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ABSTRACT This research addresses the critical challenge of classifying surface defects in lithium electronic
components, crucial for ensuring the reliability and safety of lithium batteries. With a scarcity of specific
defect data, we introduce an innovative Cross-Domain Generalization (CDG) approach, incorporating Cross-
domain Augmentation,Multi-task Learning, and Iteration Learning. Leveraging a steel surface defect dataset
as foundational knowledge, our approach compensates for the limited lithium-specific data and enhances
model generalization. We also introduce the Lithium Electronic Surface Defect Classification (IESDC)
dataset, demonstrating significant accuracy improvements over baseline methods. Our comprehensive
evaluation covers model interpretability, robustness, and adaptability. Beyond battery technology, this
methodology offers a framework for data scarcity challenges in various industries, emphasizing the
importance of adaptable learning methods.

INDEX TERMS Lithium electronic surface defect classification, cross-domain generalization, multi-task
learning, iteration learning.

I. INTRODUCTION
In the rapidly evolving landscape of lithium battery technol-
ogy, the reliability and quality of electronic components stand
as paramount concerns. Among the many aspects influencing
these components, the detection and classification of surface
defects in lithium electronic parts emerge as critical factors.
These defects, which can range from microscopic fissures
to subtle material inconsistencies, have the potential to
significantly compromise the performance and safety of
lithium batteries. Thus, the accurate identification and
classification of these defects represent not only a vital
endeavor but also a formidable challenge, particularly given
the scarcity of specific defect data for training classification
models [1], [2], [3]. This paper introduces an innovative
approach to lithium electronic surface defect classification,
meticulously designed to achieve remarkable accuracy even
in scenarios with minimal training data.
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Surface defects in lithium batteries loom large on the
radar of manufacturers and users alike. Imperfections such
as cracks, impurities, and irregularities can lead to a plethora
of problems, ranging from diminished battery life and
efficiency to severe safety hazards, including overheating
and the dreaded potential for explosions. As lithium batteries
continue to gain prominence across a wide array of applica-
tions, the necessity for efficient and reliable defect detection
methods becomes increasingly pressing. This demand is
further underscored by recent research studies, such as those
conducted by [4] and [5], which illuminate the critical role
that accurate defect detection plays in enhancing battery
safety and performance.

Traditional methods for surface defect classification tra-
ditionally rely on the availability of extensive and diverse
datasets for training machine learning models. However,
in the context of lithium electronic components, such datasets
are a rare commodity. The rarity and specificity of defects in
lithium batteries make the collection of comprehensive train-
ing data a formidable challenge. Moreover, standard datasets,
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which are often designed for more general applications, often
prove inadequate for the specialized task of lithium defect
classification, as noted in the research by [6] and [7].

To rise to these challenges, our study puts forth an
innovative Cross-Domain Generalization (CDG) approach
for lithium electronic surface defect classification. First
and foremost, we implement Cross-domain Augmentation,
leveraging the NEU dataset [8] designed for steel surface
defect detection as a foundational learning resource. This
dataset serves as a bedrock upon which our model can learn
broader defect recognition patterns, thereby compensating for
the scarcity of extensive, lithium-specific defect data. The
efficacy of such cross-domain learning strategies has already
been demonstrated in similar contexts, as evidenced by the
work of [9].

Secondly, our approach incorporates Multi-task Learning
[10], [11], an ingenious strategy that involves simultaneously
training the model on both the augmented NEU dataset and
the lithium electronic surface defect source dataset. This
approach amplifies the model’s defect detection capabilities
across different contexts while preserving its accuracy for
lithium-specific defects. The concept of multi-task learning
harmonizes perfectly with recent advancements in machine
learning, where models are increasingly trained to perform
multiple tasks, thereby enhancing their overall performance
and robustness.

The final, critical component of our methodology is
Iteration Learning [12], [13]. This strategic approach involves
iteratively training the model across different data sources,
thus preventing it from overfitting to a single dataset and
bolstering its ability to generalize across diverse scenarios.
Iteration Learning is of particular significance in scenarios
where data diversity is limited, as it equips models with
the adaptability needed to handle new and unseen data
effectively. This approach is firmly in line with the findings
of [6], which underscore the pivotal role of adaptable learning
methods in defect classification.

In addition to addressing the critical challenge of lithium
electronic surface defect classification, our research also
introduces a dataset, the Lithium Electronic Surface Defect
Classification (IESDC) dataset. Our experimental results
demonstrate the superiority of our proposed method over
baseline approaches. We achieved remarkable performance
gains in defect classification accuracy, underscoring the
effectiveness of our Cross-Domain Generalization (CDG)
approach. Furthermore, our research goes beyond mere per-
formance metrics. We conducted a comprehensive analysis
of our model’s effectiveness, delving into various aspects.
This in-depth evaluation not only validates the practical utility
of our approach but also provides valuable insights into its
strengths and limitations.

The implications of our study extend far beyond the
realm of lithium battery technology. Our methodology,
rooted in Cross-DomainGeneralization,Multi-task Learning,
and Iteration Learning, represents a robust framework for
addressing data scarcity challenges in specialized fields.

This framework can be applied across various industries
where quality control is paramount, yet hindered by the
limited availability of training data.

The contributions of this research aremulti-faceted and can
be summarized as follows:

1) Our study presents a novel CDG approach for lithium
electronic surface defect classification. We use cross-
domain augmentation, multi-task learning, and itera-
tion learning to address the scarcity of lithium-specific
defect data and improve model generalization.

2) We introduce the Lithium Electronic Surface Defect
Classification (IESDC) dataset as a benchmark for this
classification task.

3) Our experimental results show significant improve-
ments in defect classification accuracy compared to
baseline methods, highlighting the effectiveness of our
CDG approach for lithium electronic surface defect
classification.

4) Beyond superior performance, we thoroughly evaluate
our model’s interpretability, robustness, and adaptabil-
ity to provide a comprehensive understanding of its
strengths and limitations.

In the following sections, we review existing research in
lithium electronic surface defect classification, introduce our
innovative methodology involving Cross-Domain General-
ization (CDG), Multi-task Learning, and Iteration Learning
to address data limitations, and present our experiments,
including setup, data sources, and evaluation metrics. Finally,
we summarize our findings and discuss their broader impli-
cations for defect classification and data scarcity challenges
in the field.

II. RELATED WORK
A. INDUSTRIAL SURFACE DEFECT IDENTIFICATION
The field of industrial surface defect identification has seen
significant advancements with the integration of machine
vision and deep learning techniques, addressing challenges in
quality control across various sectors. This section provides
an overview of recent developments in this area, referencing
key contributions from literature. Traditional feature-based
detection methods in machine vision have focused on texture,
color, and shape features for identifying surface defects in
industrial products [14]. These methods laid the groundwork
for more advanced techniques, but faced limitations in
handling complex defect patterns and variations in industrial
scenarios. Recent years have witnessed a shift towards deep
learning-based approaches, which offer enhanced capabilities
in handling complex defect scenarios. Supervised, unsuper-
vised, and weakly supervised learning paradigms have been
explored to improve detection accuracy and adaptability.
Deep learning methods have tackled key challenges such
as real-time processing, small sample learning, detection of
small targets, and dealing with imbalanced datasets [14].
These advancements have proven particularly beneficial
in sectors like semiconductors, steel, and textiles, where
defect detection plays a crucial role in quality assurance.
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A comprehensive review of deep learning techniques in
surface defect inspection reveals the progress in automated
visual detection, encompassing both hardware and software
aspects [15]. This includes a summary of traditional algo-
rithms, ranging from statistical methods to model-based and
learning-based approaches, and their evolution into deep
learning-based algorithms. These advancements have been
successfully applied in key industries, demonstrating the
versatility and effectiveness of deep learning in surface defect
detection. Innovations in unsupervised learning, particularly
through dual attention-based methods [16], have shown
promise in enhancing defect detection. By employing channel
and pixel attention mechanisms, these methods achieve
robust image reconstruction, facilitating the differentiation
between defective and non-defective images. Additionally,
the introduction of consistency loss functions leverages
differences in image modalities to further improve detection
performance. Another significant development [17] has been
the adaptation of the YOLOv5 framework for industrial
surface defect detection. Addressing challenges like detecting
small and less distinct features, this approach integrates con-
volutional networks with coordinate attention and BiFPN for
multi-scale feature fusion. Incorporating Transformer struc-
tures within the network, it demonstrates improved prediction
capabilities in complex scenarios. This method has achieved a
substantial increase in recall rates for anomaly categories and
notable improvements in real-time detection performance.
Finally, the emergence of deep regression neural networks
presents a novel approach [18] that combines regression
and classification for general industrial defect detection.
This framework, comprising deep regression-based detec-
tion models, pixel-level mis-detection reduction, connected
component analysis, and deep network-based defect type
classification, offers a comprehensive solution. By generating
label data from annotations to capture the severity of defects,
this method showcases state-of-the-art performance in both
accuracy and efficiency on various benchmark datasets. The
evolution of industrial surface defect detection technologies
underscores the pivotal role of deep learning and machine
vision. These advancements not only enhance detection
accuracy but also cater to the specific needs of different
industrial applications, paving the way for more efficient and
reliable quality control processes.

B. LITHIUM ELECTRONIC SURFACE DEFECT
IDENTIFICATION
The advancement in identifying surface defects in lithium
electronic components is crucial for enhancing the quality
and safety of lithium batteries. This section presents a review
of various innovative methods employed in recent research
to address the challenges in detecting and classifying surface
defects in lithium batteries. The first significant approach,
presented by [4], focuses on the automatic detection and
identification of surface defects on lithium battery pole
pieces. This method integrates multi-feature fusion with

a Particle Swarm Optimization Support Vector Machine
(PSO-SVM) algorithm. By combining texture, edge, and
Histogram of Oriented Gradients (HOG) features, this
approach extracts feature vectors from defect area images,
which are then classified using PSO-SVM. The process
involves image preprocessing, defect area extraction, feature
extraction, and defect recognition. The experimental results
demonstrate an impressive average recognition rate of
98.3%, proving the method’s effectiveness in detecting
various types of defects on lithium battery pole pieces.
Another novel approach is described in [9], which employs
an improved K-nearest neighbor algorithm and Euclidean
clustering segmentation for lithium battery surface defect
detection. This method uses a voxel density strategy for
accelerating point cloud filtering and distinguishes defect
features through clustering segmentation. The geometric
features of each defect are determined using a least squares
contour fitting algorithm, which aids in the classification
of defect types. The approach encompasses point cloud
filtering, defect area segmentation, defect feature extraction,
and defect type classification. This method achieves a defect
detection accuracy of 99.2% and an average data processing
time of 35.3 milliseconds, highlighting its suitability for
industrial applications in lithium battery production. In [6],
an embedded machine vision-based approach is explored for
detecting surface defects in lithium batteries. This approach
aims to address the challenges ofmanual inspection in lithium
battery production, such as high workload and error rates.
The method leverages image processing techniques to locate
and extract surface defects, followed by an adaptive threshold
segmentation algorithm based on histogram reconstruction.
Themethodology includes image acquisition, area extraction,
background compensation, defect localization, and defect
detection. The results indicate a significant reduction in
grayscale value fluctuations in the ROI background area,
enhancing the effectiveness and speed of defect detection.
Research presented in [5] introduces an automatic defect
detection scheme for lithium-ion battery electrode surfaces.
The goal is to achieve real-time online detection of electrode
surface defects, thereby improving the actual industrial pro-
duction quality of lithium-ion batteries. The method begins
with conventional region extraction from captured electrode
images, followed by a rapid background compensation
algorithm to reduce grayscale value fluctuations in the ROI.
It then employs simple threshold segmentation and bounding
rectangle transformation for quick defect detection and
extraction, culminating in an adaptive threshold segmentation
algorithm based on histogram reconstruction for accurate and
rapid defect detection. The experiment confirms the effective-
ness of this scheme, especially in background compensation
and threshold segmentation for defect detection. Lastly,
[7] discusses the use of deep convolutional neural networks
(CNNs) for detecting microstructural defects in lithium-ion
battery electrodes from optical microscopic images of sliced
cells. The challenge is to train deep CNNs with limited
training images and design a highly sensitive and accurate
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FIGURE 1. Different concepts between (a) Cross-Domain Pre-training and (b) Our Method. The solid line indicates the primary learning process for the
model, while the dotted line represents the auxiliary learning process for the model.

defect detection scheme. This study adopts a multiscale
image augmentation and classification approach, generating
multiple scale image block samples from a few lithium-ion
battery images. The two-stage classification scheme aims to
differentiate and then identify specific defect types in the
first and second stages, respectively. The method achieves
a classification accuracy of 93.67% for defect image blocks
and an average precision rate of 90.78% for defect type
recognition, based on two enhanced multiscale datasets
constructed from just 26 source images. These studies
underscore the diverse and effective strategies employed
in recent research for lithium electronic surface defect
identification, utilizing a range of innovative algorithms
and methodologies to enhance the quality and safety of
lithium batteries. Besides, the robustness of models against
difficult confusing examples and well-designed adversarial
examples is a crucial consideration in developing methods for
identifying surface defects in lithium electronic components.
According to Dong et al. [19], models need to demonstrate
resilience against restricted black-box adversarial attacks,
a concept proven in their study on adversarial attacks against
deepfake face swapping. Their findings reveal the importance
of considering model robustness in the context of false sur-
face defects detection, which could potentially be analogous
to identifying deepfake anomalies. Dong et al. also argue
for intrinsic adversarial robustness through probabilistic
training [20]. The study underscores that by considering
uncertainty and randomness in the training process, models
could counter adversarial perturbations and thus enhance
the precision of surface defect identification. This implies
the need for developing lithium electronic surface defect
detection methodologies that not only perform effectively but
are also robust in the face of challenging adversarial samples.

III. METHODOLOGY
Our methodology employs a multi-faceted approach to
classify surface defects in lithium batteries. As shown in
Figure 1, this approach is particularly designed to overcome
the challenge of limited training data, a common issue in
specialized domains. It should be highlighted that different
from the previous cross-domain pre-training that regards both
source-domain and cross-domain tasks equally as primary

learning tasks, our method treats cross-domain data as the
auxiliary knowledge resource and focuses on utilizing it to
benefit the model learning for source-domain task. Below,
we expand on each aspect of our methodology, incorporating
detailed formulas and discussing the rationale behind each
approach.

A. BASE MODEL
The foundation of our methodology is the base model,
which utilizes a pretrained visual encoder. We opt for a
pretrained encoder due to its proven effectiveness in feature
extraction. This is particularly beneficial in our scenario,
where domain-specific data is scarce. The pretrained encoder
has been extensively trained on diverse datasets, enabling
it to extract rich, generalized features. These features are
crucial for our task, as they compensate for the limited data
available in lithium battery defect images. Our architecture is
as follows:

F = E(X ) (1)

Y = C(F) (2)

where X is the input image, E(·) represents the visual encoder
(a pretrained deep CNN), F is the extracted feature vector,
C(·) is the classification layer, and Y is the output class.
The use of this encoder allows us to leverage its powerful
feature extraction capabilities, setting a strong foundation for
accurate defect classification.

B. CROSS-DOMAIN AUGMENTATION
To address the scarcity of lithium-specific data, we employ
Cross-domain Augmentation. This strategy involves aug-
menting our primary dataset (lithium battery images) with
data from the NEU steel surface defect dataset. The rationale
behind this is to enhance the model’s exposure to a diverse
range of defect patterns, which can be beneficial in learning
more generalized features:

Daugmented = Dlithium ∪ DNEU (3)

This augmented dataset broadens the learning scope of the
model, enabling it to recognize a wider array of defect
features. Such diversity in training data is instrumental
in improving the model’s ability to generalize to new,
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TABLE 1. Sample number of our IESDC dataset.

FIGURE 2. Images and their classes in IESDC dataset.

unseen lithium defects, thereby enhancing its overall
robustness and accuracy.

C. MULTI-TASK LEARNING
In our approach, Multi-task Learning is employed to enhance
the model’s performance across various types of defects.
By simultaneously training the model on both lithium and
NEU datasets, the model learns shared features that are
relevant across different surface defect domains. This is based
on the premise that certain defect characteristics are universal
and can be learned more effectively when exposed to varied
data sources:

Ltotal = αLlithium(Y , f (X )) + βLNEU (Y , f (X )) (4)

where α and β are weights balancing the importance of each
task. This multi-task approach not only improves the model’s
performance on lithium defects but also endows it with the
versatility and adaptability to handle a variety of surface
defects.

D. ITERATION LEARNING
To further enhance the model’s ability to generalize,
we implement Iteration Learning. This involves training
the model iteratively on different subsets or variations of
the augmented dataset. Such a strategy minimizes the risk
of overfitting, a common challenge in machine learning,
particularly in scenarios with limited data:

L(i) = Loss for iteration i (5)

Loverall = Ltotal +
N∑
i=1

L(i) (6)

This iterative approach ensures a robust and comprehensive
learning process, allowing the model to continuously
adapt and refine its understanding of various defect types.

This, in turn, significantly enhances its performance and
generalization capabilities.

E. TRAINING
Finally, the training regimen is meticulously designed to
synergize the various components of our methodology. The
comprehensive loss function guides the model in effectively
learning from both datasets and through iterative learning
processes. The optimization of the overall loss function:

Optimize Loverall = Ltotal +
N∑
i=1

L(i) (7)

ensures that all elements of our methodology are cohesively
integrated, leading to a robust and effective model for lithium
battery surface defect classification.

IV. EXPERIMENTS
A. DATASET
In our experiments, we utilized two datasets: one that
we collected ourselves, known as the Lithium Electronic
Surface Defect Classification (IESDC) dataset, and another
dataset containing six typical surface defect categories in
hot-rolled steel strips, referred to as NEU-CLS [CLS]. Due
to the high cost associated with data collection, our IESDC
dataset offers only a limited number of training samples.
The dataset comprises five categories: ‘‘End Recess’’, ‘‘Over
Melting’’, ‘‘No Defect’’, ‘‘Inked’’, and ‘‘Damaged’’, with
specific quantities as outlined in Table 1. Furthermore, visual
representations of samples from our dataset are presented in
Figure 2. To facilitate the understanding to challenges of such
defects, we provide corresponding introduction and analysis
as follows:

• NoDefect: Amidst defect categories, theNoDefect clas-
sification serves as a crucial baseline. The challenge lies
in discerning between minute, non-critical anomalies
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and actual defects, thereby preventing false positives that
could lead to unnecessary wastage or rework.

• Over Melting: Over Melting defects are aberrations
caused by excessive heat application, usually resulting
in localized deformations. Identifying these defects
involves distinguishing between typical heat-induced
variations and genuine structural compromises, often
complicated by heterogeneous surface reflections.

• Damaged: Damage can present in a multitude of
forms, from cracks to scratches, and is perhaps the
most visually diverse category. Pinpointing these defects
requires a keen eye for detail and context-aware analysis,
as the signs of damage can be highly irregular and
unpredictable.

• EndRecess: Manifesting typically at thematerial edges,
End Recess defects can be characterized by their subtle
indents, which often escape standard detection due
to lighting angles and shadowing effects. Accurate
identification of these defects is essential to ensure
structural integrity.

• Inked: Inked surfaces involve unintended markings that
must be differentiated from inherent textural patterns.
The identification challenge here is primarily around
separating purposeful design elements from accidental
ink spills, which can be particularly tricky in varying
lighting conditions.

B. EXPERIMENTAL SETTING
During the model training process, we set the batch size to 16,
the learning rate to 0.001, and the number of epochs to 10.
We utilized the Adam optimizer [21]. Our proposed CDG
method was trained on the NEU-CLS dataset for 50 steps
and the IESDC dataset for 10 steps, followed by iterative
alternating training. In the multi-task learning setting, both
α and β were set to 1.0. We trained the model using a
single Tesla T4 GPU with a memory capacity of 15GB. For
the dataset images, we initially resized them to a size of
224×224 and applied random horizontal flipping and random
rotation as data augmentation preprocessing steps.

C. RESULTS
The presented table 2 showcases a comparison of various
methods on the IESDC dataset, utilizing accuracy (ACC)
as the primary evaluation metric. The methods under
examination encompass widely recognized deep learning
architectures, including ResNet18, ResNet50, MobileNetV2,
and the Vision Transformer (ViT). Additionally, the table
incorporates variants of the CDG (Cross-Modal Generaliza-
tion) method, denoted with their respective backbonemodels.

Among the baseline architectures, we have ResNet18,
ResNet50, MobileNetV2, and ViT: These are well-
established deep learning architectures with distinct char-
acteristics. ResNet18 and ResNet50 are renowned for their
depth, MobileNetV2 for its efficiency, and ViT for its
transformer-based architecture’s success in image classifi-
cation tasks. A detailed analysis of the performance of the

TABLE 2. Comparison result on IESDC dataset.

baseline models reveals the following: ViT achieves the
highest accuracy of 82.5%. This outcome underscores the
potential of transformer-based architectures, like ViT, for
image classification tasks. ResNet18 follows closely with
an accuracy of 72.5%, while ResNet50 and MobileNetV2
achieve accuracies of 71.25% and 70%, respectively. These
results suggest that deeper architectures like ResNet50 may
not always guarantee superior performance, and efficiency-
focused models like MobileNetV2 may exhibit limitations in
specific tasks.

The CDG method, with different backbone models
(ResNet18, ResNet50, MobileNetV2, ViT), consistently out-
performs the baseline models, showcasing the effectiveness
of the proposed CDG method for enhancing cross-modal
generalization: CDG with ViT as the backbone leads with
the highest accuracy among all methods, at an impressive
91.25%. This result underscores the synergy between the
CDG method and transformer-based architectures, resulting
in exceptional performance. CDG with ResNet18, ResNet50,
and MobileNetV2 as backbones all achieve identical accura-
cies of 82.5%, indicating that the CDG method effectively
mitigates the performance disparities between different
backbone models, making the choice of the backbone less
critical when CDG is applied. The comparative analysis of
the results reveals: CDG with ViT significantly outperforms
all other variants and baseline models, highlighting the
transformative impact of the CDG method on ViT, which
already performed well as a baseline. This emphasizes the
potential of CDG in enhancing the capabilities of state-of-
the-art architectures.

The experimental results suggest that the CDG method,
particularly when paired with a transformer-based archi-
tecture like ViT, can substantially elevate the performance
of image classification tasks on the IESDC dataset. The
superior performance of the CDG method when paired
with a ViT backbone can be attributed to the ability of
transformer models to process images as sequences, enabling
them to capture global context and intricate inter-pixel
relationships more effectively than traditional CNNs. The
self-attention mechanisms in ViT are particularly synergistic
with the CDG approach, which aims to leverage features rel-
evant across different domains for enhanced generalization.
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This combination allows the method to discern nuanced
patterns in surface defects within the IESDC dataset, leading
to a significant increase in detection accuracy.

D. ABLATION STUDY
The ablation study Table 3 provides valuable insights into the
effectiveness of different methods for cross-modal general-
ization (CDG) using different backbonemodels (resnet50 and
ViT) on the NEU-CLS and IESDC datasets. We also examine
the impact of pre-training on NEU-CLS, multi-task learning,
and our proposed CDG method.

TABLE 3. Ablation study.

First, let’s focus on the resnet50 backbone. The baseline
resnet50 model achieved an accuracy of 71.25% on the
IESDC dataset. Pre-training resnet50 on the NEU-CLS
dataset improved the performance significantly to 78.75%.
This result demonstrates the benefits of pre-training, which
helps the model capture more general features that can be
fine-tuned for the target dataset. However, when applying
multi-task learning with both NEU-CLS and IESDC datasets
simultaneously, the accuracy dropped to 72.5%. This sug-
gests that combining datasets without proper adaptation can
lead to performance degradation due to domain shift. The key
contribution comes from our CDG method with the resnet50
backbone, which achieved an impressive accuracy of 82.5%.
CDG leverages the NEU-CLS dataset during training and
employs iteration training to enhance traditional multi-task
learning. This approach demonstrates the effectiveness of our
proposed method in mitigating domain shift and improving
cross-modal generalization. In addition, the baseline ViT
model initially outperformed resnet50 with an accuracy of
82.5%. Pre-training ViT on the NEU-CLS dataset yielded a
slightly lower accuracy of 81.25%, indicating that ViT might
not benefit as much from pre-training as resnet50. Multi-task
learning with ViT also resulted in an accuracy of 81.25%,
similar to pre-training, which suggests that ViTmight already
possess a better generalization capability. However, the most
remarkable result in this study is the performance of CDG
with the ViT backbone, achieving an accuracy of 91.25%.
This highlights the superiority of CDG in adapting ViT to the
IESDC dataset, showcasing its ability to bridge the domain
gap effectively. CDG’s iterative training approach appears to

be particularly beneficial for ViT, as it achieves a substantial
improvement over the baseline. From the results above, each
module contributes uniquely to the overall performance of
surface defect classification. Pre-training captures general
features from one dataset, which enhances the model’s ability
to adapt when fine-tuned on a target dataset, as shown by the
improvement with ResNet50. However, combining datasets
for multi-task learning without consideration for domain dis-
crepancies can negatively impact performance due to domain
shift. The CDG method helps rectify this by leveraging
domain-specific training and iterative updates, leading to
improved generalization across different datasets. For ViT,
the inherent strengths of the architecture may minimize the
benefits of pre-training and multi-task learning, but CDG
methodology maximizes its potential, particularly through
iterative training that significantly boosts its adaptability and
accuracy on challenging datasets.

E. TRAINING LOSS
As shown in Figure 3, two prominent deep learning models,
resnet50 and Vision Transformer (vit), were trained on
two distinct datasets: IESDC, represented as LiImages, and
NEU-CLS, represented as GImages. The training loss curves
for both datasets were observed over a course of 10 epochs.

For the resnet50 model, the LiImages loss started at
approximately 1.0, showing a steep decline in the initial
epochs and then plateauing after epoch 6, ending at
around 0.3. In contrast, the GImages loss began at a lower
value, close to 0.4, and exhibited a more gradual descent,
finalizing near the 0.2 mark. This pattern indicates a faster
convergence on the NEU-CLS dataset compared to the
IESDC dataset for the resnet50 architecture.
The Vision Transformer (vit) demonstrated a similar trend

with LiImages loss initiating at around 1.4 and descending
sharply until epoch 2, then continuing to decrease at a slower
rate, stabilizing close to 0.2 by epoch 10. The GImages loss
for vit started just above 0.4 and dropped steadily to just
below 0.1. The Vision Transformer model achieved a lower
loss on theNEU-CLS dataset more rapidly than on the IESDC
dataset, suggesting a better fit to the former.

The concurrent reduction in loss for both LiImages and
GImages across epochs for each model suggests compati-
bility and effective learning from both datasets. The more
significant loss reduction for GImages indicates that both
models could capture the NEU-CLS data characteristics with
greater ease or that the NEU-CLS dataset might be less
complex or more consistent in its features compared to the
IESDC dataset.

F. IMPACT OF DOMAIN AUGMENTATION
The performance comparison between our proposed Contex-
tual Domain Generalization (CDG) method and the baseline
across different classes is illustrated in the Figure 4. The
left figure represents the accuracy of our CDG method,
while the right figure depicts the baseline performance.
From the left figure, we observe a significant improvement
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FIGURE 3. Impact of training loss.

in accuracy for the ‘Overmelting’ and ‘Nodefect’ classes,
where CDG achieves over 80% accuracy. This suggests that
CDG effectively captures the underlying patterns within these
classes, possibly due to enhanced feature representation or
domain augmentation techniques that mitigate domain shift.
In contrast, the ‘Endrecess’ class demonstrates a substantially
lower accuracy of approximately 20%, indicating that this
category may have a higher intra-class variability or less
representation in the training data, which CDG struggles
to generalize. Similarly, the ‘Damaged’ class also shows
reduced performance, hinting at potential complexities in
characterizing damage-related features that are not fully
captured by the current model. On the other hand, the
right figure shows the baseline model’s performance. The
baseline exhibits a more uniform distribution of accuracy
across classes but underperforms compared to CDG in
‘Overmelting’ and ‘Nodefect’ by a noticeable margin. This
uniformity may point to a lack of specialization towards

FIGURE 4. Impact of training loss.

specific classes, which CDG seems to counteract, likely
through domain-specific feature alignment or regularization
strategies. The ‘Inked’ class presents an interesting case
where both CDG and the baseline have comparable accu-
racies, suggesting that features of the ‘Inked’ class are less
affected by domain variations or are well-represented in the
data.

G. CASE STUDY
As shown in Figure 5, we present a qualitative analysis of
the samples that were correctly classified by our Contextual
Domain Generalization (CDG) approach. The images rep-
resent instances of various classes, including ‘EndRecess’,
‘OverMelting’, ‘NoDefect’, ‘Inked’, and ‘Damaged’. These
samples reflect the diverse and complex nature of the classi-
fication task at hand. The ‘EndRecess’ class is characterized
by subtle indentations or recesses on the surface. The sample
image shows a faint, elongated depression which our CDG
method has successfully identified. This success may be
attributed to the method’s ability to extract and generalize
low-contrast features across different domains. The ‘Over-
Melting’ class depicts areas where the material has melted
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FIGURE 5. Case study of our CDG method.

excessively. The correctly classified sample reveals a small,
rounded protrusion with a distinct texture, indicating over-
melting. CDG’s adeptness in capturing textural differences
seems to play a crucial role in identifying such defects. In the
‘NoDefect’ class, the sample portrays a uniform and defect-
free surface. The CDG approach has correctly classified this
example, demonstrating the model’s capacity to distinguish
between negative and positive instances effectively, a critical
requirement for practical applications. The ‘Inked’ class
comprises samples with ink or similar markings. The given
image shows a clear demarcation with ink around the edge.
Despite the potential for confusion with shadowed regions,
CDG has successfully recognized the distinctive features of
ink markings. Lastly, the ‘Damaged’ class involves more
pronounced defects. The sample image illustrates a distinct
anomaly on the surface, whichCDGhas identified as damage.
The method’s efficacy in detecting such conspicuous defects
indicates robust feature learning and domain adaptability.
The successful classification of these samples indicates
that CDG is capable of discerning intricate patterns and
variations within each class, confirming its robustness and
generalization across domain-specific challenges.

V. CONCLUSION AND FUTURE DIRECTIONS
This paper presents a novel approach to lithium electronic
surface defect classification, addressing the challenge of
limited specific defect data. Our Cross-Domain Generaliza-
tion (CDG) strategy, integrating cross-domain augmentation,
multi-task learning, and iterative learning, has proven effec-
tive in enhancing model accuracy and adaptability. By lever-
aging the NEU steel surface defect dataset and the Lithium
Electronic Surface Defect Classification (IESDC) dataset,
we have demonstrated significant improvements in defect
classification performance. The CDG approach’s adaptability
and robustness in handling diverse defect scenarios set
a new benchmark in lithium battery defect classification.
Our methodology’s success not only provides a valuable
tool for quality control in lithium battery manufacturing
but also offers a framework applicable to other industries
facing similar data scarcity challenges. Meanwhile, though
the CDG marks a significant advance in surface defect
classification, addressing adversarial examples remains an
area ripe for further exploration. Such examples pose a
considerable threat by exploiting model vulnerabilities to

induce misclassifications—a challenge not fully tackled in
the current model. Future iterations of ourmethodology could
benefit from integrating adversarial training, a technique
designed to enhance model robustness by exposing it
to adversarially crafted inputs during the training phase.
Additionally, exploring techniques for detecting and mitigat-
ing adversarial attacks in real-time could further reinforce
the model’s resilience. Through these enhancements, we aim
to fortify our CDG strategy against worst-case scenarios,
ensuring its effectiveness and reliability in diverse and
adversarial environments.

REFERENCES
[1] H. Di, X. Ke, Z. Peng, and Z. Dongdong, ‘‘Surface defect classification

of steels with a new semi-supervised learning method,’’ Opt. Lasers Eng.,
vol. 117, pp. 40–48, Jun. 2019.

[2] I. Konovalenko, P. Maruschak, J. Brezinová, J. Viňáš, and J. Brezina,
‘‘Steel surface defect classification using deep residual neural network,’’
Metals, vol. 10, no. 6, p. 846, Jun. 2020.

[3] Y. Wang, L. Gao, Y. Gao, and X. Li, ‘‘A new graph-based semi-supervised
method for surface defect classification,’’ Robot. Comput.-Integr. Manuf.,
vol. 68, Apr. 2021, Art. no. 102083.

[4] C. Xu, L. Li, J. Li, and C. Wen, ‘‘Surface defects detection and
identification of lithium battery pole piece based on multi-feature fusion
and PSO-SVM,’’ IEEE Access, vol. 9, pp. 85232–85239, 2021.

[5] Y. Liu, Y. Chen, and J. Xu, ‘‘An automatic defects detection scheme
for lithium-ion battery electrode surface,’’ in Proc. Int. Symp. Auto. Syst.
(ISAS), Dec. 2020, pp. 94–99.

[6] Y. Chen, Y. Shu, X. Li, C. Xiong, S. Cao, X.Wen, and Z. Xie, ‘‘Research on
detection algorithm of lithium battery surface defects based on embedded
machine vision,’’ J. Intell. Fuzzy Syst., vol. 41, no. 3, pp. 4327–4335,
Oct. 2021.

[7] H. K. Dandage, K.-M. Lin, H.-H. Lin, Y.-J. Chen, and K.-S. Tseng,
‘‘Surface defect detection of cylindrical lithium-ion battery by multiscale
image augmentation and classification,’’ Int. J. Modern Phys. B, vol. 35,
no. 14n16, Jun. 2021, Art. no. 2140011.

[8] R. Cohn and E. Holm, ‘‘Unsupervised machine learning via transfer
learning and k-Means clustering to classify materials image data,’’
Integrating Mater. Manuf. Innov., vol. 10, no. 2, pp. 231–244, Jun. 2021.

[9] X. Liu, L. Wu, X. Guo, D. Andriukaitis, G. Królczyk, and Z. Li, ‘‘A novel
approach for surface defect detection of lithium battery based on improved
K-nearest neighbor and Euclidean clustering segmentation,’’ Int. J. Adv.
Manuf. Technol., vol. 127, nos. 1–2, pp. 971–985, Jul. 2023.

[10] Y. Zhou, X. Geng, T. Shen, W. Zhang, and D. Jiang, ‘‘Improving zero-shot
cross-lingual transfer for multilingual question answering over knowledge
graph,’’ in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics,
Hum. Lang. Technol., 2021, pp. 5822–5834.

[11] Y. Zhou, T. Shen, X. Geng, G. Long, and D. Jiang, ‘‘ClarET: Pre-
training a correlation-aware context-to-event transformer for event-centric
generation and classification,’’ in Proc. 60th Annu. Meeting Assoc.
Comput. Linguistics, 2022, pp. 2559–2575.

[12] H. Tao, J. Li, Y. Chen, V. Stojanovic, and H. Yang, ‘‘Robust point-to-point
iterative learning control with trial-varying initial conditions,’’ IET Control
Theory Appl., vol. 14, no. 19, pp. 3344–3350, Dec. 2020.

VOLUME 12, 2024 78513



X. Chen et al.: Deep-Learning-Based Lithium Battery Defect Detection via CDG

[13] V. Molazadeh, Q. Zhang, X. Bao, and N. Sharma, ‘‘An iterative learning
controller for a switched cooperative allocation strategy during sit-to-stand
tasks with a hybrid exoskeleton,’’ IEEE Trans. Control Syst. Technol.,
vol. 30, no. 3, pp. 1021–1036, May 2022.

[14] Y. Chen, Y. Ding, F. Zhao, E. Zhang, Z. Wu, and L. Shao, ‘‘Surface defect
detection methods for industrial products: A review,’’ Appl. Sci., vol. 11,
no. 16, p. 7657, Aug. 2021.

[15] X. Zheng, S. Zheng, Y. Kong, and J. Chen, ‘‘Recent advances in surface
defect inspection of industrial products using deep learning techniques,’’
Int. J. Adv. Manuf. Technol., vol. 113, nos. 1–2, pp. 35–58, Mar. 2021.

[16] X. Li, Y. Zheng, B. Chen, and E. Zheng, ‘‘Dual attention-based industrial
surface defect detection with consistency loss,’’ Sensors, vol. 22, no. 14,
p. 5141, Jul. 2022.

[17] H. F. Le, L. J. Zhang, and Y. X. Liu, ‘‘Surface defect detec-
tion of industrial parts based on YOLOV5,’’ IEEE Access, vol. 10,
pp. 130784–130794, 2022.

[18] Z. He and Q. Liu, ‘‘Deep regression neural network for industrial surface
defect detection,’’ IEEE Access, vol. 8, pp. 35583–35591, 2020.

[19] J. Dong, Y. Wang, J. Lai, and X. Xie, ‘‘Restricted black-box adversarial
attack against DeepFake face swapping,’’ IEEE Trans. Inf. Forensics
Security, vol. 18, pp. 2596–2608, 2023.

[20] J. Dong, L. Yang, Y.Wang, X. Xie, and J. Lai, ‘‘Toward intrinsic adversarial
robustness through probabilistic training,’’ IEEE Trans. Image Process.,
vol. 32, pp. 3862–3872, 2023.

[21] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. 3rd Int. Conf. Learn. Represent., 2015, pp. 1–19.

[22] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[23] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[24] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, ‘‘An image is worth 16×16 words:
Transformers for image recognition at scale,’’ 2020, arXiv:2010.11929.

XUHESHENG CHEN (Member, IEEE) received
the M.Sc. degree in information science from
the University of North Carolina at Chapel Hill.
He possesses four years of work experience in data
engineering and artificial intelligence, including
their applications in the science and social sciences
fields.

MINGYUE LIU received the M.Eng. degree in
computer science from Cornell University,
in 2022. She possesses three years of experience
in software engineering and artificial intelligence.

YONGJIE NIU (Member, IEEE) received the
master’s degree in control engineering fromNorth-
eastern University, China, in 2009. With extensive
experience spanning over a decade, he has estab-
lished himself as an expert in integrating artificial
intelligence applications into energy systems and
power electronics. His research interests include
innovative use of AI to enhance efficiency and
sustainability within the energy sector.

XUKANG WANG (Member, IEEE) is currently a
Researcher with the Sage IT Consulting Group,
leading his team studying AI and its applications.
His research interests include deep learning,
blockchain, and privacy.

YING CHENG WU received the bachelor’s degree
from Shanghai Jiao Tong University, in 2021.
He is currently pursuing the master’s degree with
the University of Washington, Seattle, WA, USA.
From 2022 to 2023, he was a Research Assis-
tant with The University of Iowa. His interests
include machine learning, privacy, and blockchain
technologies. Further, he is especially intrigued by
the intersection of artificial intelligence with the
broader spectrum of social sciences.

78514 VOLUME 12, 2024


