

time experimentation is initiated by designing the proposed
RMAEKF model in a MATLAB/SIMULINK environment.
The OPAL-RT simulator is interfaced with the host computer
through the LAN cable. The model is then loaded in OP5700
real-time simulator through RT-LAB software via the host
computer and executed in real-time. The analog output
of the OP5700 real-time simulator is taken through PCB-
E06-0560 card and the output result is tracked through
KEYSIGHT N28443A probes. The tracked output signal

was then recorded in the YOKOGAWA DL350 portable
scope-coder for further analysis.

A. REAL-TIME ANALYSIS FOR EFFECT OF TEMPERATURE
VARIATION
To analyze the real-time SOC estimation performance of
the proposed RMAEKF under the influence of operating
temperature variation, Mixed drive cycle current profiles at
00C, 250C and 400C are given as the input to the battery
model and the corresponding estimated SOC are obtained
as shown in Fig.16 a, b and c respectively. From Fig.16 it
can be inferred that the proposed RMAEKF able to track
the reference SOC value precisely with RMSE of 2.500%
at 00C, 1.006% at 250C and 1.057% at 400C respectively.
The comparison for estimated results of simulated and
experimental SOC values are listed in Table-13.

TABLE 13. Comparative analysis for statistical result of simulated and
experimental SOC at 00C, 250C and 400C.

B. REAL-TIME ROBUSTNESS ANALYSIS OF PROPOSED
RMAEKF
The robustness analysis of the proposed RMAEKF in
real-time application is examined by incorporating several
uncertainties, such as incorrect initialization of SOC and
noise covariance value, presence of bias in the terminal
voltage sensor and offset in the current sensor measurement.
To do so, 20% initialization error in SOC, Pbig and Mbig
value from Table-2 are considered while initialization of the
proposed algorithm. Further, an offset current of +0.1A and
voltage bias of 10mV are incorporated with mixed drive cycle
current at 250C operating temperature. The experimental
results for the estimated SOC under the aforementioned
uncertainty are shown in Fig.17. Further, the experimental
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FIGURE 16. Real-time estimated SOC result for Mixed drive cycle at: (a) 00C (b) 250C, (c) 400C.

FIGURE 17. Real-time robustness analysis result for mixed current profile
at 250C.

TABLE 14. Comparative robustness analysis of simulated and
experimental SOC result for Mixed current profile at 250C.

result is compared with the simulated result and listed in
Table-14.

VII. CONCLUSION
This article proposes a robust modified adaptive EKF
algorithm for model-based online SOC estimation of lithium
batteries. From the performance analysis of the proposed
algorithm, the following conclusions are obtained:

• The proposed algorithm incorporates a recursive esti-
mation approach based on adaptive rules for iterative
correction of the process and a measurement noise
covariance matrix for accurate SOC estimation. The
adaptive correction of the process noise covariance
matrix handles the adverse effects of model uncertainty
caused by the linearization of the battery model and the
parametric uncertainty due to the variation in operating
temperature.

• The iterative correction of the measurement noise
covariance matrix improves the robustness and conver-
gence speed in case of improper state initialization and
provides high SOC estimation accuracy in the presence
of offset current and voltage bias.

• The efficacy of the proposed RMAEKF is examined
with the current profiles of LA92, US06, UDDS and
mixed drive cycles at 00C, 250C and 400C operating
temperatures. Further, the accuracy of SOC estimation is
validated by comparing the root mean square error and

maximum absolute error of the proposed RMAEKFwith
the performance indices of the extended Kalman filter,
forgetting factor adaptive extended Kalman filter.

• The robustness of the proposed RMAEKF is examined
by applying off-set current in current sensor and bias
voltage to the voltage sensor of the battery.

• Furthermore, the mean execution time and computa-
tional complexity of the proposed is compared with
other adaptive Kalman filters.

• Finally, a OPAL-RT simulator based real-time simula-
tion is performed to ensure the practical applicability of
the proposed RMAEKF.

The result analysis indicate robust and superior SOC
estimation accuracy of proposed RMAEKF with variation
in operating temperature, initialization error of SOC, and
noise covariance matrices, the presence of off-set current
and voltage bias as compared to other SOC estimation
proposed in the literature. Moreover, the proposed RMAEKF
necessitates less computational resources with low matrix
operation complexity and mean execution time.
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