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ABSTRACT Coding algorithms are usually designed to faithfully reconstruct images, which limits the
expected gains in compression. A new approach based on generative models allows for new compression
algorithms that can reach drastically lower compression rates. Instead of pixel fidelity, these algorithms aim
at faithfully generating images that have the same high-level interpretation as their inputs. In that context, the
challenge becomes to set a good representation for the semantics of an image. While text or segmentation
maps have been investigated and have shown their limitations, in this paper, we ask the following question: do
powerful foundation models such as CLIP provide a semantic description suited for compression? By suited
for compression, we mean that this description is robust to traditional compression tools and, in particular,
quantization. We show that CLIP fulfills semantic robustness properties. This makes it an interesting support
for generative compression. To make that intuition concrete, we propose a proof-of-concept for a generative
codec based on CLIP. Results demonstrate that our CLIP-based coder beats state-of-the-art compression
pipelines at extremely low bitrates (0.0012 BPP), both in terms of image quality (65.3 for MUSIQ) and
semantic preservation (0.86 for the Clip score).

INDEX TERMS Compression algorithms, deep learning, image coding, image processing, image
reconstruction, image representation, semantic.

I. INTRODUCTION
Since decades, strong research efforts have been spent to
improve the rate-distortion performance in image compres-
sion. On average, gains of 50% are reached every decade [1],
[2], [3], [4]. Even though these improvements are impressive,
they are not sufficient to cope with the tremendous amount of
data produced every day [5].

More recently, a new type of approach has arisen:
the semantic, or generative, compression methods. Their
principle is to abandon the pixel fidelity criterion, classically
measured with MSE (Mean Squared Error), PSNR (Peak
Signal-to-Noise Ratio) or SSIM (Structural Similarity Index
Measure) [6]. The motivation behind this is that the important
information carried by an image does not reside at the
pixel level but instead at a higher level. Moreover, in some
applications, having an image that is pixel-wise close to
the input is not necessary. Instead, it is sufficient to have a
decoded image whose high-level content is preserved. This
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is, for example, the case in coding for machines [7] or
for cold data [8]. Basically, in such generative compression
approaches, an encoder describes the image semantics in
a compact form, and a decoder uses a generative method
(e.g., Generative Adversarial Network [9] or Diffusion
Models [10]) to synthesize an image expressing the coded
semantic. One of the research questions is thus: how to
describe the semantics of an image?

By semantic, we have to understand all that deals
with high-level information about an image, e.g.,, objects,
positioning, general atmosphere, and feelings. These features
are human-dependent and remain very difficult to capture.
However, some attempts have been made in the literature.
A first category of methods models the semantics of an image
with a segmentation map, i.e., an image whose pixel values
indicate the class label. A seminal work [11] proposed to
describe an image as a semantic map. This map is used by
the decoder to guide a GAN-based decoder. Similarly, [12],
[13], [14], [15] estimate the segmentation map at the encoder
and reconstruct an image at the decoder thanks to a diffusion
model, such that the content of the reconstructed image is
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faithful to the segmentation map. Clearly, representing the
image semantics with labels can rapidly become limited since
the semantics must belong to a predefined list of classes.

Other, more expressive, high-level descriptions have been
explored, such as the textual description. In [16] and [17],
the input image is mapped to a text that constitutes the
compressed semantic information. On the decoder side,
a diffusion model is used to generate an image corresponding
to the caption. The difficulty resides in generating the
text corresponding to an image, which is not always
straightforward. To overcome this challenge, [18] proposed
to complete the textual compressed vector with a compressed
sketch of the input. This addition helps guide the generative
model to reconstruct images structurally closer to the inputs.

Recently, foundations models have been explored to
represent information in an embedding space. This can
further be used for several applications, such as [19], which
unifies image generation and image compression, or [20],
which uses large language models to extract the semantic
description of images compactly. One of the most commonly
used foundation models is CLIP (Contrastive Language-
Image Pretraining) [21]. In a nutshell, CLIP is trained to align,
in the same embedding space, the vectors representing the
image content and its corresponding textual caption. As a
consequence, one part of the CLIP model can take an image
as an input and map it to a vector in its latent space. From the
way CLIP is trained, we can expect this vector to represent
the image semantics in some way or another.

In this paper, we ask the following question: Is CLIP
suitable for image compression?More precisely, we wonder
to what extent CLIP represents the semantics of an image and
if CLIP’s latent vectors are robust to transformations applied
through traditional compression tools (and in particular
quantization). To tackle these questions, we define two
properties that CLIP must satisfy. The first property deals
with how faithful the description of the semantics of the
image is to the CLIP representation. For the second property,
we investigate how compact the CLIP representation is so that
it can help reach low bit rates. In the same spirit as [22], which
explores the latent space of diffusion models, and [23] that
explores the limits of CLIP for image compression, we first
propose an experimental methodology used to demonstrate
that CLIP possesses these properties. Finally, we propose a
proof-of-concept CLIP-based generative coder, highlighting
the huge potential for image representation to rely on CLIP.

In this work, the main contributions are the following:

• We derive two properties that a semantic representation
must fulfill when it is used in the context of image
compression;

• We experimentally prove that CLIP satisfies the two
aforementioned properties on multiple datasets;

• We propose a proof-of-concept CLIP-based compres-
sion scheme, and we show that it outperforms classical
codecs both in terms of quality and semantics conserva-
tion at extremely low bitrates.

II. PROBLEM FORMULATION
A. MODELING IMAGE SEMANTICS WITH CLIP
An image is usually represented as a vector x ∈ DN ,
where N is the dimension of the image. Each vector element,
x[n], describes a pixel color, represented in a color domain
D. Typically, D = J0, 255K3 for RGB format. While
each pixel value gives point-wise color information, the
concatenation of these pixels can formmore general concepts
such as contours, textures, shapes, etc. Going further, the
concatenation of these concepts can lead to a high-level
interpretation of the scene described by the image (e.g.,
objects, actions, atmosphere, feelings). These elements are
typically referred to as the general concept of semantic. In the
following, we denote by sem(x) the semantics of an image x.
Modeling the sem function has been an intensive research

topic for a long time (image representation [24], image
embedding [21]). Recently, foundation models, and more
specifically CLIP [21], have been recognized as powerful
tools to model image semantics [25]. Concretely, the CLIP
method casts an image onto a reduced space L ⊂ RM where
M is the dimension of the CLIP space. In the following, L is
called the CLIP latent space:

f : DN
−→ L

x 7−→ z (1)

where M < N . We indeed look for this inequality for two
main reasons: first, as we cast this work in a compression
paradigm, it is interesting to gradually reduce the dimension
of the data in the pipeline. Second, as we suppose that the
latent space of CLIP is more semantic than the pixel domain,
we suppose that the dimensions needed to encapsulate the
high-level description of the image are lower than the
dimensions of the pixel space. The function f has been trained
such that two images x1 and x2 with close semantic have
aligned CLIP vectors z1 and z2. The following property is
thus, by construction, verified:
Property(P0): For two images x1 and x2 and their

respective CLIP representation z1 = f(x1) and z2 = f(x2),

sem(x1) ≈ sem(x2) ⇔
z⊤1 z2

∥z1∥2∥z2∥2
= cos(z1, z2) ≈ 1

(2)

This propertyP0 has been very useful for many tasks (such as
classification [21], [24]) as the semantics of two images can
easily be compared by computing the cosine between their
respective CLIP representations.

B. IS CLIP SUITABLE FOR GENERATIVE COMPRESSION?
In this paper, we would like to study whether CLIP’s latent
space respects additional properties that could be useful for
other image processing tasks, such as our task of interest in
this work: compression. Recently, some algorithms have been
developed to explore the problem of image compression at
extremely low bitrates [26]. In such conditions, when coding
an image x, trying to be faithful to the original image’s pixels
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FIGURE 1. Encoding-decoding pipeline with CLIP, as f and unCLIP, as g.
The input image is noted x, the latent vectors z and the output image x̂.

is no longer efficient [27]. Instead, it is preferable to describe
the image by its semantics sem(x), especially since the
arrival of powerful image generation techniques that enable
reconstructing images from a semantic description [15], [26].
These so-called generative compression algorithms can, for
example, rely on CLIP. In those cases, an image x is encoded
by f, and the compact semantics vector z = f(x) is used
to guide a generative model, denoted by g in the following.
These algorithms allow for reaching extremely low bitrates
and to decode an image x̂ such that f(x) ≈ f(x̂).
To verify that a CLIP-based compression approach is

meaningful, we must verify that having f(x) ≈ f(x̂) implies
that sem(x) ≈ sem(x̂). In other words, we have to evaluate
how exhaustively the function f captures the semantics of an
image. We therefore consider the following property:
Property (P1): For an image x,

sem(x) ≈ sem(g ◦ f(x)) (3)

The property P1 is investigated in Sec. IV.
In a CLIP-based generative compression architecture, the

CLIP vector z of an image x constitutes the main element
of the code-word.1 The size of the compressed image is
thus strongly linked to the number of bits necessary to
describe the vector z. This number can be reduced by
performing a quantization (denoted by q), as classically done
in conventional compression schemes. The quantization q
consists in reducing the size of the alphabet with which the
elements of z are expressed. This can be done only if it does
not affect the semantics of the decoded image x̂. We then
explore the following property in Sec. VI:
Property (P2): For an image x,

sem(g ◦ f(x)) ≈ sem(g ◦ q ◦ f(x)) (4)

III. METHODOLOGY
In this section, we define the set-up in which we study
the properties P1 and P2. First, we introduce the pipeline
architecture: the models and datasets used. In a second time,
we present and discuss the different metrics used to evaluate
the images: the quality metrics and how we plan to evaluate
the preservation of the semantics between the inputs and the
outputs.

1The CLIP vector might be completed by some light additional
information to bring more consistency between x and x̂.

A. PROPOSED FRAMEWORK
Figure 1 presents the studied codec (encoder-generator) for
this work. Input images x are encoded with f, the image
encoder, into a latent vector z via f(x) = z ∈ L, where L is
the latent space. Finally, g, the image generator, reconstructs
outputs images x̂ from the latent vectors x̂ = g(z).

1) MODELS
For the image encoder f, we use CLIP [21], as it is a popular
foundation model for image embedding. Specifically, we use
the Vital/14 version of the model. In this version, images are
encoded in a 768-dimensional (thus L ⊂ R768) vector coded
on 16-bits vectors. For the image generator g, we use the
stable unCLIP [28] model, a CLIP fine-tuned latent diffusion
model based on the Stable Diffusion model [29]. The used
weights can be found here.2

We specify that CLIP and Stable unCLIP are notfine-tuned
nor retrained for any of the experiments presented in this
work.

2) DATASETS
In this work, we benchmark our explorations on multiple
datasets to prove the aforementioned properties. The first
dataset used for benchmarking is Kodak [30]. This is a clas-
sical dataset used for evaluating and comparing compression
pipelines. We also evaluate the pipeline on images from two
other datasets: Landscape [31] and CelebA [32]. The former
has been selected as it is expected to behave nicely in the
context of semantic generative compression – as landscapes
in general were used to train CLIP and also have an easily
extractable high-level interpretation. The latter, on the other
hand, was used as it was not expected to easily comply with
semantic compression. Indeed, faces were explicitly removed
from CLIP training set to avoid generating known people into
displeasing images. Also note that the semantic high-level
description of faces is far more complicated to grasp [33].

B. EVALUATION OF THE GENERATED IMAGES
By nature, classical MSE-based metrics are not efficient for
evaluating a generative coding pipeline. Instead, we have
to assess to what extent the semantic is conserved during
compression. We also have to ensure the quality of the
generated images.

1) SEMANTIC CONSERVATION METRICS
To evaluate the semantic fidelity, we first propose to compute
a segmentation map of both images, and then compare them.
Concretely, the segmentation maps are computed with [34],
which is a Deeplab implementation with a ResNet101
backbone [35]. The segmentation maps can be made of more
than a hundred of classes, based on the classes of the MS-
COCO dataset [36]. We represent the segmentation map as
a vector s, in which each component s[i] corresponds to one
class and depicts the proportion of the image belonging to
this class. We denote by sb its binary version, where only the

2https://huggingface.co/docs/diffusers/api/pipelines/stable_unclip
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FIGURE 2. Some examples of semantic conservation scores obtained at different levels of correlation.

FIGURE 3. Examples of generated images with g ◦ f. (Row-wise, top to bottom) Inputs respectively taken from Landscape, CelebA and Kodak. For each
sub-figure, the input is the top left image, and the generated images are the three others.

presence or absence of a class is described. Let us consider
two segmentation maps represented in their vector forms:
s1 and s2, taken from two images, x1 and x2. To compare these

segmentation maps, we define two scores:

CSS(x1, x2) =
s⊤1 s2

∥s1∥2∥s2∥2
(5)
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BSS(x1, x2) =
∥sb1 ∧ sb2∥1
∥sb1 ∨ sb2∥1

(6)

The CSS shows to what extent the content of both images
is semantically the same – regardless of where the different
classes are present in the images. However, this score will not
be able to detect whether the generated images produceweird,
small artifacts that were not initially present in the inputs.
On the other hand, the BSS tells us to what extent both images
share the same semantic class, regardless of their importance
in the image. Both of these metrics range from 0 to 1, the
latter being the better.

Another way to evaluate semantic similarity between two
images is to compare their CLIP latent representation z1 and
z2 [37]:

CC(x1, x2) =
z⊤1 z2

∥z1∥2∥z2∥2
, (7)

ranging from 0 to 1, the latter being the better.
Finally, to ensure that the generated images follow the

same semantic distribution as the inputs, we compute the
Fréchet Inception Distance (FID) between the input images
and the generated images. This metric gives the distance
between two groups of images, considered as probability dis-
tributions in the latent space of a certain classification model.
In this work, we use the Torch Metric implementation [38],
based on the third version of the Inception model [39]. This
metric is a distance, so the closer to 0, the better.

To give some intuition about the behavior of these semantic
metrics, we compare the expected high-level semantic
correlation to the one given by the metrics. Figure 2 gives the
typical value scores obtained for different levels of semantic
correlation. These metrics are relevant to the proposed
study, as the obtained scores correlate with the human-given
semantic correlation.

2) NO-REFERENCE IMAGE QUALITY METRICS
Generated images have to follow natural images distribution.
To ensure this, we propose to evaluate the realism of the
outputs, regardless of the original input; we use Image
Quality Assessment (IQA) metrics.

To evaluate realism, we use two no-reference IQAmetrics:
MUSIQ [40] and DBCNN [41]. MUSIQ is a multiscale
image quality transformer processing images with varying
resolutions and ratios. DBCNN is a deep bilinear model for
blind image quality assessments specialized in synthetic and
authentic distortions, one for each network. The higher, the
better for both of these IQA metrics.

IV. PRESERVATION OF IMAGE SEMANTICS WITH CLIP
(PROPERTY P1)
In this section, we evaluate how the property P1 is verified
experimentally. Specifically, we would like to measure how
much the CLIP function f captures the semantics of images.
For that purpose, a high number of images are processed
with the pipeline g ◦ f, depicted in Figure 1. First, we ensure

TABLE 1. No-reference quality metrics applied to kodak, landscape, and
CelebA. (Columns 1 and 3) original images. (Columns 2 and 4) images
generated via g ◦ f.

that the quality of the rendered image is perceptually good
and that the x̂ are semantically close to x visually. Then,
we propose a quantitative assessment method for semantic
coherence evaluation and show that the proposed pipeline
indeed preserves the inputs’ semantic.

A. QUALITATIVE ASSESSMENT EVALUATION
To assess the quality of the generated images, we process a set
of 100 images from the three datasets with the pipeline g ◦ f
depicted in Figure 1. For the sake of robustness, we generate
3 images x̂ = (g ◦ f)(x) per input. First, we would like to
ensure that the generated images are good-looking (for the
moment, without any consideration of the input). Hence,
we measure the quality of each x̂ with the no-reference
metrics introduced in Section III-B. Each metric is also
benchmarked on original images, without any modifications,
to estimate the scores on natural images.

Table. 1 presents the no-reference scores obtained for each
tested dataset. We first observe that the metrics are coherent
from one to another, which means that they are reliable.
Second, we observe that the input images’ scores (i columns)
are slightly better than the ones from the generated images (g
columns). While this decrease in quality can be considered
a problem for generating images, we observe from Figure 3
that the quality of the output is sufficient for the generative
compression needs. For each example, we verify that the
generated images x̂ are visually coherent with their respective
input image. This tends to prove that the image semantics
are well captured by the function f. To go further in the
demonstration, we propose a quantitative assessment in the
following.

B. QUANTITATIVE ASSESSMENT EVALUATION
Now that we are armed with simple yet effective semantic
metrics, we can evaluate to what extent the generation
pipeline preserves the semantics of the input image. To do
so, we select 100 images, and we generate 3 variations from
each latent vector. We evaluate, for each dataset, the semantic
score of the outputs regarding the inputs: each input image is
compared to each of the 3 generated variations.

Table. 2 shows the semantic score of the generated
images regarding their inputs. We first observe that, similarly
to the previous semantic evaluation experiments, the four
metrics are correlated, here in the high values. Indeed,
we observe a high semantic correlation (from 0.79 to 0.89
CC, 1.43 FID for Landscape and CelebA and 0.93 CSS for
CelebA) between the generated images and their counterpart

78926 VOLUME 12, 2024



T. Bachard, T. Maugey: Can Image Compression Rely on CLIP?

TABLE 2. Semantics metrics applied to images generated from Kodak,
Landscape and CelebA via g ◦ f.

inputs. In terms of ‘‘high-level’’ correlation, we are in the
‘‘highly correlated images’’ range for the previous subsection
experiment. Some low values can be observed, such as 5.83
FID for Kodak. We suppose that the FID is not a good metric
for evaluating semantics for highly heterogeneous datasets,
as their statistical features may not be highly correlated and
more images may be required for more precise results.

These values can be compared to those of Figure 2.
We observe, as expected, that the generated images are
around the highly correlated values for each metric. This
demonstrates that the property P1 is, in general, verified,
and that we can rely on the CLIP function f to model quite
exhaustively the sem function.

V. SHAPE OF THE CLIP LATENT SPACE L
Before tackling property P2, we must acknowledge that in
property P2, the latent vectors (resulting from the mapping
of an image with f) are modified due to quantization, before
being processed by the generator g. There is no guarantee that
performing such operations in the latent space is compatible
with the way the generator g was trained (and we recall that
we want to avoid retraining or even fine-tuning f or g). In this
section, we first investigate the shape of L and we show that
it is included in a thin spherical shell of dimension M , and
thus can be approximated by a sphereM dimensional L̂. In a
second time, we define an operator π that projects vectors of
RM onto L̂. The goal is to use π to move the modified CLIP
latent vectors to a space that is safe for the generator g.

A. L AS A SPHERICAL SHELL
At first glance, the CLIP latent space L is a subset of RM

(M = 768) with no a priori organization. To find the general
shape of L, it is important to note that the function f is trained
such that the mapping of an image f(x) is aligned with the
embedding of its textual description. Moreover, the training
strategy leads to the property P0, stating that two images are
semantically correlated if the cosine similarity between their
CLIP description is close to 1. For all these reasons, one can
expect that the CLIP latent vectors are characterized by their
orientation in RM . It is thus reasonable to assume that L has
a seemingly spherical shape.

This hypothesis is verified when looking at the distribution
of the norms of the encoded images of Kodak and Landscape,
pictured in Figure 4. We observe that the norms are
concentrated on a given value (≈ 19 or 20), which can be
interpreted as the radius rqual of a sphere.We then hypothesize
that L is included in a thin spherical shell. Said differently,
we hypothesize that most of the CLIP latent vectors of natural

FIGURE 4. Norm distribution of the latent vectors for input images from
Kodak (left) and from Landscape (right).

images lie in an M−dimensional spherical shell. By doing
so, we need to show that the radius contains no information
regarding the semantic.

To verify this statement, we map images x to their latent
vectors z, and in a second time, rescale each latent vector
with a factor λ ∈ [0.1, 2.5]: zλ = λz. We then generate
images x̂λ from the rescaled latent vectors x̂λ = g(λ f(x)).
Finally, we evaluate the quality of the generated images,
and more importantly, we evaluate their semantic coherence
with the input image. A visual toy example is presented in
Figure 5, and quantitative results are presented in Figure 6.
From Figure 5 we observe that indeed the semantic coherence
with the input images seems to be maintained for λ values
not too far from 1, proving the spherical shell form of L.
More precisely, we observe that for low values of λ, i.e.,
λ < 0.75, the generated image is either gibberish or of a
lesser quality in terms of structural coherence. Furthermore,
the semantics seem to change as well, becoming broader and
more general. For high values of λ, i.e. λ > 1.5, we observe
that the generated images are more and more noisy as λ
increases, showing that the model has not been trained to
generate images from latent vectors whose norms are too
big. Finally, as expected by our intuition, when the values of
λ are reasonably close to 1, the generated images show no
differences from control experiments in Fig. 3. We conclude
that the generator g does not work for either high rescaling
values or low rescaling values, demonstrating once again that
the meaningful latent vectors should be placed not too far
from the sphere of radius rqual. This trend is confirmed when
looking at the quantitative results in Figure 6. More precisely,
we observe two interesting phenomena. First, we see that
the quality of the generated images does not depend on the
scale factor, except for tiny and considerably large latent
vectors, as the DBCNN and MUSIQ graphs show. This
simply demonstrates that the generator g has been trained to
maximize the quality of the outputs, regardless from where in
L the latent vector z has been drawn. The second phenomenon
we observe in this figure concerns the semantic metrics.
Indeed, for CC, BSS, CSS, and FID to a lesser extent, the
semantic coherence between the inputs and the outputs is
maximized (minimized for the FID) on a plateau around
λ = 1. When the scale factor is too far from this plateau, i.e.,
λ < 0.5 or λ > 1.5, the semantic coherence quickly drops in
quality.
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FIGURE 5. Visual examples of generating from scaled latent vector. (Top to Bottom) Inputs respectively taken from Kodak, Landscape and CelebA. For
each sub-figure: (Left) Input image. (Right, left to right, top to bottom) Generated images from the scaled latent: λ ∈ [0.1, 0.25, 0.5, 0.75, 1.25, 1.5, 2, 4].

This experiment confirms thatL is included in a thin spher-
ical shell. To guarantee good visual quality and semantics
coherence, we propose, in the next section, an operator π that
maps RM vectors onto L̂, anM -dimensional sphere included
in L.

B. PROJECTION ONTO L̂
Applying quantization operations on latent vectors in L
may displace the resulting latent vectors in a region of RM

that is outside the interesting subspace L, where coherent
generation is not guaranteed. In this subsection, we motivate
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FIGURE 6. Quality and semantic coherence scores regarding the scale factor λ, applied to Landscape, Kodak and CelebA. (Top to bottom, left to right)
DBCNN, MUSIQ, CC, BSS, CSS, and FID.

and introduce a projection operator π : RM
−→ L̂ ⊂ L that

preserves the semantics after projection while ensuring good
generative properties.

In Section V-A, we showed that, around a certain norm,
the latent vectors share the same semantic. This is especially
true when the displacement is radial. Figure 6 shows that
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FIGURE 7. Proposed quantization pipeline.

the cosine similarity between different latent vectors is
conserved. This result motivates the definition of the π

operator as a radial rescaling operator. Because the semantic
along a line passing through the origin is the same, we only
have to maximize the quality of the output image. This
rescaling value is given by the most representative norm of
the encoded images from our datasets. According to Figure 4,
this value should be set to around rqual ≃ 19.5. By doing
so, we approximate the latent space L by a spherical sphere
L̂ ⊂ L.

We thus define the following projection operator π , that is
applied to all the latent vectors before generation, when they
result from any displacement in the latent space:

π : RM
−→ L̂ ⊂ L

z 7→
rqual
∥z∥

z (8)

VI. QUANTIZATION IN THE LATENT SPACE
(PROPERTY P2)
In this section, we discuss the property P2. We are looking
at the effects of quantization in the latent space on generated
images. First, we discuss the quantization pipeline and how
we model the quantization process, first as a uniform bit
reduction per dimension and then as an additive Gaussian
noise. We then evaluate both the quality and the semantic
preservation of the generated images for both quantization
models.

A. METHODOLOGY
To test how much the CLIP latent dimension can be reduced
(property P2), we introduce a new operator q performing
quantization in the latent space. This operator is represented
in Figure 7. The quantized vectors are noted ẑ and the
generated images x̂. Note that because we use an operator
that may cast the latent vectors outside L (see Section V-B),
we also have to compose with the π operator after the
quantization step. Indeed, this ensures that the latent vectors
end up in L̂ ⊂ L, a suitable space for image generation.

In this work, we explore quantization in its simplest form:
uniform quantization alongside each dimension of the latent
vector. This is motivated by the fact that classical encoders,
such as JPEG, also use this form of quantization [42]. For a
given quantization step q (usually q = 2−b where b is the
number of bits allowed per dimension), the quantization is
performed as follows:

ẑ = q(z) = ⌊
z̄
q
⌋q+

q
2

(9)

where ∀i, z̄[i] = max(min(z[i], −1), 1)

The lower and upper bounds for quantization are set to
±1 as prior experiments showed no degradations in the
reconstructed images with wider ranges. As the models used
in this pipeline use 16-bits vectors as inputs, the quantization
experiments only consider 16 bits through 1 bit per dimension
quantization.

B. EFFECT OF UNIFORM QUANTIZATION
To observe the effects of uniform quantization on generated
images, we evaluate both the quality and the semantic
conservation of generated images where the latent vectors
have been compressed with different levels of quantization.
To quantify these effects, we select 20 images from different
datasets, encode their latent vectors with f, quantify them (b ∈

[1, 2, 4, 8, 16]) and generate 3 variations for each quantified
latent vector. We then compare x and x̂ with the metrics
introduced in Sec III-B. In particular, these metrics measure
the quality of the rendering and the semantic similarity.

Visual examples of this experiment are presented in
Figure 8. We observe that, regardless of the quantization
level, the generated images seem both semantically close to
their respective inputs and qualitative. No degradation can
be observed, even when the ẑ[i] are represented with only
1 bit. This tendency is confirmed by Figure 9 where we do
not observe any significant score decreasing for any metric,
except a slight decrease for the CC score when going from
2 bits to 1.

These experiments strongly suggest that the CLIP latent
vectors z can be represented in a coarse, quantized form
without affecting the content of the generated image. These
results are interesting for two reasons. First, it indicates
that we can drastically reduce the number of bits necessary
to describe CLIP latent vectors when they are used as
a compressed representation of images. Second, it shows
that the shape of CLIP’s latent space seems pretty smooth,
in the sense that the neighborhood of a CLIP latent leads
to pretty consistent generation results in terms of semantics.
We further investigate these observations in the next section.

C. GAUSSIAN NOISE
As shown in the results of the previous experiments, even
harsh compression does not seem to impact the quality of the
generated images or the semantic relations with their inputs.
Only slight semantic degradations seem to appear when going
from 2 bits per dimension to 1. In this section, we would like
to investigate how far from each other two CLIP latent vectors
can be and still lead to the same generated images in terms
of semantics. For that purpose, we consider an experiment
where we map an image to a latent vector z, to which we
add a Gaussian noise with a fixed controllable variance 6 =

σ I . This operation classically mimics quantization, with the
quantization step being controlled by the variance of the
noise:

ẑ = z+ η, where η ∼ N (0, 6) (10)
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FIGURE 8. Generated images from quantized latent vectors. (Left to Right) Inputs respectively taken from Kodak, Landscape, and
CelebA. For each sub-figure: (Top) Input image. (Middle to Bottom) Variation with different levels of quantization. (Left to Right, Top to
Bottom) Quantization: 1 bit, 2 bits, 4 bits, and 8 bits.
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FIGURE 9. Quality and semantic coherence scores based on the quantization level, applied to Landscape, Kodak and CelebA. (Top to bottom, left to right)
DBCNN, MUSIQ, CC, BSS, CSS, FID.

For each noisy latent vector ẑ, where σ ranges from 0.1 to
2.5 with a 0.1 step, we generate 3 variations of each input
images. The results from different datasets are presented
in 10, for the quantitative results, and in Figure 11, visual
examples.

From the different metric scores, presented in Figure 10,
at low variance noise, we observe that the generated images
from the noisy latent vectors are semantically close to their
original inputs while still being of good quality. Furthermore,
themore the noise variance increases, the farther semantically
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FIGURE 10. Quality and semantic coherence scores, regarding the proportion of noise added regarding the norm of the input latent vector, applied to
Landscape, Kodak, and CelebA. Scattered crosses represent the quantized images generated in Section VI-B. (Top to bottom, left to right) DBCNN,
MUSIQ, CC, BSS, CSS, FID.

the generated images are from their respective inputs.
However, we observe that, even at high variance noise, the
generated images are still qualitative in terms of natural
images (regardless of the original latent vector or image). This

further strengthens the interpretation that unCLIP is trained
to generate natural images from any latent vector, regardless
if it can be obtained from a natural image or not. These
observations are confirmed by the visual examples presented
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FIGURE 11. Visual evolution of the generation of the addition of increasing Gaussian noise on the latent vector. (Top to bottom) Inputs respectively taken
from Kodak, Landscape, and CelebA. For each sub-figure: (Left) Input image. (Right, top to bottom, left to right) Variation with different levels of noise.
From left to right, top to bottom: σ ∈ [0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2].

in Figure 11. We indeed observe that for a small noise, i.e.
σ < 0.6, the generated images are semantically close to
their respective inputs and most high-level details are kept
(some exceptions arise, such as the second face in the CelebA
example). For a moderate noise addition, i.e. 0.6 ⩽ σ ⩽ 1.4,
only the structural semantics is conserved, while medium-to-
high-level details are modified or suppressed. For example,
we observe the apparition of a priest or shellfish in the
Landscape example or a complete change of topic in the
Kodad example. Finally, when the added noise is too big,
i.e. σ > 1.4, the generated images have low-to-no-semantic
resemblance with their current inputs. This can especially
be observed in the Landscape and Kodak examples. Note

that, for some of these examples, some generated images
with large noise may seem closer than some generated with
lower noise. While this is statistically wrong, see Fig. 10,
we chose not to cherry-pick the results to also highlight the
fact that some directions may alter the semantics in a worse
way than others. This work is, however, suitable for future
study.

Furthermore, we added the scores of the metrics we
obtained with the previous quantization experiments on
Figure 10. We observe that the quantization steps, even the
harsher ones at 1 bit or 2 bits per dimension, lay in the no-to-
small noise variance area. This explains the good rendering
results we obtain with the previous quantization experiment.
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TABLE 3. Quality and semantics quantification evaluations between VVC and the proposed method at very low bitrates. Scores calculated on Landscape.

We can conclude that, while already very compact in
its 16-bits precision form, the CLIP latent z of an image
can be largely compressed until reaching the impressive
size of 1 bit per component (i.e., a compression ratio of
16). This demonstrates that CLIP manages to describe the
image semantics well and can be a good representation for
a generative compression method. This is what we develop in
the next section.

VII. CLIP-BASED SEMANTICS GENERATIVE CODING
SCHEME
This section introduces a simple compression scheme based
on the discussions of P1 and P2. We compare the proposed
compression algorithm with the intracodec of VVC [43] at
low bitrates, as well as Text+Sketch [18], an extremely low
bitrate generative compression pipeline. To put the future
work into perspective, we conclude with the limitations of
the proposed coding method.

A. CODING SCHEME AND EXAMPLES
We introduce a proof-of-concept coding algorithm based on
the semantic propertiesP1 andP2 demonstrated on the CLIP-
unCLIP codec. The proposed coding scheme is the same as
the one proposed in Figure 7:

• We encode the images via the encoder e = q ◦ f;
• To prepare the quantization, we clamp the latent vectors
to [−1, 1];

• We quantize the latent vectors to 1−bit per dimension;
• On the user side, they decode the quantized latent vector
via the decoder d = g ◦π .

Note that we use of the projector π to ensure that the
generated images are in L̂ ⊂ L. For this experiment, we fix
the generated images size to 768× 768, thus the bit per pixel
(BPP) for this pipeline is fixed to 768

7682
≃ 0.0012 BPP.

B. STATE-OF-THE-ART COMPARISON
To compare our framework among the extremely low bitrate
compression pipelines, we encoded the same images with
the VVC intra coder [43], the current best standard image
compression scheme. The compression is done at the highest
possible Quantization Parameter (QP) to reach the same
BPP magnitude. At QP 63, we reach an average BPP of
0.0045. This BPP value is still 4 times higher than the
one proposed by our coding scheme. We also compare
our pipeline to the Text+Sketch model [18]. This pipeline
relies on a generative compression algorithm using a textual
description of the images, with or without a sketch of the
image, as side information for the generator. While the sketch

helps to reconstruct closer images to the input, it also adds a
supplementary cost in terms of compression. To make a fair
comparison, we compare our model to both of the modes.

The comparisons of 20 compressed and decompressed
images from Landscape (as it is the best dataset to work on,
according to previous experiments) are presented in Table 3.
We show that for each of themetrics used in this work (quality
of the outputs and conservation of the inputs’ semantics),
our method performs better at extremely low bitrate than
VVC, the classical coder. Indeed, if we observe the outputs
of both methods, see Figure 12, we see that VVC produces
poor-quality images from which one can barely recognize the
inputs. We emphasize that VVC is one of the best current
image encoders used for video compression. Yet, it has not
been designed to be efficient at such low bitrates, hence the
poor visual results. Note that this is also the case for all the
other classical compression algorithms, as such extremely
low compression rates are not considered in general. On the
other hand, our codec, while encoding at a BPP 4 times
lower, generates qualitative images that are semantically
close to the different inputs. However, this codec still has
room for improvements to be used as a complete compression
framework, as discussed in the following.

Comparing to a generative compression framework, the
differences between our pipeline and [18] are less obvious
in terms of metrics. For the IQA metrics [18]’s image quality
outperforms our model, and even outperforms the quality of
natural images, see Tab. 1. Regarding the semantic metrics,
our method competes with the other generative models. One
can observe that one of the advantages of our method is that
the generated images are visually closer to their respective
inputs in terms of style (as one can observe in the first
example) and in the conservation of some semantic details (as
one can observe in the third example with the disappearance
of the walking path or even the individuals). All in all, in the
proposed framework, both the quality of the generated images
and the conservation of the semantics are competitive with
other generative compression pipelines while providing a
BPP 3 to 20 times lower.

C. LIMITATIONS
The results presented in the last experiments are promising:
a CLIP (and unCLIP)-based compression framework is
suited for extremely low bitrate compression. Both the
quality of the generated images and the conservation of the
semantics make the pipeline suitable for semantic image
compression. However, we observe that the generated images
are sometimes far from the inputs in terms of structural
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FIGURE 12. Visual comparison of the different compression pipelines at extremely low bitrates. (Left to right for each row) Input image. Proposed
method (0.0012BPP). VVC (0.0045 BPP). [18] without sketches (0.003 BPP). [18] with sketches (0.026 BPP).

organization (colors, place of the objects, themes, etc.). Thus,
a possible enhancement of the proposed framework could be
to add a bit of side information containing the structure of the
input images in the compressed vectors. This information can
be a color map of the inputs, as proposed in [15], or a sketch
of the inputs, as proposed in [18]. While this side information
may add to sticking closer to the inputs, it would come at the
cost of a few extra bits for the compressed vectors. This would
highlight a rate-distortion trade-off between the conservation
of structural information between the inputs and the outputs,

and the size of the compressed latent vectors. A typical rate-
distortion trade-off, as proposed by [27].

VIII. CONCLUSION AND FUTURE WORK
A. CONCLUSION
In this work, we demonstrated that CLIP can be used as a
semantic image encoder for generative compression. Indeed,
after showing that the relevant part of its latent space is
a spherical shell, we proved two important properties for
generative compression. First, the CLIP latent representations
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are faithful to the descriptions of their respective inputs.
Second, CLIP is resistant to harsh uniform quantization.
These two properties allowed us to suggest a proof-of-
concept generative compression pipeline for extremely low
bitrate compression that even beats VVC with a BPP
4 times higher, both in terms of image quality and semantic
preservation.

B. FUTURE WORK
As the visual examples showed through all this work, the
generated images are of good quality and semantically close
to their respective inputs. However, the structural information
(color, style, position, theme, etc.) are sometimes a bit off
regarding the inputs. So, a possible way to continue this work
is to find a way to encapsulate this non-semantic information
to help the guidance during generation. For example, using a
color map or a sketch as side information, as proposed in the
state-of-the-art. However, this side information would come
with a cost to the compression rate, and one would not be
able to easily achieve the compression rate submitted in this
work.

Another interesting study could also be to generate
these results on other semantic encoders and generators
outside the CLIP-unCLIP codec. Indeed, other founda-
tion models can possibly fulfill better semantic prop-
erties for semantic generative compression. Moreover,
one can look for a way to generalize or automate
the proposed semantic properties in other foundation
models.
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