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ABSTRACT Due to a continuous change in people’s lifestyle and dietary habits, gastrointestinal diseases are
on the increase, with dietary changes being a major contributor to a variety of bowel problems. Around two
million people around the world die due to gastrointestinal (GI) diseases. Endoscopy is a medical imaging
technology helpful in diagnosing gastrointestinal diseases like polyps and esophagitis. Its manual diagnosis
is time-consuming; hence, computer-aided techniques are now widely used for accurate and fast GI disease
diagnosis. In this paper, the Kvasir dataset of 4000 endoscopic images, comprising 500 images of each
of the eight gastrointestinal tract disease classes have been classified using seven grid search fine-tuned
transfer learning models. The fine-tuned transfer learning models employed in this paper are ResNet101,
InceptionV3, InceptionResNetV2, Xception, DenseNet121, MobileNetV2, and ResNet50. The grid search
algorithm has been used to determine the architectural and fine-tuning hyperparameters. The fine-tuned
ResNet101 model performed the best, with a learning rate 0.001 and a batch size of 32 for the SGD optimizer
at 40 epochs. These hyperparameters were optimized through grid search along with new set of layers added
to the model. The newly added layers include one flatten layer, two dropout layers and five dense layers
optimized using grid search. The grid search fine-tuned ResNet101 model obtained an accuracy of 0.90,
a precision of 0.92, a recall of 0.92, and an f1-score of 0.91. Further, the grid search fine-tuned ResNet101
model was integrated with an attention mechanism to enhance performance by focusing on essential image
features, notably in medical imaging where some regions may contain vital diagnostic information. The
proposed grid search fine-tuned and attention mechanism integrated ResNet101 model achieved an accuracy
of 0.935, precision of 0.93, recall of 0.94 and an f1-score of 0.93.

INDEX TERMS DenseNet121, endoscopy, gastrointestinal diseases, grid search, hyperparameter opti-
mization, InceptionResnetV2, InceptionV3, MobileNetV2, ResNet50, ResNet101, Xception, attention
mechanism.

The associate editor coordinating the review of this manuscript and

approving it for publication was Leimin Wang .

I. INTRODUCTION
The gastrointestinal (GI) system is one of the most important
systems in the body and is prone to a number of illnesses.
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If the anomalies are not promptly detected and treated appro-
priately, they may develop into malignant cells. Colorectal
cancer is the third most common cause of cancer-related
deaths [1], and GI cancer (stomach, esophagus, and colon)
accounts for around 2.8 million of these cases yearly, with a
noteworthy mortality rate of about 65 percent [2].

Recent advances in imaging technologies have made it
possible to see parts of the human body that were previously
inaccessible. Endoscopy is one of these methods; to examine
the GI tract, a tube with a camera is inserted [3]. Due to
the high reliance on gastroenterologists’ judgement in the
endoscopic assessment of illness classification, results may
vary from one expert to another [4]. Manually examining
endoscopic data is time-consuming, demands significant con-
centration, and can occasionally be erroneous depending on
the experience level of the clinicians involved. As a result,
automatic recognition might be useful for expediting this pro-
cess in terms of cost, duration, and classification accuracy [5].

Computer-assisted diagnosis is an essential step in the
classification of large medical images. Taking one or more
examination images as input, predicting them using the
trained model, and then outputting the result produces a
diagnostic result that indicates whether a particular disease is
present and its severity. Patients obtain images using a variety
of examination apparatus such as x-ray and ultrasound [6].
Additionally, endoscopic pictures and other pathological
imaging are available when a physician is looking for sick-
ness in the intestine.

In order to diagnose the patient, an endoscope is typi-
cally required to view the intestines’ outer features. Polyps,
inflammation, and malignancy are the three primary symp-
toms of various gastrointestinal lesions. Polyps are round or
oval pedicled lumps that protrude from the large intestine’s
mucosal surface. Under colonoscopy, inflammation appears
as significant hyperaemia, edema, erosion, and easy bleeding
when touched, as well as pus and blood exudate on the surface
of the intestinal mucosa [7]. A typical malignant tumour of
the digestive system is cancer. The surface of the cancer
is covered in necrosis and bleeding and protrudes into the
intestinal lumen.

Numerous sophisticated intelligent classification tech-
niques have surfaced in recent years, and classification
accuracy has steadily increased [8]. The problem with image
classification was that, the images were of poor quality and
also the feature extraction techniques applied to different
images were not explored fully. Deep learning uses human
brain principles to analyse data and imitate the human brain
for analytical learning. The most popular network model for
deep learning is convolutional neural networks (CNN) [9].
It classifies image data based on image features and delivers
the same into the network for training. To improve classifica-
tion outcomes while training network architectures with deep
learning, a large number of data sets are necessary in order
to avoid model overfitting [10]. The criteria for doctors and
patients throughout the examination process are particularly

high due to the intricacy and inconvenience of endoscopy,
which makes it challenging to gather colonoscopy data sets.

The motivation behind this research stems from the
imperative to advance the field of medical image analysis,
particularly in the context of endoscopy images. Endoscopy
plays a pivotal role in diagnosing various medical conditions,
and leveraging deep learning techniques can significantly
enhance the accuracy and efficiency of image classification
in this domain.

The use of transfer learning models, such as ResNet101,
InceptionV3, InceptionResNetV2, Xception, DenseNet121,
MobileNetV2, and ResNet50, is motivated by their proven
success in a wide range of computer vision tasks. Fine-tuning
these models through a meticulous grid search optimization
of architectural hyperparameters aims to tailor their capa-
bilities specifically for the nuanced challenges presented by
endoscopy image classification. In this paper, classification
of the endoscopic images into eight classes have been done
using seven transfer learning models.

The key contributions made by this paper are:
1. This research explores the fine-tuning of seven transfer

learning models—ResNet101, InceptionV3, Inception-
ResNetV2,Xception, DenseNet121, MobileNetV2, and
ResNet50 by employing grid search optimization to adjust
architectural hyperparameters. Different combinations of
dropout layers and dense layers were explored for the
multi-class classification of endoscopy images.

2. A comprehensive comparison of the performance of these
fine-tuned transfer learning models was conducted, eval-
uating their accuracy, precision, recall, and F1-score.
Among the models, the grid search fine-tuned ResNet101
exhibited superior performance, outperforming the other
models.

3. Building on the success of the best-performing ResNet101
model, further optimization was carried out using
fine-adjustment hyperparameters such as learning rate,
batch size, and epochs. This optimization process involved
grid search optimization to enhance the model’s overall
effectiveness.

4. To augment the classification performance of the opti-
mized ResNet101 model, an attention mechanism was
integrated. This fusion strategy leveraged the attention
mechanism’s ability to highlight key aspects, combining
it with ResNet101’s iterative feature map concatenation.
The result was a more precise and interpretable catego-
rization approach leading to an improvement in the overall
classification performance of the model.

The paper structure comprises literature review in section II,
a proposed methodology in section III, results and discussion
in section IV, and a conclusion and future scope in section V.

II. LITERATURE REVIEW
Endoscopy is essential for diagnosing and treating GI
tract diseases. The use of real-time AI image process-
ing for diagnosing upper gastrointestinal cancers is still
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in experimental research and engineering. A comparison
comparing endoscopic modalities, image counts, models,
validation techniques, and outcomes for automated upper
gastrointestinal cancer diagnosis and assessment was carried
out on 65 studies. In order to improve performance, matu-
rity, and potential for real-time upper gastrointestinal cancer
diagnosis, this study compared and evaluated various AI
approaches. According to the report, GI image processing for
machine learning frequently uses support vector machines,
or SVM. The study revealed that deep learning (DL) for
GI image analysis frequently uses CNN-based supervised
learning object detection models [11].

Recently, CADx (Computer Aided Diagnosis) systems
are being used to reduce operator variation in conventional
endoscopic procedures and provide guidance for precise ill-
ness diagnosis [9]. The training and testing feature sets are
used by the CADx system to categorise GI tract illnesses.
Results of classification tasks typically depend on techniques
like preprocessing and image augmentation techniques that
aid in the diagnosis of GI tract illnesses [10]. The system
computation is sustained and improved via feature extrac-
tion [7]. A model called GastroNet was proposed which
was obtained after fine-tuning of the YOLOv5 model. The
model was used for determination of polyps and other abnor-
malities. The model comprised a single neural network for
analyzing the whole image which were further split into
parts. The probabilities were calculated for each of the part
individually [12]. A lightweight deep Convolutional neural
network was proposed to obtain the most important fea-
tures from the endoscopic images. The obtained features
were further reduced by the Cosine similarity-based method.
The classification time was reduced due to the reduction
in features [13]. For the KVASIR dataset, Khan et al. [14]
suggested a DL model for the identification and catego-
rization of gastrointestinal tract (GIT) anomalies. For the
KVASIR dataset, the accuracy was 86.4%. Edge removal,
contrast enhancement, filtering, color mapping, scaling, and
color mapping are all provided for each image by MAPGI,
an automated modular preprocessing framework for images
of the gastrointestinal tract. Gamma correction values for
images are generated automatically, adjusting mean pixel val-
ues within the range of 0–255 to 90±1. The Kvasir dataset is
used to train three state-of-the-art neural networks: Inception-
ResNet-v2, Inception-v4, and NASNet. Validation data is
used to compare the three networks. Each example uses 15%
for validation and 85% for training from the Kvasir dataset
photographs [15].

Computer-aided diagnosis algorithms have produced
promising results in medical imaging in the last several
years [16], [17]. The research showed that the detection and
classification of gastrointestinal tract illnesses has often been
accomplished by automatic techniques based on deep learn-
ing and handcrafted models. Using the KVASIR dataset, Liu
et al. [18] assessed the GI sickness recognition system. Six
visual elements were combined with Haralick features and

Local Binary Patterns to create the image texture. Following
feature selection, kernel discriminant analysis and logis-
tic regression were used to train the model. The obtained
F1-score was 0.75. Using Bidirectional Marginal Fisher
Analysis (BMFA), the author of [19] retrieved picture fea-
tures and fed them to SVM for classification.

On KVASIR, [20] used transfer learning with data aug-
mentation. After the dataset was refined using a pre-trained
network called InceptionV3, the accuracy of the model was
found to be 91.5%. CNN-based ulcer, erosion, and polyp
categorization for stomach precancerous anomalies was pre-
sented by Agrawal et al. [21]. SqueezeNet with iterative
reinforcement learning decreased the size and computing
time of the model. 88.90% accuracy was attained overall.
Good results were obtained in [22] when features were
extracted using Inception V3 and VGGNet pre-trained mod-
els on the ImageNet dataset. SVMwas then used to categorize
the features. Pogorelov et al. [23] experimented with 17 dif-
ferent approaches, but the pre-trained ResNet50 and Logistic
Model Tree (LMT) classifier yielded the best accuracy. The
study’s objectives were to identify eight classes as disease
conditions, medical procedures, or anatomical landmarks
while minimizing model performance and computation time
and resources [23]. It was suggested to use a group of pre-
trained models, including DenseNet201, InceptionV3, and
ResNet50, to reliably classify endoscopic images. The accu-
racy of the ensemble model was 0.929 [24].

In this paper, seven grid search fine-tuned transfer learning
models have been employed for classification of endoscopic
images into eight classes and the best results were obtained
by the ResNet101 model.

III. PROPOSED METHODOLOGY
Figure 1 shows the proposed methodology for the classifica-
tion of the endoscopic images into eight classes of gastroin-
testinal abnormalities. Firstly, the preprocessing of KVASIR
dataset was performed in which the images were resized into
a size of 224 X 224. This size is required for the functioning
of pre-trained models. The seven selected TL models are:
ResNet101 [25], InceptionV3 [26], InceptionResNetV2 [27],
Xception [28], DenseNet121 [29], MobileNetV2 [30] and
ResNet50 [31]. The architectural hyperparameters like num-
ber of dense layers, dropout rate and activation function have
been selected by grid search optimization for tuning of TL
models. These new set of layers have been added to the seven
TL models through grid search optimization. The optimized
layers include three dense layers of size 1024, 512 and 256
respectively. A dropout layer of value of 0.5 succeeds these
dense layers. These layers are further followed by a dense
layer of size 128 and a dropout layer of 0.5. Finally, the
last layer is a dense layer of size 8 and softmax activation
function. After the addition of these layers, all the seven grid
search fine-tuned models were compared and it was inferred
that the grid search fine-tuned ResNet101 model performed
best for these hyperparameters.
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Similarly, fine-tuned hyperparameters like batch size,
learning rate, optimizer and number of epochs have been
selected by grid search optimization for fine-tuning of the
ResNet101 models. The best fine-tuned hyperparameters
i.e., batch size of 32, learning rate of 0.001, SGD optimizer
and 40 epochs were selected by grid search optimization
for the Resnet101 model. Finally, the most efficient model
i.e., the grid search fine-tuned ResNet101model classifies the
images into the eight categories of GI diseases.

A. INPUT DATASET
In this paper, the KVASIR dataset [22] has been used which
comprised endoscopic images of the human gastrointestinal
tract. This dataset has been used for the detection of different
types of abnormalities. The dataset comprises 4000 images
of the gastrointestinal tract which is divided into 8 different
classes (different anomalies) and each class has 500 images.
The eight classes (3 normal and 5 diseases) are dyed-
lifted-polyps, normal-cecum, normal-pylorus, normal-z-line,
esophagitis, polyps, ulcerative colitis and dyed-resection-
margins as shown in figure 2. The dataset has been divided
into 2240 training images, 960 validation images and 800 test
images.

B. IMAGE RESIZING
Pre-processing [32] is a crucial step in image processing
as it improves the endoscopic images’ characteristics and
eliminates the image’s superfluous data. The images used in
this paper were of varying sizes. Hence, image resizing has
been performed as the data preprocessing step. Moreover,
image resizing in transfer learning models helps to maintain
consistency and compatibility. Hence, the endoscopic images
of the GI diseases have been resized to 224∗224.

C. GRID SEARCH OPTIMIZATION OF HYPERPARAMETERS
Grid search is an optimization technique [33] which helps
in automating the process of finding the hyperparameters
i.e., it helps one to select the optimum hyperparameters to
optimize problems through a given alternative parameter list.
This technique is generally used to optimize deep learning
models so that accurate results are obtained.

Hyperparameters [34] are variables that are set by the
user before to the training process rather than being learned
by a machine learning algorithm during training. They have
significant impact over the performance and behaviour of the
machine learning system and have control over a number
of training process variables. In most cases, hyperparame-
ters are pre-set and held constant throughout the training
process. Architectures for CNN models are fairly complex
and contain a lot of hyper-parameters. These hyperparameters
can typically be divided into two categories: fine adjustment
hyperparameters and architectural hyperparameters. Here,
both type of hyperparameters i.e. architectural hyperparam-
eters and fine-adjustment hyperparameters are tuned with the
help of grid search optimization technique.

FIGURE 1. Proposed Methodology for classification of GI diseases.

1) ARCHITECTURAL HYPERPARAMETERS OPTIMIZATION
Architectural hyper-parameters include the number of dense
layers,, the dropout rate and activation function. For a fully
connected or dense layer, every neuron in the layer has a
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FIGURE 2. (a) Dyed-lifted Polyps (b) Dyed-resection margins
(c) Esophagitis (d) Normal cecum (e) Normal -Pylorus (f) Normal z-line
(g) Polyps (h) Ulcerative colitis.

connection with every neuron in the layer preceding it. Dense
layers at the network’s final end transform the gathered or
flattened outputs into the required output.

The drop-out approach can be used to prevent overfitting
in deep neural networks. By arbitrarily setting each update’s
output to zero, the dropout training method ‘‘drops out’’ the
neurons. The dropout therefore lowers the interdependencies
between the neurons by forcing the network to develop more
stable and generalizable features. Spreading the weights over
more neurons makes the network more robust to noise and
improves its ability to generalize to new input.

In this paper, optimization of the architectural hyper-
parameters is performed first using the steps as shown in
table 1. The grid search algorithm essentially attempts every
possible parameter value amalgamation and gives the output

for the one having the greatest accuracy. Three parameters are
required for optimization to get the best accuracy as shown in
table 1.

TABLE 1. Grid search for architectural hyperparameters optimization.

2) FINE-ADJUSTMENT HYPERPARAMETERS OPTIMIZATION
Fine-adjustment hyper-parameters include optimizers, batch
size [35], learning rate, and number of epochs. A crucial
hyperparameter that shouldn’t be either too large or too tiny
is the learning rate (LR). It is employed to determine the
suggestedmodels’ rate of learning. If the LR is too little or too
high, the model would take much longer to obtain the lowest
loss because overshooting the low loss areas is possible. Steps
used for optimization of the fine adjustment hyper-parameters
are shown in table 2. The optimization of four parameters
need to be done for obtaining the best accuracy.

TABLE 2. Grid search for fine-adjustment hyperparameters optimization.

The table 3 summarizes the optimal hyperparameter values
obtained through a comprehensive grid search for transfer
learning models. The goal was to fine-tune these models for
enhanced performance in a specific application. The selected
hyperparameters, their respective ranges, and the optimized
values are detailed below:

The optimized values reflect the configurations that
yielded the best results during the grid search optimization
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TABLE 3. Optimum results obtained through grid search for transfer
learning models.

process. These results indicate that, for the multi-class gas-
trointestinal disease classification, a transfer learning model
with five dense layers, a dropout rate of 0.5, ReLu activa-
tion function, a batch size of 32, a learning rate of 0.001,
trained with the SGD optimizer over 40 epochs, demonstrated
optimal performance. These values contribute to the efficient
convergence of the model during training, striking a balance
between computational efficiency and the model’s ability to
learn from the data.

The fine-tuning process helps the model in adapting the
particular characteristics and requirements of the endoscopy
image classification task. By adjusting the number of dense
layers, dropout rates, and other hyperparameters, the model
is tailored to extract relevant features and patterns from the
medical images. These findings provide valuable insights for
configuring transfer learningmodels, emphasizing the impor-
tance of fine-tuning specific hyperparameters to achieve
optimal results. The conclusions drawn from this grid search
contribute to the establishment of best practices in model
optimization for the gastrointestinal disease classification.

D. GRID SEARCH ARCHITECTURAL HYPERPARAMETERS
TUNED TRANSFER LEARNING MODELS
Transfer learning uses the knowledge acquired from complet-
ing a source task and applies it to a target task instead of
building a model from scratch, typically with fewer data or
training resources needed. Figure 3 shows the architectural
hyperparameters tuned fully connected head that has been
added to the TL models. The layers were optimized through
grid search optimization. The transfer learning models are
followed by the flatten layer, three dense layers with 1024,512
and 256 number of filters respectively. These layers are fol-
lowed by a dropout layer of 0.5. The dropout layer is further
followed by a dense layer of 128 filters, dropout layer of
0.5 and a dense layer that classifies the endoscopic images
into the eight GI disease classes.

Table 4 presents the description with regard to the archi-
tecture of the seven TL models. The ResNet101 models has
101 layers and 44.5 million parameters. The InceptionV3
model comprises of 42 layers and 24 million parameters.
The InceptionResNetV2 model is the densest with 164 layers
and 56 million parameters. The Xception model consists of

FIGURE 3. Architectural hyperparameters tuned fully connected head.

71 layers and 22.8 million parameters. The DenseNet121
model has 121 layers and 8million parameters. TheResNet50
model is 50 layers deep with 25.6 million parameters while
the MobileNetV2 model has 53 layers with the least num-
ber of parameters i.e. 3.4 million parameters. The detailed
description of all the models has been given in the following
sections.

TABLE 4. Architectural description of transfer learning models.

1) GRID SEARCH FINE-TUNED RESNET101 MODEL
ResNet-101 is a deep CNN model that belongs to the ResNet
(Residual Network) family [36]. This model includes pooling
layers, convolutional layers and dense layers. This model also
includes ReLU activation functions, batch normalization and
shortcut connections. The training of very deep networks can
be done due to the presence of shortcut connections, often
referred to as skip connections, which allow the gradient to
pass directly through the network without fading too rapidly.

FIGURE 4. Grid search fine-tuned ResNet101 model.

Here, the ResNet101 model has been modified, firstly
by adding fine-tuned architectural hyperparameter fully con-
nected head and second, by addition of fine-adjustment
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hyperparameters as shown in figure 4. These hyperparameters
have been obtained by grid search optimization. One flatten
layer, five dense layers and two dropout layers have been
added in the fully connected head and also the model is
trained with optimized fine-adjustment parameters

FIGURE 5. Grid search fine-tuned InceptionV3 model.

2) GRID SEARCH FINE-TUNED INCEPTIONV3 MODEL
In this model, inception modules [37] are used to increase the
productivity and efficacy of deep CNNs. The third iteration
of Inception models, denoted by the ‘‘V3’’ in InceptionV3,
was created with the goal of improving accuracy while yet
keeping a manageable computing cost. The utilisation of
so-called ‘‘Inception modules,’’ which are created to effec-
tively capture multi-scale information, is the main innovation
in InceptionV3. These modules use pooling techniques and
numerous convolutional filters of various sizes (e.g., 1 × 1,
3×3, and 5×5) to capture various patterns at varying spatial
resolutions. As a result, the network can effectively learn
complicated characteristics by extracting both fine-grained
and broad contextual information. To decrease the number
of huge convolutions, InceptionV3 also adds other methods
including batch normalisation and factorization.

Here, the InceptionV3 model has been modified, firstly
by adding fine-tuned architectural hyperparameter fully con-
nected head and second, by addition of fine-adjustment
hyperparameters as shown in figure 5. These hyperparameters
have been obtained by grid search optimization. One flatten
layer, five dense layers and two dropout layers have been
added and also the model is trained with optimized fine-
adjustment parameters.

FIGURE 6. Grid search fine-tuned InceptionResNetV2 model.

3) GRID SEARCH FINE-TUNED INCEPTIONRESNETV2 MODEL
Both the Inception and ResNet models’ components are
combined in the InceptionResNetV2 model. Utilizing the

benefits of both the Inception and ResNet architectures is the
major goal of InceptionResNetV2 [38]. Inception modules
are employed to effectively capture multi-scale information,
and residual connections help in eliminating the drawback
of vanishing gradient. Compared to InceptionV3, Inception-
ResNetV2 has a more intricate network topology and more
layers. It is made up of reduction blocks that use max pooling
to minimise the spatial dimensions and an array of inception
blocks with residual connections. The network architecture
makes it more powerful for a variety of computer vision
tasks by facilitating better feature extraction and represen-
tation learning. InceptionResNetV2 is computationally more
intensive because of its depth and complexity.

In this paper, the InceptionResNetV2 model has been
modified, firstly by adding fine-tuned architectural hyper-
parameter fully connected head and second, by addition of
fine-adjustment hyperparameters as shown in figure 6. These
hyperparameters have been obtained by grid search optimiza-
tion. One flatten layer, five dense layers and two dropout
layers have been added and also the model is trained with
optimized fine-adjustment parameters.

FIGURE 7. Grid search fine-tuned xception model.

4) GRID SEARCH FINE-TUNED XCEPTION MODEL
The Inception design served as inspiration for the Xception
model, which adds a novel idea known as ‘‘depthwise sepa-
rable convolutions’’ to increase the model’s effectiveness and
computing efficiency. The primary goal of Xception [39] is
to boost deep neural networks’ effectiveness and efficiency.
It attempts to preserve or even improve the model’s accuracy
while minimising the amount of computations and parame-
ters. In order to do this, Xception divides the conventional
convolutional process into the depthwise convolution and the
pointwise convolution steps. Each input channel is given its
own independent convolutional filter during the depthwise
convolution step by Xception. Without any mixing, it records
spatial correlations between the input channels. Comparing
this procedure to conventional convolutions, where each filter
interacts with each input channel, the number of parameters
is drastically reduced.
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Here the Xception model has been modified, firstly by
adding fine-tuned architectural hyperparameter fully con-
nected head and second, by addition of fine-adjustment
hyperparameters as shown in figure 7. These hyperparameters
have been obtained by grid search optimization. One flatten
layer, five dense layers and two dropout layers have been
added and also the model is trained with optimized fine-
adjustment parameters.

5) GRID SEARCH FINE-TUNED DENSENET121 MODEL
The model family that includes DenseNet-121 [40] places a
high emphasis on feature reuse and promotes direct connec-
tions between network levels. The utilisation of dense blocks,
which are made up of numerous densely connected layers,
is the main innovation in DenseNet. Every layer present
in the dense block obtains the characteristic maps from all
preceding layers and transfers the same feature maps to all
the layers that follow it. The network’s dense connection
architecture facilitates significant reuse of features and direct
information flow through the complete network. Both of
these factors improve parameter efficiency and lessen the
chance of disappearing gradients.

FIGURE 8. Grid search fine-tuned DenseNet121 model.

In this paper, the DenseNet121 model has been mod-
ified, firstly by adding fine-tuned architectural hyperpa-
rameter fully connected head and second, by addition of
fine-adjustment hyperparameters as shown in figure 8. These
hyperparameters have been obtained by grid search optimiza-
tion. One flatten layer, five dense layers and two dropout
layers have been added and also the model is trained with
optimized fine-adjustment parameters.

6) GRID SEARCH FINE-TUNED MOBILENETV2 MODEL
The MobileNetV2 [41] deep learning model is effective and
portable, making it well suited for mobile and embedded
devices. This model has a small size, better computa-
tional efficiency, and is more accurate, these factors being
MobileNetV2’s key objective. Depthwise separable convolu-
tions are widely used in MobileNetV2. These are made up of
a pointwise convolution followed by a depthwise convolution
which greatly lowers the amount of parameters and calcula-
tions while maintaining the model’s expressive power. The
idea of inverted residuals was also introduced by this model,
in which the input and output layers have a higher dimension

FIGURE 9. Grid search fine-tuned MobileNetV2 model.

than the intermediate levels. This lowers the model’s com-
putational expense. In the middle, linear bottlenecks are also
utilized.

In this paper, the MobileNetV2 model has been mod-
ified, firstly by adding fine-tuned architectural hyperpa-
rameter fully connected head and second, by addition of
fine-adjustment hyperparameters as shown in figure 9. These
hyperparameters have been obtained by grid search optimiza-
tion. One flatten layer, five dense layers and two dropout
layers have been added and also the model is trained with
optimized fine-adjustment parameters.

FIGURE 10. Grid search fine-tuned ResNet50 model.

7) GRID SEARCH FINE-TUNED RESNET50 MODEL
The issue of disappearing gradients in extremely deep net-
works is addressed by ResNet-50 [42]. ResNet-50 employs
the idea of residual blocks, which are intended to make it
possible to train very deep networks without encountering the
degradation issue. Due to the difficulties of training very deep
networks, the degradation problem emerges when adding
more layers to a neural network causes a decline in accuracy.

Here, the ResNet50 model has been modified, firstly by
adding fine-tuned architectural hyperparameter fully con-
nected head and second, by addition of fine-adjustment
hyperparameters as shown in figure 10. These hyperparam-
eters have been obtained by grid search optimization. One
flatten layer, five dense layers and two dropout layers have
been added and also the model is trained with optimized fine-
adjustment parameters.

E. GRID SEARCH OPTIMIZED RESNET101 MODEL WITH
ATTENTION MECHANISM
The proposed methodology introduces an attention mecha-
nism within the grid search optimized ResNet101 model. The
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methodology emphasizes the potential of attention mecha-
nisms in enhancing the model’s ability to discern relevant
patterns, contributing to the interpretability and performance
of ResNet101 model and has been shown in figure 11. The
Attention Layer is an essential component of the model that
is designed to dynamically weigh input features, allowing the
model to focus on relevant information during training.

The Attention Layer is constructed with trainable weights
(W_query, W_key, W_value) that enable the model to adap-
tively learn relationships between features. By employing
matrix multiplication and softmax activation, the attention
mechanism calculates attention scores, highlighting the sig-
nificance of different input elements. Integrating this layer
into the model contributes to the broader exploration of atten-
tion mechanisms, which have shown promise in capturing
contextual information and improvingmodel accuracy. In this
case, it creates three trainable weight matrices (W_query,
W_key, W_value) that will be used to transform the input
data during the attention mechanism. It performs matrix mul-
tiplications with the input data x using the learned weights
(W_query, W_key, W_value) to create query (q), key (k), and
value (v) matrices. Then the attention scores are computed
by taking the matrix multiplication of q and k. The softmax
activation is applied to the attention scores to obtain a prob-
ability distribution. Finally, the attention-weighted sum is
calculated using the softmax scores and the value matrix (v).
Subsequently, dense layers with rectified linear unit (ReLU)
activations and dropout are employed for classification.

FIGURE 11. Attention mechanism on grid search fine-tuned ResNet101
model.

IV. RESULTS AND DISCUSSION
This section includes the results of the seven grid search
fine-tuned transfer learning models that are ResNet101,
InceptionV3, InceptionResNetV2, Xception, DenseNet121,
MobileNetV2 and ResNet50.

A. EVALUATION OF THE GRID SEARCH FINE-TUNED
TRANSFER LEARNING MODELS
The training performance of all the seven grid search
fine-tuned transfer learning models in terms of training accu-
racy, validation accuracy, training loss and validation loss at
1st, 39th and 40th epoch has been given in table 5. At the 40th
epoch, highest training accuracy of 0.9991 and validation
accuracy of 0.8719 is obtained by the ResNet101 model.
Lowest training loss of 0.0054 and validation loss of 0.6425 is
also obtained by the ResNet101 model at the 40th epoch.

Figure 12 shows the accuracy curves for all the transfer
learning models.

TABLE 5. Training performance of all grid search fine-tuned transfer
learning models.

Figure 13 presents the comparison of the seven grid search
fine-tuned transfer learning models in terms of the confu-
sion matrix parameters. The seven grid search fine-tuned TL
models are: DenseNet121, ResNet50, MobileNetV2, Xcep-
tion, InceptionResNetV2 and ResNet101. The models have
been evaluated at an optimized arrchitectural and fine-tuned
hyperparameters.

The lowest accuracy of 0.84 is obtained by the DensNet121
model while the highest accuracy of 0.90 is obtained by the
ResNet101 model. An accuracy of 0.89 is obtained by both
the InceptionV3 and InceptionResNetV2 model. The lowest
precision of 0.83 is obtained by the DenseNet121 model
while ResNet101 model achieved the highest precision of
0.92. ResNet101 also obtained the highest recall of 0.92 and
highest f1-score of 0.91. From figure 12 and table 5, it can be
concluded that the ResNet101 is the best performing model
for the optimized hyperparameters.

B. BEST PERFORMING GRID SEARCH FINE-TUNED
MODEL – RESNET101
Figure 14 shows the confusion matrix for the best performing
TL model- ResNet101 at the optimized hyperparameters.
From the figure, it can be seen that the normal pylorus class
is the best performing class out of the eight classes of GI
diseases.

Table 6 displays the assessment measures for a classifica-
tion model based on a collection of imagery of the digestive
tract displaying various GI disorders. According to themodel,
there should be eight separate classes. ‘

According to the performance measures, the grid search
fine tuned ResNet101 approach ssems to be working
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FIGURE 12. Accuracy curves of the TL models (a) DenseNet121
(b) ResNet50 (c) MobileNetV2 (d) Xception (e) InceptionResNetV2
(f) InceptionV3 (g) ResNet101.

effectively for few particular classes, such as ‘‘Normal
cecum’’ and ‘‘normal pylorus,’’ where themodel has achieved
good values of precision, recall, and F1-scores. When applied
to other classes, such as ‘‘dyed-resection-margins’’ and ‘‘nor-
mal z-line,’’ the model performs around average because
these classes have lower values of the assessment measures.

Additionally, it’s important to note that few of the classes
have higher recall than precision, whilst some of the others
have better precision value than recall. For instance, whereas
the ‘‘normal cecum’’ class has higher recall than accuracy,
the ‘‘normal pylorus’’ class has both good precision and
recall. This suggests that the model might be more effective
at detecting some classes of the GI diseases than the rest of
the classes.

For optimal architectural and fine-tuned hyperparameters,
the precision, recall, and f1-score for each of the eight classes

FIGURE 13. Comparison of grid search fine-tuned TL models in terms of
confusion matrix parameters.

FIGURE 14. Confusion matrix for ResNet101 Model for the optimized
hyperparameter combination.

are shown in table 6. The regular pylorus class had the highest
precision, 0.95. The typical pylorus class achieved the highest
recall (0.97) and f1-score (0.96).

C. ANALYSIS OF GRID SEARCH OPTIMIZED RESNET101
MODEL WITH ATTENTION MECHANISM
Figure 15 shows the confusion matrix for the grid search
optimized ResNet101 model integrated with attention mech-
anism. An overall accuracy of 0.935 was obtained.

Table 7 displays the assessment measures for Grid search
optimized ResNet101 model with attention mechanism based
on a collection of imagery of the digestive tract displaying
various GI disorders. There are total eight separate classes
and the table displays the performance metrics for each
category. ‘
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TABLE 6. Confusion matrix parameters at optimized hyperparameters.

FIGURE 15. Confusion matrix for ResNet101 model for the optimized
hyperparameter combination with attention mechanism.

According to the performance measures, the grid search
fine tuned ResNet101 model integrated with attention mch-
anism works effectively for almost all the classes like
‘‘polyps’’, ‘‘Normal cecum’’ and ‘‘normal pylorus,’’ where
the model has achieved good values of precision, recall, and
F1-scores. When applied to other classes, such as ‘‘esophagi-
tis’’ and ‘‘dyed-resection margins,’’ the model performs
around average because these classes have lower values of
the assessment measures.

Additionally, it’s important to note that few of the classes
have higher recall than precision, whilst some of the oth-
ers have better precision value than recall. For instance,
whereas the ‘‘dyed lifted polyps’’ class has higher preci-
sion than recall, the ‘‘normal pylorus’’ category has greater
sensitivity than precision. This suggests that the model
might be more effective at detecting some classes of the
GI diseases than others, and that the ratio of precision
to recall may change which is dependent on a specific
class.

For optimal architectural and fine-tuned hyperparameters,
integrated with attention mechanism, the performance met-
rics for all the eight classes are shown in table 7. The normal
cecum class had the highest precision, 0.99 and highest
f-score of 0.99. The polyps class, normal cecum and normal
pylorus achieved the highest recall of 0.98.

TABLE 7. Confusion matrix parameters at optimized hyperparameters
with attention mechanism.

D. CLASSIFICATION AND MISCLASSIFICATION RESULTS
Figure 16 depicts the categorization results of different
gastrointestinal tract disease classes. Figure 16 (a) depicts
the Actual and Predicted class as ‘‘ulcerative colitis’’,
Figure 16 (b) as ‘‘esophagitis’’, and Figure 16 (c) as ‘‘normal
pylorus’’.

FIGURE 16. Classification results.

Figure 17 depicts the misclassification results for various
classes of gastrointestinal tract diseases. Figure 17 (a) depicts
the Actual class as ‘‘normal-cecum’’ and the predicted class
as ‘‘polyps’’. Figure 17 (b) depicts the Actual class as ‘‘dyed-
lifted polyps’’ and the Predicted class as ‘‘dyed resection
margins’’, and Figure 17 (c) depicts the Actual class as ‘‘nor-
mal z-line’’ and the Predicted class as ‘‘esophagitis’’

E. COMPARISON WITH THE STATE-OF-THE -ART MODELS
Table 8 compares of the presented model with the state-of-
the-art models [43], [44]. An ensemble model obtained an
accuracy of 0.929 for 8000 images, [24]. An accuracy of
0.901 was obtained by a CNN for 8000 images of 720∗576
size [45]. An accuracy of 0.87 was obtained by another
CNN [46]. The AlexNet model attained an accuracy of
0.85 for 4000 images [47]. CNN model [48] attained an
accuracy of 0.88 for 825 images with an image size of
525∗525. The Support Vector Machine (SVM) model [49]
achieved an accuracy of 0.88 for 8000 images. An accu-
racy of 0.78 was obtained by linked color imaging [50] for
208 images. The ResNet50 model [51] achieved an accuracy
of 0.87 for 785 images. Another CNN [52] a4ttained an
accuracy of 0.859 and a combination of CNN and SVM [53]
achieved an accuracy of 0.85. The proposedmodel attained an
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FIGURE 17. Misclassification results.

accuracy of 0.935 for 4000 images when ResNet101 model
was applied to the endoscopic images. s

TABLE 8. Comparison with the state-of-the-art models.

V. CONCLUSION AND FUTURE WORK
This study offers a reliable framework for categorising the
disorders of the GI tract in the Kvasir dataset. By assisting
in early detection, deep learning algorithms might decrease
the likelihood of acquiring malignant diseases while min-
imising the needless removal of benign tumours. Seven TL
models i.e. ResNet101, InceptionV3, InceptionResNetV2,
Xception, DenseNet121, MobileNetV2 and ResNet50 were

employed in this paper. These models can help in directing
the focus of doctors’ to the most important parts of the
endoscopic images that might have been missed. Grid search
optimization has been performed to obtain the optimized
values of the architectural as well as the fine-adjustment
hyperparameters. The ResNet101 model performed the best
at the best optimized hyperparameters. Attention mecha-
nism was applied to the best optimized ResNet101 model
and highest accuracy of 0.935 was obtained. In the future,
a refinement may be achieved in the performance param-
eters by use of hybrid models. Also, the model could be
applied to a different dataset to make the models more
generalizable.
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