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ABSTRACT Traditional enhancement techniques can improve the contrast of low-light and low-resolution
images, but they fail to recover their resolution. Conversely, traditional super-resolution (SR) algorithms can
enhance resolution but not restore contrast. To address this issue, a novel progressive joint enhancement and
SR tactic, named PESiT, is proposed to synchronously improve contrast and resolution in low-light and low-
resolution images. PESiT comprises an enhancedmulti-scale Retinexmodule followed by a blind SRmodule
with regularization optimization. In the first module, the common logarithm is replaced with an S-function to
expand the intensity distribution of images and prevent color inversion. In the latter module, those merits of
reconstruction- and learning-based tactics are combined to tackle various unknown degradations by imposing
consistency constraints on high- and low-resolution image pairs. Extensive experiments on public datasets
demonstrate the robustness and superiority of PESiT in processing low-light and low-resolution images under
various scenarios. Compared with state-of-the-art techniques, PESiT achieves superior performance, e.g., the
highest peak signal-to-noise ratio, structural similarity index, feature similarity index, and the lowest learned
perceptual image patch similarity, highlighting its validity in achieving optimal image quality improvements.

INDEX TERMS Image enhancement, low-light enhancement, low-resolution image, super-resolution.

I. INTRODUCTION
High-quality image that has excellent contrast, precise
details, and high spatial or temporal resolution is critical in
numerous fields, such as remote sensing, computer vision,
scene analysis, and image understanding [1]. Despite the
importances, image quality is usually compromised by var-
ious constraints, such as limited acquisition time and/or
inadequate illumination [1]. As a result, the image suf-
fers from diminished contrast, resolution and clarity of
details [2], which significantly affects the visual assessment
and advanced processing tasks, for instance, object recogni-
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tion or target detection. Therefore, it is crucial to better the
quality of degraded images, encompassing but not limited to
improvement in contrast, resolution and details.

Image enhancement involves various tactics, each focusing
on different aspects of images e.g., global/local characteristic,
filtering out irrelevant information, and highlighting regions
of interest (ROIs). Common enhancement techniques include
histogram equalization (HE) and its variants like adaptive HE
and bi-HE [3], inverse implementation [4], DL (deep learn-
ing) [5], and Retinex decomposition [6], [7]. HE and variants
work by adjusting the distribution of histogram using regu-
larization terms [8], predominantly enhancing image contrast
rather than correcting for illumination. This possibly brings
over- / under-enhanced outcomes [9]. Another tactic treats
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low-light images similarly to hazy images [4]. Although this
strategy results in acceptable results, it lacks robust physical
justification for its underlyingmodel [9]. DL techniques, such
as low-light net [5] and deep convolutional network, have
been extensively used in image enhancement. Howbeit, such
strategy may not fully capture intrinsic properties of natural
low-light images, due to challenges in collecting a substantial
dataset of images paired with low-light and standard lighting
conditions [10]. This may lead to unnatural results.

Drawing inspiration from biological mechanisms, Retinex-
based enhancement techniques assume that a visual image
can be decomposed into reflectance and illumination compo-
nents. This hypothesis results in the development of various
Retinex strategies, e.g., single-scale Retinex (SSR) [6] and
multi-scale Retinex (MSR) [7], which principally focus on
extracting the reflectance component. These tactics typically
use logarithmic transformation owing to its beneficial mod-
eling characteristics [9]. However, the logarithmical form
is not the most suitable for the regularization term, as it
has tendency to emphasize the influence of pixels with low
intensities at the expense of those with high intensity, prob-
ably leading to suboptimal results [6], [9]. To address this
problem, a weighted variational model that incorporates prior
knowledge into regularization term, such as structural priors.
Although this approach produces impressive enhancements,
it may also yield over-exposure and the loss of detail in
brighter areas of the image [6].
Despite their strengths, the strategies previously men-

tioned usually fall short in enhancing the spatial resolution
of images, which is essential for maintaining the richness
of detail. Super-resolution (SR) techniques are designed to
reconstruct a high-resolution image from a low-resolution
one, and DL-based SR strategies have consistently topped
performance charts across various benchmarks. Nevertheless,
most methods are tailored to specific, fixed forms of degra-
dation, such as bicubic down-sampling or single Gaussian
blurring, which limits the general applicability [11]. When
the distribution of test images differs from that of training set,
a phenomenon known as distribution shift, those DL-based
strategies can suffer a marked decline in performance [18].
In response, some non-blind and blind SR methods are
advanced to tackle multiple forms of degradations [12], [13].
Non-blind strategies often require ground-truth (GT) degra-
dation maps as an additional input [12], but they may not
perform well when the actual degradation does not match
the assumed kernels [13]. Blind methods, which do not rely
on GT maps, become the focus of increased attention in
recent years [13], [14], [15], though their focus tends to be
on the blur and down-sampling degradations [13]. While SR
methods yield visually pleasing results, they often struggle to
ensure the consistence between the reconstructed images and
input images during the testing period [16].
Furthermore, current SR techniques are generally not

well-suited for low-light images due to their limited ability
to adjust contrast effectively. For instance, if SR is applied

directly to a low-light image, the contrast improvement is
insufficient, as shown in Fig. 1(c) that adopts Cria-CL (cri-
teria comparative learning in realSR) [17] to perform SR of
Fig. 1(a). Howbeit, if SR is implemented on the enhanced
image (e.g., Fig. 1(b)), both contrast and structural details
are significantly improved, yielding a higher quality outcome,
as displayed in Fig. 1(d). From quantitative comparisons,
the measures in Fig. 1(d) is higher to that in Fig. 1(c), with
significant improvements in lift ratios. The respective lift
ratio (%) is 74.51, 52.52, 10.25, and −45.16 with regard
to PSNR (peak signal-to-noise ratio), SSIM (structural sim-
ilarity index), FSIM (feature similarity index), and LPIPS
(learned perceptual image patch similarity).

To markedly improve the contrast and spatial resolution
of images taken in low-light environments, an effective
approach involves incorporating image enhancement with SR
within a single cohesive process. Lyu et al. propose an end-
to-end DL-based strategy, termed as JSENet, which unifies
enhancement and SR through a bilateral grid processing
mechanism for joint optimization [18]. Recently, a lighten-
ing SR (LSR) network is presented to tackle the concurrent
challenges of enhancement and SR, aiming to gain seamless
zooming in low-light settings [19]. Despite these advance-
ments, LSR requires considerable training time because of its
dense architecture and extensive parameters. Moreover, both
JSENet and LSR have yet to fully conquer the complexity
associated with the enhancement and SR tasks. Simultane-
ously executing enhancement and SR for those images with
poor color, contrast, or resolution remains a significant and
unresolved challenge in the field.

In this study, we propose a new progressive fusion tactic
of enhancement and blind SR (named PESiT), which is tai-
lored for the enhancement of low-light and low-resolution
images under total variation (TV) constraints. PESiT incor-
porates a dedicated enhancement module (namely, improved
MSR via S-function) into a SR module (blind SR via TV
constraints). This integrated approach accepts low-light and
low-resolution images as input and generates outputs that
feature enhanced contrast and spatial resolution. The contri-
butions of this work are summarized as follows.

(1) To gradually improve the contrast and spatial resolution
of low-light images, PESiT is proposed, which consists of an
improved MSR module followed by a blind SR strategy that
incorporates with regularization optimization. This integrated
pipeline leverages the strengths of both enhancement and SR
techniques to produce the high quality, superior outcomes.

(2) In the improved MSR module, we replace the tra-
ditional logarithm typically used in Retinex-based methods
with an S-shaped function. This innovativemodification, cou-
pled with V-channel correction, successfully combats issues
e.g., color distortion and detail loss. Furthermore, it markedly
enhances the overall image contrast.

(3) The SR module leverages TV consistency constraints
between high- and low-resolution images, blending strengths
of both reconstruction-based and learning-based SRmethods.
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FIGURE 1. For a representative low-light image with low-resolution (a), enhanced result using proposed strategy (b), SR result of (a) using Cria-CL (c),
SR result of (b) using Cria-CL (d), and ground truth with high contrast and resolution (e).

This tactic effectively tackles difficulties which presented by
a range of unknown degradation processes. As a result, it not
only elevates image quality but also can bolster the robustness
of SR tasks.

The remainder of this paper is as follows. In Section II,
we review some related works about image enhancement
and SR. We explicate details about PESiT in Section III.
In Section IV, extensive experimental results are provided,
and conclusion and perspectives are presented in Section V.

II. RELATED WORK
This section reviews some related works, including low-light
enhancement, SR, and joint enhancement and SR tactics.

A. LOW-LIGHT ENHANCEMENT
Low-light enhancement is challenging owing to severe noise,
loss of information and poor visibility [19]. Many traditional
and DL-based strategies strive to recover submerged and
lost details as well as to brighten underexposed areas. Tech-
niques like HE and gamma correction are usually applied
to expand dynamic range and contrast of images, but those
methods may yield unwanted artifacts that degrade visual
quality. Retinex-based models, which possess definite phys-
ical meanings, can improve visual quality of images [6], [7],
[9], and a weighted variational model (WVmSE) is applied
to concurrently gauge reflectance and illumination compo-
nents [20]. Among them, a logarithmic function is usually
used to decrease computational complexity [8]. Yet, those
models predominantly concentrate on contrast enhancement,
which may not adequately consider to preserve natural color
attributes in real-world scenarios [4].
In line with advancements in other computer vision tasks,

DL-based techniques have made dominant progresses in
low-light enhancement [21], [22], [23], [24], [25], [26],
[27], [28]. Generative adversarial network (GAN)-based
methods, such as Deep Photo Enhancer [24] and Enlight-
enGAN [25], become increasingly popular for their ability
to improve image quality. Despite their effectiveness, GAN-

based methods often suffer from training instability and
require extensive datasets to produce satisfactory results [22].
Drawing inspiration from Retinex principle, some DL mod-
els aim to approximate the illumination components of an
image, such as LightenNet [26] and LVENet [27]. Never-
theless, their performance is not always optimal. Recently,
light channel enhancement network (LiCENt) has been
employed to recover lost details using a neural model [22],
and zero-reference deep curve estimation (Zero-DCE) has
been used to estimate pixel-wise and high-order curves for
dynamic range adjustment [21]. However, these tactics often
result in oversaturated colors [22]. Furthermore, a signal-to-
noise ratio (SNR)-aware tactic has been proposed to enhance
the low-light images with spatially varying adjustments.

B. IMAGE SUPER-RESOLUTION
DL-based SR strategies are roughly divided into non-blind
and blind SR algorithms [17], [29], [30], [31]. Themajority of
non-blind methods [29] operate under the assumption that the
blur kernel is a pre-specified degradation kernel, for example,
the bicubic interpolation. Recently, some methods are pro-
posed to address multiple degradation issues. Nonetheless,
if actual degradation kernels, whether single or multiple,
deviate from the assumed ones, non-blind tactics may experi-
ence a significant decline in performance [13]. Hence, there
is a growing need to focus on unknown blur kernels, which is
the domain of blind SR tactics.

Most blind SR approaches include two stages (viz.,
kernel estimation and kernel-based reconstruction) [13].
Bell-Kliger et al. presented KernelGAN [30], which esti-
mates degradation kernels from individual images, and then
uses these estimates to facilitate image reconstruction. Luo
et al. introduced a deep alternating network (DAN) [14]
that iteratively estimates blur kernel and restores high-
resolution images, though the process is time-intensive
and computationally expensive [13]. KXNet is a more
recent method that jointly estimates blur kernels and high-
resolution images [15]. However, these tactics face two major
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limitations [13], [31]: 1) The estimated blur kernels lack
a strong physical interpretation. 2) The degradation model
is adopted heuristically, without fully leveraging the infor-
mation from both the estimated kernels and the images
themselves.

C. JOINT ENHANCEMENT AND SR
None of the previously mentioned methods effectively
address the challenges of jointly performing SR and enhance-
ment for low-light and low-resolution images [19]. JSENet
is the first to attempt incorporate SR and enhancement via a
two-stream deep fusion scheme [18]. Subsequently, LSR pro-
posed a deep lightening network to concurrently address the
enhancement and SR issues, though it requires considerable
time for training. However, both JSENet and LSR are initial
efforts and do not comprehensively solve the issue asso-
ciated with enhancement and SR, such as color distortion,
under- or over-exposure, and the inconsistencies between
high- and low-resolution image pairs. In response, this work
introduces a new progressive joint of enhancement and blind
SRwith regularization optimization, specifically designed for
low-light and low-resolution images. This aims to eliminate
noise and blurriness, enhance quality, and ensure consistency
in the mapping between low- and high-resolution images.

III. PROPOSED METHOD
In this section, we supply a comprehensive overview of
PESiT, a tactic designed to concurrently enhance the contrast,
details, and spatial resolution of low-light and low-resolution
images.

A. FRAMEWORK OF PESIT
Although a single enhancement model effectively boosts the
contrast of low-light images, it falls short in improving their
spatial resolution. High-resolution images, howbeit, are rich
in texture details, supplement higher pixel density, and are
more reliable. Conversely, a standalone SR model increases
image resolution but cannot address the issue of low contrast
in low-light images. To overcome the limitation, we pro-
pose PESiT, a progressive joint enhancement and SR tactic,
which aims to simultaneously enhance contrast and resolu-
tion of low-light and low-resolution images. The framework
of PESiT is shown in Fig. 2, comprising an improved MSR
module via an S-function, followed by a blind SR module
via TV constraints. In the former module, the classical loga-
rithm is replaced with an S-shaped function, which stretches
the intensity distribution and prevents the color inversion.
The enhanced results are then processed by the blind SR,
which imposes the consistencies between the reconstructed
and input images by incorporating regularization term during
testing, effectively tackling various unknown degradations.

It has been proven that traditional Retinex enhancement in
RGB color space is equivalent to performing the enhance-
ment operation solely on the V channel in HSV space (H
means hue, S means saturation, and V denotes value), while
leaving H and S channels unaltered [32]. Hence, the enhance-

FIGURE 2. Framework of PESiT, which comprises an improved MSR
module via S-function and a blind SR module via TV constraints.

ment process is specifically used to the V channel of the
image (see Fig. 2). This involves initially converting low-light
color images (such as RGB images) into HSV images. The
V channel images are then processed via large-, medium-,
and small-scale Gaussian filters and subsequently undergo an
S-function transformation. Following the V channel correc-
tion, the corrected images are converted back to RGB space,
gaining final enhanced images.

Subsequently, the SR module initially uses a blind SR
tactic [13] to estimate degradation kernels and acquire
super-resolved outcomes, which are considered as coarse
SR results. This step harnesses strengths of learning-based
methodologies. However, it may not adequately ensure con-
sistencies between SR images and original inputs (See
Fig. 2). To address this, the module employs regular-
ization optimization techniques to ensure the consisten-
cies between the input and output pairs, leveraging those
benefits of reconstruction-based methods to cater to vari-
ous degradations and scaling factors. Accordingly, the SR
module combines the advantages of both learning- and
reconstruction-based strategies, offering excellent adaptabil-
ity, flexibility, and measurement consistency.

B. IMPROVED MSR VIA S-FUNCTION
For an image I , the mechanism of SSR is described as [6],

ri(x) = log(Ri(x)) = log(
Ii(x)

G(x)∗Ii(x)
),

G(x) =
1

2πσ 2 e
−x2

2σ2 , (1)

where ri is the output, Ri is the reflectance components of the
ith channel map (For an RGB image, i = 3), ∗ is the convo-
lution, and G is the Gaussian filter with standard derivation
σ (named scale) that defines a scope of convolution kernel.
If σ is smaller, image details are effectively improved, but
the color of output is easy to be distorted. On the other hand,
when σ is larger, the color fidelity of output is better, while
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FIGURE 3. The graph of y = x-S(x), if x ∈ [0, 1].

local details are blurrier, and obvious ‘‘halos’’ occur at strong
edges [7].

ri(x) =

∑N

j=1
ωj log

(
Ii(x)

Gj(x)∗Ii(x)

)
,

where
∑N

j=1
ωj = 1, (2)

where N is the number of scale parameters, Gj represents the
jth Gaussian filtering functionwith standard derivation σj, and
ωj denotes the weighting of jth scale parameter, respectively.

However, the logarithm that employed in (1) and (2) causes
some troubles in RGB color space [9], e.g., a potential of
color inversion that can be found in those image pixels with
0 values (may jump to 255) or image pixels with 255 values
(may drop to 0) [33]. Besides, for a function h = x-ln(x),
it has a minimum of (1, 1), and is monotonically decreasing in
the range of (0, 1] and monotonically increasing in the range
of [1, +∞). In this case, those pixels with low magnitude in
high magnitude areas dominate variations in regularization
term, potentially causing color distortion. Therefore, an S-
shaped function is advanced to replace the logarithm in (2),
which is defined as,

S(x) = e1−
2

eαx+1 − 1, x ∈ [0, 1],

where α = ln
1 + ln2
1−ln2

, (3)

The weighting parameter α guarantees that the codomain of
S(x) is in the interval [0, 1], where S(0) = 0 and S(1) = 1.
The S(x) is monotonically increasing in the range of [0, 1],
which tackles effectively the appearance of ambiguity (e.g.,
value inversion) and/or negative values in the transformation.
In addition, the continuity and smoothness of S-function
ensure the superiority over other form of function such as
piecewise functions.

The graph of y = x-S(x), x ∈ [0, 1] is showed in Fig. 3,
where 0, x0 and 1 are three zeros. It can be seen that S(x)<x,
if x ∈ (0, x0), and S(x)>x, if x ∈ (x0,1). Under the case, when
the intensity of an image is normalized to [0, 1], in those pix-
els with low magnitude (< x0), the intensities are expanded.
In contrast, high intensities (> x0) are suppressed. This
property can be applied to effectively stretch the intensity
distribution of image, which is favorable to improve image
contrast.

Inspired by previous pioneering works [8], [9] that employ
enhancement implementations on the V channel in HSV
space, we operate the enhancement via S-function on the V
channel. Considering (3), equation (2) becomes as,

rv(x) =

∑N

j=1
ωjS

(
norm

(
Iv(x)

Gj(x)∗Iv(x)

))
,∑N

j=1
ωj = 1, (4)

where Iv denotes the V channel image and norm is a min-max
normalization operation.

To balance enhancement performance against computation
complexity of Gaussian filter, those parameters σj in (4) are
opted as the large-, middle- and small-scale, i.e.,

σj = aj · max(Iv), j = 1, 2, 3, (5)

where aj is a positive constant. According to the experiments,
those parameters aj are empirically set to 0.8, 0.5, and 0.2 in
this section, which guarantees favorable results.

Afterwards, the reflectance estimation acquired from (4)
is requisite to be adjusted through the V channel correction,
for further bettering the visual quality. According to the his-
togram of V channel image, the V channel correction is,

r ′
v =


0, if rv ≤ r low(
rv − r low

rup − r low

)γ

, if r low ≤ rv ≤ rup

1, if rv ≥ rup,

(6)

where rup and r low denote high and low shearing points of V
channel image rv, and γ is a constant. The larger γ may cause
overexposed, and the smaller value may result in insufficient
enhancement. In this study, γ is adjusted experimentally
within the range of [0.6,1.2], bringing favorable outcomes.
The upper and lower bounds of confidence intervals, set as a
confidence level of 0.99, are determined from the cumulative
histogram of V channel images, defining the thresholds for
high and low shearing points. Finally, the adjusted image is
converted back to RGB space, and gain final enhancement
results.

C. BLIND SR VIA TV CONSTRAINTS
In view of traditional degradation models, most existing SR
models assume that the low-resolution image is a blurred and
down-scaled high-resolution image with an additional white
Gaussian noise n. The degradation process is formulated as,

ILR = (IHR ⊙ K ) ↓s +n, (7)

where K , ⊙ and ↓s denote the blur kernel, convolution and
down-sampling with scaling factor of s, respectively. Despite
the works gain state-of-the-art performance, they suffer from
twomajor limitations [16]: 1) The trained network is operated
to a unique scaling factor and blur kernel. 2) Such approach
is difficult to guarantee the consistencies between low- and
high-resolution images during testing.
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To resolve the first limitation, we focus on the blind SR
with multiple degradations, e.g., the blur, noise and down-
sampling, which may simultaneously happen in real-world
cases [11]. A well-principled blind SR algorithm [13] is
applied in this work. In that strategy, the degradation mod-
ule is firstly reformulated for disentangling the blur kernel
estimation and up-sampling. Secondly, a dynamic deep linear
kernel is used to further better the kernel estimation. Thirdly,
a deep constrained least squares deconvolution module is
adopted in the feature domain, which betters robustness to
noise, providing a theoretical/principled guidance to get clean
features from blurred inputs. Lastly, both clean and primitive
features are fed into a dual-path network to yield SR images.
Thus, we obtain the estimated degradation kernel and the
output result of SR.

To tackle the second limitation, TV constraints are imposed
on blind SR output. Similar to [16], the consistency is
imposed on low- and high-resolution pairs, that is, reconstruct
a high-resolution image x∗ from a low-resolution image l
through the following optimization strategy,

minmize
x

∥x∥TV + β∥x − s∥TV, s.t. Kx = l, (8)

where K and s denote the estimated degradation kernel and
SR result obtained from the SR model, and β is a regular-
ization parameter. The first term defines a transition among
different objects, the second term measures the distance
between x∗ and s, and the constraint enforces the measure-
ment consistency.

It has been proved that TV minimization is associated with
l1 minimization [16]. Thus, equation (8) can be converted to
l1 minimization,

minmize
x

∥x∥1 + β∥x − ŝ∥1, s.t. Kx = l, (9)

An alternating direction method of multipliers (ADMM)
[16] is applied to solve (9). Supplying two auxiliary variables
p and q, and defining ŝ= Ds, where D represents the vertical
concatenation of differences, equation (9) is equivalent to the
following formula, that is,

minmize
p,x,q

∥p∥1 + β∥p− ŝ∥1,

s.t. Kx = l,Dq = p, q = x, (10)

After that, the correspondence between (10) and a standard
operator of ADMM is constructed, that is,

f (p, x) = ||p||1 + β||p− ŝ||1 + iKx=e(x), g(q) = 0

F =

[
−I2n 0
0 In

]
, G =

[
D

−In

]
, (11)

where iKx=e(x) is the indicator function of Kx = l, and In
is a n × n identity matrix. This correspondence results in a
closed-form solution.

IV. EXPERIMENTAL RESULTS
This section supplies datasets, baseline methods and metrics
for comparisons, and then applies the data to demonstrate the
effectiveness of the proposed method.

A. DATASETS
The LOL dataset [10] is a benchmark designed to address
the real-world challenge of low-light image enhancement,
which is usually applied in diverse enhancement strate-
gies [24], [34]. Besides, following [15], [17], [30], [31],
we apply commonly-used benchmark data for SR compar-
isons, including DIV2K [35] and Flickr2K [36]. Thus, three
public datasets are chosen for qualitative and quantitative
comparisons in this section.

The LOL data comprises paired images captured under
low- and normal-light conditions, with normal-light images
serving as high-quality GT references for SR comparisons.
In order to synthesize low-resolution images, both low- and
normal-light images are down-sampled by a scale factor of
×4 using bicubic interpolation. Those down-sampled low-
light images are then input into PESiT, while the downscaled
normal-light images are denoted as GT for enhancement
comparisons. This process results in the creation of LOL-LR
data, which consists of 900 image pairs. After, the outputs
from the enhancement module are further processed through
the SRmodule (see Fig. 2). This sequence of operations gives
rise to the LOL-SR data. To facilitate training and evaluation,
LOL-SR dataset is randomly split into three subsets: 80% for
training, 10% for validation, and 10% for testing.

DIV2K and Fickr2k datasets provide high-quality images
along with corresponding versions at ×2, ×3 and ×4
scales. For the purpose of evaluation, we select the images
down-sampled by a factor of ×4 to serve as GT for enhance-
ment comparisons. To simulate low-light conditions, ×4
downscaled images are transformed into HSV color space.
The Value (V) component is then dimmed to 0.2 of its orig-
inal level, but the Hue (H) and Saturation (S) components
remain unaltered. The images are subsequently converted
back to the RGB color space, resulting in the creation of the
DIV2K-LR and Flickr2K-LR datasets for low-light enhance-
ment comparisons. Following this, outputs generated by the
enhancement module are fed into SRmodule, as illustrated in
Fig. 2. This process produces DIV2K-SR and Flickr2K-SR
datasets. These datasets are divided into subsets for training,
validation, and testing, with 80% of the samples allocated
for training, using 10% for validation, and 10% for testing
purposes.

B. BASELINE METHODS AND METRICS
Since the proposed PESiT contains enhancement and blind
SR modules, we adopt nine enhancement methods as base-
line for enhancement comparisons and four SR tactics as
baseline for SR comparisons. For enhancement compar-
isons, we use MSR [7], WVmSE [20], Zero-DCE [21],
LiCENt [22], BIMEF (bio-inspired multi-exposure fusion)
[23], MTFE (multiple transformation function estimation)
[28], LWFI (lightweight fast illumination) [33], QDCHE
(quadrant dynamic clipped HE) [37], and AGCWHD (adap-
tive gamma correction with weighted histogram distribu-
tion) [38] as baseline approaches. Among, MSR, WVmSE,
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FIGURE 4. A low-light and low-resolution image with a bird (a), enhanced results obtained from MSR (b), BIMEF (c), WVmSE (d), Zero-DCE (e), AGCWHD
(f), LWFI (g), LiCNEt (h), MTFE (i), QDCHE (j), and proposed enhancement module (k), and GT (l), respectively.

FIGURE 5. A representative low-light and low-resolution image (a), enhanced results obtained from MSR (b), BIMEF (c), WVmSE (d), Zero-DCE (e),
AGCWHD (f), LWFI (g), LiCNEt (h), MTFE (i), QDCHE (j), and proposed enhancement module (k), and GT (l), respectively.

QDCHE, AGCWHD, and BIMEF are conventional strate-
gies, which are operated by MATLAB R2022a (MathWorks,
Natick, MA). Meanwhile, MTFE, Zero-DCE, LiCENt, and
LWFI belong to DL-based tactics, which are used the respec-
tive training model provided by the authors.

For the purpose of SR comparisons, we choose DCLS
(deep constrained least squares model) [13], DAV [14], Cria-
CL [17], and RCAN (residual channel attention network)

[31] as baselines. RCAN, Cria-CL represent non-blind SR
algorithms, while DAN, DCLS are blind ones. All baseline
SR strategies are DL-based, and we utilize the pre-trained
models provided by the authors are used in this section.

Four measures are used to assess the enhancement
and/or SR performance of different algorithms, such as
PSNR, SSIM [39], FSIM [40], and LPIPS [41]. The mea-
sures assess the distance between reconstruction results and
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FIGURE 6. Quantitative enhancement comparisons regarding PSNR (a), SSIM (b), FSIM (c), and LPIPS (d) obtained from the baseline
approaches and proposed enhancement module on DIV2K, Flickr2K, and LOL datasets.

correspondingGTs, which are widely employed in the assess-
ment of image quality. For example, SSIM is applied to
measure structural similarity between paired images, and
LPIPS is to judge their perceptual similarity. Higher PSNR,
SSIM and FSIM scores, and lower LPIPS scores imply better
perceptual quality.

C. ENHANCEMENT COMPARISONS
Fig. 4(a) lists a low-light, low-resolution image depicting
a bird scene, characterized by PSNR of 7.08, SSIM of
0.1688, FSIM of 0.5384, and LPIPS of 0.3506. Low image
contrast makes it challenging to identify object of interest.
Following enhancement with various algorithms (namely
MSR, BIMEF, WVmSE, Zero-DCE, AGCWHD, LiCENt,
MTFE, QDCHE, and in the proposed module), the contrast
is notable improved. The corresponding enhanced results
shown in Figs. 4(b)- (k), respectively, with quantitative mea-
sures improved and listed below each image, making the
object of interest prominent.

When compared to GT, represented by normal-light image
in Fig. 4(l), enhanced results produced by the nine base-
line approaches exhibit varying degrees of distortion. For
instance, MSR yields over-enhancement, and such phe-
nomenon is also observed in outputs of AGCWHD and
QDCHE. Conversely, other baselines may cause under-
enhancement, e.g., Figs. 4(c)-(e), and (g). However, the pro-
posed enhancement module effectively mitigates those risks

of both over- and/or under-enhancement, closely approximat-
ing the quality of GT image.

Similarly, a low-light people image is displayed in
Fig. 5(a), with PSNR of 7.96, SSIM of 0.1693, FSIM of
0.5474, LPIPS of 0.3947, and Figs. 5(b)-(l) display enhanced
results obtained from the baselines and proposed enhance-
ment modules. It can be seen that the over-enhancement
phenomena happen in Figs. 5(b), (f), (h), and (j), but the
under-enhancement phenomena occurs in Figs. 5(c)-(e), (g),
and (i). In this case, those enhanced results impact the visual
quality assessment and subsequently affects the subsequent
SR process. However, these issues are successfully mitigated
in Fig. 5(k), which validates superior performance among the
comparisons.

The PSNR, SSIM, FSIM, and LPIPS values shown beneath
each image reveal that the low-light and low-resolution image
initially has the lowest PSNR, SSIM, and FSIM scores,
as well as the highest LPIPS score, which could pose chal-
lenges for image analysis. While all the baseline strategies
contribute to an improvement in these measures, there are
notable variations among them. For instance, MTFE achieves
the second-highest improvements in both PSNR and FSIM
for Figs. 4 and 5, and LiCENt gains the second-best results for
SSIM andLPIPS in Fig. 4. In contrast, proposed enhancement
module consistently obtains the highest PSNR, SSIM, and
FSIM terms scores, as well as the lowest LPIPS scores across
both figures, indicating superior visual quality.
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FIGURE 7. Img 67 from Div2k, a low-light image (a), enhanced result (e), ×4 SR results of DAV (b), DCLS (c), RCAN (d), Cria-CL (f), and PESiT (g), and GT
with high resolution (h), respectively.

FIGURE 8. Img 2414 from Flickr2k, a low-light image (a), enhanced result (e), ×4 SR results of DAV (b), DCLS (c), RCAN (d), Cria-CL (f), and
PESiT (g), and GT with high resolution (h), respectively.

Fig. 6 presents quantitative comparisons across the MSR,
BIMEF, WVmSE, Zero-DCE, AGCWHD, LWFI, LiCENt,
MTFE, QDCHE, and our proposed enhancement module for
the three datasets (using the same parameters for testing),
focusing on PSNR, SSIM, FSIM and LPIPS metrics. Since
the four metrics measure the distance between the reference
and enhanced results (PSNR focuses on fidelity of an image,
SSIM addresses its structure similarity, FSIM concentrates
on its feature similarity, and LPIPS focuses on its perceptual
similarity), higher PSNR, SSIM, and FSIM, and lower LPIPS
scores indicate better enhancement performance.

As listed in Fig. 6, the proposed enhancementmodule gains
consistently the highest PSNR, SSIM, and FSIM values,
along with the lowest LPIPS scores, with average values of
20.14, 0.8586, 0.9206, and 0.1113, respectively. This prove
that our enhancement strategy surpasses the baseline methods
in terms of each measure in alignment with observations

from Fig. 3 and 4. Thus, PESiT exhibits high reliability
and robustness in enhancement. This is clearly instrument
in enhancing objects of interest, elucidating context, and
preserving structural detail information in images.

D. SUPER-RESOLUTION COMPARISONS
Section IV-C reveals that the proposed enhancement module
produces enhanced results with impressive performance, such
as high fidelity, robustness, and reliability. This guarantees
the effectiveness and trustworthiness of subsequent SR pro-
cess. Fig. 7 presents an illustration applying Img 67 from
DIV2K dataset, where Fig. 7(a) shows a low-light image
with low resolution, and Fig. 7(e) supplies the enhanced
outcome gained by the proposed enhancement module. The
figure also includes ×4 SR results from DAV Fig. 7(b),
DCLS Fig. 7(c), RCAN Fig. 7(d), Cria-CL Fig. 7(f) and
PESiT Fig. 7(g), as well as high-resolution GT Fig. 7(h). It is
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FIGURE 9. Img 469 from LOL, a low-light image (a), enhanced result (e), ×4 SR results of DAV (b), DCLS (c), RCAN (d), Cria-CL (f), and PESiT (g), and GT
with high resolution (h), respectively.

evident that details e.g., the camera aperture count, which are
indiscernible in the GT image, are challenging to recognize
in those results from other algorithms like DAV Fig. 7(b)
and DCLS Fig. 7(c). This problem is widespread among
the other algorithms as well. Howbeit, the image gained by
the proposed tactic overcomes this challenge, validating its
ability to preserve details more effectively. The quantitative
measures supplied below each result substantiate the superior
performance of PESiT.

Fig. 8 supplies ×4 SR results for Img 2414 from Flickr2K
dataset, using the baseline and proposed algorithms, along-
side the high-resolution GT. It is evident that the texture
on the bee’s wings is sharply delineated with clear features
in Fig. 8(h). In contrast, the texture detail is indistinct in
the results from Figs. 8(b)-(d) and (f), whereas it is notably
sharper in Fig. 8(g). Moreover, the background colors in
Figs. 8(b)-(d) and (f) differ from that in Fig. 8(g) and Fig. 8(h),
suggesting that these methods deviate from GT under the
given lighting conditions. As with Fig. 7, the details that are
vague in the baseline results are well-defined in Fig. 8(g),
indicating that PESiT is good at preserving intricate detail
information. Compared to the four baseline tactics, our SR
module delivers superior output with optimal performance,
as evidenced by the highest PSNR, SSIM, and FSIM scores,
as well as the lowest LPIPS value.

Fig. 9 displays Img 469 from LOL dataset, including the
original low-light image Fig. 9(a), the enhanced image pro-
duced by our module (e), and ×4 SR results from DAV
Fig. 9(b), DCLS Fig. 9(c), RCANFig. 9(d), Cria-CL Fig. 9(f),
and PESiT Fig. 9(g), along with the high-resolution GT
Fig. 9(h). When compared to the GT, the baseline tactics
introduce inaccuracies into the image, particularly notice-
able in the RCAN Fig. 9(d) and Cria-CL Fig. 9(f) results.
However, such issues are absent in PESiT outcome Fig. 9(g),

TABLE 1. Quantitative SR comparisons on the DIV2K. The best two results
are marked in RED and BLUE colors.

which also achieves the best auabest quantitative metrics in
terms of PSNR, SSIM, FSIM, and the lowest LPIPS, rein-
forcing the superiority of proposed method.

As for the quantitative measures, Table 1 lists compar-
isons of PSNR, SSIM, FSIM, and LPIPS metrics among the
DAV, DCLS, RCAN, Cria-CL, and PESiT for DIV2K dataset.
The results indicate that PESiT achieves the top scores in
PSNR, SSIM, and FSIM, and ranks second in LPIPS. RCAN
attains the second-highest scores for PSNR and SSIM, while
Cria-CL secures the second-highest FSIM and the lowest
LPIPS scores. The insights availably confirm that PESiT out-
performs those baseline methods, guaranteeing high fidelity,
robustness, and reliability in the SR outcomes.

Table 2 provides a quantitative analysis of each metric
for Flickr2K data. Unlike Table 1, PESiT achieves the best
overall performance across all measures. DAV acquires the
second-highest PSNR, and DCLS attains the second-best
SSIM score. Regarding LPIPS, Cria-CL achieves the second-
lowest score. These results imply that proposed strategy
excels in fidelity, structural similarity, and feature similarity
for Flickr2K.

Table 3 presents the quantitative comparisons for LOLdata.
It is observed that DAV andDCLS achieve the second-highest
scores for PSNR, with DAV also acquiring the second rank
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TABLE 2. Quantitative SR comparisons on the Flickr2k. The best two
results are marked in RED and BLUE colors.

TABLE 3. Quantitative SR comparisons on the lol. The best two results
are marked in RED and BLUE colors.

in SSIM, but DCLS attains the highest SSIM score. Addi-
tionally, DCLS achieves the second-highest FSIM result, and
Cria-CL obtains the second-highest value for LPIPS term.
Importantly, PESiT obtains the best results across PSNR,
FSIM, and LPIPS, thereby demonstrating the efficacy of the
proposed method.

V. CONCLUSION
To simultaneously enhance the contrast, details, and res-
olution of low-light and low-resolution images, this work
proposes a novel progressive joint approach that integrates
enhancement and blind SR strategies, named PESiT. This
method addresses those limitations of standalone enhance-
ment or SR approaches, supplying improved robustness,
reliability, and effectiveness. Experimental results onDIV2K,
Flickr2K, and LOL datasets clearly imply that PESiT not
only works more robustly across different low-light / low-
resolution cases but also outperforms state-of-the-art methods
in terms of key metrics, including the highest PSNR, SSIM,
and FSIM scores, and the lowest LPIPS one. This suggest that
PESiT effectively preserves fidelity and structural, percep-
tual, and feature similarity to GT. Therefore, PESiT displays
great potentials in the SR of low-light and low-resolution
image, aiding in the advancement of image analysis, inter-
pretation and recognition. This lays a solid foundation for our
future work in this domain.
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