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ABSTRACT In this paper, a Multi-Strategy fusion Improved Dung Beetle Optimization (MSIDBO)
algorithm is proposed to address the problems that the dung beetle optimization algorithm is prone to
fall into local optimum, suffers from weak global exploration, and shows slow convergence to a solution.
In MSIDBO, a good point set strategy is adopted to generate a more diverse initial population; Golden sine
and t-distribution perturbation strategies are used to improve the global search capability of the algorithm;
By introducing the adaptive Gaussian-Cauchy mutation strategy, the probability of the algorithm falling
into local optimal is reduced. To verify the effectiveness of the MSIDBO algorithm, it was tested against
23 benchmark functions and 29 CEC-2017 test functions, comparing its performance with that of other
well-known metaheuristic algorithms. The results show that the MSIDBO algorithm excelled in 17 out
of 23 benchmark test functions, achieving higher solution accuracy and faster convergence compared to
the original DBO algorithm, while the remaining 6 functions yielded comparable results. Similarly, among
the 29 CEC-2017 test functions, the MSIDBO algorithm surpassed the original DBO algorithm in 25, and the
remaining 4 functions yielded similar results. Additionally, to verify the practical application potential
of the MSIDBO algorithm, this paper applies it to optimize three engineering design problems, and the
experimental results show that the MSIDBO algorithm has a higher application potential compared with
other algorithms.

INDEX TERMS Dung beetle optimization algorithm (DBO), MSIDBO, good point set, golden sine strategy,
adaptive Gaussian-Cauchy mutation, engineering design problems.

I. INTRODUCTION

Inspired by natural physical laws and biological habits,
scholars have developed a range of swarm intelligence opti-
mization algorithms, including Particle Swarm Optimization
Algorithm (PSO) [1], Grey Wolf Optimization Algorithm
(GWO) [2], Harris Hawk Optimization Algorithm (HHO) [3],
Whale Optimization Algorithm (WOA) [4], Sparrow Search
Algorithm (SSA) [5], Slime Mould Algorithm (SMA) [6],
Hunger Games Search Algorithm (HGS) [7], Differential
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Evolutionary Algorithm (DE) [8], and Sine Cosine Algorithm
(SCA) [9]. These algorithms are widely used in various
real-world fields, including fault detection [10], job shop
scheduling [11], and engineering optimization fields [12],
because of their stability and ease of use.

Dung beetle optimizer (DBO) is a novel meta-heuristic
algorithm first proposed by Xue and Shen [13] in 2022, which
is inspired by the social behaviors of dung beetle populations
such as ball-rolling, dancing, foraging, breeding, and stealing.
The algorithm divides the dung beetle population into four
different species of dung beetles based on the different
divisions of labour of individual dung beetles, namely the
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ball-rolling dung beetle, the spawning ball, the little dung
beetle, and the stealing dung beetle. In order to validate
the performance of the DBO algorithm, [13] uses a number
of well-known test functions to evaluate DBO algorithm,
including 23 benchmark functions and 29 CEC-2017 test
functions [14]. In addition, the Wilcoxon signed-rank test
[15] was used to evaluate the experimental results of the
algorithm, which proved that the dung beetle optimization
algorithm is very competitive with the current well-known
optimization algorithms in terms of convergence speed,
solution accuracy and stability. To further illustrate the prac-
tical application potential of the DBO algorithm, the DBO
algorithm is successfully applied to three engineering design
problems. The experimental results show that the proposed
DBO algorithm can effectively handle practical application
problems. Since the release of DBO, it has been applied
to PV array fault diagnosis [16], lung cancer detection and
classification [17], distribution network restructuring [18],
wood thermal modification prediction [19], air quality
prediction [20], and drone path planning [21], amongst
others, due to its good performance and stability.

Although DBO has been successfully used in many
different fields due to its superior performance, it still has
the common drawbacks of optimization algorithms, i.e.,
it is prone to falling into local optima, suffers from weak
global exploration, and shows slow convergence to a solution.
Although the DBO algorithm was proposed recently, many
scholars have improved it for these problems. For example,
[22] combines the improved sine algorithm (MSA) [23],
tent chaotic mapping and mutation operator to improve the
DBO algorithm and apply it to solve engineering design
problems; [16] improved DBO algorithm by introducing
a variety of swarming mechanisms, and they propose an
IDBO-LSTM model applied to the diagnosis of photovoltaic
array faults; [18] proposes an improved multi-objective
dung beetle optimization algorithm, which uses a variable
spiral search strategy to enhance the search range and
convergence accuracy of the DBO algorithm; [21] proposes
a multi-strategy enhanced DBO algorithm incorporating
Beta distribution and crossover operators and uses it for
3D UAV navigation; [19] uses the segmented linear chaos
mapping (PWLCM), adaptive linear decreasing producer
and dimension learning enhanced foraging (DLF) search
strategies to improve the DBO algorithm.

This paper is dedicated to improving the traditional DBO
algorithm for its shortcomings and enhancing the overall
performance of the algorithm. Therefore, a Multi-Strategy
fusion Improved Dung Beetle Optimization (MSIDBO)
algorithm is proposed. In this paper, the original DBO
algorithm is improved from three perspectives respectively.
Firstly, the Good Point Set [24] method is introduced to
generate an initial population to make the distribution of
the population more even and to increase the population
diversity; secondly, the position update formula is optimized
in the exploration phase by combining the golden-sine
and the t-distribution perturbation strategy, which enhances
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the algorithm’s searching ability and convergence accuracy
and expands the searching range; Finally, the adaptive
Gaussian-Cauchy mutation operator is introduced to enhance
the ability of the algorithm to jump out of the local optimal.

Il. THE DUNG BEETLE OPTIMIZATION ALGORITHM (DBO)
The dung beetle optimization algorithm was designed to
simulate various behaviours of dung beetles, including ball
rolling, dancing, foraging, breeding and stealing behaviours.
Based on these behaviours, five position update rules were
designed respectively, and the dung beetle population was
divided into four types of agent dung beetles according
to their different behaviours, specifically, ball-rolling dung
beetles, spawning balls, small dung beetles, and stealing
dung beetles, each constituting a certain proportion of the
dung beetle population.

A. THE BALL-ROLLING DUNG BEETLES

The dung beetle needs to be navigated through the sun as it
rolls to ensure that the ball of dung rolls in a straight line. The
intensity of sunlight also has an effect on the movement path
of the dung beetle. During the rolling process, the position
update formula of the ball-rolling dung beetle is denoted as:

xit+ D) =xit) +a xk xxi(t — 1)+ b x Ay,
Ay = |xi(t) — X" (1)

where t denotes the current number of iterations, x;(¢) denotes
the " iteration of the i dung beetle, k € [0, 0.2] denotes
a deflection coefficient that primarily controls the degree of
deviation of the dung beetle during its rolling motion, b €
[0, 1] is a constant that represents the influence of changes in
sunlight intensity on the dung beetle’s movement. In original
paper on DBO the k and b were set to 0.1 and 0.3. « is a
natural coefficient, which is used to simulate that dung beetles
deviate from the original route due to natural factors. When
o = 1, it indicates that there is no deviation. When o = —1,
it indicates deviation and the value of « is 1 or -1 with equal
probability, X" denotes the global worst solution. A, is used
for simulating the intensity of sunlight, a higher value of A,
indicates a weaker light source.

When the dung beetle encounters an obstacle, it will
change direction by dancing to obtain a new path. The
dancing action is simulated using a tangent function, which
takes into account only the interval [0, 7] as its domain. Once
the dung beetle has successfully determined a new direction,
it should continue to roll the ball forward. Consequently, the
position of the rolling dung beetle is updated and defined as:

xi(t + 1) = x;(1) + tan(0)|x;(r) — x;(r — D] @)

The 6 in Eq. (2) belongs to the angle of inclination of [0, 7],
and |x;(f) — x;(t — 1)] is the difference between the position
of i dung beetle at the 1™ iteration and the position at the
t — 1" iteration. Thus, the position update of the ball-rolling
dung beetle is closely related to the current and historical
information.
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B. THE SPAWNING BALL

The dung beetle rolls the dung ball to a safe location and
conceals it, proceeding to lay its eggs thereafter. Locating
the right spawning area is crucial for the reproduction of
the dung beetle population. In the original paper on DBO,
a boundary selection strategy was proposed to simulate the
dung beetle’s behavior in searching for a spawning area. This
strategy takes into account not only the inherent boundaries
of the optimization problem but also the dynamic changes in
the current local optimal solution, thereby more realistically
simulating the dung beetle’s natural process of selecting the
best spawning ground.

As the population iterates and evolves, the boundaries of
the optimal spawning area undergo corresponding changes.
This is because as the search process deepens, the algorithm
gradually approaches the global optimal solution, and the
boundaries of the spawning area gradually narrow down,
focusing on more promising solution spaces. This dynamic
boundary adjustment not only improves the search efficiency
of the algorithm but also enhances its adaptability, making it
more suitable for the demands of real-world problems. The
specific definition of the boundary selection strategy is as
follows:

Lb* = max(X™ x (1 — R), Lb),
Ub* = min(X* x (1 + R), Ub)
R=1—1/Tmax 3

The X* in Eq. (3) denotes the local optimal solution, Lb* and
Ub* represent the upper and lower bounds of the spawning
region, Ti,x represents the maximum number of iterations,
R controls the dynamic change of the spawning area as
the population iterates, and Lb and Ub denote the lower
and upper bounds of the optimization problem, respectively;
The spawning region of the dung beetle population changes
dynamically with population iterations.

Once the population of dung beetles has found an optimal
spawning area, female dung beetles lay their eggs on
hatching balls in this area, laying only one egg per iteration.
Because the optimal spawning area for dung beetles changes
dynamically with population iterations, the location of the
hatching balls also changes dynamically. This dynamic
change can be defined as:

Bi(t + 1) = X* + by x (Bi(t) — Lb")
+ by x (Bi(t) — Ub") “4)

The B;(t) in Eq. (4) denotes the positional information of
i spawning ball at 1" iteration, and b; and b, denote two
independent stochastic vectors of size 1 x D, where D denotes
the dimension of the optimization problem.

C. THE LITTLE DUNG BEETLE

The little dung beetles that hatch out of the spawning ball will
burrow out of the ground as adults in search of food, and the
little dung beetles need to find food in the optimal foraging
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area, which is defined as:

Lb® = max(X? x (1 — R), Lb),
Ub® = min(X? x (1 + R), Ub)
R=1—t/Tmax ©)

where X? denotes the global optimal solution, Lb” and Ub®
refer to the lower and upper bounds of the optimal foraging
area. The Tyax denotes the maximum number of iterations,
and Lb and Ub refer to the lower and upper bounds of
the optimization problem, respectively. The foraging area of
the dung beetle population, like the spawning area, changes
dynamically as the population iterates. The position update
formula for the small dung beetle is as follows:

xi(t 4+ 1) = x;(t) + C1 x (xi(t) — Lb")+
Cy x (xi(1) — Ub®) (©6)

where x;(t) denotes the position of i small dung beetle at
the ¢ iteration, C; denotes a random number obeying a
normal distribution, and C, denotes a random vector with
each element between 0 and 1.

D. THE STEALING DUNG BEETLE

In a dung beetle population, some individual dung beetles
steal dung balls from other dung beetles, and these dung
beetles are called stealing dung beetles. From Eq. (5), X? is
the best foraging area, so the area around X” can be set up as
the best area to compete for food. The position update formula
for the stealing dung beetle can be defined as:

Xt 4+ 1) = X2 +8 x g x (|xi(t) — X*| + xi(t) — X°]) (7)

where x;(f) denotes the position information of i stealing
dung beetle at " iteration, g is arandom vector of size 1 x D
obeying a normal distribution, and S is a constant.

Ill. THE MULTI-STRATEGY FUSION IMPROVED DUNG
BEETLE OPTIMIZATION ALGORITHM(MSIDBO)

A. THE MOTIVATION FOR IMPROVEMENT

Although the DBO algorithm has been proven to be very
competitive with well-known optimization algorithms in
terms of convergence speed, solution accuracy and stability
after several test experiments, it still suffers from the
defects of low convergence accuracy, weak global exploration
ability and easy-to-fall into local optimization. Therefore,
in order to improve these defects of the DBO algorithm, this
paper proposes the MSIDBO algorithm, which improves the
original DBO algorithm by means of the Good Point Set [24]
strategy, the Golden Sine [25] strategy, the t-distribution
perturbation strategy, and the adaptive Gaussian-Cauchy
mutation.

B. THE GOOD POINT SET

The merit of the initial population has an important impact
on the search performance of the population. The original
DBO algorithm initializes its population randomly, which
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may result in an insufficiently uniform initial distribution
and reduce the diversity of the population. This can make
the algorithm prone to falling into local optima and may
affect both the convergence speed and the global search
capability of the algorithm. Therefore, choosing a population
initialization strategy different from random distribution
can effectively improve the diversity of the population and
promote a more uniform distribution of the population within
the search range.

The Good Point Set was proposed by Hua and Wang [24]
in 1978, and has been used by many scholars as a strategy
for population initialization. Reference [26] demonstrates
that the population generated by adopting the good point
set strategy has a more uniform distribution, which can
effectively improve the performance of the algorithm.
Therefore, the good point set strategy is used to initialize
the DBO population in this paper. The basic definition and
construction of the good point set are as follows: Let G, be
the unit cube in s-dimensional Euclidean space. If r € Gy,
which can be expressed as:

pnk) ={(r{, g, ... xkyLk=1,2,....n (8)
®(n) = C(r, e)n119) ©

where ®(n) represents the deviation of Eq. (8), C(r,€) is
a constant that depends solely on r and €, € is an arbitrary
positive number, 7 is the number of points in the population,
P/,‘l is the set of good points, and r stands for a good point.

In this paper, we use the random method and the good point
set method to generate a 2D initial population for comparison,
as shown in Fig. 2, with the same population size, the initial
population generated by the good point set method is more
uniformly distributed than that generated by the random
method and has higher stability. In contrast, the distribution
of the initial population generated by the random method is
disordered and even overlapping. Therefore, initializing the
population using the good point set method greatly enhances
the quality of the initial population and lays a solid foundation
for the subsequent iterative search process.

(a) Random population  (b) Goodpoint set of popula-
tion
FIGURE 1. Comparison chart of initialized populations.

C. THE GOLDEN SINE STRATEGY

Golden sine algorithm (Golden-SA) is a meta-inspired
algorithm proposed by Tanyildizi and Demir [25] in 2017.
It employs the sine function to traverse the entire unit circle
based on the angular relationship between the sine function
and the unit circle. The Golden Ratio coefficient is utilized

97774

to reduce the solution space, thereby obtaining a superior
search area and enhancing both local exploitation ability and
solving accuracy. The position update formula of the golden
sine algorithm is as follows:

VIt = V|sin(ry)| — rasin(r)|y1 Dt — y2 V|
yvi=ax(l—-1)+bxrt
yw=axt+bx(l—r1) (10)

where r; is a random number within [0, 277]; r; is a random
number within [0, ]; Vi’ represents the position of the it
individual at the ¢ iteration, 7 is the golden number defined
as 1_2“6 , y1 and y; are the Golden Ratio coefficients that aim
to balance the search and development processes. The initial
values of a and b are —m and 7, respectively.

In the DBO algorithm, dung beetles adjust their direction
by performing a dance-like behavior when they encounter
obstacles during ball rolling. Once they have determined a
new rolling direction for the ball, they continue to move
forward. The dance-like behavior of dung beetles is simulated
using a tangential function. In this paper, the golden sine
strategy is employed to reduce the solution space and replaces
the dance-like behavior of the rolling dung beetle when
encountering an obstacle. When the rolling dung beetle
encounters an obstacle, it modifies its current position by
implementing the golden sine strategy, locating its position
closer to the optimal solution. Subsequently, the rolling dung
beetle continues its forward movement, effectively enhancing
the local mining ability of the DBO algorithm. The specific
position update formula of the golden sine strategy is as
follows:

xi(t + 1) = xi()| sin(r1)| — rasin(r)|y1xpes: (1)
— y2xi(0)] (11

where x;(¢) is the position of i th dung beetle at t th iteration,
Xpest (¢) 1s the optimal solution at t th iteration, and the rest of
the variables are defined by the Eq. (10).

D. THE T-DISTRIBUTION STRATEGY
The t-distribution [27], also known as the student distribution,
contains a parameter degree of freedom n, and its curve
shape is related to the size of the degree of freedom n.
In this paper, we perturb the positions of egg-laying dung
beetles, small dung beetles, and stealing dung beetles with the
current number of iterations as the parameter of the degrees
of freedom.

The improved position update formula for the spawning
ball is defined as:

Bi(t + 1) = X* + (b1 x (Bi(r) — Lb")
+ by x (Bi(t) — Ub%)) x t(iter)  (12)

The improved position update formula for the little dung
beetle is defined as:

xi(t 4+ 1) = (1) + (C1 x (xi(t) — Lb)
+ Cy x (xi(t) — UbY)) x t(iter)  (13)
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The improved position update formula for the stealing dung
beetle is defined as:

xi(t +1) =X + (S x g x (Ixi(t) — X*|
+ (1) — XP]) x t(iter) (14)

where iter is the current number of iterations, as the
iteration count iter increases, the t-distribution gradually
converges to the Gaussian distribution. This ensures that the
algorithm exhibits good global exploration capabilities in
early iterations and strong local exploitation abilities in later
iterations, thereby enhancing the convergence speed of the
algorithm.

E. THE ADAPTIVE GAUSSIAN-CAUCHY MUTATION
STRATEGY

In the later iterations of the algorithm, the population tends to
converge around the position of the optimal individual. If this
optimal position is not the theoretical global optimum, the
algorithm may become stuck in a local optimum. Therefore,
to reduce the possibility of the population falling into a
local optimum, this paper introduces the Gaussian-Cauchy
mutation strategy to randomly perturb the optimal dung
beetle individual. Furthermore, research in the reference [22]
has demonstrated that Cauchy mutation helps enhance the
algorithm’s global search ability, while Gaussian mutation
aids in improving its local search capability. Inspired by the
work in reference [28], this paper introduces adaptive weights
into the Gaussian-Cauchy mutation strategy. The specific
definition of the adaptive Gaussian-Cauchy mutation strategy
is as follows:

X8 = Xpest (1) + Xpest (1) X (W1 x C +wa x G) (15)

where xs is the result after the mutation of the optimal
solution at the ™ iteration, xpg (¢) is the optimal solution at
the 1 iteration, Tyngy is the maximum number of iterations.
C is a random variable that satisfies the Cauchy distribution,
representing the Cauchy mutation operator. G is a random
variable that satisfies the Gaussian distribution, representing
the Gaussian mutation operator. wy is the weight for the
Cauchy mutation operator, defined as 1 — ﬁax wo is the
weight for the Gaussian mutation operator, defined as ﬁ

In the early stages of the algorithm iteration, when
individuals in the population are more dispersed, assigning
a higher weight to the Cauchy mutation operator is beneficial
for generating large step sizes to jump out of the current
position, thereby improving the global search ability of the
population. In the later stages of the algorithm iteration,
assigning a higher weight to the Gaussian mutation operator
allows for small-step perturbations around the optimal
individual position, which in turn helps enhance the local
search ability of the population.

The adaptive Gaussian-Cauchy mutation strategy does not
ensure that the location of each mutation is better than before.
Therefore, this paper adopts the greedy strategy and only
retains solutions with better fitness values after position
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change, which is defined as follows:

Test (1) = { s XS = S (£) (16)

Xpest (1) XS > Xpest (1)

F. THE STEPS OF MSIDBO ALGORITHM
The steps of the Multi-Strategy fusion Improved Dung Beetle
Optimization (MSIDBO) algorithm are as follows.

Step 1: Set the basic parameters of MSIDBO;

Step 2: Initialize the population using the good point set
method, Eq. (8);

Step 3: Calculate the fitness value of each individual in the
initial population and select the global optimal position based
on the fitness value;

Step 4: Calculate the position of the ball-rolling dung
beetle based on Eq. (1). If it deviates from the path, execute
the golden sine strategy according to Eq. (11);

Step 5: Update the local optimal solution;

Step 6: Update the positions of spawning balls, little
dung beetles and stealing dung beetles according to the
Eq. (12)-(14), respectively;

Step 7: Calculate and record the fitness of each individual
based on the updated population location information to
update the global optimal solution;

Step 8: Execute the adaptive Gaussian-Cauchy mutation
strategy to the optimal individual’s position based on Eq. (15),
and select the retained solution according to Eq. (16);

Step 9: If the current iteration number reaches the
maximum iteration number, then execute Step 10, otherwise
continue to jump to Step 4;

Step 10: End the MSIDBO algorithm and output the global
optimal solution xpes; and its fitness fitnessy.

The flow of the MSIDBO algorithm can be seen in Fig. 2.

G. TIME COMPLEXITY AND COMPUTING TIME ANALYSIS
The mean value and standard deviation of each test function
of the algorithm mentioned above show that the algorithm
has better optimization accuracy and stability, respectively.
The time complexity and computing time are also important
evaluation indexes of algorithm performance.

The time complexity of the algorithm is expressed by O
notation. Let the size of dung beetle population be N, the
maximum number of iterations be M, and the dimension
of the optimization problem be D. The time complexity of
initialization operation for each dung beetle individual is
O(N x D), each iteration will update the position of each
individual in the population, and the time complexity is
O(M x N x D). After each iteration, fitness value will be used
to evaluate whether to replace the best dung beetle individual.
Time complexity is O(M x N). The overall complexity of the
DBO algorithm is O(N x D)+O(M x N x D)+O(M x N),
which can be simplified to O(M x N x D). The improvement
strategy of MSIDBO algorithm does not increase the number
of cycles, so the overall time complexity is still O(M x N x D).

The calculation time of MSIDBO and DBO algorithm was
tested by F1 in 23 benchmark test functions, the population
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Initializing parameters

Initializing the population by
Ep.

(8)

Calculate the fitness of each individual and
determine the initial global optimal position

Updated the position of the
ball-rolling dung beetle
according to Eq. (1)

t=0

Reposition the ball-
rolling dung beetle
according to Eq. (12)

Update the local
optimal solution

:

Updated the location of spawning balls,
and stealing dung beetles according to Eq.

little dung beetles
(13)-(15)

y

Updated the global optimal position
according to Eq.

(16)-(17)

FIGURE 2. MSIDBO algorithm flow chart.

size of the two algorithms was set to 30, and the maximum
number of iterations was 500. The two algorithms were run
independently for 10 times, and the average value was taken
as the evaluation standard of the algorithm calculation time.
The calculation time test results of the two algorithms, with
the data units in seconds, can be found in Tab. 1. The average
calculation time of MSIDBO is 0.1627 seconds, and that of
DBO algorithm is 0.1417 seconds. The average computing
time of the two algorithms is close. This shows that MSIDBO
can improve the optimization accuracy and stability without
causing too much time overhead, and further proves that the
overall performance of MSIDBO algorithm is higher than that
of the original DBO algorithm.
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t>M

End

IV. SIMULATION EXPERIMENT AND RESULT ANALYSIS

In [13], 23 benchmark functions and CEC-2017 test functions
were used to test the optimization ability of the DBO
algorithm. Therefore, these two sets of test functions are still
used in this paper to verify the performance of the MSIDBO
algorithm. For the 23 benchmark functions, the maximum
number of iterations is set to 500, and the dimension settings
are depicted in Tab. 3. For the 29 CEC-2017 test functions,
the maximum number of iterations is set to 10000 and the
dimensions are set to 10. The parameter settings of HGS
algorithm are obtained from [7], and the parameters of other
algorithms come from [13]. The specific parameter settings
are detailed in Tab. 2. To ensure the fairness of the experiment,
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TABLE 1. Computing time of MSIDBO and DBO.

Run times  MSIDBO (seconds)  DBO (seconds)
1 0.1683 0.1659
2 0.1646 0.1329
3 0.1584 0.1471
4 0.1584 0.1343
5 0.1582 0.1287
6 0.1654 0.1524
7 0.1635 0.1428
8 0.1606 0.1372
9 0.1618 0.1383
10 0.1675 0.1369
" Mean = 0.1627 ~ ~ ~ — ~ 0.1417

all algorithms will be run on the same hardware and software
environment. The experimental environment was an AMD
Ryzen 5 2500U CPU @ 2.00 GHz, with 8.00 GB of RAM,
running Windows 10, and Matlab R2020a. Each algorithm
will be executed independently 30 times, and the average
value and standard deviation will be used as the evaluation
criteria for the algorithm’s solution accuracy and stability,
respectively.

The 23 benchmark functions are commonly used in
the field of intelligent optimization algorithms to evaluate
their performance, as shown in Tab. 3. Among them,
F1-F7 are high-dimensional single-peak functions, F8-F13
are high-dimensional multi-peak functions, and F14-F23 are
fixed-dimensional multi-peak functions. In the experiments
conducted with these 23 benchmark test functions, the
population size of all algorithms is set to 30, and the
maximum number of iterations is set to 500.

The 29 CEC-2017 test functions include F1 and F3 as
unimodal functions, F4-F10 as simple multimodal functions,
F11-F20 as hybrid functions, and F21-F30 as composition
functions. Function F2 has been removed from the CEC-2017
test functions set. In the CEC-2017 test experiments, the
population size of all algorithms is set to 30, the dimension is
set to 10, and the maximum iteration number is set to 10000.

For a more rigorous comparison, the Wilcoxon signed-rank
test is used to determine whether there is a significant
difference in performance between the MSIDBO algorithm
and the other optimization methods. The p-value is calculated
to assess the statistical significance of the difference between
the algorithms. If p < 0.05, then it indicates that there is a
significant difference between the two algorithms.

A. COMPARISON WITH CLASSICAL OPTIMIZATION
ALGORITHMS

1) COMPARISON ON 23 BENCHMARK FUNCTIONS

In this section, five classical intelligent optimization algo-
rithms are chosen to compare with the MSIDBO algorithm
proposed in this paper. They are Dung Beetle Optimization
Algorithm (DBO) [13], Grey Wolf Optimization Algorithm
(GWO) [2], Particle Swarm Optimization Algorithm (PSO)
[1], Whale Optimization Algorithm (WOA) [4], and Harris
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TABLE 2. Parameter settings for various algorithms.

Algorithm Parameter Value
MSIDBO k 0.1
b 0.3
S 0.5
"TDBO T T T T T T Tk T T T T T T T 01~ "
b 0.3
S 0.5
" GWO ~ 7~ " aminandamax | Oand2 ~ ~
PSSO T T T T T T Tvmax T T T T T T T 6
cl and c2 2and2
w 1
TwoaA T T T T T T T T al -~~~ T T T T T RO
a2 [-2,-1]
b 1
" HHO ~ T Interval of EOO ~— ~ — ~ 7 LT
R landCH ~— ~ ~ — ~ " 0.08 and 100 ~
"7 SSA™ ” "Leader position update probability” ~ ~ 05~~~
v0 0
" DET T T T T T T scalingfactor ~ — ~ ~ T T T 03~
crossoverprobability 0.5
UseAT T T T T T T TaT T T T T T o -

Hawk Optimization Algorithm (HHO) [3]; The algorithm
parameters are set according to Tab. 2.

From Tab. 4, it can be seen that the search of the MSIDBO
algorithm is better than the DBO algorithm in 17 of the
test functions, and equal to the DBO algorithm in the rest
of the test functions. First of all, there is only one extreme
point in the high-dimensional single-peak functions F1-F7,
which mainly tests the local convergence ability of the
algorithm, and comparing the mean and standard deviation,
we can see that the accuracy of the MSIDBO algorithm
is ranked in the first place except F5, which finds the
optimal solution in the function of F1-F4, and the accuracy
of the function is weaker than the first algorithm in the
function of F5 in the second place, and it is superior to
the DBO algorithm in the function of FI1-F7. This fully
reflects the advantage of using the good point set method
to generate the initial population, which generates a more
evenly distributed and more diverse initial population, so the
local fast convergence ability of MSIDBO is better than
that of DBO and also in the leading level compared with
other classical algorithms; there are multiple local optima in
the high-dimensional multi-peak functions F§-F13, which is
mainly to test the global optimality search and the ability
of the algorithm to jump out of the local optima. MSIDBO
is ranked first in F9-F12, which reflects the advantages of
introducing the golden sine guidance strategy as well as the
t-distribution perturbation strategy and the mutation operator
strategy, which makes the ability of the global searching and
jumping out of the local optimum of the MSIDBO algorithm
improve tremendously; in the fixed-dimensional multi-peak
function F14-F23, except for F14, which is ranked second,
the rest of the algorithms are all ranked first. In summary, the
MSIDBO algorithm improves greatly in high-dimensional
single-peak and high-dimensional multi-peak functions
and still has greater competitiveness in fixed-dimensional
multi-peak functions.

In order to demonstrate more intuitively the effectiveness
of MSIDBO and the remaining five traditional intelligent
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TABLE 3. 23 Benchmark test function.

1D Function Equation Dim  Range fmin
Fl e 30 [100,100] 0
F2 o 30 [l + Ty il 30 [-10,10] 0
B3 3 ()2 30 [-100,100] O
F4 max{|x;],1 <i<n} 30 [-100,100] 0
-1
F5 1 100(xi—1 —x2)2 + (x — 1) 30 [-30,30] 0
F6 > (xi+0.5)2 30 [-100,100] O
BT Zairendomlon o _____ 30 128128 0
F8 0 —xsin(y/|x]) 30 [-500,500]  -12569.5
F9 ", |x? — 10 cos(2mx;) + 10| 30 [5.125.12] 0
1 1
F10  —20exp(—0.24/+ >0 x?) —exp(+ 300 cos(xmx;)) +20 + e 30 [-32,32] 0
1 n 2 n X,
FI1 o5 2img &7 — ITima Cos(j) +1 30 [-600,600] 0
. -1 D .
F12 Z{10sin(my1) + > 1= (vi — 1)2[L + 10sin? (myiy1) + (va — 1)2]} + >0, u(x;,10,100,4) 30 [-50,50] 0
0.1{sin®(3mx1) + S0, (xi — 1)2[L + sin? (37mx;)] + (xn — 1)2[1 + sin?(27x,
F13 {n (Bmx1) + 320, (v — D7[ (3mxi)] + (xn — 1)7] (2mx)]} 30 1-50.50] 0
+ >0 u(x;, 5,100, 4)
1 25 1 —1
Fl4 - (500 + X2t s tomaye) 2 [-65.651] 1
11 ¢ x (b7 +bixg) 2 _
F15 =1l = ) 4 [-5.5] 0.0003
2 _ 4 4 1.6 _ Ax2 4
F16  4x? — 2.1xf + 1x§ 4 x1xo — 463 + 4x) 2 [-5.5] -1.0316
5.1 5 2 1
F17  (x2 — 25 + 2x1 — 6)2 +10(1 — g5) cosx1 + 10 2 [-5.5] 0.398
Fl8 [30 + (2x1 — 3x2)2(18 — 32x1 + 12x7 + 48x2 — 36x1x2 + 27x3)] , [22] 3
[1+ (1 4x1 4+ 1)2(19 — 14x1 + 3x2 — 14x2 + 6x1x2 + 3x3)]
4
F19  — 37 ciexp(— 301 aj(x — Pi)?) 3 [0,1] -3.8628
4
F20 =37, ciexp(— 27:1 aij(xj — p,-j)2) 6 [0,1] -3.32
2l =% [k —a)x —a)" +¢]7! 4 [0,10] -10.1532
F2 37 [(x—a)x—a)" 4+¢]t 4 [0,10] -10.4028
F23 - YR ((x—a)x—a)" 4+¢]t 4 [0,10] -10.5364
TABLE 4. Results of MSIDBO, DBO, GWO, PSO, WOA, and HHO on 23 benchmark test function.
. MSIDBO DBO GWO PSO WOA HHO
D Fmin
AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD
Fl1 0 0 0 6.53E-111  3.58E-110  1.81E-27  2.93E-27 0.3971 0.2324 8.62E-75 2.76E-74 1.55E-95  8.16E-95
F2 0 0 0 4.62E-52 2.53E-51 9.63E-17  5.45E-17 6.8200 3.0401 2.39E-52 8.75E-52 9.20E-52  3.79E-51
F3 0 0 0 2.25E-85 1.23E-84 3.84E-05 1.62E-04  49.4307 20.5661 43565.2189  14254.2623  4.41E-78  1.69E-77
F4 0 0 0 2.95E-53 1.61E-52 5.08E-07  4.27E-07 4.2793 1.5365 55.3487 28.2725 2.27E-45 1.24E-44
F5 0 20.6488 0.7045 25.7695 0.2248 26.7586 0.7388 289.0633  275.2683 27.9948 0.4630 0.0078 0.0121
F6 0 1.68E-19  6.37E-19 0.0010 0.0018 0.7776 0.4233 0.4127 0.2099 0.4608 0.2370 1.18E-04  1.34E-04
F7 0 1.17E-05  1.43E-05 0.0016 0.0010 0.0020 0.0013 0.4232 1.9492 0.0024 0.0027 1.26E-04  1.40E-04
F8 -12569.5 -11307.5 1105.7 -8142.4 1758.8 -5752.7 938.7 -2999.1 474.4 -10143.7 1839.1 -12568.7 1.3
F9 0 0 0 0 0 2.7396 3.2092 74.9908 19.1257 0 0 0 0
F10 0 8.88E-16 0 1.01E-15 6.49E-16 1.04E-13  1.40E-14 4.7013 1.0808 4.91E-15 2.42E-15 8.88E-16 0
F11 0 0 0 0 0 0.0019 0.0050 0.5993 0.1736 0 0 0 0
F12 0 9.59E-09  5.25E-08 2.38E-04 0.0011 0.0403 0.0176 2.9416 1.4696 0.0237 0.0171 1.35E-05  1.87E-05
F13 0 0.0251 0.0394 0.6462 0.3908 0.5509 0.2252 9.3461 13.1642 0.5160 0.3050 1.58E-04 2.72E-04
Fl4 1 1.3288 0.7056 1.1303 0.8476 5.5604 4.6659 2.0219 1.2829 2.0791 2.4796 1.3612 0.9520
FI5 0.0003 0.0003 2.54E-06 8.11E-04 3.71E-04 0.0017 0.0051 0.0019 0.0051 8.61E-04 0.0011 3.42E-04 2.95E-05
F16 -1.0316 -1.0316 6.65E-16 -1.0316 6.05E-16 -1.0316 1.70E-08 -1.0316 5.30E-16 -1.0316 3.73E-09 -1.0316 2.08E-09
F17 0.398 0.398 0 0.398 0 0.398 7.80E-07 0.398 0 0.398 1.52E-05 0.398 7.85E-06
F18 3 3 1.85E-15 3 3.64E-15 3 4.33E-05 3 3.30E-15 3.9004 4.9307 3 1.47E-06
F19 -3.8628 -3.8623 0.0020 -3.8617 0.0027 -3.8617 0.0021 -3.8609 0.0034 -3.8503 0.0228 -3.8597 0.0055
F20 -3.32 -3.28 0.04 -3.23 0.11 -3.23 0.10 -3.18 0.16 -3.26 0.08 -3.10 0.11
F21  -10.1532 © -10.1531  2.96E-04 -7.2289 2.7127 -9.2289 2.1362 -5.9724 3.3731 -7.7894 2.6486 -5.2063 0.8488
F22  -10.4028 = -10.4028  2.96E-04 -8.1093 2.9069 -10.1466 1.3940 -8.6993 3.1672 -7.3136 2.9799 -5.4176 1.2677
F23  -10.5364 = -10.5364  3.53E-05 -8.5819 2.8883 -10.5346  9.33E-04 -8.2952 3.5414 -6.9449 3.2302 -5.1233 0.0061

optimization algorithms in finding the optimal result, this
paper selects two functions from each of the 23 benchmark
test functions to demonstrate. The population size is set to
30, and the number of iterations is set to 500. From the

in
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convergence curves shown in Fig. 3, it can be seen that
MSIDBO makes up for the defects of the DBO algorithm

that it easily falls into the local optimum and slow

convergence speed, and has a faster convergence speed and
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FIGURE 3. Comparison chart of convergence of 6 classical optimization algorithm.
TABLE 5. Results of MSIDBO, DBO, GWO, PSO, WOA, and HHO on CEC-2017 test function.
. MSIDBO DBO GWO PSO WOA HHO
1D Fmin
AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD
F1 100 1635.6111 1969.4843 6511.4883 4533.0051 40825311.8064  122905565.5087 230.2326 3742233 5978.8602 7145.5445 133577.2604  44296.5120
F3 300 300 0 300 0 1514.9132 1735.6006 300 0 353.9785 56.6499 300.4292 0.1543
F4 400 400 0 408.8351 12.6778 412.5718 15.3554 402.0384 3.7940 419.0653 32.2647 409.4953 17.0739
F5 500 521.9762 6.6717 529.0671 11.5025 514.2453 8.3826 548.2221 17.5893 543.0082 19.8805 540.9892 15.4708
F6 600 604.1206 3.7864 605.0396 4.3992 600.7567 0.9587 629.1999 9.0584 624.9646 11.4711 617.5445 11.6529
F1 700 750.2899 15.5095 743.1755 16.8891 725.8294 7.8464 753.6723 18.0149 777.5618 18.2441 759.0553 16.8274
F8 800 823.4797 7.0902 8232117 9.6747 813.9806 6.0607 824.5423 12.0542 837.7896 143170 827.9779 7.4699
F9 900 913.7022 47.5154 922.0497 37.5812 911.6634 21.9531 1158.0330 194.8548 1224.7682 266.7086 1223.3772 2445281
F10 1000 1608.3103 184.1716 1753.0015 291.5177 1538.5880 291.7981 2135.2683 307.5211 1976.2573 353.2707 1849.0553 266.5152
Fl1 1100 1146.8861 53.7463 1153.8141 56.1606 1124.3598 27.0445 1130.3726 15.4809 1192.3256 88.5318 1152.2710 54.8691
F12 1200 12274.0006 6380.1605 1017113.2130  2527967.7633 417228.5515 596786.2851 10095.5312 14615.2258 2295784.4114  3460397.6773  431727.8257  576682.9502
F13 1300 1725.1796 276.5568 11592.3529 12324.2612 8788.0735 4672.8731 1725.3125 463.0602 19098.1617 11301.6100 15003.1451 11327.9028
Fl4 1400 1481.5294 34.8552 1497.9804 44.5202 1832.4466 1123.3758 1453.2522 25.6492 1500.2601 30.3641 1492.4358 17.5831
F15 1500 1545.2092 44.7423 1677.9869 155.7860 2664.4608 1539.4300 1556.8848 38.1652 2198.2288 733.8283 1597.7453 57.8825
F16 1600 1707.3260 91.8406 1708.4252 100.9134 1691.3620 93.3570 1931.6774 106.5095 1775.1443 106.8068 1877.7312 112.3947
F17 1700 1743.6069 14.2149 1749.7150 19.3479 1741.4411 16.0232 1767.9658 57.7608 1774.8031 39.3827 1763.0495 34.5706
FI18 1800 1978.8559 2449041 15383.9400 14994.7780 26972.5515 12184.5776 2976.9659 5983.8746 16571.2705 11271.7644 14259.0233 9794.6645
F19 1900 1937.1496 39.4487 2014.3187 186.9641 3481.6018 3915.4157 1925.9143 23.6586 12747.1611 11180.4787 5672.4224 5819.1269
F20 2000 2035.1214 18.8071 2064.1010 40.6264 2069.0190 51.0274 2122.4368 54.3895 2113.9240 56.7011 2127.7811 77.1074
F21 2100 2201.9464 1.4317 2203.2419 1.3820 2309.1250 20.9289 2312.3529 64.3768 2285.6255 72.3959 2310.3913 69.6053
F22 2200 2302.2530 12.2229 2307.8631 6.4898 23223763 86.3422 2364.8715 236.6866 2362.6484 290.9609 2386.2618 2247818
F23 2300 2618.9296 53.1318 2630.4188 11.6658 2612.6091 7.2758 27324703 59.0952 2642.7834 16.3989 2666.2478 22.0435
F24 2400 2504.0280 22.0624 2599.8996 126.2447 2742.5739 9.2229 2808.8873 127.1187 2763.8339 539170 2757.2876 120.6285
F25 2500 2924.6524 23.4910 2914.3396 64.1312 2931.6438 16.5741 2919.6063 63.9885 2937.9858 24.9978 2933.5826 36.4639
F26 2600 2974.6434 65.0461 3044.4027 105.0789 3053.6066 321.7734 3467.3214 486.7282 3272.6919 487.6469 3306.4199 548.2832
F27 2700 3094.6660 2.8653 3098.9625 8.7777 3099.3574 15.9978 3238.1575 61.5016 3118.3995 34.5653 3135.8759 35.4339
F28 2800 3295.4424 140.2688 3241.1026 118.0135 3387.9049 78.1473 3288.7017 140.6839 3397.3013 202.6768 3352.8162 140.2755
F29 2900 3175.5286 243219 3196.2487 40.0086 3181.9714 43.8868 3299.6887 91.0403 3328.6253 88.0956 3260.7446 729357
F30 3000 405204.7130  512886.8929 889870.5814 1194957.3641 504094.1025 812962.4750 97385.2837  291050.7265 281687.3993 494049.6108 373659.0554  662873.4422

higher convergence accuracy, which proves the effectiveness
of the improved strategy.

2) COMPARISON ON CEC-2017 TEST FUNCTIONS

To further demonstrate the performance of the MSIDBO
algorithm, this section compares five well-known meta-
heuristic algorithms, including the classical DBO algorithm,
with the MSIDBO algorithm among the 29 test functions in
the CEC-2017 test functions. The experimental results are
shown in Tab. 5. In 25 of the test functions, the accuracy of the
MSIDBO algorithm is superior to that of the original DBO

VOLUME 12, 2024

algorithm. For the remaining 4 functions, all of them yield
similar results to the original DBO. Among the single-peak
functions, MSIDBO performs best in F1 and second best in
F2. Among the multi-peak functions, MSIDBO outperforms
the original DBO algorithm in most cases, except for F7, and
ranks among the top three in all tested functions. F11-F30 are
hybrid and combination functions, which are typically used
to evaluate the balance between algorithm exploitation and
exploration. From Tab. 5, it can be seen that MSIDBO ranks
firstin F13, F15, F17, F18, F20-F22, F24, F26, F27, and F29,
with the remaining func tions ranking in the top three. This
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FIGURE 4. Comparison chart of convergence of classical optimization algorithm on CEC-2017 test functions.

analysis of the standard deviation indicates that the MSIDBO
algorithm also exhibits good stability. In conclusion, this
demonstrates that the MSIDBO algorithm possesses a strong
ability to handle complex problems and achieves a good
balance between exploitation and exploration.

In order to demonstrate more intuitively the effectiveness
of MSIDBO and the remaining five traditional intelligent
optimization algorithms in finding the optimal results, two
of each type from CEC-2017 test functions are selected for
demonstration in this paper. The population size is set to 30,
and the number of iterations is set to 1000. As can be seen
in Fig. 4, the MSIDBO algorithm converges the fastest in
most of the functions, and even though it converges a little
slower in some of the functions, the search accuracy catches
up to the rest of the algorithms as the number of iterations
increases. The superior performance of MSIDBO in hybrid
and combinatorial functions also shows that the MSIDBO
algorithm has a good balance between development and
exploration.

B. COMPARISON WITH IMPROVED ALGORITHMS
In this section, the MSIDBO algorithm and five improved
algorithms—including the dung beetle optimization algorithm
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guided by improved sine algorithm (MSADBO) [22],
the improved dung beetle optimization algorithm (IDBO)
[16], the improved multi-objective dung beetle optimizer
(IMODBO) [18], the elite opposition-based learning and
t-Distribution hunger games search algorithm (EtHGS)
[29], and the Multi-strategy improved adaptive dynamic
whale optimization algorithm (MSIWOA) [30]—are used
for comparative optimization search experiments. The
experimental data for MSADBO was obtained by repli-
cating from [22]. Similarly, the data for IDBO was
obtained by replicating from [16], the data for IMODBO
was obtained by replicating from [18], the data for
EtHGS was obtained by replicating from [29], and the
data for MSIWOA was obtained by replicating from
[30].

1) COMPARISON ON 23 BENCHMARK FUNCTIONS
The experimental results of the MSIDBO algorithm and the
five improved algorithms on 23 benchmark test functions are
shown in Tab. 6.

From Tab. 6, the MSIDBO algorithm demonstrates
excellent accuracy and stability in high-dimensional
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TABLE 6. Results of MSIDBO, MSADBO, IDBO, IMODBO, EtHGS and MSIWOA on 23 benchmark function.

. MSIDBO MSADBO IDBO IMODBO EtHGS MSIWOA
D Fmin
AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD
F1 0 0 0 0 0 0 0 3.21E-223 0 0 0 0 0
F2 0 0 0 0 0 0 0 3.28E-114  1.26E-113  7.56E-177 0 0 0
F3 0 0 0 0 0 0 0 3.23E-213 0 0 0 0 0
F4 0 0 0 0 0 0 0 1.71E-110  6.61E-110  1.46E-169 0 0 0
F5 0 20.6488 0.7045 25.1227 0.2678 0.0213 0.0582 27.1875 0.3234 25.1269 0.5519 0.0101 0.0204
Fo6 0 1.68E-19 6.37E-19  232E-05 3.02B-05 1.64E-07 2.67E-07 1.1457 0.5999 0.6159 0.3212 0.0001 0.0003
F1 0 1.17E-05 1.43E-05  7.84E-05 0.0001 8.50E-05  7.32E-05 0.0004 0.0004 0.0002 0.0001 8.16E-05  7.92E-05
F8  -12569.5 -11307.5 1105.7 -8697.5 1633.4 -9834.3 1296.2 -11699.9 1266.7 -12125.8 378.4 -12522.3 72.6
F9 0 0 0 0 0 0 0 0 0 0 0 0 0
F10 0 8.88E-16 0 8.88E-16 0 8.88E-16 0 8.88E-16 0 8.88E-16 0 8.88E-16 0
F11 0 0 0 0 0 0 0 0 0 0 0 0 0
F12 0 9.59E-09 5.25E-08 1.54E-06 4.10E-06 4.17E-08  8.37E-08 0.0526 0.0498 0.0131 0.0195 2.81E-06  6.44E-06
F13 0 0.0251 0.0394 0.7799 0.3946 0.0080 0.0142 0.2037 0.1221 0.4184 0.3528 4.10E-05 0.0001
F14 1 1.3288 0.7056 1.5551 1.8462 1.5855 2.1791 1.2964 0.6283 2.0407 2.9792 1.8914 0.8778
F15 0.0003 0.0003 2.54E-06 0.0007 0.0004 0.0005 0.0003 0.0004 6.48E-05 0.0005 0.0002 0.0006 0.0004
F16  -1.0316 -1.0316  6.65E-16 | -1.0316 @ 6.12E-16 = -1.0316 = 5.90E-16 -1.0316 4.23E-05 -1.0316 6.71E-16 = -1.0316 ~ 1.52E-10
F17 0.398 0.398 0 0.398 0 0.398 0 0.398 0 0.398 0 0.411 0.040
F18 3 3 1.85E-15 39 4.9295 3 3.23E-15 3.0021 0.0022 3 4.05E-15 3 4.80E-10
F19  -3.8628 -3.8628 0.0020 -3.8617 0.0027 -3.8628  2.55E-15 -3.8561 0.0044 -3.8628 2.65E-15  -3.6867 0.2215
F20 -3.32 -3.28 0.04 -3.28 0.09 -3.25 0.06 -3.28 0.04 -3.28 0.06 -2.86 0.33
F21  -10.1532 | -10.1532 0.0003 -10.0839 0.1955 -10.1512 0.0040 -9.6130 0.5774 -10.1532 0.0006 -10.1094 0.1319
F22  -10.4028 | -10.4028 0.0003 -10.3910 0.0323 -10.4010 0.0031 -9.8428 0.7290 -10.4028 0.0009 -10.3774 0.0552
F23  -10.5364 = -10.5364 3.53E-05 -10.4679 0.2877 -10.2220 1.4342 -9.8857 0.8148 -10.5364  4.06E-05  -10.4658 0.1524
TABLE 7. Results of MSIDBO, MSADBO, IDBO, IMODBO, EtHGS and MSIWOA on CEC-2017 test functions.
X MSIDBO MSADBO IDBO IMODBO EHGS MSIWOA
ID  Fmin
AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD
Fl 100 16356111 1969.4843 2770.1449 2553.2606 1969.4252 1916.8529 227855732270  8956710.8619  2470.8320 1678.8973  306767063.3866  235601380.3960
F3 300 300 0 300 0 300 0 460.6426 90.9145 306.1629 314278 2092.8951 1229.8055
F4 400 400 0 405.7233 21.9660 400.0272 0.0492 415.2446 20.3894 400.1549 0.0257 470.3139 41.8510
F5 500 521.9762 6.6717 525.2652 8.5090 527.6209 127599 532.8486 10.4455 523.0008 4.9502 5722093 19.4478
Fo6 600 604.1206 3.7864 604.4000 4.2640 605.1307 3.9579 604.1671 1.0931 604.2514 0.0000 641.9202 11.2421
F7 700 750.2899 15.5095 742.2342 121884 753.1124 18.6555 749.4303 7.7739 726.3938 8.0667 800.3557 19.6792
F§ 800 823.4797 7.0902 8226557 6.2985 827.8302 7.6932 8259319 5.1142 811.4420 4.1210 836.5835 85363
Fo 900 913.7022 47.5154 958.1437 85.3873 968.4219 91.3041 910.3964 16.1328 906.0331 32,6163 1536.0852 254.7793
FI0 1000 | 1608.3103 184.1716 17748514 321.8956 1807.5611 300.8365 1879.3306 214.0432 1632.2432 193.9470 2127.2888 240.8917
F11 1100 1146.8861 53.7463 1171.1517 44.2970 1151.4871 42.7751 1137.9883 24.1240 1109.1381 5.8452 1228.0103 85.2627
F12 1200 122740006  6380.1605  18160.0814  18817.0024 = 10341.1522  12211.8534 19294733121  1924607.0278  16167.7769  16014.5593  6210936.2115 4666672.9839
FI3 1300 = 1725.1796 276.5568 6072.4410 5457.6103 7298.2729 62300158 11743.2394 6947.4432 6247.6246 6412.1374 17444.1642 91737452
Fi4 1400 1481.5294 34.8552 1492.0148 469135 1477.3764 34.5178 1525.5296 222382 1483.6049 28.1295 1746.1559 202.2488
FI5 1500 | 15452092 447423 1602.8613 77.9869 1581.5027 69.1623 1821.1328 215.0746 1696.5236 4511661 8813.7587 2719.4398
F16 1600 1707.3260 91.8406 1747.3175 130.7422 1679.4228 75.0503 1681.8408 52.7125 1691.4615 110.8161 2002.9525 133.8732
FI7 1700 | 1743.6069 142149 1746.5725 16.4014 1743.8860 21.1570 1756.3383 9.7958 1751.9149 168110 1778.2969 25.0934
FI§ 1800 = 1978.8559 244.9041 54305167 8327.1750 3166.5236 3398.6876 19354.4984 17669.4600  10270.0742  8579.6409 2766.2804 2489.7435
F19 1900 1937.1496 39.4487 1973.0269 100.0095 1955.3104 553213 22412115 251.0121 2318.7159 1896.6527 31846.5298 65957.3592
F20 2000  2035.1214 18.8071 2054.6766 44.8937 2065.0372 40.7706 2061.2875 204163 2004.8082 75775 2239.0458 67.7207
F21 2100 2201.9464 14317 2201.6353 1.4045 2201.8526 2.0489 2204.3400 1.7127 2264.5734 61.5386 2227.6744 34.6221
F22 2200 23022530 122229 2303.9266 29532 2299.8834 21.4024 2309.0168 16.6217 2296.0396 20.1662 2598.8030 529.3550
F23 2300 2618.9296 53.1318 2633.1393 11.4000 2631.9054 14.5071 2627.1180 4.5751 2620.0141 7.3503 2667.4272 26.0021
F24 2400 2504.0280 22.0624 2537.5186 85.9575 2543.8587 99.4120 2568.0934 91.4116 2736.3098 81.4144 2813.4216 35.7772
F25 2500  2924.6524 234910 2925.5515 24.7746 2916.2494 64.1873 2924.6259 227239 2923.9600 23.9968 2982.3352 30.8142
F26 2600 2974.6434 65.0461 3009.8564 141.7861 3040.4106 147.4256 2905.1894 84.9644 2917.2137 85.0857 3829.9478 539.8920
F27 2700 | 3094.6660 2.8653 3097.8738 6.7829 3098.5809 5.9208 3008.4171 7.9590 3105.5114 13.2870 3208.8258 70.9205
F28 2800 3295.4424 140.2688 3211.6280 127.3166 3256.4256 134.4814 3335.9496 117.8120 3225.8126 143.4856 3523.4240 96.1169
F29 2900 3175.5286 24.3219 3207.2918 42,9489 3196.4875 38.7764 3199.7180 35.8416 3188.5565 36.6978 3447.5801 78.6925
F30 3000 4052047130 512886.8929  341907.6320  504972.1196 4866827756  710978.1173  345618.5520  300013.0989 | 182187.1328 3838209766 6812983780 1171332.5044

single-peaked functions F1-F7. Specifically, it ranks first
on F1-F4, F6-F7, F9-F12, and F15-F23. Furthermore, the
global optimal solution has been found on F1-F4, F9, F11,
F16-F19, and F21-F23. Additionally, MSIDBO performs
competitively with several other improved algorithms on
F5, F8, F13, and F14, often outperforming them. Overall,
MSIDBO holds a significant advantage over the other five
improved algorithms.
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2) COMPARISON ON CEC-2017 TEST FUNCTIONS

The comparison data of the six improved algorithms on
the CEC-2017 test functions are shown in Tab. 7, in which
MSIDBO ranks first on 15 test functions, and the algorithms
that are slightly weaker than the first algorithm rank in the
top three on 9 test functions. This again proves that MSIDBO
is still competitive compared to the improved algorithm.
Analyzing the standard deviation, it becomes evident that
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TABLE 8. Results of Wilcoxon signed-rank test on 23 benchmark functions.

ID DBO GWO PSO WOA SSA DE SCA HHO Total
F1 1.21E-12  1.21E-12 1.21E-12 1.21E-12 5.77E-11  1.21E-12 1.21E-12  1.21E-12 8
F2 1.21E-12  1.21E-12 1.21E-12 1.21E-12 1.21E-12  1.21E-12 1.21E-12  1.21E-12 8
F3 1.21E-12  1.21E-12 1.21E-12 1.21E-12 4.57E-12 1.21E-12 1.21E-12  1.21E-12 8
F4 1.21E-12  1.21E-12  1.21E-12 1.21E-12 4.57E-12 1.21E-12 1.21E-12  1.21E-12 8
F5 3.02E-11 3.02E-11 3.02E-11  3.02E-11  3.02E-11  3.02E-11 3.02E-11  3.02E-11 8
F6 3.02E-11 3.02E-11 3.02E-11  3.02E-11  3.02E-11  3.02E-11 3.02E-11  3.02E-11 8
F7 3.02E-11 3.02E-11  3.02E-11 4.50E-11  1.78E-10  3.02E-11 3.02E-11 2.67E-09 8
F8 2.39E-08  3.02E-11  3.02E-11 2.07E-02 4.74E-06  1.47E-07 3.02E-11  3.02E-11 8
F9 NaN 1.20E-12  1.21E-12 NaN NaN 1.21E-12 1.21E-12  NaN 4
F10  3.34E-01 1.14E-12 1.21E-12 3.57E-10 NaN 1.21E-12 1.21E-12  NaN 5
F12  3.34E-11 3.02E-11  3.02E-11  3.02E-11 5.57E-10  3.02E-11 3.02E-11  6.07E-11 8
FI13  992E-11 3.02E-11  3.02E-11  3.02E-11  2.06E-01  1.00E+00  3.02E-11  9.94E-01 5
Fl14 7.60E-02 9.93E-10 8.79E-06 1.35E-06 6.69E-12  5.58E-03 329E-07 1.21E-05 7
FI5 4.07E-11 9091E-11  2.49E-06 4.50E-11 1.20E-10 3.02E-11 3.02E-11  6.69E-11 8
Fl16  9.55E-05 236E-12 591E-07 2.36E-12 7.75E-10  5.70E-01 236E-12  236E-12 7
F17 NaN 1.21E-12  NaN 1.21E-12  2.79E-03  NaN 1.21E-12  1.21E-12 5
FI18 6.67E-04 1.27E-11  1.75E-07 1.27E-11  1.04E-09  7.99E-03 1.27E-11  148E-11 8
F19  6.54E-03  1.54E-09 4.83E-06 2.15E-10 1.05E-09 8.15E-02  6.09E-12  1.05E-09 7
F20 6.73E-03  1.02E-01 6.98E-01 3.72E-03  1.01E-02 1.76E-11 751E-11  251E-04 6
F21  5.82E-06 7.38E-11  3.62E-02 3.02E-11 4.51E-02 9.94E-01 3.02E-11  3.02E-11 7
F22  6.09E-02 146E-10 2.779E-02 3.33E-11 9.62E-02  2.39E-01 3.02E-11  3.02E-11 5
F23  2.44E-01 2.89E-11 4.02E-01 2.89E-11  6.44E-05 2.04E-01 2.89E-11  2.89E-11 5

MSIDBO maintains the first place on 12 functions and
is among the top three on another 9 functions. This
underscores the significant advantage of MSIDBO over the
other improved algorithms, both in terms of accuracy and
stability.

C. WILCOXON SIGNED-RANK TEST

In our previous experiments, we analyzed MSIDBO along
with the classical algorithm and the improved version of
DBO on 23 benchmark functions and the CEC-2017 test
functions. MSIDBO demonstrated a significantly superior
performance in both test sets, whether comparing accuracy
or stability with other algorithms. This fully reflects the
effectiveness of the strategy employed by the MSIDBO
algorithm. To further compare the differences between
MSIDBO and other algorithms, we conducted Wilcoxon rank
and non-parametric statistical tests in this paper, based on the
experimental data of MSIDBO on both the 23 benchmark test
functions and the CEC-2017 test functions. When the p-value
is less than 0.05 for an algorithm, it indicates that MSIDBO
is significantly different from that algorithm. In this paper,
eight well-known intelligent optimization algorithms were
selected: DBO [13], GWO [2], PSO [1], SSA [5], DE [8],
SCA [9], and HHO [3]. The p-values of the statistical results
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are shown in Tab. 8 and Tab. 9. The last column displays the
total number of data points with significant differences.

From Tab. 8, it can be seen that the data of MSIDBO in
70% of the functions are significantly different from those
of the traditional DBO. This indicates that the similarity
between the search results of the MSIDBO and DBO
algorithms based on the 23 benchmark functions is low.
When comparing MSIDBO with other algorithms, it is
evident that the search results of the MSIDBO algorithm
differ significantly from those of most other algorithms
on the majority of functions. Analysis of Tab. 9 further
reveals that the search results of MSIDBO are significantly
different from those of the DBO algorithm on 58.6% of the
functions, and they also stand out as distinct from the results
of other optimization algorithms on most functions. Taken
together, these analyses demonstrate that, among the various
metaheuristic algorithms, the MSIDBO algorithm exhibits
the most outstanding comprehensive performance.

V. ENGINEERING DESIGN PROBLEMS

In order to test the potential of MSIDBO algorithm in prac-
tical engineering application, this paper uses the proposed
MSIDBO algorithm to optimize three engineering design
problems. The reference [31] puts forward a benchmark
suite containing 57 constraint optimization problems to

VOLUME 12, 2024



D. Zhang et al.: MSIDBO Algorithm and Engineering Design Application

IEEE Access

TABLE 9. Results of Wilcoxon signed-rank test on CEC-2017 test functions.

ID DBO GWO PSO WOA SSA DE SCA HHO Total
F1 2.10E-05  8.20E-07 4.69E-08 4.12E-06 3.02E-11  1.21E-12  3.02E-11  3.02E-11 8
F3 3.84E-01 2.24E-11 2.24E-11 2.24E-11 2.24E-11 1.09E-07 224E-11 2.24E-11 7
F4 3.02E-11  3.02E-11  4.22E-04 3.02E-11 3.02E-11  3.02E-11  3.02E-11  3.02E-11 8
F5 5.20E-03  3.18E-04 1.43E-08 2.68E-06 5.07E-10 3.02E-11  1.07E-09  6.52E-07 8
F6 473E-01 1.11E-06 498E-11 1.17E-09 3.02E-11 1.21E-12 5.07E-10 2.57E-07 7
F7 1.26E-01  6.53E-08 6.10E-01  3.01E-07 3.02E-11 3.02E-11  3.50E-03 3.64E-02 6
F8 5.35E-01 232E-06 8.65E-01 2.28E-05 8.89E-10 3.02E-11 2.77E-05 1.84E-02 6
F9 1.71E-01 ~ 4.23E-03  1.29E-09 9.26E-09 3.02E-11  4.57E-12  8.12E-04  3.35E-08 7
F10 3.51E-02 2.06E-01 1.56E-08 5.97E-05 1.55E-09 3.34E-11 3.82E-09 2.13E-04 7
FI1  492E-01 877E-02 8.88E-01 6.10E-03 2.39E-08 4.50E-11 7.62E-03 297E-01 4
F12  3.18E-04 1.85E-08 1.95E-03 1.31E-08 1.78E-10 1.33E-10  3.02E-11  5.49E-11 8
F13  287E-10 4.98E-11 4.38E-01 4.50E-11 6.70E-11  5.57E-10 3.02E-11  3.82E-10 7
F14 1.54E-01 3.26E-01 4.22E-04 3.03E-02 237E-10 1.27E-11 1.86E-03 6.79E-02 5
FI5 1.61E-06 6.05E-07 9.63E-02 4.98E-11 3.02E-11  3.02E-11  1.29E-09 1.32E-04 7
F16  7.17E-01 4.04E-01 2.60E-08 9.07E-03  9.92E-11  3.02E-11 7.01E-02 2.15E-06 5
F17 438E-01 2.40E-01 4.36E-02 2.32E-06 3.02E-11 2.57E-11 6.74E-06 1.17E-02 6
FI8 527E-05 3.02E-11 1.54E-01 4.50E-11 3.69E-11 6.07E-11  3.02E-11  6.07E-11 7
F19 5.83E-03 6.00E-01 3.40E-01 3.69E-11  3.02E-11  1.21E-12 2.44E-09 1.29E-09 6
F20 1.78E-04 2.25E-04 6.72E-10 1.70E-08 3.69E-11  5.14E-12 4.31E-08 9.06E-08 8
F21  3.24E-03 2.13E-10 1.10E-06  7.29E-11 298E-11 1.08E-10 4.91E-11 3.55E-06 8
F22  4.06E-02 2.84E-01 3.34E-03 1.61E-06 3.02E-11 5.57E-10 6.74E-06 9.76E-10 7
F23  438E-01 1.11E-06 5.49E-11 2.13E-04 4.50E-11 5.57E-10 1.25E-07 2.23E-09 7
F24  1.25E-06 2.04E-11 3.06E-11 2.26E-11 2.04E-11  3.06E-11 3.06E-11 3.39E-11 8
F25 9.65E-01 6.63E-01 2.71E-01 1.77E-03 3.33E-11 1.99E-05 823E-02 8.88E-01 3
F26 4.27E-04 7.50E-01 7.56E-05 3.52E-04 530E-11 5.77E-06 6.48E-04 1.62E-01 6
F27 1.86E-03 8.53E-01 3.02E-11  1.25E-07 3.02E-11 1.69E-09 2.61E-10 991E-11 7
F28 899E-01 5.54E-05 9.05E-01 1.67E-04 3.60E-09 7.00E-01 6.05E-02 8.95E-02 3
F29 281E-02 7.96E-01 3.47E-10 1.29E-09 3.34E-11  2.15E-10 7.30E-04 1.60E-07 7
F30 9.66E-03 4.21E-02 9.05E-02 1.81E-01 1.28E-09 9.23E-01 1.15E-01 9.33E-02 4

test the practical application potential of the algorithm.
In this paper, MSIDBO algorithm is used to search and
test three well-known optimization problems. Respectively,
the pressure vessel design problem (PVD) [32], welded
beam design problem (WBD) [33] and tension/compression
spring design problem (TSCD) [34], and the optimization
results are compared with the results of other classical
optimization algorithms. The test method is to convert these
three engineering problems into a mathematical model, use
penalty function to deal with inequality constraints, and then
use each algorithm to find the optimal solution. Set the fill
size to 30 and the maximum number of iterations to 500.

A. PRESSURE VESSEL DESIGN PROBLEMS (PVD)
The main object of the pressure vessel design problem
is to optimize the welding cost, material, and forming of
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a vessel. This problem refers to finding pressure vessel
design parameters that satisfy the constraints, and using these
design parameters to calculate the manufacturing cost of
the pressure vessel. The pressure vessel design parameters
are shell thickness, head thickness, inner radius, and length
of the vessel without including the head. In this section,
the optimization results of the MSIDBO algorithm are
used to compare with the results of DBO [13], DE [8],
GWO [2], HHO [3], PSO [1], SCA [9], SSA [5] and
WOA [4].

The specific formulation of the pressure vessel design
problem (PVD) is as follows:

minf(s) = 0.6224s15354 + 1.77815253
+3.1661s%s4 + 19.84s7s3
81 = —S1 +0.0193s3 <0,
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g2 = —s2 4+ 0.00954s3 <0,

el 3
23 5354 37‘[53 + 1296000 < 0,

g4=S4—240§0

s; €10,99]G = 1,2), 5 € [0,200]G =3,4) (17)

where s is the shell thickness, s, is the head thickness, s3 is
the inner radius, and s4 is the length of the vessel without
including the head, g;(i = 1, 2, 3, 4) is the four constraints.
f(s) is the fitness function and denote the manufacturing cost
of the pressure vessel.

The optimization results of all the algorithms are
shown in Tab. 10, among the optimal costs of all
the algorithms, the MSIDBO algorithm has the low-
est cost and the optimal parameter obtained is s =
(0.778169, 0.384649, 40.31962, 200) and the optimal cost is
f(s)=5885.332954.

TABLE 10. Result of PVD.

algorithm 51 52 53 54 Optimal cost ~ Rank

MSIDBO  0.7782  0.3846  40.3196  200.0000
DBO 0.7868 03874 403697  199.3149
DE 0.9634 04762 499179  98.9991
GWO 0.7792 03907 403738  199.4158
HHO 0.9056  0.4471  46.8555  125.4289
PSO 0.9634  0.4762  49.9176  99.0000
SCA 0.8217  0.5491  42.0625  180.7961
SSA 0.7803  0.6257  40.3196  200.0000
WOA 0.9288 05138  47.9584  115.4158

5885.3330
5949.5803
6283.5212
5906.9946
6145.8319
6283.3282
6566.8536
6597.7467
6436.8613

B LY N S U R

B. WELDED BEAM DESIGN PROBLEMS (WBD)

The main objective of this problem is to optimize the weight
of the welded beam. The welded beam design problem is
to find four design parameters that satisfy the constraints
of shear stress, bending stress, bending load of the beam
and terminal deviation. These design parameters are the
length, height, thickness of the beam, and thickness of the
welded joint, respectively. Finally, these design parameters
are used to calculate the manufacturing cost of the welded
beam. In this section, the results of the MSIDBO algorithm’s
optimization search are compared with those of DBO [13],
GWO [2], HGS [7], HHO [3], SCA [9], SMA [6], SSA [5],
and WOA [4]. The welded beam design problem (WBD) is
formulated as follows:

mingf(s) = 1.10471s7s,

4 0.048115354(14.0 + 52)

g1(s) = t(s) — 13600 < 0,
g2(s) = o(s) — 30000 < 0,
g3(s) = y(s) —0.25 <0,

g4=951—-54=0,85=p—pc =0,

g6 =0.125 — 51 < 0,

g7 = 1.10471s53+

0.04811s354(14.0 + 52) — 5.0 <0 (18)
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J

where s7 is the thickness of the welded joint, s; is the length of
the beam, s3 is the height of the beam, s, is the thickness of the
beam, g;(i=1,2,...,7) is the seven constraints. t is the shear
stress, o denotes the bending stress, p. is the bending load of
the beam, and y is the terminal deviation. f(s) is the fitness
function and denotes the manufacturing cost of the welded
beam.

The optimization results of all algorithms for the welded
beam design problem (WBD) are shown in Tab. 11, the
MSIDBO algorithm obtains the minimum cost in solving
the welded beam design problem, the optimum parameter
obtained is $s=(0.205734,3.253036,9.036624,0.20573) and
the minimum cost is 1.69524492.

TABLE 11. Results of WBD.

Algorithm sl s2 s3 s4 Optimal cost ~ Rank

MSIDBO  0.2057  3.2530 9.0366  0.2057 1.6952 1
DBO 0.1989  3.3826 9.0383  0.2058 1.7033 4
GWO 0.2013  3.3341 9.0376  0.2058 1.7000 3
HGS 0.2280  3.0132 8.5845  0.2280 1.7749 8
HHO 0.1928  3.4816 9.0993  0.2088 1.7411 6
SCA 0.2134  3.1893 8.8412 02175 17510 7
SMA 0.2030  3.3035 9.0356  0.2058 1.6981 2
SSA 0.1250  10.0000  10.0000  0.2014 2.4978 9
WOA 0.2058  3.4018 9.0320  0.2059 1.7164 5

C. TENSION/COMPRESSION SPRING DESIGN PROBLEMS
(TSCD)

The main objective of this problem is to optimize the weight
of a tension/compression spring. This problem involves
finding the design parameters of the tension/compression
spring that satisfy the constraints and calculating the weight
of the spring through these parameters. The constraints
include minimum deflection, vibration frequency, shear
stress, and outer diameter limitations. The design parameters
include the average diameter of the spring coil, the diameter
of the spring wire, and the number of effective coils of
the spring. In this section, the optimization results of the
MSIDBO algorithm are compared with the results of DBO
[13], DE [8], GWO [2], HGS [7], HHO [3], PSO [1], SCA
[9], SMA [6], SSA [5], and WOA [4].
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The specific formulation of the tension/compression spring
design problem (TSCD) is as follows:

minf(s) = (s3 + 2)szs%

3
S3S2
s)=1—-— —=— <0,
1) 7178557
452 — 515 1
g2(s) = 2~ 172 1<0,

12566(s253 —s%) 510852

140.45s,
g3(s) =1 — —— <0,
S2S3
S1+ 82
84(s) G <

s1 € [0.05,2],s2 €[0.25,1.3], 53 € [2,15] (20)

where s is the average diameter of the spring coil, s; is the
diameter of the spring wire, s3 is the number of effective
coils of the spring, gi(i = 1,2,3,4) is the constraint.
f(s) is the fitness function and denotes the weight of the
tension/compression spring.

The optimization results of all the algorithms for the
Tension Compression Spring Design Problem (TSCD) are
shown in Tab. 12. The MSIDBO algorithm is ranked
first among all the algorithms in terms of finding the
optimal parameter s=(0.05107,0.341998,12.20717) and the
minimum cost of 0.012672312 is obtained.

TABLE 12. Result of TSCD.

Algorithm sl s2 s3 Optimal cost ~ Rank

MSIDBO  0.0511  0.3420  12.2072 0.0127 1

DBO 0.0500 03174 14.0278 0.0127 3
DE 0.0690  0.9334  2.0000 0.0178 10
GWO 0.0505  0.3292  13.1187 0.0127 2
HGS 0.0836  1.2068  2.3140 0.0364 11
HHO 0.0571  0.5008  6.0670 0.0132 5
PSO 0.0690 09334 2.0000 0.0178 9
SCA 0.0500  0.3107  15.0000 0.0132 7
SMA 0.0629  0.5950  5.3603 0.0173 8
SSA 0.0500  0.3104  15.0000 0.0132 6
WOA 0.0549 04376  7.7515 0.0128 4

VI. CONCLUSION AND FUTURE PERSPECTIVES

Aiming at the problems that the dung beetle optimization
algorithm (DBO) cannot guarantee the diversity of the
population, has poor ability to jump out of the local
optimum, has poor convergence accuracy, and has weak
global exploration ability, a multi-strategy fusion of the
improved golden sine dung beetle optimization algorithm
(MSIDBO) is proposed. The algorithm adopts a good point
set strategy to make the population more evenly distributed
within the search range, enhance the population diversity,
and provide a good basis for the algorithm to find the
optimal. The golden sine strategy is introduced, and the
golden sine coefficient is used to complete the dancing action,
which effectively strengthens the global exploration ability
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of the algorithm. The t-distribution strategy is introduced to
perturb the egg-laying dung beetles, small dung beetles and
stealing dung beetles, so as to expand the search range of the
population. Finally, in order to prevent the population from
falling into the local optimal, the adaptive Gauss-Cauchy
mutation strategy is introduced to mutate the current optimal
solution under certain conditions, thus improving the ability
of the algorithm to jump out of the local optimal. These
improvement strategies effectively improve the algorithm’s
convergence accuracy, global search capability, and ability to
jump out of local optima.

In order to verify the effectiveness of the improved
strategy, this paper presents simulation experiments with
23 benchmark test functions as well as CEC-2017 test
functions and compares them with five well-known tra-
ditional optimization algorithms as well as five improved
algorithms. The experimental results show that the MSIDBO
algorithm is much improved in many aspects. This paper
also verifies the significant difference between MSIDBO and
traditional DBO as well as other traditional algorithms using
the Wilcoxon signed-rank test based on the experimental
data of 23 benchmark test functions and CEC-2017 test
functions, and the experimental results show that MSIDBO is
significantly different from the rest of the algorithms. In order
to test the practical application potential of the MSIDBO
algorithm, this paper uses the MSIDBO algorithm to perform
the optimization test on three well-known engineering design
problems and compares it with other well-known algorithms,
and the results of the comparison show that the MSIDBO
algorithm has a greater competitiveness in dealing with such
problems. In the future, the MSIDBO algorithm will be
applied to more practical and engineering problems, such as
image segmentation, UAV path planning, data mining and so
on.
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