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ABSTRACT Computed Tomography (CT) is a non-invasive imaging modality used to detect abnormalities
in the human body with high precision. However, the electromagnetic radiation emitted during CT scans
poses health risks, potentially leading to the development of metabolic abnormalities and genetic disorders,
which increase the risk of cancer. The Low-Dose CT (LDCT) scanning technique was developed to address
these hazards, but it has several limitations, including noise, artifacts, reduced contrast, and structural
changes. These drawbacks significantly reduce the diagnostic capabilities of Computer-Aided Diagnosis
(CAD) systems. Eliminating these noises and artifacts while preserving critical features poses a significant
challenge. Traditional CT denoising algorithms struggle with edge blurring and high computational costs,
often generating artifacts in flat regions as noise levels increase. Consequently, deep learning-based methods
have emerged as a promising solution for LDCT image denoising. In this study, a comprehensive Systematic
Literature Review (SLR) following PRISMA guidelines was conducted to explore the latest advancements
in deep learning algorithms for LDCT image denoising. This SLR spans LDCT image-denoising research
from 2018 to 2024, providing a detailed summary of methodologies, benefits, limitations, parameters, and
trends. This study delves into the acquisition process of CT scans, investigating radiation absorption across
various anatomical regions, as well as identifying sources of noise and its distribution within the LDCT
images. Additionally, it enhances our understanding of LDCT image denoising trends and provides valuable
insights for future research, thus making a substantial contribution to ongoing efforts to enhance the quality
and reliability of LDCT images.

INDEX TERMS Deep learning, image enhancement, image reconstruction, low dose CT image denoising,
medial images denoising, noise removal techniques, systematic literature review.

GRAPHICAL ABSTRACT
Deep learning based LDCT image denoising models are
searched in online databases based on the keywords. Sub-
sequently, PRISMA has applied and selected 62 articles
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to address three specific research questions as given in
FIGURE 1.

HIGHLIGHTS
➢ Unlocking the potential of CT scans: Role

of medical images, CT applications, hazards,
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FIGURE 1. Graphical abstract.

risk mitigation techniques and LDCT
inception.

➢ Exploring LDCT image denoising: Traditional methods
vs. deep learning models.

➢ Inside the CT scan: Understanding CT acquisition
process, radiation absorption, noise types, and noise
distribution patterns in LDCT images.

➢ Advancing LDCT image denoising: Crafting three
research questions and navigating PRISMA
selection.

➢ Charting the LDCT image denoising expedition: A com-
prehensive guide for new researchers, unveiling insights,
discussion, and future endeavors.

I. INTRODUCTION
The advent of Artificial Intelligence (AI) and Deep Learning
(DL) has made a substantial impact on various applications in

medical image processing [1]. Medical imaging can rescue
40,000 lives annually, saving over 200 billion euros. More-
over, it can free up medical experts for 1.8 billion hours, i.e.,
equivalent to having an additional 500,000 full-time health-
care [2], [3]. In the realm of medicine, a variety of medical
imaging modalities are used. However, CT scans provide a
superior tissue distinction and the ability to gather detailed
3D information, overcoming the limitations of traditional
X-ray procedures [4]. Additionally, a CT scan can simulta-
neously capture soft tissues and blood vessels to diagnose
pathological abnormalities such as malignancies, vascular
disorders, internal traumas, lung nodules, and bone fractures
at the primary stage [5]. The CT scan has many contributions
to medical treatment, but ionized radiation is one of the
main pitfalls, especially for those with multiple CT scans.
CT imaging relies on the radiation absorption characteristics
of tissues, particularly their atomic number, to distinguish

79026 VOLUME 12, 2024



M. Zubair et al.: Enabling Predication of the Deep Learning Algorithms

between ‘gray and white matter’. In a routine CT exami-
nation, one can receive a radiation dose of approximately
1.5 - 20 millisieverts (mSv), depending on the body tissue’s
sensitivity and the radiation absorption rate [6], [7]. Further,
to enhance the internal visibility of veins, an iodinated con-
trast agent will be injected, doubling the radiation absorption
rate of the human body during CT acquisition. Additionally,
Shao et al. [7], added that in the case of CT radiation expo-
sure, the risk of ‘‘thyroid cancer’’ is raised, with an odds ratio
(OR) of 2.55 and a 95% confidence interval (CI) ranging from
2.36 to 2.75. Also, the risk of ‘‘leukemia’’ is increased, with
an odds ratio (OR) of 1.55 and a 95% confidence interval
(CI) ranging from 1.42 to 1.68. The risks of ‘‘leukemia’’
and ‘‘thyroid’’ cancer associated with CT scan exposure were
greater in women than in males [8].

The CT imaging community employs the ‘As Low As
Reasonably Achievable’ (ALARA) principle to minimize
radiation exposure [9]. To limit the radiation dosage used in
CT scans, Low Dose (CT) scanning technology was intro-
duced. It employs two methods: The first way is to decrease
the X-ray tube flux, while the second technique involves
reducing the number of scan trajectories [6], [10]. In both
cases, the signal-to-noise ratio (SNR) of X-ray signals is
reduced, resulting in low-contrast CT images with noise,
artifact, and visual impairment. These visual deteriorations
blur feature edges, reduce organ and texture contrast, and
compromise the reliability of clinical diagnostic procedures.
Removing noise and artifacts from LDCT images while pre-
serving critical features presents significant challenges [4],
[11]. Various algorithms are used to enhance the LDCT image
quality by reducing noise, eliminating artifacts, and improv-
ing visual clarity.

These algorithms are divided broadly into three major cate-
gories over the last five decades [12], i.e., ‘Sinogram filtering
techniques’, ‘Iterative reconstruction techniques’, and ‘Image
domain processing’ as given in FIGURE 2.

FIGURE 2. CT image denoising techniques.

The ‘‘Sinogram filtering techniques’’ work directly on
the raw projection data generated before back-projection
to precisely compute the noise statistics. It includes ‘Bilat-
eral filtering’, ‘Structural adaptive filtering’, and ‘Penalized
weighted least squares algorithm’ [13]. These techniques
leverage a combination of physical and photon statistical
characteristics to achieve effective denoising of CT images.
However, it faces challenges such as edge blurring, low
contrast, and dependence on vendor-specific projection data,
which is not publicly available [14]. Further, the ‘‘Iterative
Reconstruction Technique’’ depends on the image’s prior
information and is used to remove the noise and artifacts
from the LDCT image by iterating between the sinogram and
image domain. The iterative reconstruction-based restoration
techniques include ‘low-rank approximation’, ‘total vari-
ation’, ‘Dictionary learning’, and ‘non-local means’ [15].
These methods help to enhance the quality of images during
the restoration process. However high computational costs
and content loss limit their denoising effectiveness [1], [16].
The ‘‘Image Domain Processing Techniques’’ are used to
remove the noise and artifacts directly from the reconstructed
image, independent of the projection data. Furthermore,
LDCT image-denoising techniques are divided into two main
categories: traditional CT image-denoising techniques and
deep learning methods. Where, the conventional techniques
typically establish a straightforward connection between rel-
evant information and CT image noise, and then optimization
algorithms are used to acquire denoised LDCT images. Such
methods usually rely on prior knowledge about noise. Some
popular traditional CT image denoising approaches include
‘Wavelet base denoising’ methods. It effectively improves
the CT image quality by filtering out small coefficients
associated with noise, however, these methods introduce
some degree of blurring or loss of fine details in the
image [17], [18]. Also, ‘BM3D filtering’ enables clearer and
more accurate visualization of anatomical structures, though
BM3D filtering was unable to remove streaking artifacts
near bones [19]. Further, ‘Dictionary learning’ intuitively
interprets and removes Gaussian noise from natural images
but is limited effective in handling the complex noise model
found in LDCT images. Furthermore, ‘Non-Local Means
(NLM)’ algorithms are successfully denoise the CT images
and preserve the features, however, it has a high computa-
tional complexity, which can result in lengthier processing
times, especially for large images or high levels of noise. [20].
The traditional CT image denoising techniques are compu-

tationally expensive and may produce artifacts in flat regions
as noise levels rise. Consequently, deep learning-based meth-
ods have emerged as a promising solution, and there is
growing interest in leveraging these methods to improve the
quality of LDCT images. Numerous review papers [1], [2],
[3], [4], [5], [6], [8], [9], [10], [11], [12], [13], [18] have
delved into deep learning denoising techniques, revealing
their promising potential. However, a critical gap in the
literature exists, necessitating a comprehensive review of
state-of-the-art deep learning-based denoising techniques in
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LDCT imaging. Such a review should not only assess existing
methodologies, their strengths, and weaknesses but also visu-
ally present the performance of these algorithms, based on
metrics. Furthermore, analyzing the current gaps in the litera-
ture regarding the assessment of CT image acquisition within
clinical contexts involves examining the nuanced variations
in radiation absorption across different anatomical regions,
as well as discerning the origins and distribution of noise
within the LDCT images.

The main contribution of this paper is given below.

I. Explore the roles of medical images, CT applications,
hazards, and risk mitigation, as well as LDCT incep-
tion. Then, compare traditional vs. deep learning LDCT
image denoising methods.

II. Evaluate CT image acquisition in the clinic, examining
how radiation is absorbed in different parts of the body
and identifying sources of noise and its distribution in
the LDCT imaging data.

III. Investigate advanced and varied models such as CNNs
and its variants, Transformer, Diffusion, Encoder-
decoder, U-Net, and Generative Adversarial Network
(GAN) for deep learning-based LDCT image denoising
approaches followed by the ‘‘PRISMA’’, detailing the
methodologies, and outlining the associated advantages
and disadvantages of these algorithms.

IV. Assessing these methodologies involves scrutinizing
diverse metrics, each with quantifiable values based
on their dataset. This meticulous examination not only
gauges the efficacy of these approaches but also serves
as a comprehensive guide for newcomers, simpli-
fying the identification of multidisciplinary research
prospects. Leveraging dataset information, newcom-
ers can readily discern the adequacy and relevance of
datasets, aiding in their decision-making process for
research initiatives.

V. Report on the primary contributors to LDCT image
denoising, including key authors, prominent keywords,
author connectivity, algorithms described in the liter-
ature, and the most reliable dataset for evaluating the
model’s performance.

VI. Discusses future research directions, identifying knowl-
edge gaps in a subject area emphasizes their existence
and enables experienced professionals to promote a
more objective understanding of the field.

The rest of this paper is structured as follows: Section II
provides an overview of CT images, covering its acquisi-
tion process, sources of noise, and methods for simulating
noise in normal CT images. Section III explores meth-
ods, i.e., further divided into three sub-sections: Planning,
Conducting, and Reporting, which covers the developed
research questions, keywords, inclusion and exclusion crite-
ria and standard procedures of PRISMA. Section IV critically
analyses and discusses the findings of the review and contex-
tualizes them within the broader literature. Section V delves
into the existing research landscape, highlighting potential

avenues of discussion and arguing the future research direc-
tions. SectionVI presents the conclusion, critically evaluating
recent LDCT image-denoising models, summarizing key
findings, and highlighting their scientific impact in the field.

II. INSIDE CT SCAN
A. CT SCAN CLINICAL ACQUISITION PROCESS
In Computed Tomography, the word ‘Computed’ means
calculated or reconstructed, while ‘Tomography’ is the com-
bination of two words from Greek, i.e., ‘Tomo’ means cut
or section, and ‘graphy’ means describe. So, a CT scan is
an advanced computerized technology that collects data and
converts it into cuts or cross-sectional slices of the human
body. The X-ray tube and detector are typically mounted
on the same rotating gantry normally in fourth-generation
CT scan machines. They rotate around the patient in 3600,
a predetermined geometric alignment, emitting a beam of
X-rays as given in FIGURE 3.

FIGURE 3. CT acquisition process in clinic.

The X-ray beam is passed through a patient body and
received by the detector exactly opposite to the X-ray’s
source. The commonly used detector in CT imaging is called
a ‘Solid-state detector’ or ‘scintillation detector’. These
detectors work by using crystals that light up when hit by X-
ray photons, turning them into visible light. This light is then
converted into electrical signals using photodiodes. Further
processing includes amplification, filtering, and digitization
to produce digital image data. The normal energy used in
general CT scans falls within the range of 100-150 kV [6],
[7]. The absorption of X-rays in the human body primarily
depends on the atomic number and density of tissues encoun-
tered [6], [7]. Table 1 reflects the different body parts and the
relevant radiation absorption rate.

In CT imaging, contrast media is frequently utilized to
highlight features which might not be easily observed. ‘Oral
contrast’ is useful to scan the digestive tract, while ‘intra-
venous contrast’ is utilized to highlight organs and show
blood arteries [7]. During a CT scan, a ‘colorless iodine
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TABLE 1. Body parts and radiation.

substance’ that is impenetrable to X-rays is usually injected
into a vein. The injection rate is typically 2-3 milliliters per
second, resulting in a total volume of 100-150 milliliters.
In the case of the contrast agent, the X-rays absorbed by the
human body are double [7], [21], [22].

B. SOURCE OF NOISE IN CT IMAGES
CT scan is extremely sensitive to high contrast used to dis-
tinguish various soft tissues in the human body. However,
this fundamental feature is vulnerable to the negative impacts
of noise, particularly in the viewing of structures with low
contrast. To effectively address image denoising, it is critical
to have a complete grasp of the types of source noise and the
overall properties of noise present in CT scans [23].

1) RANDOM NOISE
In LDCT, a deliberate reduction in the number of X-ray pho-
tons is employed to mitigate the risk of metabolic disorders.
However, the finite number of photons detected during pro-
jection generates unpredictable fluctuation in image density,
affecting the overall clarity and precision of the acquired CT
data, such type of noise is called Random noise [8]. Ran-
dom noise limits the ability of the radiologist to differentiate
between two regions having different densities.

2) STATISTICAL NOISE
X-rays transmit energy in discrete packets known as quanta.
The finite number of X-ray quanta is detected by the X-ray
detector, and the detected count may vary due to statistical
fluctuations. This variability, termed statistical noise or quan-
tum noise, arises from the inherent uncertainty in detecting a
finite number of X-ray quanta during each measurement [24].

3) ELECTRONIC NOISE
The detector receives photons that contain useful information
about the interior structure of the human body. Electronic
noise is caused by analogue electronic circuits that transform
analogue signals into digital signals.

4) ROUND-OFF ERROR
Analog signals in CT scans are converted to digital sig-
nals through analog electronics before being reassigned to
a computer for image reconstruction. Digital computers use

circuits to manage these discrete signals. However, the lim-
ited number of bits available for storing creates Round-off
errors in mathematical computations, causing issues due to
the need to represent amounts precisely. Round-off errors
occur during the display stage of a CT image because CT
scans only show a limited number of brightness levels. For
example, if a unit only has 32 brightness levels, the difference
between them is approximately 0.05 optical density units on
the radiography film. However, the human eye can usually
perceive much smaller variations (less than 0.004 OD). This
constraint, especially in large display windows (100 or more
CT units), might make it difficult for an observer to accurately
interpret [25]. A brief visualization of these noise types in CT
images is given in FIGURE 4.

FIGURE 4. Noise sources in CT images.

C. NOISE DISTRIBUTION IN CT IMAGES
CT image noise is primarily introduced by electrical noise,
round-off error, and random variations in detected X-ray
intensity. CT numbers, defined by Hounsfield units (HU),
represent tissue properties, and their accuracy depends on
linearity in assigning the correct HU to a given tissue. Quan-
tifying noise involves measuring fluctuations in CT numbers
within regions of interest (ROIs), where Standard Deviation
(SD) is a key indicator. Higher SD values imply more noise.
Increased X-ray dose decreases quantum noise at detector
elements. The noise distribution in CT images can be accu-
rately characterized using the ‘Poisson distribution’, but for
multi-detector CT scanners, the ‘Gaussian distribution’ is
more suitable. Literature sources confirm that CT image noise
generally follows an ‘Poisson andGaussian noise’ pattern [3],
[8], [26].

III. METHODS
This SLR examines recent research on deep learning-based
techniques for LDCT image denoising. The literature selected
for this review is followed by PRISMA guidelines [27],
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TABLE 2. Research questions for SLR.

[28]. This SLR includes the ‘Planning’, ‘Conducting’, and
‘Reporting’ phases. Where, Planning involves recognizing
the need, formulating research questions, and creating the
review protocol. Conducting includes Literature Search,
Study Selection, and Data Extraction & Synthesis. Reporting
focuses on producing an unbiased review report summarizing
the findings.

A. PLANNING
The planning phase of this SLR comprises several sub-
phases. The first sub-phase involves recognizing the necessity
for conducting an SLR, followed by formulating research
questions and assessing the review protocol. This phase
ensures that the SLR is systematically, and rigorously exe-
cuted, and the research questions are clearly defined to guide
the literature search process. Additionally, the planning phase
aims to establish inclusion and exclusion criteria for selecting
relevant studies. This process helps to minimize bias and
enhance the comprehensiveness of the review.

1) IDENTIFY THE NEED FOR SLR
The current body of literature concerning LDCT image
denoising exhibits notable deficiencies in several key areas.
Firstly, there is a dearth of comprehensive exploration regard-
ing the roles of medical imaging, especially CT scan, risks
and risk mitigation strategies, and the inception of LDCT
images. Furthermore, exploring CT image acquisition in clin-
ical settings involves assessing how radiation affects various
body parts differently. Moreover, identifying the sources of
noise and its distribution in LDCT images reveals a signifi-
cant gap in current research. Additionally, the evaluation of
the latest deep learning models for LDCT image denoising
including CNN, Transformer, Diffusion, Encoder-decoder,
U-Net, and GAN-based algorithms along with their method-
ologies, advantages, and disadvantages. Lastly, there is a
notable lack of discourse surrounding future research direc-
tions and knowledge gaps, which limits the advancement
of LDCT image denoising research within the professional
community. By conducting a state-of-the-art SLR in this

area, we aim to bridge these gaps in knowledge and provide
valuable insights for researchers, clinicians, and policymak-
ers involved in LDCT imaging. This SLR will not only
comprehensively analyze existing LDCT image denoising
algorithms but also delve into the CT clinical equation pro-
cess, radiation effects, noise sources and distributions.

2) IDENTIFY THE RESEARCH QUESTIONS
Research questions for this SLR are given in Table 2.

3) DEVELOPED AND EVALUATED THE REVIEW PROTOCOL
The protocol meticulously outlines methods, criteria, and
procedures for the review process, ensuring systematicity,
transparency, and reproducibility. Through rigorous evalua-
tion, including feedback and revisions, the protocol is refined
to enhance quality and suitability. Once finalized, it serves
as a guiding framework for the review process, facilitating
consistency and accuracy in the assessment of deep learning
literature, thus ensuring reliable findings.

B. CONDUCTING
In the second phase, an extensive database search was
conducted using predefined keywords to identify the most
relevant articles. This section details the search strategy
employed, the criteria for study selection, the process of data
extraction, and the methods utilized for data synthesis. The
search procedure involves the selection of appropriate source
databases, defining the keywords, conducting the pilot search,
refining the search keywords, and retrieving the primary stud-
ies from the source databases. The literature search strategy
was divided into three sub-processes, as explained below.

1) LITERATURE SEARCH
a: SOURCE SELECTION
A selection of widely used digital libraries, scientific search
engines, and databases were chosen to identify relevant arti-
cles for this SLR. These sources include Scopus, Google
Scholar, Science Direct, Springer, Web of Science, and the
Association for Computing Machinery (ACM).
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b: SEARCH STRATEGY
To conduct a literature search relevant to the research
questions, it is essential to identify and define appropriate
keywords. The keywords have been defined and organized in
Table 3. These criteria form the basis for searching through
various electronic databases to select relevant literature.

TABLE 3. Keywords.

Further, the search strategy is divided into two phases: the
primary and secondary search. The primary search aims to
identify potentially relevant studies comprehensively, from
various online databases based on the defined keywords.
While in the Secondary Search phase, a snowballing tech-
nique was used to find additional relevant studies. Forward
snowballing involved checking references of selected articles,
while backwards snowballing looked at bibliographies. This
iterative process continued until we compiled a comprehen-
sive list of relevant literature.

c: DATE AND TIME FRAME
The literature search spanned from January 2018 to 2024,
employing predefined keywords and chosen search engines.

d: SEARCH FINDINGS
The initial comprehensive search retrieved a total of 2,197
articles from different databases including 665 articles
retrieved from Google Scholar, 435 from Scopus, 362 from
Science Direct, 180 from Springer, 275 fromWeb of Science,
and 280 from the ACM library.

2) STUDIES SELECTION
After gathering all relevant publications, the filtering phase is
critical to ensure the quality of the SLR.

a: INITIAL SCREENING
Two independent reviewers conducted an initial assessment
of titles and abstracts retrieved from the literature search to

determine their relevance to the research questions. Studies
identified as potentially relevant by either reviewer under-
went full-text screening. Further, inclusion and exclusion
criteria serve as essential tools for reviewers to systematically
identify and evaluate relevant studies, leading to more rigor-
ous and informative research syntheses. Articles that meet the
inclusion criteria specified in Table 4 are selected for full-text
screening, while all those articles failing tomeet the exclusion
criteria specified in Table 5 are excluded.

TABLE 4. Inclusion criteria.

TABLE 5. Exclusion criteria.

TABLE 6. Table quality assessment rules (QAR).

b: FULL TEXT SCREENING
After completing the initial screening of titles and abstracts,
the next step involves obtaining the full text of selected arti-
cles. Two independent reviewers then meticulously examine
each full-text article, evaluating it against the predetermined
inclusion and exclusion criteria. Through this detailed assess-
ment, articles that do not meet the specified inclusion criteria
are identified and excluded. The reviewers carefully docu-
ment the reasons for excluding each article during the full text
screening process, ensuring transparency and reproducibility
in the review. This documentation serves to provide a clear
rationale for the exclusion of articles and facilitates a thor-
ough understanding of the article selection process.
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FIGURE 5. PRISMA flowchart: Review process overview.

c: QUALITY ASSESSMENT
Quality Assessment Rules (QAR) encompass a set of prede-
fined criteria employed to assess the quality and relevance
of the studies in this SLR. The objective of using QAR is to
guarantee the inclusion of only high-quality studies, ensuring
trustworthy and reliable results. By utilizing QAR, potential
biases are minimized, and the transparency and reproducibil-
ity of the SLR process are enhanced. Also, Table 6 presents
the fundamental principles of QAR used to select the most
relevant articles for this SLR.

Based on the search and selection criteria total of 2,197
articles were selected from different search engines, where
386 duplicate articles were identified and removed, leaving
1,811 unique articles. After additional refinement, the pre-

defined inclusion and exclusion criteria led to the removal
of 795 articles and leaving 1016 articles for further con-
sideration. Subsequently, based on an assessment of their
titles and abstracts, 736 articles were excluded, resulting in
280 articles remaining. After a thorough evaluation of the full
texts, an additional 218 articles were excluded, resulting in a
final set of 62 articles eligible for analysis and synthesis.

d: FINAL REVIEW AND CONSENSUS
All decisions made during the article selection process are
carefully evaluated to guarantee consistency and correct-
ness. Any remaining contradictions or doubts are addressed
through discussion among the review teammembers. Finally,
a consensus is achieved over the final list of included studies
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for analysis and synthesis. The PRISMA diagram is a tool
used in systematic reviews and meta-analyses to illustrate the
flow of information through the different phases of the review
process. The entirety of the review process is depicted in the
PRISMA diagram FIGURE 5.

3) DATA EXTRACTION AND SYNTHESIS
During the data extraction and synthesis phase, relevant infor-
mation from the selected studies is extracted based on the
research questions. This phase involves populating a meta-
data table with the extracted data.

a: EXTRACTION OF DATA
The extracted data in this SLR pertains to the research
questions, encompassing article references, methodologies,
advantages, and disadvantages. Additionally, information
about quantitative performance metrics such as Peak signal-
to-noise ratio (PSNR), Structural Similarity Index (SSIM),
and Root Mean Square Error (RMSE) are extracted based on
the dataset used in the article to evaluate the efficacy of each
study.

b: SYNTHESIZING OF DATA
This SLR, consisting of 62 articles, findings are meticulously
analyzed, results are evaluated, trends are identified, and
conclusions are drawn to effectively address the research
questions.

c: DATA VALIDATION
In the data validation phase, the first author performed the
initial data extraction, followed by the second author’s thor-
ough review and verification. Any discrepancies or concerns
were carefully addressed and resolved through discussion and
comparison of outcomes. This rigorous process ensured the
accuracy and reliability of the extracted data. The resulting
data were then summarized using a well-defined set of prop-
erty values.

C. REPORTS
The data extracted from the 62 articles is systematically
analyzed to address the three research questions. The findings
corresponding to these research questions are succinctly pre-
sented across Table 8 through Table 13, which forming the
basis for conclusions. Additionally, the current researcher’s
accomplishments are evaluated to provide insights for future
research directions.

1) FINDINGS
In this SLR, a total of 62 studies were included. These stud-
ies were selected based on their relevance to the research
questions addressed in the review. Specifically, out of the
62 studies, 21 studies were utilized to address RQ-1. Sim-
ilarly, 21 studies were identified to support RQ-2. Further-
more, 20 articles were dedicated to addressing RQ-3. Table 7
summarizes the distribution of articles across the research
questions.

TABLE 7. Articles and RQ.

FIGURE 6 visually illustrates the impact of different
countries based on the number of articles and their corre-
sponding publications. The data analysis reveals a noteworthy
contribution from China, with 35 publications focused on
LDCT image denoising using DL methods. This accounts
for 61.4% of the articles in this SLR, highlighting China’s
dominant role and significant influence in advancing research
within this specific domain. Prominently, the United States,
South Korea, and Canada emerge as significant contributors,
underscoring their active involvement and substantial contri-
butions to this field of study.

FIGURE 6. Relevant countries and publication counts.

The number of articles included in this SLR published
(2018-2024) is shown in FIGURE 7. If the graph of the
publications is carefully evaluated year-wise, it shows that
this domain is a current trend and is an active research topic in
the preceding five years. Furthermore, according to this SLR,
2020 and 2021 are the years with the most publications linked
to LDCT image denoising based on DL, followed by, 2022.

FIGURE 8 illustrates the number of publications and
sources before applying the inclusion and exclusion criteria.
Six search engines are used to find related literature using
keywords. Moreover, the figure reflects that Google Scholar
is the primary source of article findings for this SLR, followed
by Scopus and Science Direct.
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FIGURE 7. Number of papers selected for review year-wise distribution.

FIGURE 8. Search engine-wise publications distribution.

FIGURE 9 offers valuable insights into the distribution of
papers across journals and conferences, aiding in the identifi-
cation of key sources of research within the topic area and
providing context for the findings of this SLR. The graph
illustrates that the IEEE Transactions journal stands out as the
primary source for articles selected in this review, followed by
IEEE conferences and then IEEE Access.

2) RESEARCH QUESTIONS
a: RQ-1: WHAT IS ADVANCED DEEP LEARNING-BASED LDCT
IMAGE-DENOISING MODELS, AND WHAT ARE THEIR
ADVANTAGES AND DISADVANTAGES?
This section provides a comprehensive exploration of
advanced deep-learning approaches for LDCT image denois-
ing, encompassing CNNs and their variations, Transformer

FIGURE 9. Frequency of publication in selected journals and conferences.

models, and diffusion models. Medical imaging, particularly
CT, plays a pivotal role in diagnosis and treatment plan-
ning. However, the inherent noise in LDCT images poses a
significant challenge, necessitating advanced denoising tech-
niques for improved diagnostic accuracy. CNNs play a critical
role in LDCT image denoising by extracting relevant fea-
tures, capturing complex relationships, and mapping noisy
input images to cleaner output images. However, CNN-based
methods are restricted by their receptive field, which lim-
its their capability to capture contextual information with
long-range spatial dependencies across feature maps [29].
Further, Transformer is a deep learning architecture originally
introduced for Natural Language Processing (NLP) tasks by
Vaswani et al. in 2017. The core idea behind the Transformer
architecture is self-attention mechanism, which allows the
model to weigh the importance of different elements in
the input sequence. Transformer-based approach for LDCT
image denoising leverages the self-attention mechanism to
capture global dependencies and effectively remove noise and
artifacts while preserving important structural information in
the images, but The transformer-based method lacks preci-
sion in capturing fine details, potentially leading to denoised
images that could impact a physician’s assessment of lesion
conditions [29], [30]. Furthermore, diffusion models are deep
generative models, based on two stages: forward diffusion
and reverse diffusion. During the forward diffusion phase,
Gaussian noise is incrementally added to the input CT image
data across multiple iterative steps.

This process simulates the gradual propagation of noise
within the image. In contrast, the reverse diffusion phase
involves training a model to systematically undo the dif-
fusion process, aiming to accurately reconstruct the origi-
nal noise-free CT image data. However, diffusion models
are computationally expensive and slow as involve several
steps [31]. This comprehensive review explores and evaluates
various denoising methods presented in recent studies, ana-
lyzing their methodologies, advantages, and disadvantages
as given in Table 8. It aids practitioners and researchers in
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TABLE 8. Exploring advanced deep learning based denoising techniques.
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TABLE 8. (Continued.) Exploring advanced deep learning based denoising techniques.

informed decision-making for effective application in this
field.

In Table 9 performance metrics such as PSNR, RMSE,
and SSIM are utilized to evaluate the effectiveness of various
advanced deep learning techniques applied in LDCT image
denoising, as documented in various research papers within
this SLR. Where, larger values of PSNR and SSIM indicate
better performance, while smaller values of RMSE suggest
better accuracy. It will help to analyze the effectiveness of dif-
ferent methods while improving the quality of LDCT images.
By examining the results reported in each study, based on
a specific dataset, researchers can assess the strengths and
weaknesses of different techniques and potentially identify
trends or areas for further investigation in the field of LDCT
image processing.

FIGURE 10 indicates data showcasing PSNR, RMSE, and
SSIM values for different LDCT image denoising techniques
and datasets offer significant benefits for researchers in this
field. Firstly, such visual representation facilitates the quick
observation of performance trends across various denoising

methods. Researchers can easily discern which techniques
consistently achieve better results across multiple datasets
and which metrics are most impacted by specific denois-
ing techniques. For example, K16 have high PSNR values
indicate better denoising performance in terms of preserving
image quality. Also, higher RMSE i.e., K5 indicates larger
differences between the actual CT image and ground truth
image.

Further, the analysis of the graph can inform future
research directions by pinpointing areas where current tech-
niques may be lacking or where improvements are needed.
For instance, if certain techniques consistently exhibit low
SSIM values across multiple datasets, it indicates a need for
further research to enhance their ability to preserve struc-
tural information. This guidance can lead to the development
of novel algorithms aimed at addressing the unique chal-
lenges of LDCT image denoising. In essence, the graph
serves as a valuable tool for researchers, offering insights into
performance comparison, technique selection, and guiding
advancements in LDCT image denoising research.
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TABLE 9. Quantitative analysis of advanced deep learning based denoising models.

b: RQ-2: WHAT ARE ENCODER-DECODER, AND
U-NET-BASED DEEP LEARNING LDCT IMAGE-DENOISING
MODELS, AND WHAT ARE THEIR ADVANTAGES AND
DISADVANTAGES?
In the realm of medical imaging, the demand for enhancing
the quality of LDCT images has fueled the development
of innovative denoising models such as Encoder-decoder
and U-Net. In these models, the Encoder-decoder archi-
tecture compresses input LDCT scan images into a
lower-dimensional representation known as latent space.
In contrast, U-Net architectures incorporate skip connections
between corresponding layers in the encoder and decoder,
facilitating the preservation of spatial details during image
reconstruction. These models, based on Encoder-decoder
architectures, sparsity constraints, spectrum loss functions,
and multi-dimensional spatial attention mechanisms, intend
to learn low-dimensional feature representations efficiently
while minimizing radiation exposure. These methods provide
unique strategies for LDCT denoising, with ongoing tech-
nical advancements targeting further improvements in their
performance for clinical applications. The methodologies,
advantages, and disadvantages of the latest Encoder-decoder
and U-Net models have been outlined in Table 10.
Table 11 reflects the performance of Encoder-decoder,

and U-Net models exits in this SLR. Based on the met-

rics provided, the evaluation of denoising models for LDCT
images reveals distinct performance trends. Models exhibit-
ing higher PSNR and SSIM values, alongside lower RMSE
values, demonstrate superior noise reduction capabilities and
greater fidelity to the original images. These metrics pro-
vide valuable insights into the efficacy of different denoising
approaches, guiding the selection of models that best meet
specific requirements for LDCT image enhancement.

Figure 11 visual illustration of the denoising algorithm’s
performance using PSNR, SSIM, and RMSE. Further, PSNR
measures image fidelity, with higher values indicating better
quality, SSIM evaluates structural similarity, where higher
scores signify greater similarity, and RMSE quantifies pre-
diction accuracy, with lower values indicating better perfor-
mance. Visualizing the evaluation metrics in the form of a
graph provides a concise and informative summary of dif-
ferent denoising algorithms, helping the researchers make
informed decisions and advancements in LDCT images.

c: RQ-3: - WHAT ARE GENERATIVE ADVERSIAL NETWORKS
(GANs) BASED LDCT IMAGE-DENOISING MODELS, AND
WHAT ARE THEIR ADVANTAGES AND DISADVANTAGES?
GANs are deep learning models that consist of a genera-
tor and a discriminator. The generator generates synthetic
data resembling real data, while the discriminator distin-
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FIGURE 10. Advanced and varied deep learning model for LDCT image denoising.

guishes between real and synthetic samples. By training these
networks, GANs improve the generator’s ability to create
realistic illustrations.

In LDCT image denoising, integrating generative and
discriminative models in a hybrid learning approach using
GANs has gained popularity. This approach employs dif-
ferent CNN architectures, such as Encoder-decoder, U-Net,
and ResNet, to enhance LDCT image quality. Table 12 pro-
vides an insightful overview of the GANs models employed
for LDCT image denoising. It presents the methodologies
utilized by each model, accompanied by a comprehensive
analysis of their respective advantages and disadvantages.

Table 13 presents an array of performance metrics eval-
uating the GANs algorithm across various datasets. Notably,
the algorithm’s effectiveness is assessed using PSNR, RMSE,
and SSIM metrics. Datasets utilized for testing encompass a
diverse range, including those from the Mayo Clinic, Lung’s
Grand Challenge, Piglet, and the 2016 NIH AAPM-Mayo
Clinic Low-Dose CT Grand Challenge. These datasets offer a
broad spectrum of imaging scenarios for evaluation. Results
indicate a significant variability in the algorithm’s perfor-
mance across different datasets and metrics. PSNR values
range widely from 22.31 to 47.90, reflecting differences in
image quality and fidelity. Similarly, RMSE values fluctu-
ate between 0.02 and 15.04, suggesting discrepancies in the
accuracy of reconstructed images. Interestingly, SSIM values
remain relatively consistent, hovering between 0.69 and 0.98,
indicating a degree of stability in preserving structural infor-

mation across diverse datasets. The LDCT-DLR algorithm’s
performance can also be compared with established bench-
marks, such as the 2016 NIH AAPM-Mayo Clinic Low-Dose
CT Grand Challenge dataset, providing valuable insights
into its efficacy relative to industry standards. However, fur-
ther analysis and validation against larger and more diverse
datasets are warranted to comprehensively assess its utility
and reliability in clinical practice.

FIGURE 12 depicting performance metrics (PSNR,
RMSE, SSIM) across datasets and algorithms offers quick
insights for researchers. PSNR indicates image qual-
ity, RMSE signifies reconstruction accuracy, and SSIM
reflects structural preservation. Researchers can identify
top-performing algorithms and areas needing improvement,
aiding in algorithm selection and optimization efforts.

d: BIBLIOGRAPHY VISUALIZATION
FIGURE 13 reflects the keywords used in the publications
employed in this SLR.

Visualizing the related keywords enhances the acces-
sibility, searchability, and visibility of related literature,
thereby increasing its effectiveness in disseminating knowl-
edge and fostering further research in this field, allowing
the researchers to efficiently locate relevant publications by
tracing connections between keywords. Furthermore, the dia-
gram serves as a guide for further research by highlighting
gaps or areas that have received less attention, prompting
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TABLE 10. Methodologies of encoder-decoder and U-Net models.
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TABLE 10. (Continued.) Methodologies of encoder-decoder and U-Net models.

TABLE 11. Encoder-decoder and U-Net models.

researchers to explore underexplored topics or develop new
research questions. FIGURE 14 visually presents the pop-
ular models that were reviewed in this SLR. The diagram
provides insights into the prevailing trends and directions
in LDCT image-denoising research. It highlights advanced
deep learning techniques, including generative models,
multi-attention mechanisms, adversarial networks, and self-

calibrated convolutions. The clustering and proximity of
specific models in the diagram indicate shared characteristics
and similarities in their design or methodology.

FIGURE 15 visualizes the connectivity and relationships
among author’s papers in this SLR, enabling a better under-
standing of the research landscape and facilitating further
exploration and analysis in the field.
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FIGURE 11. Encoder-decoder and U-Net models.

IV. DISCUSSION
This systematic literature review offers valuable insights
into various aspects of medical imaging, with a particular
focus on Computed Tomography (CT) applications andmeth-
ods for denoising low-dose CT images. In contrast to the
latest review paper [93], which focuses on the evolution
of CNN techniques for CT image reconstruction, address-
ing challenges like computational complexity and exploring
opportunities for decentralized and mobile imaging services.
Further Lei et al. [94], evaluates deep learning methods
for improving overall CT image quality by reducing noise
and blurring using various CNN architectures like U-Net,
V-Net, and ViT, along with different learning paradigms and
evaluation metrics such as MSE, SSIM, and PSNR. Our pro-
posed SLR takes a distinct focus on denoising LDCT images
using advanced deep learning models. While these previous
reviews may cover a broader range of topics or focus on
different aspects of CT imaging. This review delves into the
role of medical imaging and the risks posed by conventional
CT scans, emphasizing the necessity of implementing risk
mitigation strategies.

These strategies involve reducing radiation exposure and
adopting low-dose CT scans to minimize X-ray exposure.
However, these measures affect the diagnostic capabilities
of computer-aided diagnosis systems due to the lower CT
image quality. In LDCT imaging, noise is often modelled
using the Poisson and Gaussian distributions [1], [2], [3], [4],
[5], [6], [8], [9], [10], [11]. Removing these noise and artifacts

from LDCT images, techniques are divided into two main
categories traditional LDCT denoising methods and deep
learning-based approaches. Popular traditional CT images
denoising methods like Wavelet-based denoising, BM3D fil-
tering, Dictionary learning, and Non-LocalMeans algorithms
effectively enhance image quality but introduce blurring,
struggle with streaking artifacts, or have high computational
complexity and potential for artifacts, particularly in regions
with high noise levels. Therefore, advanced deep-learning
techniques have been introduced.

This SLR categorizes CT denoising models based on deep
learning into three distinct and cohesive categories. The first
category is the ‘‘Advanced deep learning based denoising
techniques, containing 21 articles from K1 to K21 in Table 8.
This category contains on CNNs and their variants, Trans-
former, and diffusion models.

These algorithms have some promising results but face
common challenges, including computational complexity,
prolonged training times, and the potential loss of image
sharpness. Moreover, the reliance on specific training data
and the risk of overfitting are prevalent concerns. Most of
the algorithms are evaluated in terms of PSNR and SSIM,
which reflects their ability to accurately reconstruct the
image PSNR, and preserve the structural details SSIM, but
they avoided how much overall error RMSE is minimized.
However, some algorithms, like K6 and K21, demonstrate
exceptional performance with high PSNR and SSIM values,
along with low RMSE, indicating excellent image quality
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TABLE 12. Generative adverbial networks (GANs).
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TABLE 12. (Continued.) Generative adverbial networks (GANs).

TABLE 13. Generative adversarial networks.

and accuracy in CT image reconstruction. Others, such as K5
and K9, show discrepancies between the original and recon-
structed images despite achieving moderate PSNR and SSIM
values. Algorithms like K14 and K15 exhibit low RMSE val-
ues, suggesting high accuracy in reconstruction, despite lower
PSNR and SSIM values, indicating potential compromises
in image quality. The evaluation indicates that the proto-
cols including K6, K7, K14, K15 and K21 have a balanced
result in terms of PSNR, SSIM and RMSE. The balanced
performance of these algorithms suggests their robustness

and effectiveness in CT image denoising, with consistent
preservation of image quality across multiple metrics. While
trade-offs may exist between metrics, understanding these
trade-offs can guide optimization efforts. Additionally, these
algorithms serve as valuable benchmarks for evaluating new
techniques and demonstrate potential applicability across var-
ious domains, emphasizing the need for standardization in
evaluation methodologies.

The second category addressed in this SLR is Encoder-
decoder and U-Net models as mentioned in Table 10,
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FIGURE 12. Graphical representation of GANs performance.

FIGURE 13. Visualization of keywords.

discussed in articles K21 to K42, demonstrate promising
capabilities in denoising LDCT images. However, despite
their efficacy, these architectures have limitations includ-
ing the risk of losing fine details, limited adaptability to
various noise patterns, potential overfitting, computational
complexity, and difficulties in interpretation. Based on PSNR,
SSIM, and RMSE metrics, denoising algorithms vary in per-
formance. Algorithms like K28 and K33 excel with high
PSNR and SSIM, indicating superior preservation of image
quality and low RMSE, implying accurate reconstruction.
Conversely, algorithms like K25 and K34 show subpar per-
formance, with low SSIM indicating a significant loss of

FIGURE 14. Popular deep learning-based models.

structural details. Some strike a balance, like K28 and K29,
with high SSIM and low RMSE. However, limitations exist,
such as high RMSE in K27, suggesting denoising issues
despite moderate PSNR.

The third category discussed in this SLR is Generative
Adversarial Networks (GANs) algorithms, containing 20 arti-
cles fromK43 to K62 in Table 12 offer promising capabilities
for denoising LDCT images but with certain disadvantages.
Firstly, the training process for GANs can be computation-
ally intensive and time-consuming, particularly when dealing
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FIGURE 15. Author’s connectivity.

with large datasets or complex image structures. Addition-
ally, GANs may introduce artifacts or distortions in denoised
images, adversely affecting overall image quality. Moreover,
the reliance on unpaired data in some GAN-based methods
may hinder accurate correspondence capture between noisy
and clean CT images, potentially compromising denoising
performance. Lastly, the complexity of GANs architectures
poses challenges in interpretation and may limit their practi-
cal utility in clinical settings.

The performance of the GAN-based algorithms is also
measured in terms of PSNR, SSIM and RMSE. Methods
like K45 and K48 showcase impressive SSIM scores, sig-
naling robust preservation of structural information, but may
lack in terms of RMSE, potentially indicating a trade-off
between noise reduction and image fidelity. On the other
hand, methods like K49 and K58 display high RMSE values,
suggesting significant discrepancies between denoised and
original images, despite relatively high PSNR and SSIM
scores. Deep learning models, including CNNs and their
variants Transformers, diffusion, autoencoders, U-Net archi-
tectures, and Generative Adversarial Networks (GANs), hold
promise for LDCT image denoising. These models demon-
strate varying degrees of success in preserving image quality
while reducing noise. However, they also face common chal-
lenges such as computational complexity, prolonged training
times, and potential loss of image sharpness. Additionally, the
reliance on specific training data and the risk of overfitting are
prevalent concerns.

V. FUTURE CHALLENGES
After undergoing a comprehensive study for evaluating vari-
ousmodels of LDCT image denoising, several future research
directions have been identified.

A. LOSS FUNCTION
Evaluation of LDCT image quality and comparison to refer-
ence images involves using diverse metrics. Pixel-wise loss
functions utilized for LDCT image denoising can introduce
noise and structural distortion, which can blur the images
and result in the loss of vital information. To overcome this
limitation, potential research can concentrate on developing
a cost function that achieves not only precise denoising of
LDCT images but also preserves critical features, thereby
improving the diagnosis capabilities of the CAD system.

B. LARGE LANGUAGE MODELS (LLMs)
LLMs are a type of artificial intelligence model trained on
extensive text data to comprehend and generate human-like
text. Models such as GPT and BERT, which are part of
this category, utilize transformer architecture and incorporate
attention mechanisms to process and analyze language in a
contextually relevant manner [95]. These models have been
extensively trained on textual data to grasp and generate
human-like text, and they can extract semantic features and
representations from CT imaging descriptions. By incorpo-
rating these features into the loss function, the denoising
process can be guided by aligning LDCT images with Normal
Dose CT (NDCT) images more effectively [96], [97].

Further, leveraging pre-trained language models enables
fine-tuning of medical text data particular to LDCT imaging,
allowing for the development of domain-specific representa-
tions. Multi-modal fusion approaches, which combine textual
information from language models with visual data, fur-
ther enhance denoising by optimizing alignment between
textual and visual representations of CT images. Further-
more, adversarial training approaches incorporate language
model-generated text into the loss function, promoting the
creation of denoised images that not only physically match
NDCT images but also semantically align with textual
descriptions.

Finally, including language models in the loss func-
tion for LDCT image denoising has tremendous poten-
tial to increase the clinical relevance and accuracy of
denoised LDCT images, thus boosting medical imaging
applications and patient care. Also, the future of LDCT
image denoising research involves exploring novel tech-
niques through the integration of LLMs with other deep
learning methods or medical imaging techniques. This syn-
ergistic approach holds the potential to revolutionize LDCT
image denoising, paving the way for enhanced clinical
applications and fostering innovation in the field of LDCT
imaging.

C. PAIRED DATASET DILEMMA
Further, the availability of an authorized dataset is crucial
for training and testing DL-based models. However, many
existing algorithms require a paired training dataset, which
could be more practical in the case of regular and low-dose
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CT scans. It is challenging to match the data accurately
due to physical activity, slight variations in scanner posi-
tion, or patient body movement during scanning, which can
adversely affect the denoising performance of the network.
Therefore, training DL-based models without paired datasets
remains an unresolved issue that requires extensive research.
Finding alternative approaches to overcome the lack of paired
data is a crucial area of focus for future advancements in this
field.

D. STRATEGIC MEMORY OPTIMIZATION
Significant improvements in computing power have enabled
the development of more profound and complex DL models
for denoising LDCT images, where more extensive and
deeper networks can preserve maximum image features.
However, the increased depth size of these models and
the computational operations involved in convolutional
and pooling layers come at the cost of higher computa-
tional complexity and memory usage. Consequently, the
model’s performance may be compromised. Thus, future
research can focus on creating models that efficiently han-
dle memory requirements without sacrificing performance
to overcome this. This entails exploring novel techniques to
optimize computational operations and memory utilization,
ensuring effective denoising of LDCT images while main-
taining superior performance standards. By pursuing these
research directions, further advancements can be made in
LDCT image denoising, enabling enhanced image quality,
improved diagnostic accuracy, and better utilization of DL
techniques.

E. DECENTRALIZED ADVANCEMENTS
Denoising the LDCT scan image to preserve privacy, leverage
distributed data, encourage collaboration, enable real-time
adaptability, and reduce communication is a task associated
with centralized approaches. Federated learning has much
potential for the future of LDCT scan image denoising. This
decentralized machine learning paradigm enables collabora-
tive model training across IOT-based devices while keeping
data localized to resolve privacy problemswithmedical imag-
ing datasets. Federated learning could help to create robust
and generalizable models in the setting of LDCT image
denoising by collecting knowledge from varied patient popu-
lations and imaging equipment.

VI. CONCLUSION
This systematic literature review extensively investigates
the effectiveness of advanced deep learning models: CNNs
and their variants, Transformers, Diffusion Encoder-decoder,
U-Net, and GANs, for LDCT image denoising. Normal-dose
CT scans emit radiation, potentially leading to genetic dis-
orders such as thyroid cancer and leukemia. Consequently,
LDCT scans have been introduced, intentionally sacrificing
image quality. Traditional LDCT image denoising meth-
ods are utilized to enhance LDCT images, however, they
often suffer from computational intensity, and vendor depen-

dence and introduce artifacts in flat image regions. There-
fore, deep learning based LDCT denoising techniques have
emerged.

Furthermore, this study delved into the CT image acqui-
sition process in clinical settings, investigating radiation
absorption across different body regions, and identifying
noise sources and distribution within LDCT imaging data.
Additionally, three research questions are defined regard-
ing advanced deep learning techniques for denoising LDCT
images. A total of 62 articles were selected following
PRISMA guidelines to address these research questions.
According to the report, Google Scholar was the primary
source for searching related articles, and the number of pub-
lications in this field significantly increased in 2020 and
2021. Moreover, China has emerged as a prominent research
contributor in the field of LDCT image denoising, closely
followed by the USA, South Korea, and Canada. The pri-
mary sources in this SLR were predominantly drawn from
IEEE Transactions, with supplementary insights from IEEE
conferences and IEEE Access, specifically focusing on CT
imaging.

The 2016 NIH AAPM-Mayo Clinic Low-Dose CT Grand
Challenge is the primary dataset used, followed by the
Cancer Imaging Archive (TCIA), and finally, simulated
datasets. These datasets are widely utilized for model training
and testing in the CT imaging denoising field. The deep
learning-based models with keys K31 and K33 and K36
have shown promising results in terms of SSIM, preserving
critical features. Conversely, algorithms K6, K21, K23, K28,
K29, and K33, have demonstrated good results in minimiz-
ing overall error measured by RMSE. However, it is crucial
to achieve a balanced outcome in denoising LDCT images
to maintain clinical accuracy, especially concerning metrics
such as PSNR, SSIM, and RMSE.

In conclusion, deep learning architectures show promise
in denoising LDCT images, but they have some limitations
such as the potential loss of fine details, overfitting risks, and
computational complexity.

Encoder-decoder and U-Net models show superior results
in improving image quality metrics like PSNR, RMSE, and
SSIM. However, they have limitations such as potential loss
of fine details, difficulties in handling various noise patterns,
risk of overfitting, complexity in computation, and interpre-
tation challenges.

Furthermore, although GANs offer effective denoising
solutions, concerns arise regarding the introduction of arti-
facts, accuracy issues due to reliance on unpaired data, and
challenges in interpretation. These limitations underscore
the need for continued research to address these issues and
improve the practical utility of deep learning and GAN-based
approaches in clinical settings.

Further, future research directions are to develop a cost
function that preserves critical features, explore alternative
training approaches for DL models without paired datasets,
and optimize computational operations and memory usage in
larger models.
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Furthermore, leveraging pre-trained language models
(LLMs) like GPT and BERT to enhance the alignment
between textual descriptions and CT images. This includes
incorporating semantic features from LLMs into the denois-
ing process to better match LDCT images with NDCT
images. Additionally, multi-modal fusion techniques can be
utilized to combine textual information with visual data,
moreover, improving denoising outcomes. Adversarial train-
ing approaches, integrating language model-generated text
into the loss function, hold promise for creating denoised
images that align both physically and semantically with
NDCT images.

Additionally, Federated learning would be the future of
Low-dose image denoising in a decentralized machine learn-
ing paradigm. This SLR provides valuable insights into DL
techniques for denoising LDCT images. It makes several
significant contributions, including identifying research gaps,
classification of the literature, evaluation of methodologies,
synthesis of findings, critical appraisal of the literature, com-
parison of results, discussion of practical implications and
future research directions. The findings of this SLR sig-
nificantly enhance the existing knowledge base and extend
essential guidance for future research endeavors in the field
of LDCT image denoising.
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