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ABSTRACT This research introduces a novel approach called Circular Mesh Network (CirMNet), a shape-
based hybrid feature extraction technique. It also proposes innovative Fractal Dimension (FD) and statistical
feature extraction techniques for vertically symmetrical images. Convolutional Neural Networks (CNNs)
have gained widespread popularity across various domains, including the interpretation of medical images.
CNNs excel at extracting prominent features in the initial layers and progressively learn to capture more
complex features as they advance. However, the pooling and striding operations involved in CNNs can
lead to a loss of spatial and structural details in the image because CNNs require a mechanism to preserve
the internal representation and describe the intricate relationships between image components or pixels.
Circular Mesh-based Shape and Margin Descriptor (CMSMD) focuses on extracting structural, statistical,
and property-based features. However, it does not encompass features such as texture or color. The objective
of CirMNet is to leverage the strengths of both CNNs and CMSMD, and to mitigate their respective
weaknesses. Structural and texture featureswere generated fromCirMNet, and its performancewas evaluated
for the diagnosis of neurodegenerative disorders, particularly Alzheimer’s Disease (AD). The model can
easily identify the permanent shrinkage and destruction of brain cells in MRIs of patients and exhibited a
notable accuracy of 97.34% in classifying various stages of AD, encompassing Control, EarlyMild Cognitive
Impairment (EMCI), and LateMild Cognitive Impairment (LMCI). This achievement represents a substantial
improvement over the existing state-of-the-art methods in the domain.

INDEX TERMS Alzheimer’s disease, magnetic resonance imaging, convolutional neural network, structural
shapes, feature extraction.

I. INTRODUCTION
HARNESSING the power of Machine Learning (ML) tech-
niques, fields as diverse as bioinformatics, social media,
speech recognition, and computer vision have experienced
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approving it for publication was Marco Giannelli .

a revolution, propelling advancements and innovation to
unprecedented heights [1], [2], [3]. Deep learning has become
increasingly prevalent in these domains and plays a cru-
cial role in facilitating intelligent decision-making processes.
In numerous medical applications, it is essential to prioritize
the examination of the structural characteristics of affected
regions [3], [4]. It includes diagnosing neurological disorders
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and identifying breast and skin cancers [5]. To develop an
ML system for object detection or classification, several
steps must be identified, such as image acquisition, enhance-
ment, preprocessing, segmentation, pattern recognition, and
machine-learning algorithms. Feature extraction and selec-
tion are crucial components of ML classification models and
are carefully selected based on the image type to achieve high
accuracy [6].
Deep learning models incorporate these image-processing

and classification tasks into their single architectures.
To enhance their performance, these models require extensive
training datasets [7]. A complicated hierarchy of layers com-
prising nonlinear functions and transformations constitutes
a Convolutional Neural Network (CNN) architecture [8].
It simulates how humans identify, remember, and analyze
features. CNN is one of the best image retrieval, detection,
and classification algorithms.

The convolution layer, pooling layer, fully connected layer,
and classifier are elements of the CNN architecture [9]. The
convolutional layer performs feature extraction and vector
generation. Lower-order convolution kernels extract features
with a focus on local perception. By contrast, the first few
layers extract features that focus on global perception, such
as edges, corners, and endpoints. The receptive field can
expand this to higher-order convolutions, which also enables
the gradual transformation of local characteristics into global
features. Throughout the recognition process, the kernel
parameters decrease the dimensionality of the calculations
using the weight-sharing attribute of each receptive node.

The pooling layer, which follows the convolutional
layer(s), downsamples the result by sliding a kernel of a
particular size and stride length and taking the maximum or
average of the input [8]. The small summaries produced by
downsampling yield dimensionality reduction of the feature
maps produced by the convolution layer. However, owing to
CNN’s lack of a mechanism for storing internal representa-
tions that would characterize the link between components
or pixels, the pooling striding process could result in a loss
of spatial and structural features in the image [3]. During
sliding window techniques, such as convolution and pooling,
the stride parameter controls the kernel displacement in either
dimension. For a feature map with dimensions nh × nw × nc,
the dimensions of the output obtained after the pooling layer
are ((nh– f+ 1)/s) ((nw– f+ 1)/s) nc where nh is the height of
the feature map, nw is the width of the feature map, nc is the
number of channels in the feature map, f is the filter size, and
s is the stride length.

The hierarchical, multilayered nature of CNNs makes it
possible to extract low, mid, and high-level information.
Lower-level features and mid-level features are combined
to create high-level features, which represent more abstract
information. One of the main reasons CNNs are so popular
is their ability to extract features in a hierarchical manner.
But in several studies these high-level features are not ade-
quate for good classification results. Possible reasons for the
poor performance of CNN models include the absence of a

FIGURE 1. Structural loss of images during the pooling operations using
3 × 3 kernel. (a) input image with size 208 × 176 (b) output image of max
pool 1 (c) output image of max pool 2 (d) output image of max pool 3.

sufficient method to describe the relationship between objects
and scenes, scene recognition using object information, the
mapping of low-layer to higher layer features, semantic
ambiguity in low-layer features, and the loss of detailed
object description within the convolutional layers. A linear
integration strategy that blends intermediate and high-layer
characteristics of a deep CNN at various levels with low-level
handcrafted features incorporating object shape, scene depth,
and color information can solve these problems to a greater
extent [10]. Numerous studies have investigated deep CNNs,
including a study that addresses CNN taxonomy based on
accelerationmethods [10]. In comparison, the intrinsic taxon-
omy found in current andwell-knownCNNdesigns described
from 2012 to 2020 is the topic of this survey. The study
divides CNN designs into seven major groups: channel
boosting, attention-based CNNs, feature-map exploitation,
multi-path, width, and spatial exploitation. This survey also
sheds light on the fundamental composition of CNNs, their
historical context, and themany periods of CNN’s growth and
accomplishments.

Here, we used Magnetic Resonance Imaging (MRI) of
patients with AD to study the loss of spatial and structural
features in CNN operations. AD is the most widespread form
of dementia that causes progressive memory loss and hinders
daily activities due to damage to the brain cells.We conducted
an analysis on a brain MRI shown in Fig. 1, which measured
208× 176 pixels, and generated images by performing pool-
ing operations. After the third pooling process, the image
size decreased to 26 × 22 pixels, and the loss of structural
traits was visible in the images. Preserving the original struc-
tural features improves the overall performance of intelligent
systems [11]. However, a CNN requires a large amount of
training data, and the introduction ofmultiple layers increases
runtime. The use of Graphics Processing Units (GPU) can
partially resolve this problem.

Several studies have classified AD using ML and deep-
learning techniques [12], [13]. Based on segmented gray
matter, a hybrid improved independent component analy-
sis study produced 90.47% accuracy [14]. Another MRI
study that used a multimodal strategy with a Siamese
CNN achieved a performance accuracy of 99.05% [15] in
slice-wise datasets. Imaging-based dictionary learning [16],
feature learning for multi-class diagnosis [17], structure-
based multiview learning [18], encoder-decoder architecture
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constructed using ensemble learning [19], and diagnosis uti-
lizing landmark-based features [20] are some of the most
recent studies on this subject. Using the CNN architecture,
79.9% ofAD diagnoses frommild cognitive impairment were
correctly predicted [21].
The CMSMD outperforms CNN (96.72% accuracy) in cat-

egorizing AD because it gives more importance to structural
characteristics. The features that emerge from this descrip-
tor capture the local and global characteristics of an object.
It assesses and classifies items based on minute shapes and
marginal detail. An image object of sizem× n can be reduced
to 2× k using Circular mesh Border Labels (CBL) [2]. The
CBL size k is dynamically determined by the size of the circu-
lar mesh and the irregularity of the object boundary. The value
of k is always less than m and n; thus, the computational com-
plexity is lower. CBL is used to obtain statistical, structural,
and property-based features. In addition, it offers an improved
accuracy for small datasets. By discarding characteristics
other than the structural aspects, the circular mesh reduces
the dimensions. However, the CMSMD model has limita-
tions; it primarily deals with structural features and does not
handle texture features and occluded objects. In addition,
image processing and machine learning techniques require
numerous techniques to solve these problems. The benefits
and drawbacks of CNN and CMSMDmodels [22], [23], [24],
[25] are united and listed in Table 1.
Considering these limitations and the advantages of both

systems, we devised the proposed system.
The motivation behind the design of CirMNet is to:
1) Preserves the high-level structural features such as

shape, margin, and edge of the object, which is invariant to
translation, rotation, and scaling.

2) Maintain the spatial position of the object during repre-
sentation, description, and feature extraction.

3) Improve the performance than state-of the-art systems.
In light of these drawbacks and benefits of both models,

we developed the proposed systems and the other contribu-
tions of this study are as follows:

1) CirMNet, a novel hybrid approach that combines CNN
and CMSMD’s best features, is proposed.

2) A brand-new statistical and FD-based feature extraction
method employing CMSMD is suggested for vertically sym-
metrical images.

3) The performance of the system is evaluated by imple-
menting it on the classification of neurodegenerative disease.

The dataset must undergo several steps to be ready for
CNN and CMSMD to process, which might entail noise
reduction, artifact correction, or normalization. Other stan-
dard preprocessing techniques for brain MRI scans include
skull stripping [26], motion correction, spatial and intensity
normalization, filtering, registration [27], and segmenta-
tion [6]. Researchers have chosen numerous approaches and
tools for each preprocessing step based on the requirements
of fixing any errors or noise in the images [6]. Even if the
images are not preprocessed and registered, the CNN can still
interpret the data; however, the accuracy may be lower. These

TABLE 1. Characteristics of CNN and CMSMD.

methods can improve performance by boosting feature recog-
nition and reducing the effects of input image variability.
Consequently, the complexities for preprocessing the dataset
for CNN, CMSMD, and CirMNet, are the same. However,
the algorithmic complexity is higher for the CirMNet model
because it combines CNN and CMSMD.

II. CIRCULAR MESH-BASED SHAPE AND
MARGIN DESCRIPTOR
The CMSMD is a tool for classifying and recognizing
objects [2]. This is because it combines the functions of
the structural and global contour-based descriptions. A polar
coordinate system that represents a circular mesh structure
using track and sector values enables border marking. Equal-
sized cells in the circular mesh were labeled using the
Circular mesh-based Cell Labeling (CCL) technique. Essen-
tial details regarding their forms and margins are transmitted
by placing brain border-extracted sections from images on a
circular mesh and naming them using Circular mesh Border
Labeling (CBL). The borders were then retrieved from the
brain images using various procedures, including enhanced
Fuzzy CMeans Clustering (FCM) segmentation, hole-filling,
and boundary extraction, each with a complexity of O(ndc2t),
O(lm), and O(lm). The number of objects (n), number of
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dimensions (d), number of clusters (c), number of iterations
(t), and image size (l × m) are all given. Subsequently, three
procedures— NUMCIR(), KMEANSCAL(), and RADIUS-
FIND() —with an overall complexity of O(tknd) are used to
build the circular mesh dynamically, where n is the number
of objects, k denotes the number of clusters, d denotes the
size of each item, and t denotes the total number of iterations.
Typically, k, t, and d < n yield the best results when the
datasets are distinct or well separated.

Each cell in the dynamic circular mesh was labeled based
on the track values (Trk(i)) and sector values (Sec(i)) from
the origin and x-axis, respectively. Moreover, the complexity
of border labeling is O(nm), where n and m are the row and
column sizes of the image, respectively. The border values
are stored as sampled or unsampled in the Trk(i) and Sec(i)
circular arrays, reducing the complexity to linear values.
Border smoothing is achieved by reducing the size of the
circular mesh. An object can be recreated using Trk(i) and
Sec(i): TrkVar(j) stores the repeating values in adjacent loca-
tions of Trk, and TrkOcc(j) stores its occurrences - similarly,
SecVar(j) and SecOcc(j) for Sec.

New features were derived from the descriptor using struc-
tural, statistical, and CBL property-based methods in linear
time to find the peaks and valleys of the embedded contours
with linear complexity. The effectiveness of the descriptor
was demonstrated by detecting breast lesions using Dynamic
Contrast-Enhanced MRI (DCE-MRI), which achieved an
accuracy of 94.69% [2].

III. ALZHEIMER’S DISEASE
The basic concept of neurodegenerative disease is simple and
self-explanatory. It occurs due to neuronal death or damage,
leading to various disorders that affect memory, move-
ment, and behavior.Well-known neurodegenerative disorders
include AD, motor neuron disease, Huntington’s disease,
and Parkinson’s Disease (PD). AD exhibits symptoms of
mental dysfunction such as memory and behavioral issues,
whereas others may show movement symptoms. However,
neuronal degeneration begins long before these symptoms
appear [28].
Cognitive decline in AD is due to progressive degenera-

tion of neurons, often characterized by the accumulation of
abnormal proteins. This leads to intracellular neurofibrillary
tangles and extracellular senile plaques [29], [30]. TheMRI is
a widely used imagingmethod for AD, providing information
on structural changes in the brain, including the hippocampus
and cortex. The deposition of beta-amyloid protein leads
to brain volume loss, and these volumetric changes can be
detected using voxel-based morphometry using MRI. Hip-
pocampal changes may also occur before the onset of AD
symptoms and are considered imaging markers for patients
with pre-demented AD. Other areas of the brain affected
by AD include the entorhinal cortex; amygdala; temporal,
orbitofrontal, and parietal cortex, which may show vary-
ing degrees of shrinkage or structural changes [31], [32],
[33]. These underlying pathological processes are reflected

TABLE 2. The class-wise distribution of the dataset with training and
testing allocation by considering one slice per subject.

and identified using T1-weighted MRI. Fluoro-deoxyglucose
(FDG) and Positron Emission Tomography (PET) using fluo-
rodeoxyglucose are promising imagingmethods for detecting
neuronal degeneration. Glucose uptake by neurons decreases
in AD, but this decrease may not be specific to AD [34], [35],
[36] and can also occur in other diseases, resulting in neuronal
loss. The role of FDG PET in monitoring AD is limited, and
amyloid PET scans for detecting amyloid plaques may be
more promising [37], [38]; However, this process may be
slow, require monitoring for years, and disease progression
may plateau over time. Medical professionals prefer MRI to
radionuclide imaging because of its wide availability, and
they rely on T1-weighted MRI-based structural assessments
as the mainstay of imaging. Other imaging methods include
morphometry, functional MRI (fMRI), and optical coherence
tomography [39].

The structural MRI (sMRI) displays structural changes in
EMCI, LMCI, and AD visible on it. Radiologists can catego-
rize these stages based on volumetric changes in MRI scans.
Early detection of AD is crucial to slow or arrest its pro-
gression, as irreversible damage leads to poor quality of life.
Identifying specific patient groups on MRI scans during mild
cognitive impairment or before symptoms appear may help
to arrest the disease. Radiologists may detect early changes
in deep brain structures and cortical thinning complexes;
however, computer-aided algorithms can better assess them.
Quantifying the morphometry and deformation in these areas
is promising for detecting changes and monitoring patients
longitudinally.

IV. MATERIALS
This study used 573 subject-level instances from the
ADNI [40] database (https://adni.loni.usc.edu), in which
1.5 Tesla, T1-weighted MRI scans with 256 × 256 pix-
els were employed. The Spoiled Gradient Recalled (SPGR)
acquisition parameters considered in the study are rep-
etition time (1.6 ms), echo time (5.0 ms and 1.4 ms),
flip angle (300), inversion time (0 ms), and thickness
(5.0 mm). We chose to select one axial slice per sub-
ject according to the expert opinion of the radiologist.
Based on the degree of neurological degeneration, MRI
images are classified as Control, EMCI, LMCI, and AD,
and we used 146, 142, 144, and 141 images, respectively.
We employed non-overlapping subject-level training and test-
ing sets with sizes of 489 and 84, respectively and displayed in
Table 2.
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FIGURE 2. CirMNet Architecture with major components: Two parallel layers- Convolutional Neural
Network and Circular Mesh based Shape and Margin Descriptor for feature extraction; hybrid
feature generation; classification layers.

V. CIRMNET
The CNN and CMSMD models were combined in the sug-
gested architecture, CirMNet, to address the shortcomings
of each model while maximizing the benefits of the other.
A shape-prioritized hybrid deep-learning architecture com-
bines the structural characteristics of a CMSMD with CNN
features. The CMSMD features to boost the structural char-
acteristics lost during the striding and pooling operations
of the CNN model. This technique can be used for any
image classification issue that requires structural specifica-
tions to solve the problem. This study classified brain MRI
scans into control, EMCI, LMCI, and AD phases. This is
because structural alterations in the brain frequently under-
lie neurodegenerative illnesses, and these structural changes
are examined during diagnosis. Two parallel tracks in the
CirMNet model are used to process the input images. CNN-
based features were retrieved from the first track, whereas the
second track extracted CMSMD-based features. Once these
features are retrieved, they are aggregated and applied to a
fully linked image classification layer. Fig. 2 presents the
proposed CirMNet architecture.

A. CONVOLUTIONAL NEURAL NETWORK FEATURES
In the first track of CirMNet, the input image Ii,j of size n1×n2
and Ii,j ∈ Ri,j is convolving with kernel K ∈ R(2h+1)×(2h2+1)

and is given by:

(I ∗ K )r, s :=

∑h1

u=−h1

∑h2

v=−h2
Ku,vIr+u,s+v (1)

where the kernel K is represented as

K =


K−h1,−h2 . . . . . . .. K−h1,h2

.

.

.

K0,0

.

.

.

Kh1,−h2 . . . . . . .. Kh1,h2

 (2)

The input layer l of the convolution layer comprises cnf(l−1)
1

feature vectors from the former layer, with a size cnf(l−1)
2

× cnf(l−1)
3 . The value l = 1 includes one or more channels

for a single input image, I. The output of layer l contains
cnf(l)1 feature vectors of size cnf(l−1)

2 × cnf(l−1)
3 . The ith feature

vector in layer l, Y (l)
i , is calculated as:

Y (l)
i = Bi(l)+

∑cnf (l−1)
1

j=1
K (l)
i,j ∗ Y (l−1)

j (3)

where B(l)i is a bias, and K (l)
i,j is a kernel of size (2h(l)1 +1)

×(2h(l)2 +1) connecting the jth feature vector in layer (l-1)
with the ith feature vector in layer l. Subsampling is used to
reduce noise and unwanted distortions. Here, subsampling is
represented by equation (4).

MaxP = max
(
Y (l)
i

)
(4)

All of these CNN features are stored in the feature matrix
CNF = [cnf(1), cnf(2), cnf(3), . . . . . . . . . , cnf(n)].

B. CMSMD FEATURES
The input images were processed in the second track using
a number of different techniques, including geometric active
contour for skull stripping, a sophisticated diffusion method
for noise removal, morphological procedures for hole filling
in segmentation, and erosion and subtraction for boundary
extraction [6], [26]. Fig. 3 illustrates the sequence of steps
applied to the four classes of neurodegenerative conditions:
control, EMCI, LMCI, and AD.

The CBL approach, which successfully communicates
information about the forms and margins of objects, is rep-
resented by a circular mesh framework in a polar coordinate
system. According to [2], a dynamic circular mesh was cre-
ated for this investigation, and its size was set based on the
irregularity of the border images. Fig. 4 displays the circular
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FIGURE 3. Boundary extraction steps of control case: (a) Original Image
(b) Segmented hole filled (c) Boundary Extracted; EMCI case: (d) Original
Image (e) hole-filled (f) Boundary Extracted; LMCI cases: (g) Original
Image (h) Segmented hole-filled (i) Boundary Extracted; AD case:
(j) Original Image (k) Segmented hole-filled (l) Boundary Extracted.

FIGURE 4. Brain Boundary embeddings of circular meshes (a) control,
(b) EMCI, (c) LMCI, and (d) AD.

TABLE 3. Trk and Sec values of embedded brain boundaries of Fig. 5
images.

mesh embeddings, of Fig. 3.c, Fig. 3.f, Fig. 3.i, and Fig. 3.l.
The border labels are stored in two circular arrays, Trk and
Sec, and displayed in Table 3. The Trk and Sec values for
smooth borders remain in one Trk value for a long time,
but for uneven borders, the Trk values fluctuate. TrkOcc and
SecOcc are variables that count and store the persistence or
frequency of Trk and Sec, respectively. The increasing values
of Trk, Sec, TrkOcc, and SecOcc for each of the four types
of AD indicate the degree of irregularity in the affected brain.
The features produced by the CMSMD can be used to analyze
and classify objects with subtle shapes and marginal changes.
These features include both the local and global attributes.
Table 4 lists TrkVar, TrkOcc, SecVar, and SecOcc for the
various classes of images shown in Fig. 4.

C. PROPOSED FEATURE EXTRACTION TECHNIQUES
FOR BRAIN MRI
In this paper, we propose an FD approach and statistical fea-
tures to extract the qualities of the structural boundaries. In a

TABLE 4. a. TrkVar, b. TrkOcc, c. SecVar and d. SecOcc of respective classes
of embedded brain boundaries of Fig. 4 images.

FIGURE 5. Reference boundary for brain contours (a) Control (b) EMCI
(c) LMCI (d) AD.

previous study, we developed structural, statistical, and CBL
property-based characteristics and applied them to identify
breast lesions [2]. In their study, the formulae produced vari-
ations from circular or elliptical reference shapes. However,
the specific shape of the brain can vary among images, slices,
and individuals when using MRI scans, and is neither round
nor elliptical. We recommend using a dynamic reference
border for each image in this study to precisely examine
deviations from this reference and pinpoint the structural
abnormalities.

1) REFERENCE BOUNDARY FOR FEATURE GENERATION
The reference image, RefBond, is formed outside the bound-
ary and is similar to the stretching and placement of a rubber
band on the border. The track and sector values of the refer-
ence boundary are denoted as RTrk and RSec, respectively.
Fig. 5 shows the red curve representing the reference bound-
ary produced for the four classes of brain image boundaries.
This study suggests the following statistical aspects:

2) STANDARD DEVIATION CONCERNING
REFERENCE BOUNDARY
The standard deviation of Trk(i) was one or close to one,
indicating a circular boundary. This study considers the ref-
erence boundary and saves its track values as RTrk. During
feature derivation, we determined the mean Rµ of the ref-
erence boundary. Different RTrk values may be utilized in
the equation, depending on the circumstances. The complete
value of RSec can be used, which corresponds to angles
between 0◦ and 360◦ in the polar coordinate system. The
formula proposed to determine how far the brain boundary
deviates from RefBond is as follows:

SDR0−360 =

∑N

i=1
((Trk (i) − Rµ)2)

1/2
/
N (5)
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FIGURE 6. Range of angles taken for standard deviation and coefficient
of variations to check symmetry concerning the reference boundary
RefBond (a) 0◦-360◦ (b) 45◦-315◦(clockwise), 135◦-225◦ (c) 60◦-120◦,
240◦-300◦ (d) 30◦-330◦ (clockwise), 150◦-210◦ and 70◦-110◦, 250◦-290◦.

Rµ is the mean of RTrk(i), i varies from 1 to N , and is the size
of RTrk.

3) STANDARD DEVIATION OF SYMMETRIC POINTS
To compare the symmetry of the standard deviation of the
Trk values with respect to the angular points on the y-axis,
we quantified this symmetry using a feature. To perform the
symmetry check, we took the Trk values of the border from
symmetric angles such as 45◦-315◦ and 135◦-225◦, as shown
in Fig. 6. We considered the brain contour symmetrical if
the standard deviations of the Trk values at these symmetric
angles were approximately equal. The calculations involved
using the mean of the reference boundary denoted as Rµ.
By adjusting the range of i in the standard deviation

equation (5) and utilizing this as a feature value, we indepen-
dently tested the upper and lower quadrant symmetric values.

4) COEFFICIENT OF VARIATION
This feature calculates the deviation from symmetry concern-
ing the reference boundary, and the calculation formula is:

CoeffVarR = SDi−j
/
Rµ (6)

where i and j are the angles or Sec value ranges and Rµ is
the mean of the reference boundary. This statistical formula
helps compare the variations between the two data series.

5) DEVIATION FROM SYMMETRY OF REFERENCE
BOUNDARY
To calculate the track symmetry of RefBond, we compare the
symmetric track values for a particular angle corresponding to
a sector. The brain boundary analysis calculates only the sec-
tor position at ϕ = 90◦ to check the y-axis symmetry. When
Sec(ϕ) = 90, θ is the index position in the circular array, and
RTrk(θ + i) and RTrk(θ − i) provide symmetric points.When
conducting the symmetry check for ϕ = 90, we checked the
borders in the first and fourth quadrants, with the borders in
the second and third quadrants. The deviation from symmetry
can be calculated using the following formula:

DevSymR =

∑n/2

i=1
((RTrk (θ + i) − RTrk(θ − i))

/
n (7)

When ϕ = 90◦, n denotes the number of elements from Sec
(0) to Sec (90).

FIGURE 7. Brain boundary embedded on circular mesh with varying sizes
of cells (a) Nc = 10 × 20 Ac = 40000, (b) Nc = 10 × 21 Ac = 20000,
(c) Nc = 10 × 22 Ac = 10000, (d) Nc = 10 × 23 Ac = 5000, (e) Nc = 10 × 24
Ac = 2500 and (f) Nc = 10 × 25 Ac = 1250.

FIGURE 8. The log-log plot of the number of cells against the number of
filled cells. The fractal dimension is the slope of the solid line.

6) FRACTAL DIMENSION
This study proposes a new FD technique that uses a circular
mesh to measure self-similarity at different scales. Frac-
tal geometry is used in structural analysis and is a better
method for detecting complex brain patterns than traditional
Euclidean geometry. The FD formula was derived based
on the number of cells compared with the number of cells
embedded in the border.

FD = Log(No. cells)/Log(No. filled cells) (8)

where No. filled cells represent cells embedded in the brain
regions, and No. cells represent the total number of cells in
the circular mesh (Fig. 7). The logarithm of the number of
filled cells was plotted against the logarithm of the number of
cells (Fig. 8) at different magnifications. The circular mesh is
divided into 10, 20, 40, 80, 160, and 320 parts, as shown in
Fig. 7. represents the magnification of the image. The FDwas
calculated as the slope of the best-fit line, as shown in Fig. 8.

D. HYBRID FEATURES
The newly derived statistical and FD features and the fea-
tures generated using the CMSMD are stored as CMF =

[cmf(1), cmf(2), cmf(3), . . . .., cmf(m)]. The CNN features
were retained in the CNF = [cnf(1), cnf(2), cnf(3), . . . . . . ..,
cnf(n)]. CNF and CMF were combined to form a hybrid
feature set HYB.

HYB = Concatenate (CNF,CMF) (9)

These nineteen CMF features, along with 1,479,200
CNF features, are integrated to form 1,479,219 CirMNet
features in this study. The CirMNet architecture passes
these hybrid feature sets to a fully connected layer for
classification.
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Algorithm 1 CirMNet (Img)
Require: Input Image
Ensure: CNF = [cnf(1), cnf(2), cnf(3),. . . ., cnf(n)]

CNN feature set
CMF = [cmf(1), cmf(2), cmf(3),. . . , cmf(m)]
Circular mesh feature set
HYB = Concatenated Hybrid feature set
CirMFea = Selected hybrid feature used in CirMNet

1. Read Img
2. CNF = Conv(Img)
3. for j = 1 to n do
4. for k = 1 to m do
5. DCNF(j,k) = w(j,k)∗ cnf(k) + b(k)
6. end for
7. end for
8. CMF = CMSMD(Img)
9. for j = 1 to n do
10. for k = 1 to m do
11. DCMF (j,k) = w(j,k) ∗ cmf(k) + b(k)
12. end for
13. end for
14. HYB = Concatenate (DCNF, DCMF)
15. CirMFea = CorHYB(HYB)
16. for l = 1 to the number of layers do
17. if (l-1 == 0) then
18. Z(1) = FullyConnected(CirMFea)
19. else then
20. Z(l) = FullyConnected (Z(l-1))
21. end if
22. end for
23. return

E. CLASSIFICATION LAYER
Input vector HYB goes to the fully connected layer, and the
equation for the l th layer in the fully connected layer is

Z (l)
i = Bli +

∑n(l−1)

j=0
w(l)
i,jAj (10)

When Aj =

{
HYB if l = 1
Z l−1
i otherwise

w(l)
i,j , the strength of the connection from the jth unit in

the previous layer to the ith unit in the current layer l.
These weights, along with the bias Bli , determine the output
Z (l)
i by modulating the contributions of the previous layer’s

activations Aj.

VI. RESULT
The main focus of this study is on techniques for extracting
structural features in image processing. State-of-the-art ML
techniques work well with small datasets but can be more
efficient. Table 5 presents a comparison with state-of-the-art
deep learning methods. However, in most cases, a slice-wise
dataset was employed [7], [15], [42] which exhibited a higher
accuracy rate. It is important to note that using a slice-wise
dataset can lead to overfitting. To mitigate this issue, subject-
wise studies were proposed, and as such, we employed a
subject-wise dataset in this study. Recent advances in deep
learning, such as CNNs, have demonstrated outstanding
accuracy in various image classification challenges; however,
owing to the pooling and striding procedures, they fail to

TABLE 5. Performance comparison of state-of-the-art deep learning
techniques for ad classification and diagnosis.

retain the spatial and structural properties of images as they
advance to deeper layers. By fusing CNNs with CMSMD,
CirMNet design solves this problem while maintaining the
structural properties of the objects. The performance of the
model is evaluated by measuring the structural changes of
brain MRIs. The structural changes contribute for the clas-
sification of Neurodegenerative diseases. The assessment of
CirMNet’s performance involved the classification of brain
MRI of 573 subjects into four stages, including control,
EMCI, LMCI, and AD. The training dataset consisted of
489 images, while the validation test set contained 84 images.
Table 2 displays the class-wise distribution of the dataset,
including training and testing allocations. The minimum sys-
tem requirements for the CirMNet model include a quad-core
or higher CPU like Intel Core i7, a mid-range or higher
NVIDIA GPU with CUDA support like NVIDIA GeForce
GTX 1060 or higher, and 16 GB of RAM.

The dataset used in this study went through a series of steps
such as noise removal using the Complex Diffusion Method,
registration using Statistical Parametric Mapping (SPM),
skull-stripping using thresholding, artifacts removal using the
diffusion method, and motion correction using Interpolation
Methods [44]. The preprocessing techniques mentioned ear-
lier would yield complexities ranging from O(n2) to O(n5)
based on the algorithm employed for image correction. This
helps to improve the quality of the data, reduce variability, and
extract meaningful information from brain images, thereby
increasing the accuracy of AD diagnosis.

To generate the architecture of CirMNet, a range of hyper-
parameters were selected based on the expertise and literature
review that we conducted and then we applied an induc-
tion method for the selection. We constructed different CNN
architectures with varying numbers of layers and kernels,
as shown in Table 6, to give insight into the performance of
CNN on this dataset.

A CNN with three convolutions, three pooling, four fully
connected layers, and with node sizes 100, 50, 40, and
10 produced better accuracy with minimum time and space
complexities. The same configuration completed the task in
48 minutes, while different architectures with three convo-
lutions, three pooling, and five fully connected layers took
around two hours to complete (Table 6). The structural fea-
tures of the local and global characteristics of the CNN were
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TABLE 6. The performance evaluation of CNN for subject-level images.
Parameters used in the study: kernel size = 3 × 3, number of epochs =

100, layer order = (convolution, pooling, fully connected), number of
kernels = (16,32,32).

TABLE 7. Performance evaluation of CMSMD at subject level.

analyzed using MRI boundary images of the brain as the
input, and tested it with kernels of varying sizes, like 3 ×

3, 5 × 5, 15 × 15. It was impossible to preserve spatial
symmetry with even-sized kernels, but this odd-sized kernel
helped to extract the center pixel and do so. The directionality
and symmetry of feature identification were also established
with the use of odd kernels. Larger kernels allowed for
more complicated feature extraction but it was not good for
structural features. The 3 × 3 kernel was more effective at
capturing spatial information from the input data and had a
bigger receptive field than other kernels, which was impor-
tant for identifying structural changes. To take the structural
summary in our investigation, we, therefore, selected the
3 × 3 kernel.
We conducted a thorough evaluation to assess the perfor-

mance of the CNN at different layers, and carefully examined
the feature maps generated at these layers. Fig. 9 presents the
features generated at various layers of the three convolution
and max-pooling operations. After performing max pool-
ing 1, the images lose their spatial and structural details, and
the resulting feature map represents an input that is spatially
invariant to the next layer. Table 6 presents the performance
evaluation results of the CNN for various kernel values. This
shows that the accuracy increases with the number of layers
and kernels; however, the elapsed time also increases notice-
ably and must be decreased.

The preprocessed MRI underwent a series of steps, such as
enhanced FCM segmentation, hole filling, boundary extrac-
tion, CCL, and CBL, to extract the CMSMD features.
Three procedures, namely NUMCIR(), KMEANSCAL(),
and RADIUSFIND(), were used to generate the circular
mesh. This process yields an overall complexity of O(tknd).

FIGURE 9. Features generated at different layers of three convolutions
and Max pooling operations (a) Convolution 1 with kernel 3 × 3 (b) Max
pool 1 with kernel 3 × 3 (c) Convolution 2 with kernel 3 × 3 (d) Max pool 2
with kernels 3 × 3 (e) Convolution 3 with kernel 3 × 3 (f) Max pool 3 with
kernel 3 × 3 (g) Convolution 1 with kernel 5 × 5 (h) Max pool 1 with
kernel 5 × 5 (i) Convolution 2 with kernel 5 × 5 (j) Max pool 2 with kernel
5 × 5 (k) Convolution 3 with kernel 5 × 5 (l) Max pool 3 with kernel 5 × 5
(m) Convolution 1 with kernel 15 × 15 (n) Max pool 1 with kernel 15 × 15
(o) Convolution 2 with kernel 15 × 15 (p) Max pool 2 with kernels 15 × 15
(q) Convolution 3 with kernel 15 × 15 (r) Max pool 3 with kernels 15 × 15.

TABLE 8. Rank order of 19 relevant feature values, labeled as cmf(1) to
cmf(19).

We evaluated the performance of the CMSMD with various
track and sector sizes, namely 10 × 16, 10 × 32, 20 × 16,
20×32, 30×16, and 30×32. The evaluation yielded results
of 0.9672, 0.9463, 0.9602, 0.9685, 0.9610, and 0.9545 for
subject-level images, and circular mesh with size 10 × 16 is
found apt for the study. Table 7 lists the training and testing
times, as well as the accuracies. It is clear from the table
that the training time for CMSMD is shorter than that for
CNN. The space requirement was also lower than that of
CNN. CirMNet aims to maintain the structural characteristics
of image objects using hybrid feature-extraction methods.
The training was conducted on an 11th Gen Intel Core(TM)
i7-1165G7@280GHz workstation CPUx64-based processor
with 16 GB of memory and a moderate graphics processing
unit (GPU) card. The algorithms were implemented in MS
Windows 10, Pro 21H2, and MATLAB R2022b.

We constructed the CirMNet model using two parallel
tracks: the first track for extracting CNN features (CNF),
and the second for CMSMD features (CMF). The input MRI
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FIGURE 10. Features generated during convolution and pooling
(a) Convolution 1 (b) Max pool 1 (c) Convolution 2 (d) Convolution 3.

images used in this study were converted into 224 × 224 in
order to analyse the structural anomalies. We conducted
experiments by resizing and then examining the images to
mark the structural alterations. We found that images with a
dimension of 224×224 are best suited for this purpose among
different sizes like 200×200, 256×256, and 512×512. The
CNN track consisted of three convolution layers: ReLU acti-
vation and max-pooling operations. The convolutional layers
used 16 channels with 3× 3 kernels. Convolution 1 and max
pooling1 produced 788,544 and 781,456 features, respec-
tively. Convolution 2 and max pooling 2 generated 1,534,752
and 1,520,768 features, respectively, whereas convolution
3 and max pooling 3 generated 1,492,992 and 1,479,200 fea-
tures. In between convolution and pooling operations, batch
normalization was performed to improve training stability
and speed up convergence. Fig. 10 shows the features gen-
erated during the convolution and pooling operations.

In the second track, the images underwent skull strip-
ping, preprocessing, hole-filling, and boundary extraction
before generating a circular mesh. The extracted boundary
was incorporated in the circular mesh, which was produced
dynamically depending on the irregularity of the bound-
ary, with the extreme border point lying on the y-axis. The
CMSMD’s size is fixed dynamically so that it grows as the
borders change from being smooth to being irregular. Smooth
borders do not require precise details, thus a descriptor with
fewer components is produced; on the other hand, irregular
borders do demand fine details, so a descriptor with more
elements is produced. If the descriptor size is appropriate, this
dynamic creation enables the CMSMD to reflect the shape of
an item, and object reconstruction is achievable without sac-
rificing any features. Because only the pertinent information
is retained, this feature makes it easier to accommodate any
type of contour, whether it be vast or small [2]. For this study,
a circular mesh size of 10 × 16 was shown to be ideal.
The CBL mechanism labels the boundary regions, reduc-

ing the space requirement from 5.93 KB to 144 bytes for
a single image with a circular mesh size of 10 × 16. New

TABLE 9. Layer description of CirMNet architecture.

FIGURE 11. A plot of CNF features against weight.

statistical and FD features were derived for vertically sym-
metrical images and used along with statistical, structural,
and label property-based features. The 19 highest priority
features and their rank order based on the ReliefF algorithm
are listed in Table 8. These nineteen CNF features, along with
14,79,200 CMF features, are integrated to form 14,79,219
CirMNet features.

The CNF’s weight against features and CMF weights
against features are also plotted to get a better understanding
and are shown in Fig 11 and 12. In Fig. 13 and 14, CNF and
CMF features are combined, and the rank versus features and
weights versus features are plotted. The blue color represents
the CMF items, whereas the red color represents the CNF
items. From this analysis, it is clear that CMF has higher rank
positions and weights than CNF.

A fully connected layer, consisting of three layers, was
used to process the HYD features for image classification.
Table 9 lists the architecture of the proposed model. In this
study, we used different learning rates (0.1, 0.01, 0.001,
0.0001, 0.00001), and it converges at 20, 25, 28, 40, and
48 epochs, respectively with, 92.86, 94.65, 96.21, 97.34,
97.32 accuracies. The binary cross-entropy losses, in con-
junction with the Adam optimizer, were used to train the
CirMNet architecture. By comparing the results for each
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FIGURE 12. A plot of CMF features against weight.

FIGURE 13. A plot of CMFand CNF against rank order.

FIGURE 14. A plot of CMF and CNF against weight.

learning rate, we found that the best accuracy and loss perfor-
mance was achieved using a learning rate of 0.0001. Fig. 15
shows the training and validation loss and validation accu-
racy of the CirMNet model, and the results indicate that
there is no overfitting or overshooting for this model. The
performance evaluation measures accuracy, precision, recall,
F1 score, and loss values, are listed in Table 10. In addition
to this, we employed the SHAP technique to interpret the
important areas that contribute more to the disease classifi-
cation purpose and plotted in Fig. 16. From this analysis, it is
evident that the boundaryareas are contributing more to the
classification activity.

In the CirMNet, we conducted a 5-fold cross-validation.
The 2D CNN models analyzed form 3D brain image data,
so we performed a subject-level cross-validation to prevent

FIGURE 15. (a) CirMNet training and validation loss (b) CirMNet training
and validation accuracy.

FIGURE 16. Plots the boundary areas that contribute more to the
classification using the CirMNet Model using the SHAP interpretation
technique.

TABLE 10. Performance evaluation of CNN, CMSMD, and CIRMNet:
accuracy, precision, recall, F1 score, sensitivity, loss.

data leakage [45]. We performed the training and testing of
the model ten times, using a different fold as the test set and
the remaining four folds as the training set in each iteration.
We obtained the accuracy measurement for each fold, and
displayed in Table 10. Fig. 17 shows the confusion matrix
for four classes using the proposed method. This indicates
that CirMNet provides the best classification results for the
dataset, with an accuracy of 0. 9734, a precision of 0. 9737,
a recall of 0.9734, an F1 Score of 0.9735, and a sensitivity
of 0.9734. The training loss was only 2.66%. This study
will help the radiologists for easy and accurate diagnosis by
using a system parallel to the existing Picture Archiving and
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FIGURE 17. Confusion matrix for four classes: (a) LMCI (b) AD (c) Control
(d) EMCI for the subject.

Communication System (PACS) server. The generalization of
the model with an independent test set and different datasets
will also be carried out in the future to make the model more
adaptable to various other studies.We are planning to develop
a CAD system by adapting the CirMNet Model to work in
different MRI scanners.

VII. CONCLUSION
In this paper, we propose a hybrid feature extraction tech-
nique called CirMNet to address the limitations of CNN
by incorporating additional shape features from CMSMD.
We also present new statistical and FD-based feature extrac-
tion methods using the CMSMD. The CirMNet architecture
consists of two parallel tracks: one utilizing a CNN and the
other utilizing a CMSMD. From the CNN track, 1,479,200
features were extracted using three convolution layers, three
pooling layers, and five fully connected layers and combined
with the 19 most relevant features from the CMSMD track.
The CMSMD features had the highest priority, and were
among the top 70 ranked out of 1,479,219 features. The per-
formance accuracy of CNN is 93.66%, CMSMD is 96.72%,
and that of the CirMNet model is 97.34%, with times of
48 minutes, 20 minutes, and 63 minutes, respectively. The
investigation showed that the suggested model performed
better in classifying brain MRI scans into Control, EMCI,
LMCI, and AD by integrating CMSMD features as well
as CNN features. Considering the performance, CMSMD
appears to be superior to CNN, and CirMNet outperforms
CNN, while the complexities of the models followed the
increasing order of CMSMD, CNN, and CirMNet. While
considering the evaluation time, CMSMD outperforms better
than the other two models, but CMSMD does not extract
the texture and color features, which are also relevant for
object classification studies. The development of a deep
learning technique, which incorporates texture, color, and
other essential features along with shape and margin for
classification, is in the future scope of the study. We’re also
working to create a deep learning-enabled brain atlas for auto-
mated Alzheimer’s disease (AD) detection, and we intend to

provide a computer-aided detection (CAD) system in
real-time clinical situations.
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