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ABSTRACT In this paper, a Multi-Strategy fusion Improved Dung Beetle Optimization (MSIDBO)
algorithm is proposed to address the problems that the dung beetle optimization algorithm is prone to
fall into local optimum, suffers from weak global exploration, and shows slow convergence to a solution.
In MSIDBO, a good point set strategy is adopted to generate a more diverse initial population; Golden sine
and t-distribution perturbation strategies are used to improve the global search capability of the algorithm;
By introducing the adaptive Gaussian-Cauchy mutation strategy, the probability of the algorithm falling
into local optimal is reduced. To verify the effectiveness of the MSIDBO algorithm, it was tested against
23 benchmark functions and 29 CEC-2017 test functions, comparing its performance with that of other
well-known metaheuristic algorithms. The results show that the MSIDBO algorithm excelled in 17 out
of 23 benchmark test functions, achieving higher solution accuracy and faster convergence compared to
the original DBO algorithm, while the remaining 6 functions yielded comparable results. Similarly, among
the 29 CEC-2017 test functions, theMSIDBO algorithm surpassed the original DBO algorithm in 25, and the
remaining 4 functions yielded similar results. Additionally, to verify the practical application potential
of the MSIDBO algorithm, this paper applies it to optimize three engineering design problems, and the
experimental results show that the MSIDBO algorithm has a higher application potential compared with
other algorithms.

INDEX TERMS Dung beetle optimization algorithm (DBO), MSIDBO, good point set, golden sine strategy,
adaptive Gaussian-Cauchy mutation, engineering design problems.

I. INTRODUCTION
Inspired by natural physical laws and biological habits,
scholars have developed a range of swarm intelligence opti-
mization algorithms, including Particle Swarm Optimization
Algorithm (PSO) [1], Grey Wolf Optimization Algorithm
(GWO) [2], Harris HawkOptimizationAlgorithm (HHO) [3],
Whale Optimization Algorithm (WOA) [4], Sparrow Search
Algorithm (SSA) [5], Slime Mould Algorithm (SMA) [6],
Hunger Games Search Algorithm (HGS) [7], Differential

The associate editor coordinating the review of this manuscript and
approving it for publication was P. K. Gupta.

Evolutionary Algorithm (DE) [8], and Sine Cosine Algorithm
(SCA) [9]. These algorithms are widely used in various
real-world fields, including fault detection [10], job shop
scheduling [11], and engineering optimization fields [12],
because of their stability and ease of use.

Dung beetle optimizer (DBO) is a novel meta-heuristic
algorithmfirst proposed byXue and Shen [13] in 2022, which
is inspired by the social behaviors of dung beetle populations
such as ball-rolling, dancing, foraging, breeding, and stealing.
The algorithm divides the dung beetle population into four
different species of dung beetles based on the different
divisions of labour of individual dung beetles, namely the
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ball-rolling dung beetle, the spawning ball, the little dung
beetle, and the stealing dung beetle. In order to validate
the performance of the DBO algorithm, [13] uses a number
of well-known test functions to evaluate DBO algorithm,
including 23 benchmark functions and 29 CEC-2017 test
functions [14]. In addition, the Wilcoxon signed-rank test
[15] was used to evaluate the experimental results of the
algorithm, which proved that the dung beetle optimization
algorithm is very competitive with the current well-known
optimization algorithms in terms of convergence speed,
solution accuracy and stability. To further illustrate the prac-
tical application potential of the DBO algorithm, the DBO
algorithm is successfully applied to three engineering design
problems. The experimental results show that the proposed
DBO algorithm can effectively handle practical application
problems. Since the release of DBO, it has been applied
to PV array fault diagnosis [16], lung cancer detection and
classification [17], distribution network restructuring [18],
wood thermal modification prediction [19], air quality
prediction [20], and drone path planning [21], amongst
others, due to its good performance and stability.

Although DBO has been successfully used in many
different fields due to its superior performance, it still has
the common drawbacks of optimization algorithms, i.e.,
it is prone to falling into local optima, suffers from weak
global exploration, and shows slow convergence to a solution.
Although the DBO algorithm was proposed recently, many
scholars have improved it for these problems. For example,
[22] combines the improved sine algorithm (MSA) [23],
tent chaotic mapping and mutation operator to improve the
DBO algorithm and apply it to solve engineering design
problems; [16] improved DBO algorithm by introducing
a variety of swarming mechanisms, and they propose an
IDBO-LSTM model applied to the diagnosis of photovoltaic
array faults; [18] proposes an improved multi-objective
dung beetle optimization algorithm, which uses a variable
spiral search strategy to enhance the search range and
convergence accuracy of the DBO algorithm; [21] proposes
a multi-strategy enhanced DBO algorithm incorporating
Beta distribution and crossover operators and uses it for
3D UAV navigation; [19] uses the segmented linear chaos
mapping (PWLCM), adaptive linear decreasing producer
and dimension learning enhanced foraging (DLF) search
strategies to improve the DBO algorithm.

This paper is dedicated to improving the traditional DBO
algorithm for its shortcomings and enhancing the overall
performance of the algorithm. Therefore, a Multi-Strategy
fusion Improved Dung Beetle Optimization (MSIDBO)
algorithm is proposed. In this paper, the original DBO
algorithm is improved from three perspectives respectively.
Firstly, the Good Point Set [24] method is introduced to
generate an initial population to make the distribution of
the population more even and to increase the population
diversity; secondly, the position update formula is optimized
in the exploration phase by combining the golden-sine
and the t-distribution perturbation strategy, which enhances

the algorithm’s searching ability and convergence accuracy
and expands the searching range; Finally, the adaptive
Gaussian-Cauchy mutation operator is introduced to enhance
the ability of the algorithm to jump out of the local optimal.

II. THE DUNG BEETLE OPTIMIZATION ALGORITHM (DBO)
The dung beetle optimization algorithm was designed to
simulate various behaviours of dung beetles, including ball
rolling, dancing, foraging, breeding and stealing behaviours.
Based on these behaviours, five position update rules were
designed respectively, and the dung beetle population was
divided into four types of agent dung beetles according
to their different behaviours, specifically, ball-rolling dung
beetles, spawning balls, small dung beetles, and stealing
dung beetles, each constituting a certain proportion of the
dung beetle population.

A. THE BALL-ROLLING DUNG BEETLES
The dung beetle needs to be navigated through the sun as it
rolls to ensure that the ball of dung rolls in a straight line. The
intensity of sunlight also has an effect on the movement path
of the dung beetle. During the rolling process, the position
update formula of the ball-rolling dung beetle is denoted as:

xi(t + 1) = xi(t) + α × k × xi(t − 1) + b× 1x ,

1x = |xi(t) − Xw| (1)

where t denotes the current number of iterations, xi(t) denotes
the t th iteration of the ith dung beetle, k ∈ [0, 0.2] denotes
a deflection coefficient that primarily controls the degree of
deviation of the dung beetle during its rolling motion, b ∈

[0, 1] is a constant that represents the influence of changes in
sunlight intensity on the dung beetle’s movement. In original
paper on DBO the k and b were set to 0.1 and 0.3. α is a
natural coefficient, which is used to simulate that dung beetles
deviate from the original route due to natural factors. When
α = 1, it indicates that there is no deviation. When α = −1,
it indicates deviation and the value of α is 1 or -1 with equal
probability, Xw denotes the global worst solution. 1x is used
for simulating the intensity of sunlight, a higher value of 1x
indicates a weaker light source.

When the dung beetle encounters an obstacle, it will
change direction by dancing to obtain a new path. The
dancing action is simulated using a tangent function, which
takes into account only the interval [0, π] as its domain. Once
the dung beetle has successfully determined a new direction,
it should continue to roll the ball forward. Consequently, the
position of the rolling dung beetle is updated and defined as:

xi(t + 1) = xi(t) + tan(θ )|xi(t) − xi(t − 1)| (2)

The θ in Eq. (2) belongs to the angle of inclination of [0, π],
and |xi(t) − xi(t − 1)| is the difference between the position
of ith dung beetle at the t th iteration and the position at the
t − 1th iteration. Thus, the position update of the ball-rolling
dung beetle is closely related to the current and historical
information.
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B. THE SPAWNING BALL
The dung beetle rolls the dung ball to a safe location and
conceals it, proceeding to lay its eggs thereafter. Locating
the right spawning area is crucial for the reproduction of
the dung beetle population. In the original paper on DBO,
a boundary selection strategy was proposed to simulate the
dung beetle’s behavior in searching for a spawning area. This
strategy takes into account not only the inherent boundaries
of the optimization problem but also the dynamic changes in
the current local optimal solution, thereby more realistically
simulating the dung beetle’s natural process of selecting the
best spawning ground.

As the population iterates and evolves, the boundaries of
the optimal spawning area undergo corresponding changes.
This is because as the search process deepens, the algorithm
gradually approaches the global optimal solution, and the
boundaries of the spawning area gradually narrow down,
focusing on more promising solution spaces. This dynamic
boundary adjustment not only improves the search efficiency
of the algorithm but also enhances its adaptability, making it
more suitable for the demands of real-world problems. The
specific definition of the boundary selection strategy is as
follows:

Lb∗
= max(X∗

× (1 − R),Lb),

Ub∗
= min(X∗

× (1 + R),Ub)

R = 1 − t/Tmax (3)

The X∗ in Eq. (3) denotes the local optimal solution, Lb∗ and
Ub∗ represent the upper and lower bounds of the spawning
region, Tmax represents the maximum number of iterations,
R controls the dynamic change of the spawning area as
the population iterates, and Lb and Ub denote the lower
and upper bounds of the optimization problem, respectively;
The spawning region of the dung beetle population changes
dynamically with population iterations.

Once the population of dung beetles has found an optimal
spawning area, female dung beetles lay their eggs on
hatching balls in this area, laying only one egg per iteration.
Because the optimal spawning area for dung beetles changes
dynamically with population iterations, the location of the
hatching balls also changes dynamically. This dynamic
change can be defined as:

Bi(t + 1) = X∗
+ b1 × (Bi(t) − Lb∗)

+ b2 × (Bi(t) − Ub∗) (4)

The Bi(t) in Eq. (4) denotes the positional information of
ith spawning ball at t th iteration, and b1 and b2 denote two
independent stochastic vectors of size 1×D, where D denotes
the dimension of the optimization problem.

C. THE LITTLE DUNG BEETLE
The little dung beetles that hatch out of the spawning ball will
burrow out of the ground as adults in search of food, and the
little dung beetles need to find food in the optimal foraging

area, which is defined as:

Lbb = max(Xb × (1 − R),Lb),

Ubb = min(Xb × (1 + R),Ub)

R = 1 − t/Tmax (5)

where Xb denotes the global optimal solution, Lbb and Ubb

refer to the lower and upper bounds of the optimal foraging
area. The Tmax denotes the maximum number of iterations,
and Lb and Ub refer to the lower and upper bounds of
the optimization problem, respectively. The foraging area of
the dung beetle population, like the spawning area, changes
dynamically as the population iterates. The position update
formula for the small dung beetle is as follows:

xi(t + 1) = xi(t) + C1 × (xi(t) − Lbb)+

C2 × (xi(t) − Ubb) (6)

where xi(t) denotes the position of ith small dung beetle at
the t th iteration, C1 denotes a random number obeying a
normal distribution, and C2 denotes a random vector with
each element between 0 and 1.

D. THE STEALING DUNG BEETLE
In a dung beetle population, some individual dung beetles
steal dung balls from other dung beetles, and these dung
beetles are called stealing dung beetles. From Eq. (5), Xb is
the best foraging area, so the area around Xb can be set up as
the best area to compete for food. The position update formula
for the stealing dung beetle can be defined as:

xi(t + 1) = Xb + S × g× (|xi(t) − X∗
| + |xi(t) − Xb|) (7)

where xi(t) denotes the position information of ith stealing
dung beetle at t th iteration, g is a random vector of size 1×D
obeying a normal distribution, and S is a constant.

III. THE MULTI-STRATEGY FUSION IMPROVED DUNG
BEETLE OPTIMIZATION ALGORITHM(MSIDBO)
A. THE MOTIVATION FOR IMPROVEMENT
Although the DBO algorithm has been proven to be very
competitive with well-known optimization algorithms in
terms of convergence speed, solution accuracy and stability
after several test experiments, it still suffers from the
defects of low convergence accuracy, weak global exploration
ability and easy-to-fall into local optimization. Therefore,
in order to improve these defects of the DBO algorithm, this
paper proposes the MSIDBO algorithm, which improves the
original DBO algorithm by means of the Good Point Set [24]
strategy, the Golden Sine [25] strategy, the t-distribution
perturbation strategy, and the adaptive Gaussian-Cauchy
mutation.

B. THE GOOD POINT SET
The merit of the initial population has an important impact
on the search performance of the population. The original
DBO algorithm initializes its population randomly, which
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may result in an insufficiently uniform initial distribution
and reduce the diversity of the population. This can make
the algorithm prone to falling into local optima and may
affect both the convergence speed and the global search
capability of the algorithm. Therefore, choosing a population
initialization strategy different from random distribution
can effectively improve the diversity of the population and
promote a more uniform distribution of the population within
the search range.

The Good Point Set was proposed by Hua and Wang [24]
in 1978, and has been used by many scholars as a strategy
for population initialization. Reference [26] demonstrates
that the population generated by adopting the good point
set strategy has a more uniform distribution, which can
effectively improve the performance of the algorithm.
Therefore, the good point set strategy is used to initialize
the DBO population in this paper. The basic definition and
construction of the good point set are as follows: Let Gs be
the unit cube in s-dimensional Euclidean space. If r ∈ Gs,
which can be expressed as:

pn(k) = {(rn1 , rn2 , . . . , rnm) × k}, k = 1, 2, . . . , n (8)

8(n) = C(r, ϵ)n(−1+ϵ) (9)

where 8(n) represents the deviation of Eq. (8), C(r, ϵ) is
a constant that depends solely on r and ϵ, ϵ is an arbitrary
positive number, n is the number of points in the population,
Pkn is the set of good points, and r stands for a good point.
In this paper, we use the randommethod and the good point

set method to generate a 2D initial population for comparison,
as shown in Fig. 2, with the same population size, the initial
population generated by the good point set method is more
uniformly distributed than that generated by the random
method and has higher stability. In contrast, the distribution
of the initial population generated by the random method is
disordered and even overlapping. Therefore, initializing the
population using the good point set method greatly enhances
the quality of the initial population and lays a solid foundation
for the subsequent iterative search process.

FIGURE 1. Comparison chart of initialized populations.

C. THE GOLDEN SINE STRATEGY
Golden sine algorithm (Golden-SA) is a meta-inspired
algorithm proposed by Tanyildizi and Demir [25] in 2017.
It employs the sine function to traverse the entire unit circle
based on the angular relationship between the sine function
and the unit circle. The Golden Ratio coefficient is utilized

to reduce the solution space, thereby obtaining a superior
search area and enhancing both local exploitation ability and
solving accuracy. The position update formula of the golden
sine algorithm is as follows:

V t+1
i = V t

i | sin(r1)| − r2sin(r1)|y1Dti − y2V t
i |

y1 = a× (1 − τ ) + b× τ

y2 = a× τ + b ∗ (1 − τ ) (10)

where r1 is a random number within [0, 2π ]; r2 is a random
number within [0, π]; V t

i represents the position of the ith

individual at the t th iteration, τ is the golden number defined
as 1−

√
5

2 , y1 and y2 are the Golden Ratio coefficients that aim
to balance the search and development processes. The initial
values of a and b are −π and π , respectively.

In the DBO algorithm, dung beetles adjust their direction
by performing a dance-like behavior when they encounter
obstacles during ball rolling. Once they have determined a
new rolling direction for the ball, they continue to move
forward. The dance-like behavior of dung beetles is simulated
using a tangential function. In this paper, the golden sine
strategy is employed to reduce the solution space and replaces
the dance-like behavior of the rolling dung beetle when
encountering an obstacle. When the rolling dung beetle
encounters an obstacle, it modifies its current position by
implementing the golden sine strategy, locating its position
closer to the optimal solution. Subsequently, the rolling dung
beetle continues its forward movement, effectively enhancing
the local mining ability of the DBO algorithm. The specific
position update formula of the golden sine strategy is as
follows:

xi(t + 1) = xi(t)| sin(r1)| − r2sin(r1)|y1xbest (t)

− y2xi(t)| (11)

where xi(t) is the position of i th dung beetle at t th iteration,
xbest (t) is the optimal solution at t th iteration, and the rest of
the variables are defined by the Eq. (10).

D. THE T-DISTRIBUTION STRATEGY
The t-distribution [27], also known as the student distribution,
contains a parameter degree of freedom n, and its curve
shape is related to the size of the degree of freedom n.
In this paper, we perturb the positions of egg-laying dung
beetles, small dung beetles, and stealing dung beetles with the
current number of iterations as the parameter of the degrees
of freedom.

The improved position update formula for the spawning
ball is defined as:

Bi(t + 1) = X∗
+ (b1 × (Bi(t) − Lb∗)

+ b2 × (Bi(t) − Ub∗)) × t(iter) (12)

The improved position update formula for the little dung
beetle is defined as:

xi(t + 1) = xi(t) + (C1 × (xi(t) − Lbb)

+ C2 × (xi(t) − Ubb)) × t(iter) (13)
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The improved position update formula for the stealing dung
beetle is defined as:

xi(t + 1) = Xb + (S × g× (|xi(t) − X∗
|

+ |xi(t) − Xb|)) × t(iter) (14)

where iter is the current number of iterations, as the
iteration count iter increases, the t-distribution gradually
converges to the Gaussian distribution. This ensures that the
algorithm exhibits good global exploration capabilities in
early iterations and strong local exploitation abilities in later
iterations, thereby enhancing the convergence speed of the
algorithm.

E. THE ADAPTIVE GAUSSIAN-CAUCHY MUTATION
STRATEGY
In the later iterations of the algorithm, the population tends to
converge around the position of the optimal individual. If this
optimal position is not the theoretical global optimum, the
algorithm may become stuck in a local optimum. Therefore,
to reduce the possibility of the population falling into a
local optimum, this paper introduces the Gaussian-Cauchy
mutation strategy to randomly perturb the optimal dung
beetle individual. Furthermore, research in the reference [22]
has demonstrated that Cauchy mutation helps enhance the
algorithm’s global search ability, while Gaussian mutation
aids in improving its local search capability. Inspired by the
work in reference [28], this paper introduces adaptive weights
into the Gaussian-Cauchy mutation strategy. The specific
definition of the adaptive Gaussian-Cauchy mutation strategy
is as follows:

xs = xbest (t) + xbest (t) × (w1 × C + w2 × G) (15)

where xs is the result after the mutation of the optimal
solution at the t th iteration, xbest (t) is the optimal solution at
the t th iteration, Tmax is the maximum number of iterations.
C is a random variable that satisfies the Cauchy distribution,
representing the Cauchy mutation operator. G is a random
variable that satisfies the Gaussian distribution, representing
the Gaussian mutation operator. w1 is the weight for the
Cauchy mutation operator, defined as 1 −

t
Tmax

. w2 is the
weight for the Gaussian mutation operator, defined as t

Tmax
.

In the early stages of the algorithm iteration, when
individuals in the population are more dispersed, assigning
a higher weight to the Cauchy mutation operator is beneficial
for generating large step sizes to jump out of the current
position, thereby improving the global search ability of the
population. In the later stages of the algorithm iteration,
assigning a higher weight to the Gaussian mutation operator
allows for small-step perturbations around the optimal
individual position, which in turn helps enhance the local
search ability of the population.

The adaptive Gaussian-Cauchy mutation strategy does not
ensure that the location of each mutation is better than before.
Therefore, this paper adopts the greedy strategy and only
retains solutions with better fitness values after position

change, which is defined as follows:

xbest (t) =

{
xs xs ≤ xbest (t)
xbest (t) xs > xbest (t)

(16)

F. THE STEPS OF MSIDBO ALGORITHM
The steps of the Multi-Strategy fusion Improved Dung Beetle
Optimization (MSIDBO) algorithm are as follows.

Step 1: Set the basic parameters of MSIDBO;
Step 2: Initialize the population using the good point set

method, Eq. (8);
Step 3: Calculate the fitness value of each individual in the

initial population and select the global optimal position based
on the fitness value;

Step 4: Calculate the position of the ball-rolling dung
beetle based on Eq. (1). If it deviates from the path, execute
the golden sine strategy according to Eq. (11);

Step 5: Update the local optimal solution;
Step 6: Update the positions of spawning balls, little

dung beetles and stealing dung beetles according to the
Eq. (12)-(14), respectively;

Step 7: Calculate and record the fitness of each individual
based on the updated population location information to
update the global optimal solution;

Step 8: Execute the adaptive Gaussian-Cauchy mutation
strategy to the optimal individual’s position based on Eq. (15),
and select the retained solution according to Eq. (16);

Step 9: If the current iteration number reaches the
maximum iteration number, then execute Step 10, otherwise
continue to jump to Step 4;

Step 10: End the MSIDBO algorithm and output the global
optimal solution xbest and its fitness fitnessb.

The flow of the MSIDBO algorithm can be seen in Fig. 2.

G. TIME COMPLEXITY AND COMPUTING TIME ANALYSIS
The mean value and standard deviation of each test function
of the algorithm mentioned above show that the algorithm
has better optimization accuracy and stability, respectively.
The time complexity and computing time are also important
evaluation indexes of algorithm performance.

The time complexity of the algorithm is expressed by O
notation. Let the size of dung beetle population be N, the
maximum number of iterations be M, and the dimension
of the optimization problem be D. The time complexity of
initialization operation for each dung beetle individual is
O(N × D), each iteration will update the position of each
individual in the population, and the time complexity is
O(M×N×D). After each iteration, fitness value will be used
to evaluate whether to replace the best dung beetle individual.
Time complexity is O(M×N ). The overall complexity of the
DBO algorithm is O(N × D)+O(M × N × D)+O(M × N ),
which can be simplified to O(M ×N ×D). The improvement
strategy of MSIDBO algorithm does not increase the number
of cycles, so the overall time complexity is still O(M×N×D).
The calculation time of MSIDBO and DBO algorithm was

tested by F1 in 23 benchmark test functions, the population
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FIGURE 2. MSIDBO algorithm flow chart.

size of the two algorithms was set to 30, and the maximum
number of iterations was 500. The two algorithms were run
independently for 10 times, and the average value was taken
as the evaluation standard of the algorithm calculation time.
The calculation time test results of the two algorithms, with
the data units in seconds, can be found in Tab. 1. The average
calculation time of MSIDBO is 0.1627 seconds, and that of
DBO algorithm is 0.1417 seconds. The average computing
time of the two algorithms is close. This shows that MSIDBO
can improve the optimization accuracy and stability without
causing too much time overhead, and further proves that the
overall performance ofMSIDBO algorithm is higher than that
of the original DBO algorithm.

IV. SIMULATION EXPERIMENT AND RESULT ANALYSIS
In [13], 23 benchmark functions and CEC-2017 test functions
were used to test the optimization ability of the DBO
algorithm. Therefore, these two sets of test functions are still
used in this paper to verify the performance of the MSIDBO
algorithm. For the 23 benchmark functions, the maximum
number of iterations is set to 500, and the dimension settings
are depicted in Tab. 3. For the 29 CEC-2017 test functions,
the maximum number of iterations is set to 10000 and the
dimensions are set to 10. The parameter settings of HGS
algorithm are obtained from [7], and the parameters of other
algorithms come from [13]. The specific parameter settings
are detailed in Tab. 2. To ensure the fairness of the experiment,
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TABLE 1. Computing time of MSIDBO and DBO.

all algorithms will be run on the same hardware and software
environment. The experimental environment was an AMD
Ryzen 5 2500U CPU @ 2.00 GHz, with 8.00 GB of RAM,
running Windows 10, and Matlab R2020a. Each algorithm
will be executed independently 30 times, and the average
value and standard deviation will be used as the evaluation
criteria for the algorithm’s solution accuracy and stability,
respectively.

The 23 benchmark functions are commonly used in
the field of intelligent optimization algorithms to evaluate
their performance, as shown in Tab. 3. Among them,
F1-F7 are high-dimensional single-peak functions, F8-F13
are high-dimensional multi-peak functions, and F14-F23 are
fixed-dimensional multi-peak functions. In the experiments
conducted with these 23 benchmark test functions, the
population size of all algorithms is set to 30, and the
maximum number of iterations is set to 500.

The 29 CEC-2017 test functions include F1 and F3 as
unimodal functions, F4-F10 as simple multimodal functions,
F11-F20 as hybrid functions, and F21-F30 as composition
functions. Function F2 has been removed from the CEC-2017
test functions set. In the CEC-2017 test experiments, the
population size of all algorithms is set to 30, the dimension is
set to 10, and the maximum iteration number is set to 10000.

For amore rigorous comparison, theWilcoxon signed-rank
test is used to determine whether there is a significant
difference in performance between the MSIDBO algorithm
and the other optimization methods. The p-value is calculated
to assess the statistical significance of the difference between
the algorithms. If p < 0.05, then it indicates that there is a
significant difference between the two algorithms.

A. COMPARISON WITH CLASSICAL OPTIMIZATION
ALGORITHMS
1) COMPARISON ON 23 BENCHMARK FUNCTIONS
In this section, five classical intelligent optimization algo-
rithms are chosen to compare with the MSIDBO algorithm
proposed in this paper. They are Dung Beetle Optimization
Algorithm (DBO) [13], Grey Wolf Optimization Algorithm
(GWO) [2], Particle Swarm Optimization Algorithm (PSO)
[1], Whale Optimization Algorithm (WOA) [4], and Harris

TABLE 2. Parameter settings for various algorithms.

Hawk Optimization Algorithm (HHO) [3]; The algorithm
parameters are set according to Tab. 2.
From Tab. 4, it can be seen that the search of the MSIDBO

algorithm is better than the DBO algorithm in 17 of the
test functions, and equal to the DBO algorithm in the rest
of the test functions. First of all, there is only one extreme
point in the high-dimensional single-peak functions F1-F7,
which mainly tests the local convergence ability of the
algorithm, and comparing the mean and standard deviation,
we can see that the accuracy of the MSIDBO algorithm
is ranked in the first place except F5, which finds the
optimal solution in the function of F1-F4, and the accuracy
of the function is weaker than the first algorithm in the
function of F5 in the second place, and it is superior to
the DBO algorithm in the function of F1-F7. This fully
reflects the advantage of using the good point set method
to generate the initial population, which generates a more
evenly distributed and more diverse initial population, so the
local fast convergence ability of MSIDBO is better than
that of DBO and also in the leading level compared with
other classical algorithms; there are multiple local optima in
the high-dimensional multi-peak functions F8-F13, which is
mainly to test the global optimality search and the ability
of the algorithm to jump out of the local optima. MSIDBO
is ranked first in F9-F12, which reflects the advantages of
introducing the golden sine guidance strategy as well as the
t-distribution perturbation strategy and the mutation operator
strategy, which makes the ability of the global searching and
jumping out of the local optimum of the MSIDBO algorithm
improve tremendously; in the fixed-dimensional multi-peak
function F14-F23, except for F14, which is ranked second,
the rest of the algorithms are all ranked first. In summary, the
MSIDBO algorithm improves greatly in high-dimensional
single-peak and high-dimensional multi-peak functions
and still has greater competitiveness in fixed-dimensional
multi-peak functions.

In order to demonstrate more intuitively the effectiveness
of MSIDBO and the remaining five traditional intelligent
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TABLE 3. 23 Benchmark test function.

TABLE 4. Results of MSIDBO, DBO, GWO, PSO, WOA, and HHO on 23 benchmark test function.

optimization algorithms in finding the optimal result, this
paper selects two functions from each of the 23 benchmark
test functions to demonstrate. The population size is set to
30, and the number of iterations is set to 500. From the

convergence curves shown in Fig. 3, it can be seen that
MSIDBO makes up for the defects of the DBO algorithm
in that it easily falls into the local optimum and slow
convergence speed, and has a faster convergence speed and
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FIGURE 3. Comparison chart of convergence of 6 classical optimization algorithm.

TABLE 5. Results of MSIDBO, DBO, GWO, PSO, WOA, and HHO on CEC-2017 test function.

higher convergence accuracy, which proves the effectiveness
of the improved strategy.

2) COMPARISON ON CEC-2017 TEST FUNCTIONS
To further demonstrate the performance of the MSIDBO
algorithm, this section compares five well-known meta-
heuristic algorithms, including the classical DBO algorithm,
with the MSIDBO algorithm among the 29 test functions in
the CEC-2017 test functions. The experimental results are
shown in Tab. 5. In 25 of the test functions, the accuracy of the
MSIDBO algorithm is superior to that of the original DBO

algorithm. For the remaining 4 functions, all of them yield
similar results to the original DBO. Among the single-peak
functions, MSIDBO performs best in F1 and second best in
F2. Among the multi-peak functions, MSIDBO outperforms
the original DBO algorithm in most cases, except for F7, and
ranks among the top three in all tested functions. F11-F30 are
hybrid and combination functions, which are typically used
to evaluate the balance between algorithm exploitation and
exploration. From Tab. 5, it can be seen that MSIDBO ranks
first in F13, F15, F17, F18, F20-F22, F24, F26, F27, and F29,
with the remaining func tions ranking in the top three. This
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FIGURE 4. Comparison chart of convergence of classical optimization algorithm on CEC-2017 test functions.

analysis of the standard deviation indicates that the MSIDBO
algorithm also exhibits good stability. In conclusion, this
demonstrates that the MSIDBO algorithm possesses a strong
ability to handle complex problems and achieves a good
balance between exploitation and exploration.

In order to demonstrate more intuitively the effectiveness
of MSIDBO and the remaining five traditional intelligent
optimization algorithms in finding the optimal results, two
of each type from CEC-2017 test functions are selected for
demonstration in this paper. The population size is set to 30,
and the number of iterations is set to 1000. As can be seen
in Fig. 4, the MSIDBO algorithm converges the fastest in
most of the functions, and even though it converges a little
slower in some of the functions, the search accuracy catches
up to the rest of the algorithms as the number of iterations
increases. The superior performance of MSIDBO in hybrid
and combinatorial functions also shows that the MSIDBO
algorithm has a good balance between development and
exploration.

B. COMPARISON WITH IMPROVED ALGORITHMS
In this section, the MSIDBO algorithm and five improved
algorithms—including the dung beetle optimization algorithm

guided by improved sine algorithm (MSADBO) [22],
the improved dung beetle optimization algorithm (IDBO)
[16], the improved multi-objective dung beetle optimizer
(IMODBO) [18], the elite opposition-based learning and
t-Distribution hunger games search algorithm (EtHGS)
[29], and the Multi-strategy improved adaptive dynamic
whale optimization algorithm (MSIWOA) [30]—are used
for comparative optimization search experiments. The
experimental data for MSADBO was obtained by repli-
cating from [22]. Similarly, the data for IDBO was
obtained by replicating from [16], the data for IMODBO
was obtained by replicating from [18], the data for
EtHGS was obtained by replicating from [29], and the
data for MSIWOA was obtained by replicating from
[30].

1) COMPARISON ON 23 BENCHMARK FUNCTIONS
The experimental results of the MSIDBO algorithm and the
five improved algorithms on 23 benchmark test functions are
shown in Tab. 6.

From Tab. 6, the MSIDBO algorithm demonstrates
excellent accuracy and stability in high-dimensional

97780 VOLUME 12, 2024



D. Zhang et al.: MSIDBO Algorithm and Engineering Design Application

TABLE 6. Results of MSIDBO, MSADBO, IDBO, IMODBO, EtHGS and MSIWOA on 23 benchmark function.

TABLE 7. Results of MSIDBO, MSADBO, IDBO, IMODBO, EtHGS and MSIWOA on CEC-2017 test functions.

single-peaked functions F1-F7. Specifically, it ranks first
on F1-F4, F6-F7, F9-F12, and F15-F23. Furthermore, the
global optimal solution has been found on F1-F4, F9, F11,
F16-F19, and F21-F23. Additionally, MSIDBO performs
competitively with several other improved algorithms on
F5, F8, F13, and F14, often outperforming them. Overall,
MSIDBO holds a significant advantage over the other five
improved algorithms.

2) COMPARISON ON CEC-2017 TEST FUNCTIONS
The comparison data of the six improved algorithms on
the CEC-2017 test functions are shown in Tab. 7, in which
MSIDBO ranks first on 15 test functions, and the algorithms
that are slightly weaker than the first algorithm rank in the
top three on 9 test functions. This again proves that MSIDBO
is still competitive compared to the improved algorithm.
Analyzing the standard deviation, it becomes evident that
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TABLE 8. Results of Wilcoxon signed-rank test on 23 benchmark functions.

MSIDBO maintains the first place on 12 functions and
is among the top three on another 9 functions. This
underscores the significant advantage of MSIDBO over the
other improved algorithms, both in terms of accuracy and
stability.

C. WILCOXON SIGNED-RANK TEST
In our previous experiments, we analyzed MSIDBO along
with the classical algorithm and the improved version of
DBO on 23 benchmark functions and the CEC-2017 test
functions. MSIDBO demonstrated a significantly superior
performance in both test sets, whether comparing accuracy
or stability with other algorithms. This fully reflects the
effectiveness of the strategy employed by the MSIDBO
algorithm. To further compare the differences between
MSIDBO and other algorithms, we conductedWilcoxon rank
and non-parametric statistical tests in this paper, based on the
experimental data of MSIDBO on both the 23 benchmark test
functions and the CEC-2017 test functions. When the p-value
is less than 0.05 for an algorithm, it indicates that MSIDBO
is significantly different from that algorithm. In this paper,
eight well-known intelligent optimization algorithms were
selected: DBO [13], GWO [2], PSO [1], SSA [5], DE [8],
SCA [9], and HHO [3]. The p-values of the statistical results

are shown in Tab. 8 and Tab. 9. The last column displays the
total number of data points with significant differences.

From Tab. 8, it can be seen that the data of MSIDBO in
70% of the functions are significantly different from those
of the traditional DBO. This indicates that the similarity
between the search results of the MSIDBO and DBO
algorithms based on the 23 benchmark functions is low.
When comparing MSIDBO with other algorithms, it is
evident that the search results of the MSIDBO algorithm
differ significantly from those of most other algorithms
on the majority of functions. Analysis of Tab. 9 further
reveals that the search results of MSIDBO are significantly
different from those of the DBO algorithm on 58.6% of the
functions, and they also stand out as distinct from the results
of other optimization algorithms on most functions. Taken
together, these analyses demonstrate that, among the various
metaheuristic algorithms, the MSIDBO algorithm exhibits
the most outstanding comprehensive performance.

V. ENGINEERING DESIGN PROBLEMS
In order to test the potential of MSIDBO algorithm in prac-
tical engineering application, this paper uses the proposed
MSIDBO algorithm to optimize three engineering design
problems. The reference [31] puts forward a benchmark
suite containing 57 constraint optimization problems to
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TABLE 9. Results of Wilcoxon signed-rank test on CEC-2017 test functions.

test the practical application potential of the algorithm.
In this paper, MSIDBO algorithm is used to search and
test three well-known optimization problems. Respectively,
the pressure vessel design problem (PVD) [32], welded
beam design problem (WBD) [33] and tension/compression
spring design problem (TSCD) [34], and the optimization
results are compared with the results of other classical
optimization algorithms. The test method is to convert these
three engineering problems into a mathematical model, use
penalty function to deal with inequality constraints, and then
use each algorithm to find the optimal solution. Set the fill
size to 30 and the maximum number of iterations to 500.

A. PRESSURE VESSEL DESIGN PROBLEMS (PVD)
The main object of the pressure vessel design problem
is to optimize the welding cost, material, and forming of

a vessel. This problem refers to finding pressure vessel
design parameters that satisfy the constraints, and using these
design parameters to calculate the manufacturing cost of
the pressure vessel. The pressure vessel design parameters
are shell thickness, head thickness, inner radius, and length
of the vessel without including the head. In this section,
the optimization results of the MSIDBO algorithm are
used to compare with the results of DBO [13], DE [8],
GWO [2], HHO [3], PSO [1], SCA [9], SSA [5] and
WOA [4].

The specific formulation of the pressure vessel design
problem (PVD) is as follows:

min f (s) = 0.6224s1s3s4 + 1.7781s2s33
+ 3.1661s21s4 + 19.84s21s3

g1 = −s1 + 0.0193s3 ≤ 0,
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g2 = −s2 + 0.00954s3 ≤ 0,

g3 = −πs23s4 −
4
3
πs33 + 1296000 ≤ 0,

g4 = s4 − 240 ≤ 0

si ∈ [0, 99](i = 1, 2), si ∈ [0, 200](i = 3, 4) (17)

where s1 is the shell thickness, s2 is the head thickness, s3 is
the inner radius, and s4 is the length of the vessel without
including the head, gi(i = 1, 2, 3, 4) is the four constraints.
f (s) is the fitness function and denote the manufacturing cost
of the pressure vessel.

The optimization results of all the algorithms are
shown in Tab. 10, among the optimal costs of all
the algorithms, the MSIDBO algorithm has the low-
est cost and the optimal parameter obtained is s =

(0.778169, 0.384649, 40.31962, 200) and the optimal cost is
f(s)=5885.332954.

TABLE 10. Result of PVD.

B. WELDED BEAM DESIGN PROBLEMS (WBD)
The main objective of this problem is to optimize the weight
of the welded beam. The welded beam design problem is
to find four design parameters that satisfy the constraints
of shear stress, bending stress, bending load of the beam
and terminal deviation. These design parameters are the
length, height, thickness of the beam, and thickness of the
welded joint, respectively. Finally, these design parameters
are used to calculate the manufacturing cost of the welded
beam. In this section, the results of the MSIDBO algorithm’s
optimization search are compared with those of DBO [13],
GWO [2], HGS [7], HHO [3], SCA [9], SMA [6], SSA [5],
and WOA [4]. The welded beam design problem (WBD) is
formulated as follows:

min f (s) = 1.10471s21s2
+ 0.04811s3s4(14.0 + s2)

g1(s) = τ (s) − 13600 ≤ 0,

g2(s) = σ (s) − 30000 ≤ 0,

g3(s) = γ (s) − 0.25 ≤ 0,

g4 = s1 − s4 ≤ 0, g5 = p− pc ≤ 0,

g6 = 0.125 − s1 ≤ 0,

g7 = 1.10471s21+

0.04811s3s4(14.0 + s2) − 5.0 ≤ 0 (18)

si ∈ [0.1, 2.0](i = 1, 4), si ∈ [0.1, 10.0](i = 2, 3),

τ =

√
τ 21 + 2τ1τ2(

s2
2r

) + τ 22 , τ1 =
p

s1s2
√
2

m = p(l +
s2
2
), j = 2{

√
2s1s2[

s22
12

+ (
s1 + s2

2
)2]}

r =

√
s22
4

+ (
s1 + s3

2
)2, σ =

6pl

s4s23
, γ =

6pl3

Es23s4
,

pc =
4.013E

√
s23s

6
4

36

l2
(1 −

s3
2l

√
E
4G

),

G = 12 × 106psi,E = 30 × 106psi

p = 6000lb, l = 14, τ2 =
mr
j

(19)

where s1 is the thickness of the welded joint, s2 is the length of
the beam, s3 is the height of the beam, s4 is the thickness of the
beam, gi(i=1,2,. . . ,7) is the seven constraints. τ is the shear
stress, σ denotes the bending stress, pc is the bending load of
the beam, and γ is the terminal deviation. f (s) is the fitness
function and denotes the manufacturing cost of the welded
beam.

The optimization results of all algorithms for the welded
beam design problem (WBD) are shown in Tab. 11, the
MSIDBO algorithm obtains the minimum cost in solving
the welded beam design problem, the optimum parameter
obtained is s=(0.205734,3.253036,9.036624,0.20573) and
the minimum cost is 1.69524492.

TABLE 11. Results of WBD.

C. TENSION/COMPRESSION SPRING DESIGN PROBLEMS
(TSCD)
The main objective of this problem is to optimize the weight
of a tension/compression spring. This problem involves
finding the design parameters of the tension/compression
spring that satisfy the constraints and calculating the weight
of the spring through these parameters. The constraints
include minimum deflection, vibration frequency, shear
stress, and outer diameter limitations. The design parameters
include the average diameter of the spring coil, the diameter
of the spring wire, and the number of effective coils of
the spring. In this section, the optimization results of the
MSIDBO algorithm are compared with the results of DBO
[13], DE [8], GWO [2], HGS [7], HHO [3], PSO [1], SCA
[9], SMA [6], SSA [5], and WOA [4].
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The specific formulation of the tension/compression spring
design problem (TSCD) is as follows:

min f (s) = (s3 + 2)s2s21

g1(s) = 1 −
s3s32

71785s41
≤ 0,

g2(s) =
4s22 − s1s2

12566(s2s31 − s41)
+

1

5108s21
− 1 ≤ 0,

g3(s) = 1 −
140.45s1
s22s3

≤ 0,

g4(s) =
s1 + s2
1.5

− 1 ≤ 0

s1 ∈ [0.05, 2], s2 ∈ [0.25, 1.3], s3 ∈ [2, 15] (20)

where s1 is the average diameter of the spring coil, s2 is the
diameter of the spring wire, s3 is the number of effective
coils of the spring, gi(i = 1, 2, 3, 4) is the constraint.
f (s) is the fitness function and denotes the weight of the
tension/compression spring.

The optimization results of all the algorithms for the
Tension Compression Spring Design Problem (TSCD) are
shown in Tab. 12. The MSIDBO algorithm is ranked
first among all the algorithms in terms of finding the
optimal parameter s=(0.05107,0.341998,12.20717) and the
minimum cost of 0.012672312 is obtained.

TABLE 12. Result of TSCD.

VI. CONCLUSION AND FUTURE PERSPECTIVES
Aiming at the problems that the dung beetle optimization
algorithm (DBO) cannot guarantee the diversity of the
population, has poor ability to jump out of the local
optimum, has poor convergence accuracy, and has weak
global exploration ability, a multi-strategy fusion of the
improved golden sine dung beetle optimization algorithm
(MSIDBO) is proposed. The algorithm adopts a good point
set strategy to make the population more evenly distributed
within the search range, enhance the population diversity,
and provide a good basis for the algorithm to find the
optimal. The golden sine strategy is introduced, and the
golden sine coefficient is used to complete the dancing action,
which effectively strengthens the global exploration ability

of the algorithm. The t-distribution strategy is introduced to
perturb the egg-laying dung beetles, small dung beetles and
stealing dung beetles, so as to expand the search range of the
population. Finally, in order to prevent the population from
falling into the local optimal, the adaptive Gauss-Cauchy
mutation strategy is introduced to mutate the current optimal
solution under certain conditions, thus improving the ability
of the algorithm to jump out of the local optimal. These
improvement strategies effectively improve the algorithm’s
convergence accuracy, global search capability, and ability to
jump out of local optima.

In order to verify the effectiveness of the improved
strategy, this paper presents simulation experiments with
23 benchmark test functions as well as CEC-2017 test
functions and compares them with five well-known tra-
ditional optimization algorithms as well as five improved
algorithms. The experimental results show that the MSIDBO
algorithm is much improved in many aspects. This paper
also verifies the significant difference between MSIDBO and
traditional DBO as well as other traditional algorithms using
the Wilcoxon signed-rank test based on the experimental
data of 23 benchmark test functions and CEC-2017 test
functions, and the experimental results show that MSIDBO is
significantly different from the rest of the algorithms. In order
to test the practical application potential of the MSIDBO
algorithm, this paper uses the MSIDBO algorithm to perform
the optimization test on three well-known engineering design
problems and compares it with other well-known algorithms,
and the results of the comparison show that the MSIDBO
algorithm has a greater competitiveness in dealing with such
problems. In the future, the MSIDBO algorithm will be
applied to more practical and engineering problems, such as
image segmentation, UAV path planning, data mining and so
on.
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