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ABSTRACT Due to the high incidence of lumbar vertebral lesions causing spondylolisthesis and inter-
vertebral disc protrusion, lumbar spine (vertebrae and intervertebral discs) MRI image segmentation can
provide effective clinical information for the initial diagnosis and early treatment of current lumbar spine-
related diseases. However, in MRI images, there is a significant overlap and similarity in features between
the vertebral bones and intervertebral discs within the lumbar spine. Therefore, the effective identification
and segmentation of each vertebra and intervertebral disc in the lumbar spine pose a significant challenge.
We propose a lumbar spine MRI segmentation model based on the 3D Residual U-Net, incorporating bound-
ary segmentation structures and a hybrid attention mechanism. The model achieves boundary-constrained
segmentation of individual vertebrae and intervertebral discs by integrating the boundary segmentation
module. Additionally, it utilizes a hybrid attention module based on convolutional attention and self-attention
mechanisms for multiscale feature extraction in the lumbar spine. The proposed model is trained and
validated using the publicly available datasets MRSpineSeg2021 and SpineSagT2Wdataset3. Experimental
results demonstrate a significant improvement in segmentation performance, as measured by metrics such
as the Dice similarity coefficient (DSC) and Hausdorff distance (HD). This validates the superiority and
generalization performance of our proposed lumbar spine MRI.

INDEX TERMS Lumbar spine segmentation, convolutional neural network, vertebral bone boundary
segmentation, hybrid attention mechanism.

I. INTRODUCTION

The lumbar spine is an essential component of the human
skeletal system, serving as a foundational structure that car-
ries out various critical functions, including protecting the
nervous system, supporting body weight, and maintaining
body balance [1]. It constitutes the axial skeleton of the
human body, consisting of lumbar vertebrae (L1-L5), sacral
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vertebrae, and the coccyx. The lumbar spine is a complex
structure comprising multiple vertebral bodies, intervertebral
discs, vertebral arches, among other parts. The lumbosacral
plexus forms a complex sensory and motor neural net-
work around the lumbar and sacral vertebrae [2]. Spinal
disorders resulting from lumbar vertebral and intervertebral
disc pathologies include spinal trauma, spondylolisthesis,
and neural foraminal stenosis [3]. Understanding the precise
anatomical structure of the lumbar spine is a focal point
in current medical research. In comparison to computed
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tomography (CT) technology, which may display surround-
ing muscles and nerves indistinctly, magnetic resonance
imaging (MRI) provides radiologists and clinical practition-
ers with higher spatial resolution and contrast pathology
images [4], revealing both skeletal and soft tissue informa-
tion of the lumbar spine. With the advancement of medical
imaging informatics and computer-aided diagnosis (CAD)
systems, lumbar spine segmentation plays a crucial role
in the preliminary diagnosis of various spinal conditions.
To assist radiologists and achieve rapid, stable, and accurate
segmentation of lumbar spine MR images, providing valu-
able information for clinical pathological diagnosis, surgical
planning, and postoperative assessment [5], it is necessary
to address current challenges such as limited lumbar spine
MRI datasets and slow segmentation model training speeds.
Further in-depth research is needed to tackle the existing
difficulties in lumbar spine MR segmentation. As shown in
Figure 1, there is a high degree of similarity among the
vertebrae and intervertebral discs in lumbar spine MRI, which
makes it difficult to achieve comprehensive segmentation in
the current segmentation task.

FIGURE 1. Sagittal MRI slices of the lumbar spine in Figures (a)-(d),

in which the lumbar vertebrae L1-L5 and intervertebral bones overlap in
the region of the L1/L2-L5/S junction and there is a high degree of
similarity between the vertebrae and intervertebral discs.

A. RELATED RESEARCH WORK
Current existing research related to lumbar spine segmenta-
tion mainly includes segmentation methods based on digital
images, segmentation methods based on machine learning
theories, and research methods combining convolutional neu-
ral networks with Transformers.

1) SEGMENTATION BASED ON DIGITAL IMAGE
TECHNOLOGY

Lumbar spine segmentation based on digital image technol-
ogy involves fitting boundary curves for 2D or 3D regions
of interest through signal analysis. Klinder et al. [6] pro-
posed a fully automatic vertebral segmentation framework
based on statistical shape models for spine image analysis.
This framework is used for vertebral relative positioning and
collecting morphological curve information. The segmented
region includes lumbar vertebrae L1-L5 but lacks interver-
tebral discs and the vertebral canal. The framework utilizes
spinal volume for curve reconstruction, achieves spine detec-
tion through generalized Hough transform, and identifies
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and segments vertebrae through multi-level processing. This
method requires high-quality and extensive spine datasets for
complex training.

In contrast, Korez et al. [7] introduced a statistical
model-based automatic spine localization and vertebral seg-
mentation model. They use interpolation techniques to
effectively fill in pixel-deficient regions and employ morpho-
logical operations for initial spine segmentation. Individual
vertebra detection is achieved through geometric position-
ing, and high-precision segmentation is ultimately realized
using shape statistical models. This method can handle
high-resolution spine CT images, providing segmentation
results for the entire spine. However, pixel region inter-
polation techniques may introduce noise and false-positive
regions, impacting segmentation accuracy in certain areas of
interest. Ibragimov et al. [8] proposed a novel lumbar spine
segmentation framework based on transportation theory and
game theory. By incorporating the theory of target domi-
nance during the object detection process, the computational
cost on the cross-sectional plane of lumbar vertebrae and
femoral heads was reduced by a factor of three. Castro-
Mateos et al. [9] introduced an active contour model for
overall spine boundary segmentation. This model utilizes the
Statistical Image Model (SIM) to model intervertebral discs
between adjacent vertebrae, calculating relative positional
information of intervertebral discs and combining biological
curve information to achieve vertebra segmentation. How-
ever, this method requires manual selection of the center of
interest in the intervertebral disc and manual initialization
of the spine contour curve, making it impractical for clin-
ical application. Kadoury et al. [10] were the first to use
Markov Random Fields to segment the entire spine into a set
of intervertebral discs, introducing geometric characteristics
between adjacent vertebrae. The measurement results are
used as the intervertebral disc set to achieve consistent curve
fitting for various regions of the vertebrae. Building on this
research, Kadoury [11] employed manifold embedding and
higher-order Markov Random Fields for the segmentation of
multimodal spine vertebrae. This method not only maps fore-
ground region pixels to a low-dimensional manifold space but
also, compared to previous Markov Random Fields, locates
and segments each vertebra through higher-order MRF. How-
ever, this model has a high complexity requiring a large
number of high-order MRF models for fitting calculations
and is sensitive to noisy data, making it prone to underfitting.

2) MACHINE LEARNING SEGMENTATION

With the maturation of machine learning theory, spine seg-
mentation models based on machine learning theory have
continuously evolved. Early segmentation models primarily
focused on high-density bone regions, but for individual ver-
tebrae recognition and segmentation of the spine, including
the lumbar vertebrae L1-L5, they still lacked contrast in
the less prominent intervertebral disc and vertebral canal
regions. Glocker et al. [12] introduced a method for automatic
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localization and recognition of spine vertebrae in CT scan
images using regression forests and probabilistic graphical
models for localization and detection. The visible part of
the spine vertebrae is detected using regression forests, and
precise localization and recognition are achieved by capturing
the spine’s geometric model. This method achieves an overall
median localization error of less than 6mm and a recogni-
tion rate of 81% on 200 scan images. Building on previous
research, Bromiley et al. [13] proposed the use of multiple
sets of 2D locators for localization and recognition. The first
set uses a random forest regressor to locate the spine in the
coronal plane, and the second set of regressors identifies each
vertebra in the coronal plane. In 2015, Suzani et al. [14] first
introduced a lumbar spine segmentation region based on a
multilayer perceptron. They conducted statistical analysis on
voxel intensity, generated the original lumbar spine model,
and iteratively approached the true lumbar spine parameters
through local thresholds. Chu et al. [15] and colleagues used
random forest regression to achieve vertebrae localization and
detection. Simultaneously, they employed a hidden Markov
model to generate voxel distribution probability maps, elim-
inating segmentation ambiguity caused by the high shape
similarity between vertebrae.

3) BASED ON CONVOLUTIONAL NEURAL NETWORKS
SEGMENTATION

Compared to traditional machine learning, convolutional neu-
ral networks (CNNs) based on deep learning possess stronger
feature representation capabilities. They can automatically
learn current regional features for classification and segmen-
tation processing by designing improved structures according
to the problem environment. The end-to-end medical segmen-
tation model U-Net network [16], proposed in 2015 within
convolutional neural networks, has strong feature learning
abilities on small medical datasets. Therefore, it has been
extended to a specialized segmentation network framework
based on data type-driven modifications to the basic U-Net.
In the field of lumbar spine segmentation, Fan et al. [17]
utilized a 3D U-Net network for the automatic segmentation
of the lumbosacral nerves, bones, and intervertebral discs
in CT data from 31 patients. They employed 3D recon-
struction techniques to simulate percutaneous endoscopic
transforaminal discectomy (PETD) trajectory for interverte-
bral foramen shaping surgery simulation, assessing clinical
surgical difficulty. Korez et al. [18] and colleagues employed
a convolutional neural network (CNN) for feature learning
and target segmentation in MR images of spinal vertebrae.
They used combinations of convolutional and pooling lay-
ers for iteratively learning local features of spinal vertebrae.
Through two fully connected layers, they mapped verte-
bral features to the mask on the spine for spinal vertebrae
boundary segmentation. Sekuboyina et al. [19] proposed a
two-stage network based on deep neural networks for labeling
multi-label lumbar spines. In the first stage, the lumbar spine
is defined through nonlinear regression using a multilayer
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perceptron (MLP). The second stage involves using a U-Net
classification model for multi-classifying each vertebral bone
in the localized lumbar spine region, achieving segmentation
and labeling of the lumbar spine by learning local features
in context. Nazir et al. [20] introduced ECSU-Net, a network
combining embedded clustering slices with a fusion strategy,
aiming to efficiently learn distinguishable features from a
small amount of training data. This network, based on the
3D U-Net framework, introduces a fusion strategy to better
capture the shape and structural information of intervertebral
discs by merging information from multiple slices. However,
this method results in lower training efficiency due to the
need to calculate the loss for every two different vertebral
segments. Pang et al. [21] proposed the DGMSNet network,
which simultaneously trains and learns from both strong and
weakly supervised datasets. This method uses a keypoint
detection task to assist the lumbar spine segmentation task.
It comprises a segmentation path and a detection path, where
the segmentation path generates spine segmentation predic-
tions, and the detection path generates heat map predictions
for keypoints. Dynamic parameters in the detection path are
generated by a detection-guided learning (DGL) and used as
adaptive convolution kernels for extracting semantic informa-
tion in the segmentation path. However, this method has some
drawbacks, including not taking advantage of the low-cost
benefits of keypoint detection annotated datasets and the
fact that the auxiliary task only affects the main task in the
feature space, not in the prediction space. Wu et al. [22]
proposed a 3D lumbar spine localization and segmenta-
tion network (LVLS-HVPEE) based on 2D mixed visual
projection image fusion envelopes. This network acquires
the complete position of each lumbar vertebra in the coro-
nal and sagittal planes by fusing visual projection images.
Under the conditions of obtaining the 3D localization sub-
space of each vertebra, a 3D segmentation network based
on spatial localization knowledge is introduced to achieve
cervical spine segmentation. Zhao et al. [2] introduced the
Residual-atrous Attention Network (RA2-Net) lumbar spine
segmentation network model, which uses dilated convolu-
tions to learn multiscale features with different dilation rates
in the encoder. Additionally, it introduces scale attention
blocks in the decoder to adaptively fuse features. Moreover,
this method utilizes residual skip connections to combine fea-
tures in the encoder with high-resolution spatial details with
high-level contextual features, aiming to improve segmenta-
tion performance. Wang et al. [23] proposed a segmentation
network MLKCA-Unet for spinal MRI images. In compari-
son to the traditional U-Net structure, which faces challenges
in obtaining distant features due to the use of small con-
volutional kernels, the authors proposed improvements to
the encoder’s feature extraction capability by introducing
multiscale large convolutional kernels and attention mech-
anisms. They captured features for different-sized feature
maps using convolutional kernels of different sizes and used
1 x 1 convolutional kernels to reduce the computational
load.
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4) SEGMENTATION WITH COMBINATION OF
CONVOLUTIONAL NEURAL NETWORKS

AND TRANSFORMER

The emergence of the Transformer structure based on the
self-attention mechanism signifies a revolutionary advance-
ment in the field of natural language processing [24], but its
impact is not confined to the text domain alone. Due to its
outstanding sequential modeling capability and the flexibility
of the self-attention mechanism, the Transformer structure
has brought new insights and performance improvements to
medical image segmentation tasks. In the context of locating
and extracting features from regions of interest in medical
images, ViT [25] introduces self-attention mechanism by
transforming the image segmentation task into a sequence-to-
sequence problem. This allows ViT to understand the context
and relationships within the image globally, contributing to
capturing complex relationships between different regions
and enhancing the accuracy of medical image segmentation.
However, the original ViT is sensitive to image sizes and
cannot autonomously learn different-sized images. Given the
diversity of medical datasets due to various collection devices
and complex sample sources, the original ViT network cannot
leverage its advantages in medical images. With the integra-
tion of window attention mechanism and hierarchical feature
representation in the Swin Transformer network [26], there is
a further improvement in performance in image classification
and segmentation, while reducing the overall computational
complexity of the network. The image segmentation model,
combining features based on the Transformer structure and
U-shaped network, has further advanced in the field of med-
ical image. Tao et al. [27] propose a two-stage method
for labeling and segmenting vertebrae. The first stage uses
Spine-Transformers to treat the automatic labeling of verte-
brae in any FOV spine CT scan as a one-to-one set prediction
problem. This is achieved by designing a global loss and a
lightweight Transformer architecture for unique prediction
and learnable position embedding. The authors introduce
the InSphere detector to replace traditional box detectors,
providing better handling of volume direction changes. In the
second stage, a single multi-task encoder-decoder network
is trained for the refinement of central coordinates and seg-
mentation of recognized vertebrae. You et al. [28] propose
a single-stage network model (EG-Trans3DUNet) based on
Transformer and U-Net for vertebral segmentation in spine
CT images. By introducing an edge detection module and
a Transformer-based global information module, the model
addresses the issue of blurred vertebral boundaries in CT
images while maintaining the segmentation consistency of
each vertebra.

B. CONTRIBUTIONS
In summary, our main contributions can be summarized as
follows:

(i) We propose a multi-scale feature extraction module
inserted between the subsampling layers of the encoder to
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enhance the segmentation accuracy of lumbar vertebrae and
intervertebral disc soft tissues. By introducing a three-branch
structure for feature extraction, the upper branch is primarily
for multi-scale feature extraction, the middle branch uses a
residual structure to preserve shallow layer feature informa-
tion, and the lower branch employs a mixed attention module.
The mixed attention module leverages channel relationships
to extract meaningful semantic information, while the spatial
attention mechanism focuses on the position information of
the features. The combination of these two attention mecha-
nisms better captures crucial details and edge information in
the lumbar vertebrae and intervertebral disc.

(i) We propose a hybrid attention mechanism that com-
bines channel attention, spatial attention, and self-attention
based on a three-dimensional local volume. This mechanism
inputs features suppressed by channel attention (irrelevant
channel information) and features focused on the position
information of the regions of interest, extracted by spa-
tial attention, into the Transformer structure based on local
three-dimensional volume self-attention. The combination
of convolutional attention and self-attention effectively inte-
grates fine-grained features from shallow layers and semantic
features from deep layers, reducing the semantic gap between
heterogeneous features and better capturing details and
boundaries of small-scale variations.

(iii) To address the under-segmentation issue of lumbar
vertebrae boundaries, we design an upper branch in the
multi-branch structure for multi-scale edge feature extrac-
tion. This structure, based on convolutional neural networks,
employs multiple upsampling deconvolution operations for
scale normalization of features of different sizes. By con-
trolling the number of feature channels using 1D special
convolutional kernels, we concatenate the extracted multidi-
mensional lumbar boundary feature maps to obtain features
containing rich local and global information. The deep fusion
of local features and overall information is achieved by
constraining the boundary features of individual vertebrae,
ensuring the consistency of lumbar segmentation.

Il. LUMBAR SPINE MRI SEGMENTATION MODEL

A. NETWORK ARCHITECTURE

In the study of lumbar spine segmentation, we designed a
network framework based on convolutional neural networks
and a hybrid attention mechanism, as shown in Figure 2,
for segmenting the lumbar vertebrae (L1-L5) and interver-
tebral discs (L1/L2-L5/S) in the human spine. The overall
network framework consists of four main parts, employing an
asymmetric structure including a contraction path for feature
extraction and an expansion path for image recovery. The
first part is the Residual U-Net encoder, where the lumbar
spine MRI dataset is preprocessed and input into the Resid-
ual U-Net encoder. The encoder comprises four layers of
repeated downsampling layers connected by our specially
designed three-branch structure. The second part consists
of a hybrid attention structure designed by combining
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FIGURE 2. The overall segmentation network framework diagram is mainly divided into (a) Residual U-Net encoder, (b) Hybrid attention module,

(c) Vertebral edge segmentation model, and (d) Decoder and classifier.

convolutional attention mechanism and a self-attention
Transformer structure. The hybrid attention structure includes
channel attention mechanism, spatial attention mechanism,
and local volume-based self-attention mechanism. The chan-
nel and spatial attention mechanisms adopt a parallel
dual-branch structure to suppress irrelevant channel infor-
mation and enhance spatial position information from the
extracted features of the downsampling layers. These two sets
of features are then input into the local Transformer module
based on local volume self-attention mechanism, which can
better capture local information and details compared to tra-
ditional global attention. The third part is the decoder module,
consisting of four layers of repeated upsampling layers that
restore high-dimensional data to low-dimensional informa-
tion. The features extracted by the downsampling layers in
the encoder are input into each layer of the decoder through
skip connections to achieve fusion of high-dimensional fea-
tures and low-dimensional information. The fourth part is the
boundary feature module, where a basic convolutional neural
network is introduced. The features containing rich local
details extracted by the first three downsampling layers are
input separately, and boundary features are extracted using
different convolutional kernels. Finally, these three sets of
features are standardized in size through upsampling oper-
ations and fused with the decoder output features, containing
rich local and global feature.

B. MULTI-SCALE FEATURE EXTRACTION MODULE

We have designed a multi-scale feature extraction module
between the encoder’s downsampling layers, as illustrated in
Figure 3. This module consists of three branches. By copying
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the features /. IZ f(l‘li‘g 3) (Where [ represents the downsampling

layer, H x W represents the height and width of the image,
and C represents the feature channel dimension) extracted
from the first three downsampling layers into three sets of
features, they are simultaneously input into the three-branch
structure. The upper branch structure is the boundary feature
module. Since the features I/ ;ZT%Q extracted from the
first three downsampling layers mainly focus on the shallow
local details of the image, the first three layers of features
are restored to the image size H x W x C through upsam-
pling operations to extract the boundary information of the
lumbar vertebrae. Among the three branches, the middle
branch and the lower branch input features are FH*WxC
and TH*W*C  respectively. The two branches consist of
two different convolution attention mechanisms. The middle
branch structure introduces a channel attention module based
on channel attention, while the lower branch structure uses a
spatial attention module based on spatial attention. To address
the issue of lumbar spine feature loss due to repeated convo-
lution operations in the downsampling layers, we introduce
channel-domain and spatial-domain attention mechanisms to
compensate for the detail loss caused by repeated convolution
operations and further enhance the feature of the region of
interest to obtain global positional information. The middle
branch structure aggregates the features F7*W*C through
max-pooling and global average pooling operations to gen-
erate two differentiated spatial context features Fgavg and
FS&,.. The spatial features are compressed to obtain two
spatial background information parameters, F/ g e and FS
which are then input into a multi-layer perceptron (MLP)
with shared channel weights to calculate the channel feature
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FIGURE 3. The multi-scale feature extraction module we propose is designed as a three-branch structure. The upper branch features are
primarily input to the boundary segmentation module, while the middle and lower branch features are processed using a mixed attention

mechanism.

attention maps F/*!*C and F#>W>C_ The two features are
element-wise added, and the final channel feature M.(F) is
obtained through the Sigmoid activation function. The chan-
nel attention calculation process is shown in Equation (1):

M.(F) =0 (MLP(Global AvgPool(F)) + MLP(MaxPool (F))
Me ) =0 (W1 (Wo (Féung) ) + W1 (Wo (Féug))) (D

where Wy € RCE/7%C and W; e RE*C/". The feature
TH>WXC g input into the spatial attention model, and the
structure of the spatial attention model is shown in Fig. 3.
Compared with the channel attention mechanism that focuses
on the channel information, the spatial attention mechanism
concentrates on learning the pixel position information in the
feature map, and the features F,, and Fp,,, are obtained
by the serial computation of the maximal pooling and the
average pooling. The features Fy,, and Fy,, are spliced
into F}, by channel splicing operation, and then the spatial
attention feature F}, is dimensionalized to 1 dimension by
convolution operation, and the spatial attention score map
M(F) is obtained by the Sigmoid activation function, and the

computation process is shown in Eq. (4):
M,(F)=o (f7X7 ([AvgPool (F) ; MaxPool (F)]))

M F) = (77 ([Fiugi P ) @

Due to the semantic differences between heterogeneous fea-
tures, directly concatenating and fusing features cannot fit
well. The introduction of channel-space attention effectively
combines the features extracted from the first three layers
of the encoder, removing noise and irrelevant organizational
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information. This allows the model to better differentiate
and utilize features in both channel and spatial dimensions,
enhancing the network’s focus on channel-dimensional fea-
ture information. Finally, the extracted channel attention
features and spatial attention features are input into the Local
Transformer structure based on local volume self-attention
mechanism. The self-attention mechanism captures relation-
ships between different positions in sequences or images, the
channel attention mechanism focuses on features between
different channels, and the spatial attention mechanism cap-
tures important information in spatial dimensions. The hybrid
use of these three attention mechanisms enables the acquisi-
tion of crucial information at multiple scales, contributing to
a more comprehensive understanding of input data.

C. EDGE SEGMENTATION MODULE

The structure of the boundary segmentation module, as shown
in Figure 4, addresses the challenge of accurate segmentation
of the lumbar vertebral structure in medical images due to its
complexity. The lumbar vertebrae exhibit a multi-level, intri-
cate structure in the lumbar region, with interwoven structures
such as intervertebral discs and intervertebral foramina. This
complexity makes accurate segmentation of the lumbar ver-
tebrae a challenging task in medical imaging. The lumbar
vertebral structure is a challenge in the field of medical image
processing due to its complexity. Vertebrae present a multi-
level, interlaced longitudinal structure in the lumbar region,
and small structures such as intervertebral discs and inter-
vertebral foramina are intertwined with each other, which
makes accurate segmentation of lumbar vertebral bones in
medical images a rather difficult task. In order to solve the
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problem of under-segmentation of lumbar vertebral bone
boundaries, we propose a CNN-based boundary segmenta-
tion module. The structure of the boundary segmentation
module is shown in Fig. 4, where the different scale features
1 111 ZX(IZ fg 3) extracted from the first three layers of downsam-
pling of the encoder containing rich local details of the image
are input into the module, and according to the different sizes
of the features the size is unified as H x W x C using multiple
inverse convolution operations, the number of the feature
channels is controlled by the special convolution kernel of
1 x 1 x 1,, and the convolution kernel of 3 x 3 x 3 is
taken to the extraction of the localized information of the
shallow vertebral bone containing the different scales, and
the extracted The multi-dimensional spine vertebrae bound-
ary feature map is spliced with feature channels, and the
spliced multi-dimensional features are fused again with the
1 x 1 x 1 convolution kernel, due to the relatively large image
resolution H x W, the first downsampling layer has less loss
of details, so the feature 1 IZ TWXCI channel Cj is controlled to
be 32, while the second / lli >2< WxC2 and third IZZT WxC qown-
sampling layers contain relatively less information, so the
channel dimensions C, and C3 are set to be 64 and 128, and
the lumbar vertebrae boundary features are extracted with
the final output of the decoder. The extracted lumbar spine
boundary features are fused with the final output features of
the decoder, and the boundary features are utilized as poten-
tial constraints to ensure the consistency of segmentation of
each vertebra in the spine. The calculation process is shown in
Equation (5). Where £3*3*3 denotes a convolution operation
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with a convolution kernel size of 3 x 3 x 3. The calculation
process is shown in Equation (3).
IHXWXC,'(,'=1_2_3)
I=i(i=1,2,3)
—j(j= HixW;xC;
=f3x3><3(fl x1x1 (Upsample” ](] 0,2,4)(I[:i>(<i:1>’<2’3))))
SH><W><C

_ rlxIx1

HxWxC; ;HxWxCy ;HxWxC3
—Je=C [l 1 ’[l 2 ’Il 3 ))

(Concatenate(I,_
3

D. MIXED ATTENTION MECHANISM

In the transverse section of lumbar spine MRI images, the
area of the foreground region is relatively small compared
to the background region. This leads to deficiencies in tradi-
tional U-Net networks and their variant network architectures
in extracting target features, particularly in terms of multi-
scale information and segmentation attention. In the U-Net
encoder, as the number of downsampling layers increases,
the extracted low-level and high-level semantics of the lum-
bar spine are gradually diluted. The low-level semantics
of the lumbar spine contain spatial information about the
boundaries of lumbar vertebrae, while high-level seman-
tics contribute to vertebral localization and identification.
Currently, mainstream lumbar spine datasets exhibit charac-
teristics of sample anisotropy. To overcome the limitations of
traditional convolutional neural networks, we propose using
a mixed attention mechanism to capture multiscale informa-
tion in features. The mixed attention structure consists of
channel attention models, spatial attention models, and Local
Transformer and Global Transformer structures based on self-
attention, as illustrated in Figure 5. The features are filtered
for irrelevant channel information and enhanced for spatial
position information by the channel attention module and
spatial attention module.

The Local Transformer module proposed in this paper
employs a Volume-based Multi-scale Self-Attention mech-
anism (V-MSA) to process the channel attention feature
M (F) and spatial attention feature M (F). Its structure is
illustrated in Figure 5(a). Since M (F') and M (F) belong
to the downsampling shallow-layer features with a relatively
larger resolution compared to deep-layer features, we use
the local volume self-attention mechanism instead of the
traditional global self-attention feature. The computational
complexity formulas for both self-attention mechanisms are
shown in formula (4), where {Sy x Sw x Sp} represents the
size of the local volume. By restricting each position of
the voxel to focus only on the information within the local
volume concerning the global position, we achieve a signifi-
cant improvement in computational efficiency. This approach
better captures the local features of lumbar vertebrae and,
through the consideration of both channel and spatial dimen-
sions, facilitates a more comprehensive focus on the local
features and global position information of lumbar vertebrae.

Q(MSA) = 4hwC? + 2(hw)*C
Q(LV — MSA) = 4hwdC? + 2Sy SwSphwdC ~ (4)
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M (F) M (F)

(a) Local Transformer Structure

(b) Global Transformer Structure

FIGURE 5. Local transformer structure and global transformer structure. Where local transformer uses
the V-MAS based mechanism for long range dependency modeling and global transformer uses the
traditional MSA mechanism for feature spatial location information acquisition.

The features TLCT1 and TLS% based on channel and spatial
dimensions are further enhanced by element-wise addition
after the output. The computational process of the Local
Transformer is illustrated in formula (5), where the features
from different dimensions are added element-wise, strength-
ening the feature relationships.

Xt = MLP(Norm(LV

— MSA(Norm ( XILT) ) 1=0,1,2.. ... L

LT, = MLP(Norm(LV — MSA (Norm (X1L+T1)) )
)

where / represents the number of layers in the Transformer
structure and Norm represents the regularization, this paper
adopts layer normalization to ensure the overall stability
and effectiveness of the model. Compared with the shal-
low features extracted by downsampling, the fourth layer
of downsampling has lost too much local detail informa-
tign vz‘llftecr repeated convolution operations, and the feature
Izi: X% contains more deep local features and lower
resolution, so we introduce the traditional global-based multi-
head self-attention mechanism Global Transformer structure
to capture the global location information, and establish
global correlation through MSA. correlation. The structure
is shown in Fig. 5(b), and the calculation process is shown
in Eq. (6).

%S = MLP(Norm(MSA(Norm ( XIGT)
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+ x5y 1=0,1,2...... L
X5 = MLP(Norm(MSA (Norm (XS-Tl)) + XS-Tl)) (6)

E. LOSS FUNCTION

For lumbar spine MRI images where the lumbar vertebrae and
intervertebral disc region belongs to a typical multi-class seg-
mentation problem, for which we use the Dice loss function
for training, in the training process we found that the lumbar
vertebrae and intervertebral discs and other prospective areas
are small and inconsistent with the proportion of each sample,
and the Dice loss function in the narrow target loss will lead
to dramatic changes in the model gradient. To address this
problem, this paper uses the Dice loss function combined
with cross-entropy loss for training and learning, the loss
function as a whole £ as shown in Equation (7), £ is mainly
composed of two parts of the loss function, the overall label-
ing loss function Lp;.. and the category segmentation loss
function Lcg.

L= (XLDice + ,BECE @)

By introducing a hybrid loss function that integrates the
Dice loss function with the cross-entropy loss function, the
loss function gives different weights to the Dice loss values
of each feature class while calculating the cross-entropy of
each feature class, and at the same time, we introduce the
balancing factors « = 0.6, § = 0.4 to reduce the impact of
the overall loss function Lp;., on the training process, and
utilize the cross-entropy loss function Lcg to compensate
for the imbalance of the foreground region that occupies a
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small proportion. The loss function Lp;.. and L¢g calculation
process is shown in Equation (8):

1 N K .
Lce = N Zi:l Zkzl vijelog (Vi)
LoV 23 yiddia
Loee=1— 4 S0 22 Vikdix
2 ikt 2 ik

N
where N represents the number of samples, K represents
the number of labeling categories, y; x represents the actual
labeling of the real sample i belonging to category k, and y; 4
represents the probability of predicting that sample i belongs
to category k.

®)

Ill. LUMBAR SPINE SEGMENTATION EXPERIMENTATION
A. DATA

Medical datasets mainly suffer from the problems of small
data volume size and variable quality of data samples com-
pared to natural image datasets, in order to evaluate the
robustness of our proposed model, we select two pub-
licly available lumbar spine MRI image datasets MRSpine-
Seg2021 and SpineSegT2Wdataset3.

Among them, the MRSpineSeg2021 dataset was published
by the second Chinese Society for Image Graphics (CSIG)
Graphics Technology Challenge. A total of 215 samples,
including 6 cases of healthy people, 204 cases of disc degen-
eration, 177 cases of vertebral body degeneration, 91 cases
of spinal stenosis, each sample included T2-weighted maps
and labels manually labeled by an expert, with 20 labeling
categories including 10 vertebrae and 9 intervertebral discs
mainly focusing on the thoracic vertebral end and lumbar
vertebral area, with an average resolution ranging from to,
and slices ranging from 12 to 18.

The SpineSegT2Wdataset3 dataset contains 195 samples,
which are mainly composed of patients with lumbar disc
degeneration and lumbar disc herniation, and each patient
data sample is a sagittal T2-weighted MR three-dimensional
data, and the acquisition equipment is the same MR equip-
ment, and the magnetic field strength is 3.0 T. It contains a
total of 2,460 slices in 195 samples, with a background label
of 0 and vertebral label of 2,460, and an average resolution of
12 to 18 slices. was 0 and vertebrae labeling was 1.

The two types of lumbar spine MRI datasets have a large
2D resolution, with an average resolution of. Therefore,
in this paper, the experimental environment was selected as
Xeon(R) Platinum 8352 + NVIDIA RTX 4090 GPU, with
24GB of video memory and 80GB of RAM, and the exper-
imental system was Ubuntu 18.04, and the environment was
configured with Python 3.8 + Pytorch 1.9.0 framework.

B. EVALUATION METRICS

The goal of this study is mainly for the lumbar vertebrae part
of the spine, including the vertebrae and intervertebral discs,
and the foreground regions such as vertebrae and interver-
tebral discs account for a relatively small percentage of the
vertebral body and intervertebral discs, for this reason the use
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of conventional segmentation metrics such as the precision
rate and the accuracy can not be accurately measure the
performance of the experimental model. Because the experi-
ments in this paper use Dice similarity coefficient, Hausdorff
distance(HD), and recall evaluation indexes to assess the seg-
mentation accuracy of the lumbar spine image segmentation
results.DSC similarity coefficient index is a positive index
that measures the similarity and overlap between the model
prediction set and the real set of two sample pieces, with
a value range of 0-1, which is mainly used to assess the
segmentation effect of the lumbar vertebrae in the internal
smooth region of the spine. The principle of calculation is
shown in equation (9):

N

1 2|P; N Ty
DSC (P, T) = — —_— 9
1= 5 Zipram ©

where P represents the model prediction result, T represents
the expert segmentation result, and i represents the index of
spinal vertebrae.

HD (mm) evaluation index measures the shortest distance
between the farthest points between two sets, through the
lumbar spine segmentation of the spatial distance between the
prediction results and the labeled set in order to determine
the degree of discrepancy between the predicted value and
the true value, the asymmetric HD distance measures the
maximum distance between the predicted set and the true
set, the maximum distance quartile we set 95% to rule out
the interference caused by the outlier, the calculation process
shown in Eq. (10).

HD(P, T)
= max(suppepl_ infrer; d(p, 1), SUp;er, infyep, d(p, 1)) (10)

where P; represents the set of surface distances from the
predicted segmentation labels of vertebrae, T; is the set of
surface distances from the vertebrae, and d (p, t) represents
the Euclidean distance between the points P; and T; in the set
of P and the set of 7. The HD metrics are used to measure
the gap between the predicted segmentation results of the
boundaries of lumbar vertebrae and intervertebral discs and
the boundaries of the true labels. In addition to the above
two metrics, we also used the recall rate Recall to assess
the model’s ability to detect true positive samples, where the
Recall metric is calculated using the formula shown in (11),
where the True Positive (TP) parameter represents the number
of positive samples that the model correctly predicted as pos-
itive samples, and False Negative (FN) represents the number
of positive samples that the model incorrectly predicted as the
number of negative samples.
TP

Recall = —— (11
TP 4+ FN

The Recall metric measures the degree of model coverage
for each vertebra of the lumbar spine and represents the
proportion of the total number of vertebrae that the model
successfully detected as true vertebrae.
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TABLE 1. DSC (%) scores of lumbar spine and intervertebral DISC MRI images segmented by different algorithms.

Methods L1 L2 L3 L4 L5 L1/L2 L2/L3 L3/L4 L4/L5 L5/S
3D U-Net 79.91 80.42 80.94 82.86 85.43 81.17 80.77 83.21 83.42 84.70
3D ResUNet 80.49 85.61 86.82 86.77 86.22 84.26 87.71 87.86 85.13 84.69
3D DeepLabv3+ 87.56 86.70 86.65 86.80 86.55 87.84 87.09 87.48 85.60 86.20
3D Graphonomy 88.57 88.22 88.19 87.86 87.48 89.18 88.54 88.77 86.42 86.33
3D GCSN 89.26 88.89 88.89 88.54 88.11 89.91 89.34 89.37 87.19 86.76
nnUnet 88.34 88.17 86.91 86.03 87.01 89.94 88.03 88.98 87.11 85.47
Our Models 90.29 88.95 90.27 89.01 89.79 91.18 89.32 90.48 87.32 87.07
TABLE 2. Recall scores of lumbar spine and intervertebral disc MRI images segmented by different algorithms.
Methods L1 L2 L3 L4 L5 L1/L2 L2/L3 L3/L4 L4/L5 L5/S
3D U-Net 79.23 81.97 82.32 82.24 83.72 78.73 79.96 81.42 81.12 81.73
3D ResUNet 81.96 82.32 82.49 83.53 83.86 80.34 81.56 82.33 82.71 81.35
3D DeepLabv3+  82.53 84.41 84.38 84.72 85.97 82.93 83.78 84.28 83.96 83.81
3D Graphonomy  82.17 82.76 83.74 83.86 85.04 83.24 83.85 85.76 85.14 84.39
3D GCSN 84.74 84.05 86.41 86.69 86.25 84.16 84.36 85.92 85.78 85.49
nnUnet 79.96 80.15 81.63 81.58 82.39 79.86 79.98 81.02 81.17 81.96
Our Models 85.67 87.29 87.58 87.49 88.72 85.03 86.64 86.38 86.10 86.22

C. EXPERIMENTAL RESULT

1) DATA PREPROCESSING

The dataset selected for this experiment contains two types of
datasets, MRSpineSeg2021 and SpineSegT2Wdataset3, for
the differences between the two types of datasets we per-
formed specific preprocessing operations. For all the samples
in the MRSpineSeg2021 dataset, we performed the cropping,
padding, and normalization preprocessing steps, regionally
cropping the lumbar spine irrelevant regions, controlling the
size of the image to 256 x 256 x 18 using zero padding for the
cropped image, and finally normalizing the image by voxel
normalization.

For the SpineSegT2Wdataset3 dataset, the gray scale of the
MR image changes slowly and is not uniformly distributed,
resulting in the existence of different gray scale values in the
same vertebrae or intervertebral disc region, we firstly cor-
rected the offset field of the voxels in the MR image, and then
extracted the three-dimensional T2W1 sagittal plane slices,
and in order to reduce the effect of the background region on
the model, we maintained the integrity of the lumbar verte-
brae by randomizing the voxels. integrity, we augmented the
dataset by random flipping, and the remaining preprocessing
operations were kept the same as MRSpineSeg2021.

2) IMPLEMENTATION DETAILS

For the dataset MRSpineSeg2021, it contains 215 instance
samples, each sample contains 12-18 slices. During model
training 70% of the samples in the dataset are used for train-
ing, 10% of the samples are used for testing during training,
and the remaining 20% of the data is used as a test set for
evaluating the segmentation performance of the model, with
an input image size of 256 x 256, a Batch-size set to 2, the
use of the AdamW optimizer, and an initial learning rate set
to 0.1%. For the dataset SpineSegT2Wdataset3, a total of
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195 samples contain 2460 slices, of which 135 samples are
used for model training, 40 samples are used for the validation
set during model training, and 20 samples are used as a test set
to evaluate the segmentation performance of the model, and
the rest of the hyper-parameters are the same as those of the
MRSpineSeg2021 dataset in order to maintain consistency
of the experiments. The remaining hyperparameters are the
same as the MRSpineSeg2021 dataset for consistency.

3) MRSpineSeg2021 SEGMENTATION RESULT

The segmentation results on the MRSpineSeg2021 dataset are
shown in Tables 1 and 2, and in order to validate the sophis-
tication of our proposed model we selected six mainstream
segmentation models for the comparison of the experimental
results, including 3D U-Net, 3D ResUNet, 3D DeepLabv3+,
3D Graphonomy, 3D GCSN, and nnUnet Table 1 shows
the DSC scores of different segmentation models on the
MRSpineSeg2021 dataset, in the segmentation of the lumbar
spine L1-L5 and the DSC scores of the five intervertebral
discs L1/L2-L5/S, all of our proposed models achieved the
highest scores, and the overall average DSC score of our
model was 89.37, which is the highest score among the
many mainstream segmentation models, in comparison with
the basic Compared with the basic 3D U-Net model, our
proposed model improves the DSC coefficient by 8.6%, and
compared with the 3D GCSN model, which has the best
segmentation effect, the model in this paper also improves the
overall segmentation accuracy by 0.8%, which proves that the
segmentation performance of our proposed model has been
further improved compared with mainstream segmentation
models.

In terms of the recall index, since the lumbar vertebrae and
intervertebral discs are close to each other, it is more difficult
to identify and segment the lumbar vertebrae and interverte-
bral discs as a whole than to segment the spine as a whole,
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FIGURE 6. Each segmentation model segmented L1-L5 and L1/L2-L5/S for a total of ten current regions, where each row is a
sagittal slice of the sample,yellow rectangles are used to mark the prediction results and the real results of different regions.

and when analyzing the sample data in the MRSpineSeg2021
dataset, the voxel space is, and the resolution within the slices
is much higher than that between slices which belongs to the
anisotropic data, so the recall of the model we propose is
limited compared to the mainstream segmentation models.
The performance improvement of our proposed model is
limited compared to the recall of mainstream segmentation
models, in which our model improves 6.7% compared to the
traditional segmentation network 3D U-Net, and 3.1%, 3.2%,
and 1.5% compared to the top three segmentation models in
terms of segmentation performance (3D DeepLabv3+, 3D
Graphonomy, and 3D GCSN), respectively., indicating that
our model outperforms the current mainstream models in
vertebrae and intervertebral disc detection.

The segmentation visualization results of the MRSpine-
Seg2021 dataset are shown in Fig. 6, from Fig. 6 we can
see that in the case of segmentation of anisotropic data,
the results of segmentation of the lumbar spine by the 3D
U-Net network show under-segmented regions relative to
other models, and the under-segmented regions are mainly
concentrated in the region of the lumbar spine vertebrae with
highly similar heights, which suggests that the 3D U-Net
network has a relatively low effect in the segmentation of
the vertebrae and the disc boundaries and the This indicates
that the 3D U-Net network has semantic difficulties in the
segmentation of vertebrae and intervertebral disc boundaries
and in the localization of lumbar vertebrae and lacks effective
learning. nnU-Net model has a relatively low segmentation
effect between vertebral bodies and intervertebral discs in
the same sample because the spatial positions of neighboring
vertebral intervals and intervertebral discs are very close to
each other to the extent of overlap, which results in the
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semantic confusions that exist in the segmentation process
at the moment and leads to the segmentation performance
of the nnU-Net segmentation model being lower than the
segmentation model of 3D GCSN. GCSN and other segmen-
tation models. When segmenting the intervertebral disc and
vertebral bone region, our proposed model can separate the
vertebral bone and other similar regions to achieve excellent
segmentation results by constraining the boundary range of
the vertebral bone with a specially designed boundary seg-
mentation model. It is verified that our proposed model has
good generalization ability in segmenting the smooth region
of the lumbar spine with part of the overlapping region of
vertebrae and intervertebral discs.

4) SpineSegT2Wdataset3 SEGMENTATION RESULT

In order to verify the robustness and generalization of our
model, we train on the SpineSegT2Wdataset3 dataset, which
mainly contains five vertebrae of the lumbar spine L1-L5,
with the labels are divided into two types of labels 0 and 1 For
this purpose, we evaluate the segmentation performance of
the model by using the two metrics of 95-HD distance and
DSC coefficient. Experimental results we organize in Table 3
and Table 4, analyzing the data in Table 3, we can see that
the model proposed in this paper in L1-L5 a total of five
vertebrae on the segmentation performance of the DSC score
have achieved the highest score, the average score of the
five categories of vertebrae reached 90.04, compared with the
traditional segmentation model based on convolution oper-
ation, the segmentation model based on the self-attention
mechanism (TransU-Ne and Swin-Unet) are lower than
the segmentation model represented by 3D U-Net in the
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TABLE 3. DSC (%) scores of lumbar spine MRI images segmented by
different algorithms.

Methods L1 L2 L3 L4 L5
3D U-Net 88.13 88.97 89.92  89.89 89.74

U-Net++ 88.95 89.58 89.71 89.48 88.37
TransU-Net  74.97 76.28 76.19  76.94 75.93
Swin-Unet 74.83 7431 74.82 7448 75.77
RAR-Unet 88.93 89.95 90.03  89.54 89.04
Our Models  89.34 90.28 90.12 90.33 90.14

TABLE 4. Segmentation of lumbar spine images by different algorithms
95-HD distance (mm).

Methods L1 L2 L3 L4 L5

3D U-Net 4.02 3.96 3.41 3.07 3.74

U-Net++ 3.05 2.78 2.71 2.21 2.07
TransU-Net 4.24 4.17 3.98 3.79 3.72
Swin-Unet 419 4.14 4.06 392 390
RAR-Unet 2.31 1.85 1.43 1.55 1.43
Our Models 1.33 1.63 1.71 1.67 1.24

segmentation performance of vertebrae instances, while the
RAR-Unet segmentation model based on a large convolu-
tional kernel achieves the highest score second only to our
proposed model, which indicates that convolutional neural
networks still have strong segmentation performance and
competitiveness in the task of anisotropic data. For similar
example segmentation tasks, more complete feature seman-
tics can be learned under the condition of improving the
sensory field. In Table 4, our proposed model achieves an
average distance of 1.51 mm in the 95-HD distance, which
is 2.14 mm shorter compared to the traditional segmentation
model 3D U-Net, and 11.5% shorter compared to the optimal
segmentation model RAR-Unet, combining a convolutional
neural network with a hybrid attentional mechanism, which
can be useful in extracting the vertebrae smooth region and
suppressing vertebral boundary segmentation.

The visualization results of the SpineSegT2Wdataset3
dataset are shown in Fig. 7, where we selected 3D U-
Net, U-Net++, Trans-Unet, Swin-Unet, and RAR-Unet to
demonstrate with our proposed model. Since this dataset
belongs to the two-class segmentation task therefore we use
binarized labels for the demonstration, from Fig. 7 relative to
other segmentation models, our proposed model can clearly
segment between similar vertebrae in lumbar spine, which
proves that our model avoids the problem of semantic con-
fusion in the process of training similar vertebrae.

D. ABLATION EXPERIMENT

In order to verify the impact of our proposed improvement
modules on the segmentation performance of the model,
ablation experiments are used to verify the performance of
the segmentation model. We categorize three modules for the
improvement modules, the first one is boundary segmentation
module EGM, the second one is CAM with SAM, and the
third one is mixed attention module MATM. To ensure the
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validity of the experiments, we use a pure 3D U-Net network
as a blank control group for the experiments. Meanwhile,
in order to test the model robustness, we conduct the same
experiments on two datasets (MRSpineSeg2021 and Spine-
SegT2Wdataset3) at the same time, and the data pairs of
the whole ablation experiments are shown in Table 3. The
ablation module is divided into four main parts: boundary
segmentation module EGM, channel attention module CAM,
spatial attention module SAM, and hybrid attention module
MATM module. The six categories of the experimental group
are 3D U-Net, 3D U-Net + EGM, 3D U-Net + CAM, 3D U-
Net + SAM, 3D U-Net + MAMT, and our proposed model.

Analyzing the data in Table 5, we first compare the impact
of the EGM module on the overall segmentation, comparing
the DSC coefficient scores of the pure 3D U-Net network and
the 3D U-Net + CAM and other networks in the MRSpine-
Seg2021 dataset and the SpineSagT2Wdataset3 dataset, and
we can see that in the MRSpineSeg2021 dataset It can be
seen that in the MRSpineSeg2021 dataset, the segmentation
accuracy is only 1.4% higher than that of the pure 3D U-
Net network with the addition of the EGM module, and the
segmentation accuracy in the SpineSagT2Wdataset3 dataset
is similar to that of the pure 3D U-Net, which verifies that
the effect of the EGM module in improving the segmentation
accuracy is not obvious. In the HD distance, the experimental
group with the addition of the EGM module improves 39.7%
and 60.1% compared to the basic segmentation network 3D
U-Net, while the experimental group with the addition of
the other modules shortens 1.44 mm and 1.74 mm on aver-
age, respectively, which proves that our proposed boundary
segmentation module improves the effectiveness of vertebral
bone boundary segmentation.

In the experimental group where CAM and SAM modules
are added respectively, comparing the three groups of data
in terms of DSC score, HD distance and Recall indexes,
we can understand that the addition of the convolution-based
attention mechanism achieves significant improvement in
segmentation accuracy and target detection, and due to the
small number of channel dimensions in the two datasets that
we selected (), the addition of the CAM module does not
have a significant effect on the segmentation performance
of the DSC score. score is not significantly improved, while
the experimental group of 3D U-Net + SAM module has
an average improvement of 4.95% in DSC score and Recall
score than 3D U-Ne t + CAM.

By adding the hybrid attention module MATM to the base
3D U-Net model, compared to the 3D U-Net + CAM experi-
mental group and the 3D U-Net 4+ SAM experimental group,
the 3D U-Net + MATM experimental group on the MRSpine-
Seg2021 dataset did not have a significant improvement in the
boundary detection metric HD Distance, but did not have a
significant improvement in the segmentation accuracy metric
DSC score and the Recall, a detection rate metric, achieved
significant improvement. The hybrid attention mechanism
based on convolutional attention and self-attention focuses
more on the extraction of overall lumbar vertebrae position
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TABLE 5. Comparison of ablation experiment results.

Dataset Backbone +Ablation DSC HD Recall
Module

3D U-Net 82.28 4.93 81.73
3D U-Net+EGM 83.47 2.97 81.92
. 3D U-Net+CAM 83.32 432 82.56
MRSpineSeg2021 3D U-Net+SAM 88.31 4.89 85.94
3D U-Net+MATM 88.25 4.04 85.12
Our Model 89.37 6.67 86.71
3D U-Net 8933 3.64 89.94
3D U-Net+tEGM 89.21 1.45 89.01
, 3D U-Net+CAM 89.39 3.52 90.43
SpineSagT2Wdataset3 3D U-Net+SAM 89.72 2.98 91.87
3D U-Net+MATM 89.64 3.07 92.78
Our Model 90.04 1.51 92.14

Unet++

3D U-Net

MR Ground Truth

TransUnet

Swin-Unet RAR-Unet Our Models

FIGURE 7. Sagittal section segmentation results of L1-L5 vertebrae.

information, and has obvious positive effects in reducing
both the under-segmentation problem of spine smooth region
segmentation and the spinal vertebrae localization ambiguity.
Our proposed model achieves the optimal DSC scores of
89.37 and 90.04 and the optimal recall scores of 86.71 and
92.14, and the experimental results prove the effectiveness
and superiority of our proposed improved module by stacking
different modules and conducting multiple experiments.

IV. ANALYSIS AND CONCLUSION

We propose a lumbar spine MRI image segmentation model,
based on 3D U-Net network by improving the downsam-
pling layer of the encoder, designing a multi-scale feature
extraction structure and boundary segmentation structure for
boundary constraints and enhanced feature extraction of the
lumbar vertebrae, and by mixing the use of convolution-based
attention mechanism and local volume-based self-attention
mechanism for multi-dimensional feature enhancement and
spatial location information acquisition. By conducting
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experiments on different lumbar spine MRI datasets, our
proposed lumbar spine segmentation model is compared with
the mainstream segmentation models today. The experimen-
tal results demonstrate that our lumbar spine segmentation
model achieves obvious constraint effects on the boundary
segmentation of lumbar vertebrae, and most of the similar
vertebrae and intervertebral discs can be clearly segmented
to connect the overlapping places. In addition, our lumbar
spine segmentation model also achieves some improvement
in segmentation accuracy, which proves the generalization
performance and robustness of our proposed model. How-
ever, during the experimental process, we found that the
computational complexity of the model is relatively high, and
due to the nested use of multiple attention models, our future
research mainly focuses on the lightweighting and parameter
optimization of the model.
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DATA AVAILABILITY

The lumbar spine MRIs used in the experiments were all
publicly available datasets, including the MRSpineSeg2021
dataset and the SpineSegT2Wdataset3 dataset.
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