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ABSTRACT This study addresses the challenges posed by the strong noise and nonstationary characteristics
of vibration signals to enhance the efficiency and accuracy of rolling-bearing fault diagnosis in electric
motors. A fault diagnosis model is proposed based on improved variational mode decomposition (VMD)
and a convolutional neural network bidirectional long short-term memory (CNN-BiLSTM). In the feature
extraction stage, the Osprey-Cauchy-Sparrow search algorithm (OCSSA) optimizes themodal numberK and
penalty coefficient α of the VMD, facilitating the decomposition and reconstruction of the original vibration
signals to extract fault features based on the minimum envelope entropy criterion. In the fault diagnosis
stage, the mean, variance, peak value, kurtosis, RMS value, peak-to-average ratio (PAR), impulse factors,
form factor, and clearance factor were computed from the reconstructed signals. These indicators were used
to construct a feature vector for each sample, serving as the input for the OCSSA-VMD-CNN-BiLSTM
fault diagnosis model, which quickly and accurately identifies the fault types. Experimental verification
confirms that this method enhances the speed and accuracy of rolling-bearing fault identification compared
to traditional approaches.

INDEX TERMS Fault diagnosis, variational mode decomposition (VMD), osprey optimization algorithm
(OOA), sparrow search algorithm (SSA), bidirectional long short-term memory (BiLSTM).

I. INTRODUCTION
Motors are widely used in various industries as critical
devices to convert electrical energy into mechanical energy.
Rolling bearings are susceptible to wear, corrosion, and dam-
age when operating under harsh conditions such as high and
variable loads. Bearing failure accounts for more than 40%
of all motor failures. If rolling bearing failures in motors are
not detected promptly, the consequences can range frommild,
such as equipment downtime, leading to economic losses to
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enterprises, to severe, such as threats to human health and life,
resulting in negative social impacts. Therefore, it is important
to conduct high-precision, intelligent, and low-latency rolling
bearing fault diagnosis of rolling bearings. Establishing a reli-
able fault diagnosis system is essential to ensure the normal
operation of motors [1], [2].

In recent years, research on rolling-bearing fault diagnosis
has focused on three main areas: signal processing, machine
learning, and deep learning. Signal processing techniques
include time domain, frequency domain, and time-frequency
analysis [3]. Owing to the nonlinear and non-stationary nature
of rolling bearing fault vibration signals under complex
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operating conditions, time-frequency analysis methods are
often used for fault diagnosis. Notable examples include
the short-time Fourier transform (STFT) [4], wavelet analy-
sis [5], empirical mode decomposition (EMD) [6], variational
mode decomposition (VMD) [7], and singular value decom-
position (SVD) [8]. With a significant increase in the volume
of mechanical equipment fault data, relying solely on the
subjective expert analysis of signal characteristics can result
in suboptimal diagnostic accuracy.

In addition, the continuous advancement of computer tech-
nology provides strong support for fault diagnosis, driving
the development of rolling bearing fault diagnosis towards
more intelligent and automated approaches. Machine learn-
ing autonomously learns the fault characteristics, thereby
facilitating the diagnosis of rolling bearing faults. Com-
monly used machine learning algorithms include Support
Vector Machines (SVMs) [9], Random Forests (RFs) [10],
K-Nearest Neighbors (KNN) [11], and K-means cluster-
ing [12]. Although machine learning algorithms have been
widely used, they have limited ability to handle nonlinear
problems and are sensitive to noise and outliers, which are
significant limitations in practical engineering applications.
Deep learning, which employs a deep hierarchical structure
to represent abstract features, has strong nonlinear represen-
tation capability. The relationships between the input and
output features were determined through training.

Deep learning algorithms have been widely studied
and applied in the diagnosis of rolling-bearing faults.
Yu et al. [13] developed a knowledge-based Deep Belief
Network (DBN) model by integrating the classification
knowledge extracted from data into the classification layer
of the DBN. This integration enhances the comprehensive
and accurate extraction of bearing failure characteristics.
However, the complexity of DBN structures and their ten-
dency to converge to local optima during training limit
their engineering applications. Liu et al. [14] proposed an
improved Recurrent Neural Network (RNN) model using a
Gated Recurrent Unit (GRU)-based autoencoder for signal
denoising and deep feature extraction. This model effec-
tively diagnosed the bearing faults under noisy conditions.
Yan et al. [15] extracted health information using frequency
domain features, which they combined with an enhanced
Long Short-Term Memory (LSTM) network for further
feature extraction, effectively predicting the remaining life
of motor bearings. Wang et al. [16] improved the activa-
tion function of Stacked Autoencoders (SAE), addressing
gradient vanishing problems and stabilizing model train-
ing, thereby improving the accuracy of motor bearing fault
diagnosis. Liu et al. [17] used Variational Mode Decom-
position (VMD) and Singular Value Decomposition (SVD)
to obtain fault characteristics by employing a Convolutional
Neural Network (CNN) for fault identification in planetary
gears. Hou et al. [18] introduced Diagnosisformer, a novel
attention-basedmulti-feature parallel fusionmodel for rolling
bearing fault diagnosis, utilizing a transformer as the basic

network. Tong et al. [19] addressed the signal distortion
issues in noise reduction by proposing improved Deep Resid-
ual Shrinkage Networks (IDRSN) for fault diagnosis under
noisy conditions. Li et al. [20] introduced a fault diagnosis
method for rotating machines using Wasserstein Generative
Adversarial Networks (WGAN) combined with a fully con-
volutional long short-term memory network. WGAN was
used to generate high-quality data samples for training and
fault diagnosis, effectively identifying various motor-bearing
faults. Guo et al. [21] proposed an end-to-end fault diagno-
sis method using an attention-based Convolutional Neural
Network and bidirectional LSTM (ACNN-BiLSTM), demon-
strating strong generality and superiority over other advanced
methods. Fu et al. [22] presented a fault diagnosis model
incorporating Continuous Wavelet Transform (CWT), CNN
with channel attention, BiLSTM, and a residual module
to address the issues of insufficient feature extraction and
poor noise resistance. Liu et al. [23] proposed a Siamese
CNN-BiLSTM model that effectively addressed the signif-
icant impact of small and unbalanced fault samples on the
diagnostic performance of models in locating and quantifying
rolling-bearing damage in aircraft engines.

Based on the presented analysis, it can be concluded that
the VMDalgorithm effectivelymitigates the problems related
to endpoint effects and modal overlap. However, the quality
of decomposition is strongly influenced by the number of
decomposition layers and penalty factor. Machine learning
and deep learning models are widely used in rolling-bearing
fault diagnosis; however, their effectiveness is significantly
limited by the choice of hyperparameters. Although heuristic
algorithms offer a novel method for adaptive hyperparam-
eter optimization, their tendency to fall into local optima
can significantly hinder their effectiveness. To address these
issues, this study proposes a fault diagnosis model based on
improved VMD and CNN-BiLSTM. The model optimizes
the VMD by integrating the Osprey-Cauchy-Sparrow Search
Algorithm (OCSSA) to determine the optimal parameters
for the VMD to effectively separate critical fault features
from complex vibration signals. An OCSSA-VMD-CNN-
BiLSTM hybrid neural network model was constructed to
rapidly and accurately identify motor-bearing fault states,
particularly when processing vibration data under complex
noise conditions. The main contributions of this study are as
follows: A Logistic chaos mapping strategy is employed to
increase the diversity of the initial population of particles.
In the first phase, the global exploration strategy uses the
osprey optimization algorithm instead of the original sparrow
algorithm’s discoverer position update formula, addressing
the excessive reliance of the sparrow algorithm on the pre-
vious food position by employing a random check to locate
and attack the food source. The Cauchymutation strategywas
used to update the position of the followers in the sparrow
algorithm, with individual perturbations applied during the
sparrow position updates to expand the search scale and
enhance the ability of the algorithm to escape local optima.
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The experimental results validate that this method effectively
improves the speed and accuracy of fault diagnosis, thereby
providing a reference for handling complex engineering opti-
mization problems.

II. VMD
Variational Mode Decomposition (VMD)is a non-recursive,
quasi-orthogonal, adaptive signal decomposition algorithm
that involves the construction and solution of variational
problems [24], [25]. The variational constraint model is con-
structed as follows:

min
{uK }{ωK }

{

∑
K

∥∥∥∥∂[(δ(t)+ j
π t

) · uK (t)]e−jωK t
∥∥∥∥2
2
}

s.t.
∑
K

uK = f
(1)

where ωK (t) is the center frequency corresponding to each
mode, δ(t) is the Dirac distribution, and K is the number of
modal components.

To convert the constrained variational problem into an
unconstrained variational problem, an augmented Lagrangian
function is introduced into the solution of the constrained
variational model:

L({uK }, {ωK }, λ)

= α
∑
K

∥∥∥∥∂t [(δ(t)+ j
π t

) · uK (t)e−jωK t ]

∥∥∥∥2

+

∥∥∥∥∥f (t)−∑
K

uK (t)

∥∥∥∥∥
2

2

+

〈
λ(t), f (t)−

∑
K

uK (t)

〉
(2)

where α is the quadratic penalty factor that ensures the recon-
struction accuracy of the signal. f (t) under the influence of
Gaussian noise, and λ(t) is the Lagrange multiplier operator.

VMD algorithm steps:
1. Initialize {û1K }, {ω

1
K }, {λ̂} and n, n = 0.

2. n = n+ 1 to start the whole loop.
3. Update the spectrum for each mode.

ûn+1K (ω) =

f̂ (ω)−
∑
i̸=K

ûi(ω)− λ̂(ω)/2

1+ 2α(ω − ωK )
(3)

4.Frequency of updating centers.

ωn+1
K =

∫
∞

0 ω
∣∣ûK (ω)∣∣2 dω∫

∞

0

∣∣ûK (ω)∣∣2 dω
(4)

5. Updating Lagrange multipliers.

λ̂n+1(ω)← λ̂n(ω)+ τ [f̂ (x)−
∑
K

ûn+1K (ω)] (5)

where τ is the Lagrange multiplier update parameter
6. Repeat steps 2 to 5 for a given discriminative accuracy

e > 0, until the iteration condition is satisfied:∑
K

∥∥∥ûn+1K − ûnK
∥∥∥/∥∥ûnK∥∥22 < e (6)

K narrowband eigenmode function components were
obtained, and the iterations were completed. If the iteration
condition is not satisfied, return to Step (2).

III. OSPREY-CAUCHY-SPARROW SEARCH
ALGORITHM (OCSSA)
A. SPARROW SEARCH ALGORITHM (SSA)
In the SSA, the sparrow population is divided into discoverers
and followers. Discoverers are individuals with higher fit-
ness values who are responsible for leading the flock toward
promising regions in the search space. In contrast, followers
observe the movements of the discoverers and follow them
to explore the search space. However, detection and warning
mechanisms are often required because of the threats posed
by natural enemies. In sparrow populations, discoverers with
high fitness values are prioritized for food, mainly because
they search for food and lead the movement of the entire
population. Consequently, they can acquire food faster than
the other sparrows. The equation for updating the positions
of the discoverers is as follows.

X k+1i,j =

X ki,j · exp
(

−i
κ · Itermax

)
, R2 < ST

X ki,j + Q · L, R2 ≥ ST
(7)

where X ki,j is the i
th sparrow in the jth dimensional position

at iteration k , κ ∈ (0, 1] is a random number, Itermax is the
maximum number of iterations, R2 ∈ [0, 1] and ST ∈ [0.5, 1]
are the warning value and safety value, respectively, Q is
a random number obeying the standard normal distribution,
and L is a matrix of 1× d whose elements are all one matrix.

The positions of the followers are updated below:

X k+1i,j =


Q · exp

(
X kworst − X

k
i,j

i2

)
, i >

Ns
2

X k+1p +

∣∣∣X ki,j − X k+1p

∣∣∣ · A+ · L, i ≤
Ns
2

(8)

where X kworst is the current global worst position, Ns is the
total number of sparrows, Xp is the optimal position of the
discoverer, A is a matrix with 1 × d , and the elements are
randomized to 1 or -1, A+ = AT

(
AAT)−1.

For their own safety and to successfully obtain food, 10%
to 20% of the total sparrow population is responsible for
scouting vigilance, and their locations are updated as follows:

X k+1i,j =


X kbest + β

∣∣∣X ki,j − X kbest∣∣∣ , fi > fg

X ki,j + λ

(
X ki,j − X

k
worst

(fi − fw)+ ε

)
, fi = fg

(9)

where X kbest is the global optimal position under the current
iteration number k , β is the step length correction coefficient
and obeys the standard normal distribution, fi is the current
fitness value of the sparrow, fw and fg represent the current
overall worst fitness value and the optimal fitness value,
respectively, λ ∈ [0, 1]. ε = 10E − 60.
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B. LOGISTIC CHAOS MAPPING STRATEGY
Because SSA suffers from a loss of population diversity at
the late stage of the optimization search, leading to local
extremes, a logistic chaos mapping strategy is introduced
to increase the population diversity and improve the global
search ability of the algorithm [26].

Logistic chaotic mapping is a typical method for complex
nonlinear behavior, and is formulated as follows:

xk+1i,j = µxki,j(1− x
k
i,j) (10)

where µ is parameter that determines the map behavior. xk+1i,j
is the chaotic mapping between xki,j.

C. CAUCHY MUTATION
During foraging, followers typically hunt around the optimal
discoverer. Food fightsmay occur during this process, leading
followers to compete and become new discoverers. A Cauchy
variation strategy is introduced into the follower update for-
mula to prevent the algorithm from falling into the local
optima. This strategy enhanced the global search capability of
the algorithm. The new positions of the followers are updated
as follows.

X k+1i,j = X kbest + cauchy(0, 1)⊕ X
k
best (11)

where cauchy(0, 1) is the standard Cauchy distribution func-
tion, and ⊕ indicates multiplication.
The Cauchy distribution function is a continuous proba-

bility distribution function used to describe certain types of
random variable. The probability density function (PDF) is
given by:

f (x; x0, γ ) = 1
/

πγ [1+ (
x − x0

γ
)2] (12)

where x0 is the location parameter representing the center of
the distribution, and γ is the scale parameter representing the
width of the distribution.

D. OSPREY OPTIMIZATION ALGORITHM (OOA)
The OOA consists of two phases: the first phase involves
osprey determining the location of the fish and catching it
(global exploration), and the second phase involves bringing
the fish to a safe location to eat (local exploitation) [27].

1) POPULATION INITIALIZATION
The OOA is inspired by the hunting behavior of ospreys,
using search and predation strategies to find optimal solu-
tions for engineering problems. In the OOA, each osprey
represents a potential solution with its position in the search
space corresponding to the variable values of the problem.
Each osprey is represented by a vector, with each element
corresponding to a problem variable value. The algorithm
searches the entire solution space to obtain the optimal solu-
tion. The osprey population was mathematically modeled as
a matrix (Eq. (13)). Initially, the positions of the ospreys
were randomly initialized using Eq. (14) to distribute them

throughout the search space, thereby enhancing the search
diversity.

X =



X1
...

Xn
...

XN


N×M

=



x1,1 · · · x1,m · · · x1,M
...

. . .
... ·

...

xn,1 · · · xn,m · · · xn,M
... ·

...
. . .

...

xN ,1 · · · xN ,m · · · xN ,M


(13)

xn,m = lbm + rn,m · (ubm − lbm) (14)

where n = 1, 2, · · · ,N ,m = 1, 2, · · · ,M , X is the pop-
ulation matrix of the osprey locations, Xn is the nth osprey
(candidate solution), xn,m is themth dimension (problem vari-
able),No is the number of ospreys,M is the dimensionality of
the problem variable, rn,m ∈ [0, 1] is a random number, lbm
and ubm are the lower and upper bounds of the mth problem
variable, respectively.

The fitness value of each osprey item is calculated based on
the corresponding objective function values. Eq. (15) repre-
sents the fitness values of all ospreys, which are used to assess
the quality of each solution.

F =



F1
...

Fn
...

FN


N×1

=



F(X1)
...

F(Xn)
...

F(XN )


N×1

(15)

where F is the vector of objective function values and Fn is
the vector of the objective function values for the nth osprey.

2) GLOBAL EXPLORATION
After locating the fish, the osprey launched an attack to catch
them. In the OOA, this hunting behavior is modeled in the
first stage of population renewal. Through simulation, the
positions of the ospreys in the population were significantly
changed, enhancing the exploratory ability of the algorithm
to identify optimal regions and escape from local optima.
In the OOA design, the set of locations for each osprey is
determined according to Eq. (16).

FPn = {Xv| v ∈ {1, 2, · · · ,N } ∧ Fk < Fn} ∪ {Xbest} (16)

where FPn is the set of locations where fish are locked for
the nth osprey and Xbest is the osprey with the best location.

The osprey randomly locate the position of the fish and
initiate an attack. The movement of the osprey toward the fish
was simulated, and the position of the osprey was calculated
using Eqs. (17) and (18), respectively. If the new position
improves the objective function value, the position of the
osprey is updated according to Eq. (19).

xP1n,m = xn,m + rn,m · (SFn,m − In,m · xn,m) (17)
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xP1n,m =


xP1n,m, lbm ≤ xP1n,m ≤ ubm
lbm, xP1n,m < lbm
ubm, xP1n,m < ubm

(18)

Xn =

{
xP1n , FP1n < Fn
Xn, else

(19)

where xP1n is the new position of the nth osprey in the first
stage, xP1n,m is the new position of the nth osprey in the first

stage, in its mth dimension, FP1n is the objective function in
its mth dimension, SFn is the fish selected by the nth osprey,
SFn,m is its mth dimension, rn,m ∈ [0, 1] is a random number,
and In,m ∈ {1, 2} is a random number.

3) LOCALIZED EXPLOITATION
In the OOA design, a new random position is computed for
each individual in the population using Eq. (20) and (21),
which represent the location of a suitable predatory fish. If the
objective function value improves at this new position, the
previous position of osprey is updated according to Eq. (22).

xP2n,m = xn,m +
lbm + r · (ubm − lbm)

Ik
(20)

where Ik is the iteration counter of the algorithm, Ik =
1, 2, · · · T and T is the total number of iterations.

xP2n,m =


xP2n,m, lbm ≤ xP2n,m ≤ ubm
lbm, xP2n,m < lbm
ubm, xP2n,m < ubm

(21)

Xn =

{
xP2n , FP2n < Fn
Xn, else

(22)

where xP2n is the new position of the nth osprey, xP2n,m is the
new position of the nth osprey in themth dimension, FP2n is the
objective function, SFn is the fish selected by the nth osprey,
SFn,m is its mth dimension, and rn,m ∈ [0, 1] is a random
number.

E. OCSSA ALGORITHM FLOW
Step 1: Execute the logistic chaotic mapping algorithm to
initialize the sparrow population. We set the population size
P, maximum number of iterations Itermax , proportion of dis-
coverers PD, proportion of scouts SD, alert threshold R2,
security threshold ST and so etc.
Step 2: The individual fitness values of each sparrow were

calculated and ranked to determine the global optimal and
worst fitness values.
Step 3: Utilize Eqs. (17), (18), and (19) instead of Eq. (7)

to update the discoverer location.
Step 4: The follower position update is performed using

Eq. (11) instead of Eq. (8).
Step 5: Update the vigilante position according to Eq. (9).
Step 6: The sparrow population fitness value was calcu-

lated and reordered to update its position.
Step 7: Determine whether the current number of iterations

reaches the maximum number of iterations or meets the

FIGURE 1. Flowchart of the proposed OCSSA.

solution accuracy requirement; If so, proceed to the next step
otherwise; Otherwise skip to Step 2 until the end condition is
met.

Step 8: The program ends and outputs the optimal fitness
value and the best position. The flow of the OCSSA algorithm
is illustrated in Fig. 1.

IV. CNN-BiLSTM
A. LONG SHORT-TERM MEMORY (LSTM)
LSTM is a special recurrent neural network architecture pro-
posed by Sepp Hochreiter and Jürgen Schmidhuber in 1997
[28]. Its internal structure consists of a memory cell, an input
gate, a forget gate, and an output gate. The structure of the
LSTM cell with gating is illustrated in Fig. 2. Ultimately, the
combination of these two layers and the forget gate updates
the LSTM storage cell according to Eq. (26).

it = σ (wixxt + wihht−1 + bi)
ft = σ (wfxxt + wfhht−1 + bf )
c̃t = tanh(wcxxt + wchht−1 + bc)
ot = σ (woxxt + wohht−1 + bo)

(23)

where it , ft , and ot are the input, forget, and output gates at
time step t of an LSTM cell, respectively, c̃t is the candidate
cell state characterizing the long-term memory at time step
t, ht−1 is the output of the previous time step t − 1, xt is the
input of the current time step t , bi is the bias term of the input
gate, σ is the sigmoid activation function, wix is the weight
factor of the input gate xt , wih is the weight factor of the
previous hidden state ht−1, bf is the bias term of the forget
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FIGURE 2. LSTM model.

gate, wfx is the weight factor of the forgetting gate xt , wfh is
the previous hidden state ht−1, bc is the bias term, wcx is the
weight coefficient of cell xt , wch is the weight coefficient of
cell ht−1, bo is the bias term of the output gate, wox is the
weight coefficient of the output gate xt , woh is the weight
coefficient of the output gate ht−1.
Write Eq. (23) in vector form as follows itft

ot

 = σ

wixwihwfxwfh
woxwoh

 · [ xt
ht−1

]
+

 bibf
bo

 (24)

[
c̃t
]
= tanh

(
[wcxwch] ·

[
xt
ht−1

]
+ [bc]

)
(25)

Eqs. (24) and (25) can be written as{
y1 = σ (w1x1 + b1)
y2 = tanh(w1x1 + b1)

(26)

where y1 = [it ftot ]T ,w1 =

[
wixwfxwox
wihwfhwoh

]T
, x1 =

[xtht−1]T , b1 =
[
bibf bo

]T , y2 =
[
c̃t
]
, w2 =

[wcxwch]T , x2 = [xtht−1]T ,, x2 = [xtht−1]T , and b2 = [bc].
The output of the LSTM cell for each time step is{

ct = ft ∗ ct−1 + it ∗ c̃t
ht = ot tanh(ct )

(27)

where ct is the cell state at time step t and ct−1 is the cell state
from the previous time step t − 1.

B. STRUCTURE OF CNN-BILSTM
The structure of the BiLSTM network is shown in Fig. 3,
where xt is the input data at time step t , h⃗t = (h⃗1, h⃗2, · · · , h⃗n)
is the output of the forward LSTM implicit layer at time step
t,
←

h t = (
←

h1,
←

h2, · · · ,
←

hn) is the output of the reverse LSTM
implicit layer at time step t, yt = (y1, y2, · · · yn) is the output
of the BiLSTM network at time step t , and the final output
vector is the combined effect of both forward and reverse
information flowyt = f (h⃗t ,

←

h t ). The mathematical model of
the BiLSTM neural network system is as follows.

h⃗t = σ (wh⃗xxt + wh⃗h⃗ht + bh⃗)
←

h t = σ (w←
h x
xt + w←

h
←

h
ht + b←

h
)

yt = wyh⃗h⃗t + wy
←

h

←

h t + by

(28)

The CNN-BiLSTM model combines the advantages of
CNNs and BiLSTM for text categorization. As illustrated in

FIGURE 3. BiLSTM Structure.

Fig. 4, a CNN is employed to capture the local features of
the input text, progressively reducing the size and amount
of feature information through a series of convolutional and
pooling layers. Subsequently, the BiLSTM network extracts
global feature information from the CNN output by consider-
ing the overall structure and long-term dependencies of text.
The forward and backward networks of BiLSTM separately
process the output features of the CNN, retaining the key
information of the text sequence through the memory unit
and gating mechanism to obtain the final feature information.
Finally, the BiLSTM output is passed to a fully connected
layer for text categorization. By integrating the local feature
extraction capability of the CNN with the global information
processing ability of BiLSTM, the CNN-BiLSTM model
effectively enhances the accuracy and efficiency of text
classification.

V. TESTS AND COMPARISONS
A. OCSSA
In this study, we introduce the OCSSA algorithm and assess
its performance by comparing it with nine other optimization
algorithms, namely, the Sparrow Search Algorithm (SSA)
[29], Dung Beetle Optimization Algorithm (DBO) [30], Sub-
tractive Averaging Based Optimization Algorithm (SABO)
[31], Artificial Gorilla Troop Optimization Algorithm (GTO)
[32], Particle Swarm Optimization Algorithm (PSO) [33],
Gray Wolf Optimization Algorithm (GWO) [34], Marine
Predator Algorithm (MPA) [35], Raccoon Optimization
Algorithm (COA) [36], and Sand Cat Swarm Optimization
Algorithm (SCSO) [37]. These algorithms were selected
based on their relevance and popularity in optimization.

To conduct a comprehensive evaluation, we employed
CEC2005 test functions [38], which are widely recognized
benchmarks in the optimization community. The test suite
comprises ten classical functions with unimodal and multi-
modal functions, as detailed in Table 1. This classification
allowed us to assess the performance of the algorithms
across diverse optimization landscapes. The main parameter
settings for each algorithm are listed in Table 2, ensure a
fair and consistent comparison. Our experiments were con-
ducted on a Windows 11 64-bit operating system with an
Intel® Core™i7-11800H processor running at 2.30 GHz. All
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TABLE 1. Test function.

FIGURE 4. 1D CNN structure.

TABLE 2. Main parameter settings.

algorithms were implemented in MATLAB 2020a using M
language. By comparing the OCSSA algorithm with the nine
established algorithms across the CEC2005 test functions,
we aimed to demonstrate its effectiveness and efficiency in
solving complex optimization problems. The results of this
comparative analysis are presented in the following sections.

To ensure fairness of the comparison, we standardized the
experimental conditions for all ten algorithms by setting the
population number to P = 100, the number of dimensions
D = 30, and the maximum number of iterations Itermax =
1000. The additional parameter settings are listed in Table 2.
The convergence performance of the algorithms under the
CEC2005 test functions f1 ∼ f10 is shown in Fig. 5. The
convergence curves demonstrate the progress of the algo-
rithms toward the theoretical optimal solution. When a curve

ceases to progress with an increase in iterations, it indicates
that the algorithm has reached the theoretical optimum. For
single-peak test functions (Fig. 5(a) and (g)), the OCSSA
algorithm exhibited superior convergence performance com-
pared to the PSO, GWO, MPA, DBO, SABO, GTO, SSCSO,
COA, and SSA algorithms. Notably, PSO, GWO, MPA, and
COA exhibited stagnation in their convergence curves, indi-
cating lower optimization search accuracy and a tendency
to fall into local optima. In contrast, OCSSA significantly
improves the convergence speed and accuracy, outperforming
SSA and other algorithms in reaching a theoretically optimal
solution. This improvement highlights the effectiveness of the
OOA and Cauchy variants in escaping local optima and accel-
erating the search process. For the multipeak test functions
(Fig. 5(h) and (j)), the OCSSA continues to show significant
advantages in terms of both convergence speed and accuracy
compared with the other algorithms. The rapid decline of
its curve and achievement of the theoretical optimal solution
by all algorithms underscore the superior performance of the
OCSSA in complex landscapes. Regarding the complexity of
the algorithm, the PSO algorithm had the lowest overall time
consumption. However, the OCSSA algorithm requires more
time owing to the introduction of an improved strategy that
expands the SSA optimization range. Despite the increased
time consumption, the optimization accuracy of the OCSSA
was significantly enhanced. The findings presented in Fig. 5
and Table 3 verify the effectiveness of the proposed improve-
ment strategy. The superior performance of the OCSSA on
both single-peak andmultipeak test functions and its ability to
achieve high accuracy despite increased complexity demon-
strate its potential as a powerful tool for task optimization.

B. OCSSA-VMD-CNN-BILSTM MODEL
1) EXPERIMENT 1: CWRU BEARING DATASET
The experimental data used in this study were sourced from
the Case Western Reserve University (CWRU) database of
motor bearing failures [39]. As shown in Fig. 6, a test bench
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TABLE 3. Calculation time of ten algorithms for testing functions in ten.

TABLE 4. Division results of fault dataset.

was employed to simulate the bearing failures with a vibra-
tion signal sampling frequency of 1024 Hz. The experiment
utilized a deep-groove ball-bearing model SKF6205 with
failures simulated via electrical discharge machining (EDM).
For diagnostic purposes, ten fault categories were established,
encompassing four types of states: normal bearing, rolling
element fault, outer ring fault, and inner ring fault. Each fault
state was further categorized based on fault diameters 0.007,
0.014, and 0.021 in, resulting in nine distinct states repre-
senting varying degrees of failure. The dataset for each fault
type consists of 120 samples, with each sample containing
2048 data points. In the experimental setup, 90 samples were
allocated for model training and 30 samples were reserved for
model testing. The divisions of the fault dataset are presented
in Table 4.

In the Variational Mode Decomposition (VMD) of the
original vibration signals of rolling bearings, determining
the relevant parameters is crucial. Specifically, the number
of modal components K and penalty parameter α signifi-
cantly influenced the decomposition results. The value of K
determines the number of decomposed modal components.
If K is set too low, under-decomposition occurs, leading to a
loss of key information and an inability to extract essential
features. Conversely, if K is set too high, it results in an
excessive number of modal components, causing overlapping
center frequencies and making signal feature differentiation
difficult. The penalty parameter α primarily affects the band-
width of each modal component with an appropriate value
that enhances the accuracy of the reconstructed signal. In this

study, we propose an approach that optimizes VMD using an
improved sparrow search algorithm and combines it with a
CNN-BiLSTM architecture for the fault diagnosis of motor
bearings. This method effectively extracts fault features from
the original vibration signals. After the feature extraction pro-
cess, each of the ten states was represented by 120 samples,
resulting in a 1200 × 9 matrix. Each row of this matrix is
labeled with numbers 1-10 to indicate different fault types.
The fault-diagnosis process implemented in this study is
shown in Fig. 7.

Fig. 8 illustrates the convergence and parameter variation
curves obtained during the optimization of the VMD param-
eters using the OCSSA. As shown in Fig. 8, the convergence
process shows that the algorithm tends to stabilize after
14 iterations, indicating convergence. At this point, the min-
imum envelope entropy achieved is 4.7828, with the optimal
parameter combinations for the number of decomposition
modes (K ) and penalty factor (α) being (5, 3508).
Fig. 9 illustrates the impact of the VMD parameters on the

fault diagnosis accuracy, specifically focusing on the number
of decomposition modes K and penalty factor α. From Fig. 9,
it is evident that when K is too low, the accuracy is reduced
owing to under-decomposition, implying that key signal fea-
tures might be missed. Conversely, when K is too high,
the accuracy again decreases owing to over-decomposition,
which leads to overlapping center frequencies that make
distinguishing signal features difficult. The penalty factor α

influences the bandwidth of each modal component. Fig. 9
shows that the fault diagnosis accuracy is sensitive to the
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FIGURE 5. 10 classical test functions and convergence curves in CEC2005 test function: (a) f1; (b) f2; (c) f3; (d) f4; (e) f5; (f) f6; (g) f7; (h) f8;
(i) f9; (a) f10.

value of α. If α is too low, the components may be too broad,
and if they are too high, they may be too narrow. The optimal

α value, as shown in the plot, was approximately 3500, when
the accuracy reached its maximum.
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FIGURE 6. Bearing fault simulation test bench.

FIGURE 7. OCSSA-VMD-CNN-BiLSTM model fault diagnosis flow.

Fig. 10(a)-(d) show time-domain comparison diagrams
before and after signal decomposition and reconstruction
for the bearing normal, inner ring, outer ring, and rolling
body faults, respectively. These figures demonstrate that after
the optimized VMD reconstruction, the time-domain signals
exhibited significant noise reduction, and the impact charac-
teristics of the fault signals became more pronounced.

Fig. 11 illustrates the accuracy curve of a fault diagnosis
model based on the OCSSA-VMD-CNN-BiLSTM using the
CWRUdataset. Themodel performed excellently during both
the training and testing phases, stabilizing after approxi-
mately 150 iterations and achieving a testing accuracy of up
to 99.34% at 300 iterations.

Fig. 12 shows the loss function curve of a fault diagno-
sis model based on the OCSSA-VMD-CNN-BiLSTM using
the CWRU dataset. The model demonstrated excellent per-
formance, with both the training and testing losses rapidly
decreasing and stabilizing at low values after approximately
50 iterations.

FIGURE 8. K and α parameter optimization: (a) OCSSA evolution curve;
(b) optimization process curve of K ; and (c) optimization curve of penalty
factor α.

FIGURE 9. Effect of VMD parameters on fault diagnosis accuracy.

To evaluate the performance of OCSSA-VMD-CNN-
BiLSTM, the proposed model was compared with other
state-of-the-art (SOTA) models [40], [41], [42], [43], [44],
[45], [46]. The confusion matrix and classification results
for fault diagnosis across the eight models are shown
in Fig. 13. After repeated validation, the OCSSA-VMD-
CNN-BiLSTM model demonstrated superior performance,
achieving a recognition accuracy of 96.7% for normal faults
and fault diameters of 0.021 inches, and 100% for all other
fault types. The overall recognition accuracy for the ten types
of faults reached 99.34%. Furthermore, the recognition speed
of theOCSSA-VMD-CNN-BiLSTMmodel was significantly
improved, demonstrating its effectiveness in fault diagnosis.

Deep learning methods, such as CNN-LSTM, CNN-
BiLSTM, and VMD-CNN-BiLSTM, perform exceptionally
well in fault recognition and generally achieve higher
accuracy than traditional machine learning methods. The
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FIGURE 10. Time domain comparison between the original and the reconstructed signals of different faults: (a) Normal;
(b) Inner ring fault diameter 0.007 inches; (c) Outer ring fault diameter 0.007 inches; (d) Rolling ball fault diameter
0.007 inches.

FIGURE 11. Accuracy curve of the fault diagnosis model based on
OCSSA-VMD-CNN-BiLSTM using the CWRU dataset.

incorporation of techniques such as VMD and OCSSA fur-
ther enhances the accuracy of fault recognition. This analysis
indicates that methods combining deep learning and opti-
mization techniques have significant advantages in multiclass
fault recognition tasks, providing strong support for practical
engineering applications.

Fig. 14 shows the diagnostic accuracy of the different
experimental methods using the CWRU dataset. The figure
presents the accuracy and average processing time of eight

FIGURE 12. Loss function curve of the fault diagnosis model based on
OCSSA-VMD-CNN-BiLSTM using the CWRU dataset.

different fault diagnosis models applied to ten types of faults.
The OCSSA-VMD-CNN-BiLSTM model stands out as the
most effective method for fault diagnosis, achieving 100%
accuracy for all faults except one, with an overall accuracy
of 99.34%. It maintains a very short processing time of
6.67 seconds, second only to the CNN-SVM, which has a
significantly lower accuracy. The consistently high accuracy
across the different fault types demonstrates robustness. The
combination of optimization (OCSSA) and advanced feature
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FIGURE 13. The accuracy of the test results for the eight methods: (a) CNN-LSTM; (b) CNN-BiLSTM; (c) VMD-CNN-BiLSTM;
(d) OCSSA-VMD-CNN-BiLSTM.
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FIGURE 13. (Continued.) The accuracy of the test results for the eight methods: (e) BiGRU; (f) CNN-BiLSTM-Attention;
(g) CNN-BiGRU-Attention; (h) CNN-SVM.
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FIGURE 14. Diagnostic accuracy of different experimental methods using the CWRU dataset.

FIGURE 15. XJTU rolling bearing accelerated life experimental device.

FIGURE 16. Accuracy curve of the fault diagnosis model based on
OCSSA-VMD-CNN-BiLSTM using XJTU dataset.

extraction (VMD) significantly enhanced the performance
of the CNN-BiLSTM model, making it the best choice for

FIGURE 17. Loss function curve of the fault diagnosis model based on
OCSSA-VMD-CNN-BiLSTM using XJTU dataset.

practical applications that require high accuracy and effi-
ciency in fault diagnosis.

2) EXPERIMENT 2: XJUT BEARING DATASET
To verify the reliability, accuracy, and universality of the
OCSSA-VMD-CNN-BiLSTM model, this study reanalyzes
a rolling bearing accelerated life experimental dataset from
Xi’an Jiaotong University (XJUT) was used. This dataset
was provided by the Institute of Design Science and Basic
Components at Xi’an Jiaotong University in Shaanxi, China
and Sumyoung Technology Co., Ltd. in Changxing, Zhejiang
[47]. The bearing test bench is depicted in Fig. 15 and com-
prises an alternating current (AC) induction motor, motor
speed controller, support shaft, two support bearings, and
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FIGURE 18. The accuracy of the test results for the OCSSA-VMD-CNN-BiLSTM using the XJTU dataset.

FIGURE 19. Diagnostic accuracy of different experimental methods using the CWRU dataset.

hydraulic loading system. The sampling period was 1 min
at 2250 rpm (37.5Hz) and 11 kN, with each sampling
period lasting 1.28 seconds. The last six CSV files from
Bearing2_1 (inner race fault), Bearing2_2 (outer race fault),
and Bearing2_3 (cage fault) were selected as rolling bearing
fault data for this analysis. All faults occur naturally during
regular operations, thereby enhancing the realism of the data.
Specifically, files 100-105 from Bearing2_3 were used as
data to represent the healthy rolling bearing conditions. The
dataset recorded four operating states of the bearings and
used overlapping sampling for data augmentation, with each

sample being 1600 in length and an overlap of 1200. The
dataset divisions are listed in Table 5.

Fig. 16 shows the accuracy curve of a fault diagnosis model
based on the OCSSA-VMD-CNN-BiLSTM using the XJTU
dataset. The training accuracy started at approximately 30%
and rapidly increased to approximately 70% by the 20th iter-
ation. As the number of iterations increases, the fluctuations
decrease, and the training accuracy reaches approximately
90% by the 50th iteration, eventually approaching 100%,
indicating that the model has nearly perfectly learned the
training data. Similarly, the testing accuracy started at
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TABLE 5. XJTU dataset division results.

approximately 30% and reached approximately 60% by
the 20th iteration. Despite larger fluctuations, it followed
a similar trend, reaching approximately 85% by the 50th
iteration and eventually approaching 100%, demonstrating
an excellent generalization to unseen data. The accuracy
curve indicates that the model learns efficiently and gener-
alizes well, making it suitable for practical fault-diagnosis
applications.

Fig. 17 presents the loss function curve of the fault diagno-
sis model based on the OCSSA-VMD-CNN-BiLSTM using
the XJTU dataset. Both the training and testing losses start
at approximately 1.6 and quickly decrease, stabilizing near
zero after approximately 50 iterations. This indicates that
the model learns rapidly during the initial phase and then
gradually stabilizes, thereby demonstrating effective learning
and strong generalization capabilities. The close alignment
between the training and testing losses signifies that the
model performs similarly well on unseen data, highlighting
its high stability and reliability.

The results shown in Fig. 18 highlight the high accuracy
and reliability of the OCSSA-VMD-CNN-BiLSTM model
for fault diagnosis using the XJTU dataset. The confu-
sion matrix demonstrated a near-perfect classification for all
classes, with only a single misclassification. The scatter plot
reinforced this finding, showing a strong correlation between
the predicted and actual labels. These findings indicate the
suitability of the model for practical applications in fault
diagnosis, offering a precise and dependable performance.

Fig. 19 shows the diagnostic accuracy and average process-
ing time of the eight fault diagnosis models on the CWRU
dataset. The OCSSA-VMD-CNN-BiLSTMmodel continued
to perform exceptionally well, achieving nearly 100% accu-
racy for all fault types with an average accuracy of 99.65%.
The processing time was short, 8.47 seconds, demonstrating
high efficiency and a high accuracy. The model maintains
high accuracy across different fault types, demonstrating its
robustness.

The accuracy curve of the OCSSA-VMD-CNN-BiLSTM
fault diagnosis model demonstrated efficient learning and
robust generalization for the XJTU dataset. The model
achieved high accuracy for both the training and testing data,
with stability and minimal fluctuations as the number of iter-
ations increased. This indicated the suitability of the model
for practical applications in fault diagnosis.

VI. CONCLUSION
To address the challenges of noise susceptibility and diffi-
culty in extracting weak fault features from rolling bearing

signals, this study proposes a motor bearing fault diag-
nosis model based on OCSSA-VMD-CNN-BiLSTM. The
optimization process begins by initializing the population
diversity using logistic chaotic mapping. The global explo-
ration strategy of the OOA replaces the discoverer position
updating formula of the original sparrow algorithm, whereas
the Cauchy mutation strategy is used to replace the fol-
lower position updating formula. The minimum envelope
entropy serves as the fitness function that guides the adaptive
selection of the modal number K and penalty coefficient
α. This approach improves the decomposition quality of
VMD, enabling the effective extraction of real components
containing fault characteristic information. The proposed
OCSSA-VMD-CNN-BiLSTMmodel was validated using the
CWRU and XJTU datasets, and compared with eight other
state-of-the-art (SOTA) models. The results demonstrate that
the proposed method achieves faster fault recognition speed
and higher fault recognition accuracy.
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