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ABSTRACT Adverse Drug Reactions(ADRs) due to drug-drug interactions present a public health problem
worldwide that deserves attention due to its impact on mortality, morbidity, and healthcare costs. There
have been major challenges in healthcare with the ever-increasing complexity of therapeutics and an aging
population in many regions. At present, no standard method to detect such adverse drug reactions exists until
otherwise reported by patients after the drug is released to the market. Further, several studies show that it
is extremely challenging to detect these rare cases during clinical trials held before the drug is released.
Therefore, a reliable and efficient technique to predict such side effects before the release of the drug
to the market is the need of the hour. Through the power of Graph Neural Networks and the knowledge
representation abilities of self-supervised learning, we designed an effective framework to model drug-drug
interactions by leveraging the spatial and physical properties of drugs by representing them as molecular
graphs. Through this approach, we developed a technique that resembles the dynamics of a chemical
interaction. On training and testing this approach on the TwoSIDES Polypharmacy Dataset by Therapeutic
Data Commons(TDC), we achieve a state of the art results by obtaining a precision of 75% and an accuracy
of 90% on the test dataset. Further, we also perform a case study on the DrugBank dataset and compare
our results on the interaction type prediction task to validate our approach on the drug-drug interaction
domain and achieve excellent results with precision, F1, and accuracy of 99%. Our study and experimental
approaches lay the groundwork for further research on side-effect prediction through drug-drug interaction
and the use of Graph Neural Networks in the field of Molecular Biology.

INDEX TERMS Adverse drug reaction, drug-drug interaction, side effect prediction, graph neural network,
self-supervised learning, scientific machine learning.

I. INTRODUCTION
An Adverse Drug Reaction(ADR) can be defined as a
significantly harmful or unpleasant reaction usually attributed
to the use of medicines and may warrant treatment, pre-
vention, alteration of dosage, or withdrawal of the usage
of that drug [1]. They are a major threat to the healthcare
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system since they contribute to mortality, morbidity, extended
hospital stays, and increased healthcare costs [2]. Many of
the side effects are not observed during clinical trials but
are mostly identified only after the drug has reached the
market [3].

Several studies also show that reports of Adverse Drug
Reactions tend to be skewed based on sex, geographic region
of origin, and country of origin. For instance, according to [4],
women are at more risk of adverse drug reactions due to
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differences in pharmacokinetic and pharmacodynamic effects
of drugs in addition to their higher dosage concerning body
weight. Further, factors such as access to healthcare based
on country of residence and their healthcare quality play
a role as well. According to [5], the median proportion of
preventable ADRs in developed and developing countries is
71.6% and 59.6% respectively, and the median proportions of
ADRs relating in mortality were 1.7% and 1.8% in developed
and developing countries respectively. The majority of these
ADRs were preventable in both situations signifying the
importance of early prediction of such ADRs and improving
medical use in developing countries.

Accurate identification of ADRs is difficult considering
it depends on the expertise of the attending physician
and the quality of information available. Sometimes even
experienced physicians have difficulty in determining causal-
ity. In addition to this, the usage of multiple medicines,
underlying conditions of the patient, and assumptions such
as the active principle of the medication cause adverse
drug effects make the task of accurately identifying them
extremely challenging. Further, they are sufficiently rare
since they are tested amongst a small sample size during
clinical trials, they tend to elude detection during the drug
development process.

A primary cause of Adverse Drug Reactions is Drug-
Drug Interactions. Drug-drug interactions occur when drugs
compete for the same target. They also involve drug
metabolizing enzymes and influx-efflux drug transporters
which determine the adsorption, distribution, metabolism,
and excretion of drugs [6]. They are one of the most common
causes of medication error particularly among elderly people
due to poly-therapy [7]. Drug-drug interactions can render a
clinically prescribed drug ineffective and may cause adverse
drug reactions which can be fatal.

With the growing popularity of deep learning models
due to their ability to recognize underlying patterns in
various types of data and the advent of Graph Neural
Networks that can represent the physical and chemical
properties of a drug, models based on such concepts can
be used to effectively correlate drug-drug interactions to
their side effects. Further techniques such as self-supervised
learning and ensemble learning have proven to increase the
overall model performance since self-supervised learning can
capture and learn the distribution of data on an upstream
task with very few labeled samples. The knowledge base
obtained can be transferred to a downstream task [8] while
ensemble techniques combine multiple deep learning models
to improve the overall performance [9].
In consideration of such improvement and the growing

concern about Adverse Drug Reactions, we propose a deep
learning technique that leverages the spatial characteristics of
graph neural networks andmodels the dynamics of a chemical
interaction to predict the side effects caused by Adverse
Drug Reactions(ADRs). We leverage the underlying feature
learning capabilities of self-supervised learning and the com-
plexity of Dual Path Graph Neural Networks to effectively

predict side effects caused by drug-drug interactions. Our
study and experiments lay the groundwork to begin further
research into the field of Adverse Drug Reactions from a deep
learning and mathematical perspective.

A. MOTIVATION
Adverse Drug Reactions and the side effects they cause are
very challenging to detect and depend on various factors
such as the quality of the physician, gender, quality of
healthcare, etc, and subjectivity of the reports of adverse
drug reactions. Since a framework dedicated to modeling
drug-drug interactions by using the molecular structure
of drugs for the prediction of side effects is yet to be
established and considering the ability of deep learning with
recent developments in graph neural networks, we propose
a novel framework to model drug-drug interactions using
Graph Neural Networks by modeling the properties of drug
molecules and leveraging the pattern recognition abilities
of self-supervised learning and the potential of ensemble
learning. Since chemical molecules can be represented as
a molecular graph, we can leverage the complex represen-
tations and operations offered by Graph Neural Networks
to model their atomic and bond-level properties. Recent
developments through Graph Convolution Network, Graph
AttentionNetwork [10], and SAGE [11] and their outstanding
results on graph-level tasks have increased the popularity
of Graph Neural Networks thus making it a reliable option
in various fields [12], [13]. Despite some of the pitfalls
of Graph Neural Networks such as under-fitting and the
need to generate high-quality vertex embeddings, fine-
tuning pre-trained weights and ensemble approaches raise
the performance of Deep Learning models by a great extent
unlocking the door for further research in Graph Neural
Networks, and their applications on drug research.

Main Contributions:
• The study aims to reduce the number of clinical
hospitalizations due to Adverse Drug Effects. Our pro-
posed framework predicts the side effects of drug-drug
interactions based on the molecular structure of the drug
and their interaction dynamics. This enables a holistic
and early determination of side effects caused by such
adverse reactions and ensures that variables such as
quality of the physician, subjectivity of the reports, and
quality of healthcare are eliminated. Instead, a scientific
and probabilistic view is provided to predict side effects.
Our study is among the first to explore the underlying
mathematical relations between drug-drug interaction
and side effect prediction through deep learning.

• Wepresent a novel approach to side effect prediction due
to drug-drug interaction using Graph Neural Networks
by representing the drugs involved in the reaction as
molecules. The nodes of the graph are represented by
atoms while the edges are represented by chemical
bonds, thus making use of the spatial and physical prop-
erties of molecules by their graphical representation.
Approaches that have been designed so far to predict
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side effects by drug-drug interaction neither use the
structure of the chemicals involved nor leverage Graph
Neural Networks to represent the physical and bonding
properties of chemical compounds.

• To realize the dynamics of a chemical reaction and
effectively leverage the spatial and physical features
of both the reactants, We develop a Dual Input Graph
Neural Network Hybrid Model with a 2-stage training
phase. The Dual Input framework is designed to
model the dynamics of a chemical reaction by sharing
features between both reactants. We achieve a stable
model training curve despite the complexity of the
system. Further, each reactant is pre-trained to ensure
a knowledge base derived from the properties of the
reacting drugs is transferred to the side effect prediction
task. Such a framework despite being only in the
initial stages of research shows state-of-the-art results in
precision and accuracy.

• The dataset that we used for our study is the TwoSides
poly-pharmacy side effects dataset from Therapeutic
Data Commons(TDC). Since this is among the only
datasets for side-effect prediction through Drug-Drug
interaction, our experiments act as a baseline bench-
mark. Therefore, we aim for our study to be a base
for side effect prediction and aim to open doors to
further research into the field ofMolecular GraphNeural
Networks and Drug-Drug Interactions.

• Since the TwoSides poly-pharmacy side effects dataset
is the only available dataset for side effects prediction
and owing to a lack of previous benchmarks on the same,
we provide an experimental validation of our proposed
framework on the DrugBank Dataset. Though the final
task for the DrugBank dataset is the prediction of the
drug-drug interaction type, by comparing our results
with related works, we achieve state-of-the-art results
for our proposed framework on the drug-drug interaction
type prediction task as well. We show that our proposed
framework effectively models drug-drug interactions
and despite the change in the prediction task, it can
model the dynamics of a chemical interaction and lays
the platform for further research on the Drug-Drug
Interaction Domain and Bioinformatics.

B. PAPER ORGANIZATION
The following sections of the paper are divided as follows:
Section II discusses the related literature concerning drug-
drug interaction. Further, we also include literature con-
cerning drug-target interaction using various deep learning
techniques, the advent and popularity of Graph Neural
Networks, and the applications of graph-based learning
concerning organic and biochemistry. In section III we
describe our proposed framework. Here we discuss the
architecture and workflow of the training and testing process
and the various graph operations we tested in our framework
along with intrinsic details such as the hyperparameters
and general layered architecture. In Section IV, we discuss

the results obtained and compare various graph neural
network models to show how our proposed framework
outperforms the other experimented operations to a great
extent. We show the need for the proposed methodology by
validating the training process concerning stability. Further,
we also discuss the importance of pre-training in our
study by drawing comparisons with models trained with
randomly initialized weights. In section V, we summarize the
details of our entire methodology, and results, and lay the
ground for further research related to this study. Finally in
Section VI, we discuss the potential downfalls of our idea
and implementation and how the mentioned limitations can
be overcome with further research.

II. RELATED WORKS
The presence of Artificial Intelligence(AI) is apparent
throughout all realms of science. Nevertheless, AI in
chemistry has come up to be one of the most researched
areas. Reference [14] successfully modeled QSAR which
predicts the carcinogenic potency of aromatic amines and an
FDA/OTR MultiCASE model predicting the carcinogenicity
of pharmaceuticals. Similarly, its worth noting that [15]
employed 2D similarity fingerprints for its efficiency and
simplicity of computation for drug-drug interactions to
prevent adverse effects.

The advent of Machine Learning(ML) and Neural Net-
works(NN) has raised interest in drug discovery. Ref-
erence [16] uses genomic features from the cell lines
and chemical information from drugs and shows that it
is possible to build in-silico-based multi-drug models to
impute missing IC50 values with non-parametric machine
learning algorithms. Reference [17] calculates drug-drug pair
similarities using four features namely: drug phenotypic,
therapeutic, chemical, and genomic properties with applied
predictive models namely Naive Bayes, Decision Tree,
k-nearest neighbor, logistic regression, and support vector
machine(SVM). Reference [18] discusses a two stage hybrid
approach model that identifies the positive instances using
a feature based binary classifier, and then a Long Short
Term Memory (LSTM) based classifier to classify positive
instances while [19] uses Discriminative Vector Machines for
accurate prediction of protein-protein interactions.

The Graph Neural Network(GNN) Model [20] approach is
known to perform well in chemical graphs inclusive of but
not limited to analyzing molecular structures, protein-protein
interaction networks, and drug discovery. Graph Attention
Network (GAT) [10] has been applied in various tasks and
applications such as [21] and [22]. Reference [23] uses the
Graph Convolution operation which allows the nodes to
aggregate information from their immediate neighbors in the
graph. Further, [24] makes use of spectral graph convolutions
that leverage the eigenvalues and eigenvectors of the graph
Laplacianmatrix to define convolutional operations, enabling
the propagation of information through the graph and [25]
discussed the formulation of spectral graph convolution
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networks for directed graphs. GraphSAGE [11] was used
in [26] and [27] and has proved tomake a significant improve-
ment in performance in transductive-based prediction tasks
for large and elaborate graph networks.

III. METHODOLOGY
Figure 1 represents the overall framework of our proposed
approach. The chemical SMILE string of each reactant is
converted to a molecular graph with node feature vectors
for each atom and bond. This is followed by self supervised
pre-training to provide the model with a knowledge base
followed by the classification model that predicts the adverse
drug reactions.

A. INITIAL FEATURE EXTRACTION
1) GRAPH DEFINITION
The Chemical SMILE String of each reactant of the reaction
is converted to a Molecular Graph in the Graph Space
followed by feature vectors for each atom in the Euclidean
Space. An atom is represented as a graph node while a bond
is represented as a graph edge. Each node is represented by a
56-dimensional feature vector and each edge is represented
by a 9-dimensional vector. Equation 1 depicts the graph
definition.

G = (A,B)

where,G = Molecular Graph

A = [v1, v2, . . . ., v56]

B = [e1, e2, . . . .e9] (1)

In eq 1, A refers to the 56 dimensional embedding vector
for each atom of the graph, B refers to the 9 dimensional
embedding vector for each bond.

2) NODE FEATURES
On the atomic level, the following features were used to
featurise each vertex V of graph G:

• Formal Charge
• Degree of each Atom
• Hybridization
• Presence in Ring
• Aromaticity
• Atomic Mass
• Vander waal’s Radius
• Covalent radius

Formal Charge refers to the charge carried by each atom
in amolecule. Equation 2 describes the computation of formal
charge.

Formal Charge = V − N +
B
2

(2)

In (2), V stands for number of valence electrons, N stands
for number of non bonding valence electrons and B stands
for total number of electrons shared in bonds. The range for
formal charge we have considered is from -3 to 3.

Degree refers to the number of neigboring atoms inter-
linked by bonds. The range of degree we have considered is
from 0 to infinity.

Hybridization refers to the intermixing of atomic orbitals
with same energy levels to produce a new type of atomic
orbitals of the same number in accordance with the
Valence Bond Theory(VBT). The type of hybridization
gives the geometry of the compound and bond angle. It is
indirectly calculated by computing the number of hybrid
orbitals(described in (3)) of the central atomwhich is mapped
to the hybridization type described in Table 2.

H =
1
2
(V +M − C + A) (3)

where H stands for the number of atomic orbitals of central
atom, V stands for Number for Valence Electrons of central
atom, M stands for the number of surrounding monovalent
atoms, C refers to charge on cation and A refers to the charge
on anion.

Presence in Ring: A binary feature(1 or 0) whose value
is 1 if the atom is part of a ring, otherwise 0.

Aromaticity of a compound refers to a property where
cyclalkenes are conjugated. They enhance the stability of a
molecule by delocalization of π-π electrons due to formation
of more than 1 resonant structures.

Atomic Mass is the average relative mass of an atom as
compared to an atom of carbon isotope 12 i.e C-12. We use
the scaled form which is computed using (4)

Atomic Mass Scaled =
Mass of Atom − 10.812

116.092
(4)

VanderWaal Radius of an atom refers to half the distance
between the center of nuclei of two atoms held together by
week vander waal’s force. We use the scaled form which is
computed using (5)

VanderWaal’s Radius Scaled =
VDWR − 1.5

0.6
(5)

where, VDWR refers to Vanderwaal’s Radius.
Covalent Radius refers to the distance between the center

of nuclei of two atoms when bound together by a single
covalent bond. We use the scaled form which is computed
in (6).

Covalent Radius Scaled =
CVR − 0.64

0.76
(6)

where CVR refers to covalent radius.
All features are computed and aggregated using (7)

Atom Vector = FC + D + HYB + Ring

+ ARO + AM + CV + VDR (7)

where FC refers to Formal Charge, D refers to Degree, HYB
refers to the one hot vector for hybridization type, Ring is
a binary variable if atom is a part of a ring, ARO refers to
aromaticity, CV refers to covalent radius and VDR refers to
Vander waal’s radius.
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TABLE 1. Literature survey.
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TABLE 1. (Continued.) Literature survey.
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TABLE 1. (Continued.) Literature survey.
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FIGURE 1. Overall framework of our proposed method.

TABLE 2. Hybridization type.

3) EDGE FEATURES
The following bond features were used to featurize the edges
E of graph G.

• Bond Type
• Conjugation
• Stereochemical Aspects

Bond Type refers to the type of bond between two atoms.
It maybe a single, double or triple bond or aromatic.

Conjugation is represented by a binary variable(1 or 0).
The value is 1 if the bond is a part of a conjugation i.e alternate
single and double bond resulting in delocalization of π -π
electrons forming different resonant structures, else its 0.

Stereochemical refers to the usage of E-Z stereochemical
features around double bonds. Equation (8) describes the

equation we used to featurize bonds.

Bond Vector = Bond Type + Conjugation

+ E-Z Features (8)

B. SELF SUPERVISED PRE-TRAINING
Since Graph Neural Networks are prone to underfitting due
to meaningless embedding vectors at certain times, we first
pre-train the reactants before classification of their respective
side-effects. We pre-train each reactant using a Variational
Graph Autoencoder [43]. The goal behind this approach is
to ensure the model learns the distribution of each reactant
before the classification task. This provides a knowledge base
to the model reducing the computation bounds to an extent
thus increasing performance. Each reactant is pre-trained
separately by two different models. At this stage, we do not
perform any reaction-like modeling such as weight sharing or
fusion to ensure the individual distributions of the reactants
are learned first.

1) VARIATIONAL GRAPH AUTOENCODERS
We employ a Variational Graph Autoencoder(VAE) as our
baseline model for self-supervised learning. The architecture
of the Graph Autoencoder comprises an encoder and decoder.
The encoder is usually the backbone which may comprise
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TABLE 3. Terminology used in node and edge feature extraction phase.

pre-trained weights or randomly initialized weights. Since
state-of-the-art pre-trained graph models are quite sparse in
the literature, we initialize the backbone with randomweights
by sampling out points using a normal distribution. The
decoder model aims to reconstruct the input with minimal
loss.

The encoder takes the reactant graph as input and
encodes the input to its latent distribution. A point is
randomly sampled from the latent distribution which is then
reconstructed to form the original input. By providing a
probabilistic view using Bayesian Inference, the model learns
the distribution of the reactants. Equation 9 describes the
workflow of the Variational Graph Autoencoder.

E(G) → p(
z
G
) → D(z) (9)

In (9), E refers to the encoding function, which takes Graph
G as input. z is a point in the latent space, and D refers to the
decoding function. A point z is randomly sampled from the
latent distribution p( zG ) which is then reconstructed to form
the input as described above.

The loss function of this model is a combination of
the reconstruction loss and a regularization term. The
reconstruction loss ensures that the reconstructed and input
node vectors are similar while the regularization term is added
to the latent space. It ensures that the returned distribution is
similar to a standard normal distribution. The regularization
loss employed is the Kulback-Leibler Divergence Loss

L = ||x − d(z)||2 + KL[N (µg, σg),N (0, I )] (10)

where, x is the input node vectors, d(z) is the reconstructed
output of the decoder, µg, σg is the mean and variance of the
latent space z respectively and I stands for the Identity term
referring to the variance of a standard normal distribution.

2) ARCHITECTURE OF THE BACKBONE
For our final implementation, we employ two backbone
variants:

• Backbone based on Graph Convolution
• Backbone based on Spectral Graph Convolution

Graph Convolution Based Backbone: The encoder com-
prises 3 layers of Graph Convolutions. The number of

node features for each layer is tuned as [128, 256, 512].
Symmetric normalization is employed after each layer for
faster convergence. The activation function for each layer is
the Rectified Linear Unit(ReLU).

Spectral Graph Convolution Based Backbone: In this
case as well, the encoder comprises 3 layers. The number
of node features for each layer is tuned as [128, 256, 512].
The size of the kernel filter is set to 3 for each layer. Similar
to Graph Convolutions, symmetric normalization is applied
after each layer followed by ReLU activation.

3) ARCHITECTURE OF THE DECODER
The architecture of the decoder follows a transpose pattern
compared to the encoder i.e the latent-space encoding is
reconstructed to the input distribution in the same manner
in which the encoding operations took place. The decoder
for both Graph convolution based and Spectral Graph
Convolution based encoders contains 3 layers. The number
of node features for each layer is tuned as [512, 256, 128].
Symmetric Normalization and ReLU activation is applied
after each layer for faster convergence.

4) INITIALIZATION
The weights of all the layers of both the encoder and decoder
are initialized concerning a Normal Distribution. The mean
and variance used to sample weights are 0 and 1 respectively.
All biases were initialized with zeros.

5) OPTIMIZER AND LEARNING RATE CYCLES
We use the Adam [44] optimizer for pre-training each reac-
tant. The β1 and β2 parameters are 0.9 and 0.999 respectively.
The model is trained up to 1000 epochs. The initial learning
rate is set to 0.005. Further, we make use of the Cosine
Annealing learning rate scheduler with a half-duty cycle
of 10 epochs. Equation (11) describes the computation of
learning rate [45].

ηt = ηmin +
1
2
(ηmax − ηmin)(1 + cos

Tcur
Ti

π ) (11)

Figure 2 describes the variation of the learning rate in the
pre-training stage.
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FIGURE 2. Cosine annealing learning rate variation.

C. TRAINING PHASE
The backbone weights post the self-supervised pre-training
phase are transferred for the classification task. In this phase,
we develop an architecture aimed at learning the underlying
features of both reactants combined by a shared weight
strategy through a dual path graph neural framework.

1) ARCHITECTURE OF DUAL PATH GRAPH NEURAL
NETWORK
Figure 3 depicts the proposed architecture of our study. All
model architectures take 2 graphs as input which represent
the 2 reactants. Each reactant is forward propagated through
the multi-input model as shown in Figure 3. The architecture
contains 2 paths for forward propagation, analogous to a Dual
Path Convolution Neural Network. Each sub-module or path
for the reactants consists of 3 graph convolution or spectral
graph convolution layers. The number of features learned for
each layer increases in the order of 2l where l represents
the layer number ranging from 1 to 3. For our proposed
framework, we tune the number of features for each layer as
[128, 256, 512] from layer 1 to layer 3. The kernel size for
each layer is 3 × 3. The outputs of each layer of both the
paths are activated by the ReLU activation function which
is preceded by Symmetric Normalization. The results of the
feed-forward computations of each path are then aggregated
by computing the mean of the features across the set of
nodes(Global Mean Pooling).

Mean(X ) =
1
X

6xi∈Xxi (12)

The aggregated features of each module are then fused using
the Add operator(+). This is followed by a single linear layer
with a nonlinear ReLU activation. The number of hidden units
of the ReLU-activated linear layer is 1024. This is followed
by another linear layer comprising 1317 neurons, symbolic
of the 1317 side effects thus representing the classification
layer, therefore it is activated by the sigmoid function to
learn a probability distribution for the predicted side effects.
Equations (13) and (14) describe the computation of the linear
transformation and sigmoid classifier. The computation graph
for gradient computation during back-propagation includes
all layers and operations in the proposed framework i.e. all

layers of the proposed architecture are trainable.

x ′
= xW⊺

+ b (13)

ŷ =
1

1 + exp(−x ′)
(14)

where W represents the weights matrix and b indicates the
bias.

In Section III-D, we describe in detail, the graph neural
network operations that were experimented in our proposed
training framework with respect to their individual tune-able
parameters and propagation steps

2) LOSS FUNCTION
The negative log-likelihood function was considered as the
objective function for training. The negative log-likelihood
is a popular approach for classification problems since it
satisfies Jensen’s inequality for convexity, and is continuous
and differentiable at all points, enabling deep learningmodels
to reach an optimal solution quickly. Equation (15) describes
the computation of the loss function.

l(x, y) = mean([l1, l2, . . . , ln])

ln = −yn log(pn) − (1 − yn) log(1 − pn) (15)

where, yn is the actual label and pn is the output of the final
layer computed using (14).

3) OPTIMIZER AND HYPER-PARAMETERS
Adams Optimizer [44] was used as our principle optimization
algorithm. The β1 parameter was set to 0.9 and β2 parameter
was set to 0.999. The learning rate used for all experiments
is 0.005. Further, we make use of a learning rate scheduler
by reducing the learning rate by a factor of 10 in case of
local optima and plateauing. We train all models for up to
750 epochs.

D. GRAPH NEURAL NETWORK OPERATIONS USED
In this section, we describe the architecture and hyper-
parameters for each sub-model of our proposed training
framework. Further we also describe the other operations
such as Multi-layer perceptron(Linear), SAGE and Graph
Attention which are not a part of our training framework
but were used in experiments to validate our proposed
framework.

1) SPECTRAL GRAPH CONVOLUTIONS(CHEBYSHEV
CONVOLUTIONS)
We transfer the weights of the Spectral Graph Convolution
backbone for each reactant as mentioned in Section III-B2
and fine-tune it for classification. The same filter size,
number of layers and number of features for layer are main-
tained. Equations (16)-(19) describe the forward propagation
computation employed for spectral graph convolutions [46].

X ′
= 6K

k=1Z
k .2k (16)

where Z k is a recursive variable computed as
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FIGURE 3. Dual Path GNN architecture which models a Drug-Drug Interaction with classifier layer to predict each side-effect that may occur.

Z1
= X (17)

Z2
= L̂.X (18)

Z3
= 2.L̂.Z k−1

− Z k−2 (19)

Here, L̂ stands for the normalized LaplacianMatrix computed
as per (20)

L̂ =
2L

λmax
− I (20)

The Laplacian Matrix L is computed as per (21)

L = D− A (21)

where, D is the Diagonal Matrix of degrees of each node and
A is the Adjacency Matrix. λmax refers to the highest Eigen
value of the graph Laplacian.

2) GRAPH CONVOLUTIONS
We transfer the weights of the Graph Convolution Backbone
for each reactant as described in Section III-B2 and fine tune
the model for classification. The same number of layers and
features for each layer are maintained. Equations (22)-(24)
describe the forward propagation steps for Graph Convolu-
tion layers.

X ′
= D̂

−1
2 ÂD̂

−1
2 X2 (22)

Â = A+ I (23)

D̂ii = 6j=0Âij (24)

where, Â is the AdjacencyMatrix with inserted self loops and
D̂ is a diagonal matrix with degrees of each node.

3) GRAPH ATTENTION NETWORK
Graph Attention Networks (GAT) are implemented in a
graph when some nodes are more important than the others.
We make use of the enhanced Graph Attention Operator [47]
for our experiments. Equations (25)-(27) describe the forward
propagation for Graph Attention layers.

x ′
i = αi,i2sxi + 6jαi,i2txj, (25)

αi,j = softmax(eij) (26)

where,

eij = a(Whi,Whj) (27)

where, α refers to the attention coefficients, eij is the
importance of node j’s features to node i. W is the
weight matrix and h is the set of node features h =

[h1, h2, . . . , hN ]. a refers to a shared-attention mechanism
mapping represented by a : RF

′

XRF
′

→ R. This function
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TABLE 4. Terminology used in equation of graph neural network
operations implemented.

FIGURE 4. Ensemble framework.

computes the attention coefficients. F refers to the number
of features in each node and F ′ refers to the number of
node features after projecting the node features to a different
cardinality.

We vary the number of output features as [128, 256, 512]
for each layer and number of attention heads as [8, 4, 1].
A dropout with noise of 0.40 is added to each layer to prevent
overfitting [48].

4) MULTI LAYERED PERCEPTRON
The architecture of the Multi Layered Perceptron(MLP)
incorporates an input layer and an output layer in addition to
6 hidden layers. Each layer consists of Batch normalization
to reduce internal covariance shift [49], an activation layer
using ReLU and regularisation using dropout to prevent
over-fitting in the 1D space. Equation (28) describe the
forward propagation step for each linear layer.

x ′
= ReLU(xW⊺

+ b) (28)

5) GRAPHSAGE
The GraphSAGE is structured with three layers, each having
[128, 256, 512] node features respectively. The features of
each layer is aggregated by computing the arithmetic mean
across the nodes. Equations (29) describe the forward
propagation steps of SAGE [11].

x ′
i = W1xi +W2.meanj∈N (i)(xj) (29)

E. ENSEMBLE
We combine the predictions of the fine-tuned Graph Con-
volution Model and Spectral Graph Convolution based dual
path Graph Neural Network Model using a weighted average
technique of the two models symbolizing the importance
of the parent models.We consider the best of both models

and architectures to come to a final conclusion thus we
experiment on ensemble architectures for spectral GCN and
vanilla GCN frameworks. Further, owing to the transductive
nature of both these models, ensemble is aimed to combine
the underlying features of both models to come to an
ideal fit that can model the mapping from Drug pairs to
side effects. Figure 4 describes the methodology used to
ensemble the two models. Equation (30) and (31) describes
the ensemble process and the final prediction step in our
proposed framework respectively.

p = Sigmoid(w1z1 + w2z2) (30)

y =

{
1 if p ≥ 0.5
0 otherwise

(31)

where, w1 < 1 and w2 = 1 − w1 are the weights of
the Two Input Graph Convolution and Two Input Spectral
graph convolution model respectively while z1, z2 are the
predictions of the Two Input Graph Convolution and Two
Input Spectral graph convolution model respectively.

IV. RESULTS AND DISCUSSION
A. HARDWARE AND SOFTWARE REQUIREMENTS
1) PRE-PROCESSING
All graphs were pre-processed on a 2022 M2 Macbook Pro.
The binaries of each graph were divided into 8 folds to set up
multiple processes. Upto 8 concurrent processes were created
making use of all the 8 cores of the hardware to convert all
SMILE Strings to PyTorch Graph Tensors. The total time
taken to pre-process and create all the graph tensors was
5 hours.

2) MODEL TRAINING AND TESTING
All models were trained on a 2022 M2 Macbook Pro and
Acer Predator Helios Neo 16 13th Gen Intel Core i7. The
configurations of the M2 Macbook Pro are inclusive of
an 8GB unified memory with a 256GB Hard disk storage.
The number of cores of the CPU and GPU are 8 and
10 respectively. The time taken on average for model training
was about 2 to 3 hours. It is to be noted that the GPU wasn’t
used for training or validation due to constraints in the Torch
Geometric framework concerning Apple Silicon.

The configurations of Acer Predator Helios Neo 16 13th
Gen Intel Core i7 are inclusive of 16 GB RAM and 956 GB
Hard disk storage. The number of cores of CPU and logical
processors are 16 and 24 respectively. The time taken on
average for model training was about 1.5 to 2 hours. The
NVIDIA GeForce RTX 4050 GPU has been used for training
as well as validation.

3) SOFTWARE
All the source code for our study was written in Python
3.11. We used PyTorch as our primary framework for data
preparation, pre-processing, model construction, training,
and testing. For processing the chemical SMILE strings and
converting them to molecular graphs, we use the RdKit
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library. For the computation of metrics such as precision
and accuracy, we use Torchvision metrics for multi-label
classification problems.

B. DATASET DESCRIPTION
The TWOSIDES PolyPharmacy Side Effects Dataset was
employed in our study and was used for all experiments. It is
to be noted that this is the only available benchmark dataset
on side effects prediction through drug-drug interaction. The
DrugBank Dataset uses drug-drug interactions as well, how-
ever, for the task of prediction of interaction type, which we
later use to experimentally validate our proposed framework.
The dataset consists of several drug-drug interaction pairs that
are associated with multiple side effects. Each drug pair is
associated with one too many side effects such as dizziness,
chest pains, etc. The dataset comprises the following features:

• ‘‘ID1’’ refers to the ID of the first drug taking part in the
interaction.

• ‘‘ID2’’ refers to the ID of the second drug taking part in
the interaction.

• ‘‘X1’’ refers to the first reactant of the chemical reaction.
It is a SMILES string that represents the molecular
structure of the drug.

• ‘‘X2’’ refers to the second reactant of the chemical
reaction. It is a SMILES string that represents the
molecular structure.

• ‘‘Y’’ refers to the side effect label as a result of the
drug-drug interaction which is mapped to a specific side
effect.

There are 4,649,441 drug-drug interaction pairs with
645 drugs, each associated with a side effect. Since several
of the drug-drug interaction pairs represented the same
reactants and were associated with a single label only,
we combine all the similar drug-drug interactions by their
reactant IDs along with their side effect labels and formulate
a multi-label classification problem. There are a total of
1317 side effects that may be possible for each drug-drug
interaction. On performing this step, the number of drug-drug
interaction pairs was condensed down to 63473. Further,
we also mapped the label of the side effect to the side
effect name. The condensed dataset comprises the following
features:

• ‘‘ID1’’ refers to the ID of the first drug taking part in the
interaction.

• ‘‘ID2’’ refers to the ID of the second drug taking part in
the interaction.

• ‘‘X1’’ refers to the first reactant of the chemical reaction.
It is a SMILES string that represents the molecular
structure of the drug.

• ‘‘X2’’ refers to the second reactant of the chemical
reaction. It is a SMILES string that represents the
molecular structure.

• ‘‘Side Effect Name’’ is a list of side effects caused by
the associated drug-drug interaction.

Following which we perform a train-validation-test split on
the drug pairs. Table 5 contains the number of samples in each

TABLE 5. Number of samples for each split.

FIGURE 5. Comparison of reconstructed mean square error between GCN
and spectral GCN.

split. The drug-drug pairs were randomly split as mentioned
in the dataset split policy of TwoSides Polypharmacy Side
Effects.

The number of samples for each train, test and validation
are mentioned in Table 5

C. PERFORMANCE OF GRAPH VARIATIONAL
AUTOENCODER
As discussed in III-B, we employ a Variational Autoencoder
with Graph-based data as Input as our basis for self-
supervised pretraining. The purpose of such an implemen-
tation is to provide an enhanced knowledge base to the
model by learning the distribution of each of the reactants.
We experiment with 2 backbones, one based on Graph
Convolutions and the other on Spectral Graph Convolutions,
and achieve excellent results in both cases. Figure 5 shows
the mean square errors obtained on the reconstruction of
reactant graphs for both graph convolution and spectral graph
convolution-based backbones.

The mean square errors obtained validate the use of a Vari-
ational Autoencoder before classification. The overall mean
square loss obtained for Graph Convolution and Spectral
Graph Convolution is only 0.76 and 0.75 respectively with
spectral graph convolution slightly outperforming the graph
convolution network. Since the reconstruction loss for both
the reactants is similar under the same hyperparameters and
architecture, we can infer that the latent space distribution
is a good representation of the initial feature vectors of
the nodes of the molecular graphs, thus validating the
self-supervised training phase. The Variational Autoencoder
has effectively captured the hidden and underlying patterns
of the reactants enabling us to transfer this knowledge base to
our classification framework. These results provide the basis
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FIGURE 6. Train and validation loss of 2-Input spectral graph convolution
network.

FIGURE 7. Train and validation loss of 2-Input graph convolution network.

for the classification model enabling us to achieve state-of-
the-art results on the same.

D. STABILITY OF THE DUAL PATH GRAPH TRAINING
FRAMEWORK
As discussed in III we use a 2-input dual path graph neural
network. The motivation behind our proposed framework is
the need to effectively model drug-drug interactions. Training
multi-path graph neural networks can be unstable creating
complicated computation graphs, thus resulting in poor
performance and deeming the model unreliable. However,
we managed to achieve stable training curves for both
Graph Convolution and Spectral Graph Convolution-based
models. Figure 6 and Figure 7 show the train and test loss
progression with time for spectral graph convolution and
graph convolution network respectively.

This curve was logged in real-time during the alternate
training and validation process. We can see that with time,
the performance of the model gradually improved eventually
converging to an optimal solution after 80 to 100 epochs. The
similarity of convergence in both train and validation losses
indicates that there is no overfitting thus making the proposed
framework reliable. Further, as noted in the performance of
the autoencoders, architectures based on spectral convolution
operators perform slightly better than the graph convolution
operator as seen in the training curves. On average for both
models, we obtain a classification loss of only 0.175 on the
train and 0.177 on the test, hence validating the architecture
of our proposed framework and deeming it as stable.

TABLE 6. Overall results of all experiments displayed in percentage.

E. EXPERIMENTS CONDUCTED
To validate our proposed methodology and since our study
lays the foundation for research in side effect prediction
through drug-drug interaction, we provide results for several
experiments that we conducted for various graph neural
network operations and ensemble methods. The following are
the experiments we conducted:

• Multi-Layer Perceptron with ReLU activated hidden
layers for both paths of the proposed architecture.

• Graph Convolution with and without self-supervised
pre-training for both paths of the proposed architecture.

• Spectral Graph Convolution with and without self-
supervised pre-training for both paths of the proposed
architecture

• Graph Attention Operation with and without self-
supervised pre-training

• Graph SAGE Operation without self-supervised pre-
training.

• Ensemble of Graph Convolution based and Spectral
Graph Convolution based Dual Path Graph Neural
Network.

F. RESULTS
Table 6 displays the precision and accuracy for all experi-
ments that we conducted. As seen in Table 6, we achieve
excellent results with a precision of 75% and 90% with our
proposed framework, thus validating our hypothesis of using
a dual path network to represent the underlying features of
both the reactants effectively. To validate the requirement
of our proposed framework and indicate its state-of-the-
art performance, we conduct experiments with different
graph-based operators namely Graph Attention and SAGE in
addition to linear operators used in Multi-Layer Perceptron-
based models. Further, we also show the importance and
requirement of the self-supervised pretraining stage by
performing experiments withmodels by randomly initializing
their weights.

We perform experiments with no pre-training stage by
randomly initializing the weights of the models of the
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TABLE 7. Comparison of results on Drug-Drug interactions on DrugBank interaction type task.

FIGURE 8. Comparison of pretrained and randomly initialized models.

framework using a standard normal distribution i.e. mean as
0 and standard deviation as 1. Figure 8 displays the differ-
ence in the performance of our proposed framework with
fine-tuning of pre-trained weights and randomly initializing
the weights before the side effect prediction task.

As indicated in figure 8, the difference in precision
between the fine-tuned framework and randomly initialized is
around 25% for the Graph Convolution based model and 28%
for the Spectral Graph Convolution based model indicating
a huge difference in performance. Such a disparity between
the two frameworks validates the purpose of the pretraining
phase, which contributes to a 25% rise in performance.

We also perform experiments with Graph Attention and
SAGE operators. On SAGE, we achieve a precision of 52%
and an accuracy of 80% which is 23% and 10% lesser than
the performance of our proposed framework on precision and
accuracy respectively.We do not perform self-supervised pre-
training for the SAGE experiments owing to their ability to
generate node embeddings using node features for previously
unseen data [11]. SAGE is inherently inductive which means
it can generalize on unseen nodes as well, which is a
necessary requirement in drug-drug interactions. Therefore,
no pre-training stage was required for SAGE. On Graph
Attention, the precision obtained is 2% while the accuracy
is 10%. Further, the results aremarked as unstable sincewe do
not achieve stable training when the Graph Attention operator
is used in our proposed framework.

To further improve performance, we experiment with
model ensembling. The final stage of our proposed frame-
work includes an ensemble of Graph Convoluton and Spectral

Graph Convolution. On performing experiments, we achieve
excellent results outperforming all the other models. The
precision obtained is 75% and the accuracy is 90%. Though
the side effects are not mentioned by doctors or clinical
experts, our deep learning framework is able to capture the
hidden patterns and offers excellent results by modeling
the dynamics of a drug-drug interaction. This shows that
our proposed framework is successfully able to develop a
relationship between drug-drug interaction and its potential
side effects.

G. EXPERIMENTAL VALIDATION USING DRUGBANK
Due to the lack of widespread datasets and previous
benchmarks on the side-effect prediction task, we aim to
validate our model on the DrugBank [52] Dataset. The
DrugBank dataset is used for predicting the interaction type.
It contains 191,707 drug pairs with 1706 drugs. Each drug
pair is mapped to one of 86 different interaction types thus
formulating a multi-class classification problem. The results
we obtained show that despite the difference in the task, our
proposed framework is effectively able to model drug-drug
interactions consistently when validated over several metrics.
No major changes were made to the architecture described in
section III except the final classifier head which was changed
to 86 neurons with Softmax Activation to model a multi-class
problem. Table 7 contains the results obtained by us along
with a comparison of related works.

As observed in table 7, we achieve state-of-the-art results
over 3 metrics on the interaction type task. We compare our
proposed framework with 5 other related works that use deep
learning techniques to predict the drug-drug interaction type.
We achieve an accuracy, precision, and F1 score of 99.2% on
this task thus further validating our model’s ability to capture
the underlying features with respect to chemical interactions.
We have included the F1 score as well giving equal weight
to both true positives and true negatives. This shows that
our approach precisely detects both true positives and true
negatives.

Through this experimental validation, we show that our
model is able to adapt to diverse tasks related to drug-drug
interactions. This enables clinical experts to further develop
and trust our model considering its ability to provide state-
of-the-art results on other drug-drug interaction tasks as well.
The self-supervised pretraining stage has been effective in
producing node embeddings for each atom considering both
chemical and spatial properties. This along with the dual-path

VOLUME 12, 2024 93837



OmKumar ChandraUmakantham et al.: Detecting Side Effects of Adverse Drug Reactions Through Drug-Drug

mode not only provides state-of-the-art results on metrics
but also empirically models the dynamics of a chemical
interaction.

V. CONCLUSION
Through this study, we explore a wide range of methods
to effectively model drug-drug interactions by performing
an extensive literature survey. We attempted a deep learning
approach using Graph Neural Networks to capture the hidden
patterns of each drug by using their spatial and physical
characteristics from their molecular structure. Through this
approach, we model drug-drug interactions to predict the side
effects that it may cause. We divide the proposed framework
into several phases and achieve excellent results on the same.
The direction taken in drug-drug interactions by leveraging
the chemical properties of drugs and their representations
as molecular graphs is unique and opens doors for further
research and improvements on the same.

The usage of the Graph Variational Autoencoder to
pre-train the distribution of each reactant played a major role
in the final performance. The overall reconstruction means
a square error of only 0.75 for each reactant showing that
the autoencoder was able to effectively map the reactants to a
highly featured latent space distribution. Further, the similar-
ity in the performance for each reactant showed that the same
model configurations could be used, providing simplicity to
our proposed approach. The transfer of weights from the
reactant distribution task to the downstream classification
had a major role in the overall performance. The average
performance gain in precision was a massive 25% which
showed the need for a trained knowledge base for complex
graph-level tasks involving molecular representations.

To validate the performance and requirement of our
proposed framework, we conduct several experiments using
different Graph Neural Network operators and by randomly
initializing the weights of the classification model. The
precision and accuracy obtained on the test set for these
experiments were significantly less than that of our proposed
framework. Through our novel approach, we obtain a
precision of 75% and an accuracy of 90% on the test dataset.
This makes our architecture extremely reliable for side effect
prediction considering its likelihood of accurately predicting
3 symptoms with high confidence for every 4 positive
instances on unseen data.

Further, due to the lack of previous benchmarks on
the side-effect prediction task, we show an experimental
validation that our proposed framework effectively models
drug-drug interactions using the DrugBank [52] dataset.
We compare our results on the interaction type prediction
task with related benchmarks and achieve a state of the art
results. We obtain 99% on precision, recall, and F1, thereby
validating our proposed framework. Through the interaction
type prediction task, we show that our proposed approach is
able to effectively model the dynamics and intrinsic patterns
of drug-drug interactions.

Since the results obtained are positive and convincing,
this opens a path for further research on the avenue of
drug-drug interactions and using Graph Neural Networks to
model the same. The results we obtained indicate that adverse
drug reactions and their potentially fatal side effects can
be predicted early without the need for patient reports, and
having to depend on clinical trials performed on a sample size
to report such adverse reactions. Since this is a recent research
area, further research into such frameworks and modeling
drug-drug interactions to predict side effects is required to
ensure that the overall system based on deep learning in this
field can be trusted by patients, doctors, and researchers.

VI. LIMITATIONS
A. COMPLEXITY VS INTERPRETABALITY
Since the framework comprises of several stages before the
classification and considering the complexity of graph neural
networks, especially in modeling chemical interactions, the
overall architecture of the model is highly complex making
it less interpretable [53]. Despite efforts to model chemical
interactions by using the weights fusion method and the
properties of drugs to initialize the nodes and edges of the
molecular graphs, further steps need to be taken in developing
more interpretable models in future research considering the
framework is aimed to be used by patients, doctors and all
clinical staff.

B. LACK OF WIDESPREAD DATASETS
The TwoSIDES Polypharmacy Side Effects Dataset, which
was used for our study is the only available dataset that maps
Drug-Drug Interaction using SMILE strings of chemical
compounds to their respective side effects. The presence
of only a single dataset may result in an overall biased
model since it is trained and tested only on a single kind
of distribution. Training and testing our proposed framework
on more datasets, when available, will increase the overall
reliability of the model and the bounds of its ability to
generalize.
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