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ABSTRACT Subdivision schemes are powerful tools for generating curves and surfaces in computer
graphics. This work explores a novel connection between binary and quaternary schemes, where quaternary
schemes can be derived from binary ones. We present a generalized formula for constructing (3n− 1)-point
quaternary schemes from existing 2n-point binary schemes. This approach leads to two types of quaternary
schemes based on even and odd values of n. We demonstrate the efficiency of these new schemes by applying
them to known binary schemes and analyzing their properties. Our results show that the derived quaternary
schemes achieve similar final models as their binary counterparts, but with fewer iterations, leading to
significant computational cost reduction. This effectiveness is validated through graphical and theoretical
analyses, confirming the applicability of our method to both parametric and non-parametric settings.

INDEX TERMS Binary subdivision scheme, quaternary subdivision scheme, Hölder’s regularity, degree of
precision, mask.

I. INTRODUCTION
Subdivision methods for curves were introduced and math-
ematically analyzed for the first time by de Rham [9] in
1956 and re-invent for computer graphics community by
Chaikin [8] in 1974. Subdivision is actually an iterative
method to generate smooth curves and surfaces. Subdivision
schemes increase the points at each iteration to get smooth
shapes. If the subdivision process increases points two
times at each iteration then this process is known as the
binary subdivision process, whereas if a subdivision process
increases points four times at each iteration then this process
is known as quaternary subdivision process. The tools which
are used for the binary and quaternary subdivision processes
are known as the binary and quaternary subdivision schemes
respectively.

Mathematically, the general compact forms of univariate r-
ary subdivision schemewhich is used to get a refined polygon
Gk+1

= {gk+1
i }i∈Z ∈ n(Z) from the polygon gk = {gki }i∈Z ∈
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n(Z) can be defined in terms of a mask consisting of a finite
set of non-zero coefficients β = {βj}j∈Z as follows:

gk+1
rφ+η =

∑
j∈Z

βrj+η gkφ+j, (1)

where the set of values {r = 2, η = −1, 0} are for
the binary subdivision rules and the set of values {r = 4,
η = −2, −1, 0, 1} are used for the quaternary subdivision
rules respectively, n(Z) denote the space of scaler-valued
sequences. The sequence β = {βj}j∈Z is called the refinement
mask. The polynomial which uses this mask as coefficients
is called the Laurent’s polynomial. Therefore, the Laurent
polynomial corresponding to subdivision scheme (1) is

µ(c) =

∑
j∈Z

βrj+η crj+η.

A convergent subdivision scheme with the corresponding
mask β = {βj}j∈Z necessarily satisfies the following
convergence condition:∑

j∈Z
βrj+η = 1.
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Binary subdivision schemes were first introduced by
Dyn et al. [20], who also analyzed the convergence of control
polygons produced by these schemes. Since then, significant
advancements have been made. Ghaffar et al. introduced a
novel class of non-stationary binary schemes using Lagrange
interpolation, offering advantages in specific applications
compared to traditional stationary schemes [3]. Hameed
and Mustafa proposed a variant of the Lane-Riesenfeld
algorithm with a modified refining operator, expanding the
options for curve and surface generation [24]. Mustafa et al.
explored free-parameter binary approximating schemes,
demonstrating that odd-point schemes often achieve better
error bounds [11]. Mustafa and Hameed further devel-
oped univariate and bivariate schemes using a two-step
algorithm that combines quartic B-spline refinement with
point averaging. This approach allows for the creation of
primal and dual schemes based on the number of smoothing
steps [13]. Finally, Siddiqi and Younis presented a binary
univariate scheme that generates limit curves and established
a method for deriving B-spline blending functions, providing
valuable tools for further research [30]. The analysis of
binary subdivision schemes has been addressed by several
researchers, including [1], [10], [19], [22], [23], [24], [32].
Several advancements have been made in quaternary

subdivision schemes. Bari et al. introduced a method
for generating efficient 3n-point schemes and explored
properties like polynomial reproduction and the ability to
preserve shapes (monotonicity, convexity, concavity) [17].
Hashmi and Mustafa developed procedures for estimating
errors independent of the subdivision process itself, offering
valuable tools for analysis [27]. Mustafa et al. proposed
a versatile family of quaternary schemes with multiple
parameters, along with their convergence conditions [3].
Mustafa et al. focused on a specific 7-point scheme with
a shape parameter, analyzing its continuity, smoothness
(Hölder’s regularity), and limiting stencils [12]. Siddiqi
and Younis presented a construction method using the
Cox-de Boor formula, expressing the schemes in terms of
B-spline blending functions, a widely used approach [31].
Shahzad et al. explored applications of quaternary schemes in
calculating subdivision depth and error bounds for complex
surface models [2]. Despite these advancements, a deeper
understanding of the relationship between binary and qua-
ternary schemes remains a gap in the current literature. Our
work aims to address this by investigating these connections.
By bridging this gap, we hope to contribute new insights and
potentially lead to novel approaches in subdivision scheme
development.

A. CONTRIBUTION AND NOVELTY OF THE PROPOSED
APPROACH
The contribution and novelty of our research are thoroughly
covered in this section, along with the shortcomings of the
state-of-the-art methods and how our suggested solution fills
in their gaps.

1) PROBLEM STATEMENT AND STATE-OF-THE-ART
METHODS
Subdivision schemes are essential in computer graphics and
geometric modeling, but traditional binary and quaternary
schemes have limitations.

Binary schemes require more iterations, increasing com-
putational costs and processing times. Current methods
focus on optimizing binary schemes to reduce iterations, but
these often involve complex calculations and may not be
universally applicable to all geometric data types.

Quaternary subdivision schemes can achieve desired
smoothness in fewer iterations, but designing them from
scratch is complex and there’s no systematic approach to
derive them from existing binary schemes. Current research
has made progress, but the connection between binary and
quaternary schemes remains under-explored.

2) GAP IN EXISTING RESEARCH
The main deficiency in the existing literature is the lack
of a systematic and comprehensive approach for deriving
quaternary subdivision schemes from binary ones. This gap
prevents the use of proven binary schemes as a basis for
quaternary scheme development.

3) CONTRIBUTION OF OUR WORK
The research focuses on creating a bridge between even-
point binary and even/odd-point quaternary subdivision
approaches. It reveals a novel relation between the two,
simplifying the process of creating quaternary schemes from
existing binary schemes. The authors present a generalized
formula for subdivision rules for (3n − 1)-point quaternary
approximating subdivision schemes, making the design
process more efficient and systematic. The results are
validated by applying the formula to known binary schemes
for specific values of n, demonstrating that derived quaternary
schemes achieve desired detail and smoothness in fewer
iterations, reducing computational costs and processing times
in practical applications.

4) NOVELTY AND MOTIVATION
Our work is novel because of the creative way we use
a generalised relation to connect binary and quaternary
subdivision schemes. By utilising the advantages of both
kinds of schemes, this method presents a methodical way to
derive quaternary schemes from binary ones.

Our desire to increase the efficacy and efficiency of
subdivision schemes in geometric modelling is what drives
us. Our approach to methodically derive quaternary schemes
from binary ones that already exist makes us a useful tool
for researchers and practitioners, allowing them to expand on
existing knowledge and accomplish better results with less
work.

Finally, we conclude that our work significantly advances
the state-of-the-art in geometric modelling by providing a
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novel, effective, and workable solution that bridges the gap
between binary and quaternary subdivision schemes.

More precisely, the paper is organised as follows: In
Section II, we give the generalized procedure to define the
relation between the binary and the quaternary subdivision
schemes. In Section III, we give the applications of the given
technique along with the graphical comparisons of the pair of
the binary and quaternary subdivision schemes. Section IV is
about the Hölder’s regularity computation of the binary and
the quaternary subdivision schemes. In Section V, we give
the response of these pairs of subdivision scheme on the
polynomial data. Conclusions and future trends are discussed
in Section VI.

II. LINK BETWEEN THE BINARY AND QUATERNARY
SUBDIVISION SCHEMES
This section explains a new observation about the relation
between the even-point binary approximating subdivision
schemes and the quaternary approximating subdivision
schemes. The generalized subdivision rules of (3n − 1)-
point quaternary subdivision schemes is deduced by using the
subdivision rules of the 2n-point binary subdivision schemes.
The 2n-point dual binary subdivision scheme which maps the
polygon g to a refined polygonG after one level of refinement
can be written as:

gk+1
2ϕ−1 =

n∑
λ=−n+1

β2λ gkϕ+λ−1,

gk+1
2ϕ =

n∑
λ=−n+1

β2−2λ gkϕ+λ,

(2)

where {gkϕ+λ : λ = −n + 1, . . . , n : ϕ ∈ R} are the
control points at k-th subdivision level and {βλ : λ =

−2n+ 2, . . . , 2n} is the mask of the subdivision scheme.
The following lemma gives a new form of the subdivision

rules of 2n-point binary subdivision scheme which is defined
in (2).
Lemma 1: If we change ϕ by the odd numbers 2ϕ − 1 and

2ϕ + 1 and the even number 2ϕ in the subdivision equations
of the binary subdivision scheme (2), then these subdivision
equations reduced into the four subdivision equations.

Proof: Firstly, we re-write the subdivision scheme (2) in
the form which is free from subdivision levels, hence we get
two subdivision equations given below:

g2ϕ−1 =

n∑
λ=−n+1

β2λ gϕ+λ−1,

g2ϕ =

n∑
λ=−n+1

β2−2λ gϕ+λ,

(3)

where ϕ ∈ R.
We now perform substitutions in the second subdivision

equation of (3). We replace all instances of ϕ by 2ϕ − 1.
Additionally, in both subdivision equations of (3), we substi-
tute ϕ by 2ϕ. Finally, in the first subdivision equation of (3),

we replace ϕ by 2ϕ +1. This substitution process leads to the
following four equations:

g4ϕ−2 =

n∑
λ=−n+1

β2−2λ g2ϕ+λ−1,

g4ϕ−1 =

n∑
λ=−n+1

β2λ g2ϕ+λ−1,

g4ϕ =

n∑
λ=−n+1

β2−2λ g2ϕ+λ,

g4ϕ+1 =

n∑
λ=−n+1

β2λ g2ϕ+λ.

(4)

Which completes the proof. □
Now we split the further process into two parts depending

on the even and odd values of n. The first theorem is proved
for the even values of n, while the second one is proved for
the odd n.
Theorem 2: If n is even, that is n = 2m : m ∈ N, then

the subdivision rules g4ϕ−2 and g4ϕ−1 in (4) are the linear
combination of 6m − 1 control points gϕ−3m+1 . . . gϕ+3m−1,
while the subdivision rules g4ϕ and g4ϕ+1 in (4) are the linear
combination of 6m control points gϕ−3m+1 . . . gϕ+3m.

Proof: Since n is even, so firstly we put n = 2m in (4).
Thus we get

g4ϕ−2 =

2m∑
λ=−2m+1

β2−2λ g2ϕ+λ−1,

g4ϕ−1 =

2m∑
λ=−2m+1

β2λ g2ϕ+λ−1,

g4ϕ =

2m∑
λ=−2m+1

β2−2λ g2ϕ+λ,

g4ϕ+1 =

2m∑
λ=−2m+1

β2λ g2ϕ+λ.

(5)

Now we have to find out values of g2ϕ−2m, g2ϕ−2m+1, . . .,
g2ϕ+2m−1, g2ϕ+2m. For this, first we evaluate (3) for n = 2m
and then by increasing or decreasing the subscript, we get the
required unknowns.

g2ϕ−1 = β2−4m gϕ−2m + β4−4m gϕ−2m+1

+β6−4m gϕ−2m+2 + β8−4m gϕ−2m+3

+β10−4m gϕ−2m+4 + β12−4m gϕ−2m+5

+ . . . + β4m−8 gϕ+2m−5 + β4m−6

×gϕ+2m−4 + β4m−4 gϕ+2m−3 + β4m−2

×gϕ+2m−2 + β4m gϕ+2m−1,

g2ϕ = β4m gϕ−2m+1 + β4m−2 gϕ−2m+2

+β4m−4 gϕ−2m+3 + β4m−6 gϕ−2m+4

+β4m−8 gϕ−2m+5 + β4m−10 gϕ−2m+6

+ . . . + β10−4m gϕ+2m−4 + β8−4m

×gϕ+2m−3 + β6−4m gϕ+2m−2 + β4−4m

gϕ+2m−1 + β2−4m gϕ+2m.

(6)
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Now we replace ϕ by ϕ − m in second rule of (6), we get

g2ϕ−2m = β4m gϕ−3m+1 + β4m−2 gϕ−3m+2 + β4m−4

× gϕ−3m+3 + β4m−6 gϕ−3m+4 + β4m−8

× gϕ−3m+5 + β4m−10gϕ−3m+6 + . . . + β10−4m

× gϕ+m−4 + β8−4mgϕ+m−3 + β6−4mgϕ+m−2

+ β4−4m gϕ+m−1 + β2−4m gϕ+m.

Now we replace ϕ by ϕ −m+ 1 in the first and second rules
of (6), we get

g2ϕ−2m+1 = β2−4mgϕ−3m+1 + β4−4mgϕ−3m+2 + β6−4m

× gϕ−3m+3 + β8−4mgϕ−3m+4+β10−4mgϕ−3m+5

+ β12−4m gϕ−3m+6 + . . . + β4m−8 gϕ+m−4

+ β4m−6 gϕ+m−3 + β4m−4 gϕ+m−2 + β4m−2

× gϕ+m−1 + β4m gϕ+m,

g2ϕ−2m+2 = β4m gϕ−3m+2 + β4m−2 gϕ−3m+3 + β4m−4

× gϕ−3m+4 + β4m−6gϕ−3m+5 + β4m−8gϕ−3m+6

+ β4m−10 gϕ−3m+7 + . . . + β10−4m gϕ+m−3

+ β8−4m gϕ+m−2 + β6−4m gϕ+m−1 + β4−4m

× gϕ+m + β2−4m gϕ+m+1.

Now we replace ϕ by ϕ −m+ 2 in the first and second rules
of (6), we get

g2ϕ−2m+3 = β2−4m gϕ−3m+2 + β4−4mgϕ−3m+3 + β6−4m

× gϕ−3m+4+β8−4mgϕ−3m+5+β10−4mgϕ−3m+6

+ β12−4m gϕ−3m+7 + . . . + β4m−8 gϕ+m−3

+ β4m−6 gϕ+m−2 + β4m−4 gϕ+m−1 + β4m−2

× gϕ+m + β4m gϕ+m+1,

g2ϕ−2m+4 = β4m gϕ−3m+3 + β4m−2 gϕ−3m+4 + β4m−4

× gϕ−3m+5+β4m−6 gϕ−3m+6+β4m−8gϕ−3m+7

+ β4m−10 gϕ−3m+8 + . . . + β10−4m gϕ+m−2

+ β8−4mgϕ+m−1+β6−4mgϕ+m+β4−4mgϕ+m+1

+ β2−4m gϕ+m+2.

Now we replace ϕ by ϕ − m + 3 in first and second rules
of (6), we get

g2ϕ−2m+5 = β2−4m gϕ−3m+3 + β4−4m gϕ−3m+4 + β6−4m

× gϕ−3m+5+β8−4mgϕ−3m+6+β10−4mgϕ−3m+7

+ β12−4m gϕ−3m+8 + . . . + β4m−8 gϕ+m−2

+ β4m−6gϕ+m−1+β4m−4gϕ+m+β4m−2gϕ+m+1

+ β4m gϕ+m+2,

g2ϕ−2m+6 = β4m gϕ−3m+4 + β4m−2 gϕ−3m+5 + β4m−4

× gϕ−3m+6+β4m−6 gϕ−3m+7+β4m−8gϕ−3m+8

+ β4m−10 gϕ−3m+9 + . . . + β10−4mgϕ+m−1

+ β8−4m gϕ+m + β6−4m gϕ+m+1 + β4−4m

× gϕ+m+2 + β2−4m gϕ+m+3.

...
...

...

Continuing this process, we replace ϕ by ϕ + m − 2 in first
and second rules of (6), we get

g2ϕ+2m−5 = β2−4m gϕ−m−2 + β4−4m gϕ−m−1 + β6−4m

× gϕ−m + β8−4m gϕ−m+1 + β10−4m gϕ−m+2

+ β12−4m gϕ−m+3 + . . . + β4m−8 gϕ+3m−7

+ β4m−6 gϕ+3m−6 + β4m−4 gϕ+3m−5 + β4m−2

× gϕ+3m−4 + β4m gϕ+3m−3,

g2ϕ+2m−4 = β4m gϕ−m−1 + β4m−2 gϕ−m + β4m−4 gϕ−m+1

+ β4m−6 gϕ−m+2 + β4m−8 gϕ−m+3 + β4m−10

× gϕ−m+4 + . . . + β10−4m gϕ+3m−6 + β8−4m

× gϕ+3m−5 + β6−4mgϕ+3m−4 + β4−4mgϕ+3m−3

+ β2−4m gϕ+3m−2.

Now we replace ϕ by ϕ +m− 1 in the first and second rules
of (6), we get

g2ϕ+2m−3 = β2−4m gϕ−m−1 + β4−4m gϕ−m + β6−4m

× gϕ−m+1 + β8−4m gϕ−m+2 + β10−4m

× gϕ−m+3 + β12−4m gϕ−m+4 + . . . + β4m−8

× gϕ+3m−6 + β4m−6 gϕ+3m−5 + β4m−4

× gϕ+3m−4 + β4m−2gϕ+3m−3 + β4mgϕ+3m−2,

g2ϕ+2m−2 = β4m gϕ−m + β4m−2 gϕ−m+1 + β4m−4

× gϕ−m+2 + β4m−6gϕ−m+3 + β4m−8gϕ−m+4

+ β4m−10gϕ−m+5 + . . . + β12−4mgϕ+3m−6

+ β10−4m gϕ+3m−5 + β8−4mgϕ+3m−4

+ β6−4mgϕ+3m−3 + β4−4mgϕ+3m−2 + β2−4m

× gϕ+3m−1.

Now we replace ϕ by ϕ + m in first and second rules of (6),
we get

g2ϕ+2m−1 = β2−4m gϕ−m + β4−4m gϕ−m+1 + β6−4m

× gϕ−m+2 + β8−4m gϕ−m+3 + β10−4m

× gϕ−m+4 + β12−4mgϕ−m+5 + . . . + β4m−10

× gϕ+3m−6 + β4m−8 gϕ+3m−5 + β4m−6

× gϕ+3m−4 + β4m−4gϕ+3m−3 + β4m−2gϕ+3m−2

+ β4m gϕ+3m−1,
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g2ϕ+2m = β4m gϕ−m+1 + β4m−2 gϕ−m+2 + β4m−4

× gϕ−m+3 + β4m−6gϕ−m+4 + β4m−8gϕ−m+5

+ β4m−10gϕ−m+6 + . . . + β14−4mgϕ+3m−6

+ β12−4m gϕ+3m−5 + β10−4m gϕ+3m−4

+ β8−4mgϕ+3m−3 + β6−4mgϕ+3m−2 + β4−4m

gϕ+3m−1 + β2−4m gϕ+3m.

We get all the unknowns g2ϕ−2m, g2ϕ−2m+1, g2ϕ−2m+2, . . . ,
g2ϕ+2m−2, g2ϕ+2m−1, g2ϕ+2m. Now we substitute all these
values in the four equations given in (5) and the result can
be written in the following compact form



g4ϕ−2 =

m∑
λ=−m+1

β4−4λ

 2m−1∑
α=−2m

β−2α gϕ+α+λ


+

m∑
λ=−m+1

β2−4λ

 2m−1∑
α=−2m

β2+2α gϕ+α+λ

 ,

g4ϕ−1 =

m∑
λ=−m+1

β4λ−2

 2m−1∑
α=−2m

β−2α gϕ+α+λ


+

m∑
λ=−m+1

β4λ

 2m−1∑
α=−2m

β2+2α gϕ+α+λ

 ,

g4ϕ =

m∑
λ=−m+1

β4−4λ

 2m−1∑
α=−2m

β2+2α gϕ+α+λ


+

m∑
λ=−m+1

β2−4λ

 2m−1∑
α=−2m

β−2α gϕ+α+λ+1

 ,

g4ϕ+1 =

m∑
λ=−m+1

β4λ−2

 2m−1∑
α=−2m

β2+2α gϕ+α+λ


+

m∑
λ=−m+1

β4λ

 2m−1∑
α=−2m

β−2α gϕ+α+λ+1

 .

(7)

This completes the proof. □
The following theorem presents a connection between the

4m-point binary and the (6m − 1)-point relaxed quaternary
subdivision schemes.
Theorem 3: If n = 2m, then the subdivision equations

given in (7) gives the four subdivision rules of the (6m− 1)-
point relaxed quaternary subdivision scheme whose coef-
ficients of the control points in the subdivision rules are
the non-linear combination of the coefficients of the control
points of the 4m-point binary subdivision scheme.

Proof: Now we add the subdivision level on the
subdivision rules given in (7), Hence we get the following

(6m− 1)-point relaxed quaternary subdivision scheme

gk+1
4ϕ−2 =

m∑
λ=−m+1

2m−1∑
α=−2m

β4−4λβ−2α gkϕ+α+λ

+

m∑
λ=−m+1

2m−1∑
α=−2m

β2−4λβ2+2α gkϕ+α+λ,

gk+1
4ϕ−1 =

m∑
λ=−m+1

2m−1∑
α=−2m

β4λ−2β−2α gkϕ+α+λ

+

m∑
λ=−m+1

2m−1∑
α=−2m

β4λβ2+2α gkϕ+α+λ,

gk+1
4ϕ =

m∑
λ=−m+1

2m−1∑
α=−2m

β4−4λβ2+2α gkϕ+α+λ

+

m∑
λ=−m+1

2m−1∑
α=−2m

β2−4λβ−2α gkϕ+α+λ+1,

gk+1
4ϕ+1 =

m∑
λ=−m+1

2m−1∑
α=−2m

β4λ−2β2+2α gkϕ+α+λ

+

m∑
λ=−m+1

2m−1∑
α=−2m

β4λβ−2α gkϕ+α+λ+1.

(8)

The mask coefficients of quaternary subdivision scheme (8)
is the non-linear combination of the mask of the following
4m-point binary subdivision scheme which we get by using
n = 2m in (2).

gk+1
2ϕ−1 =

2m∑
λ=−2m+1

β2λ gkϕ+λ−1,

gk+1
2ϕ =

2m∑
λ=−2m+1

β2−2λ gkϕ+λ,

(9)

□
The given theorems prove the generlized results about the

odd n.
Theorem 4: If n is odd, that is n = 2m + 1 : m ∈ N, then

the subdivision rules g4ϕ−2 and g4ϕ−1 in (4) are the linear
combination of 6m + 3 control points gϕ−3m−1 . . . gϕ+3m+1,
while the subdivision rules g4ϕ and g4ϕ+1 in (4) are the linear
combination of 6m+ 2 control points gϕ−3m . . . gϕ+3m+1.

Proof:When n is odd, we put n = 2m+ 1 in (4). That is

g4ϕ−2 =

2m+1∑
λ=−2m

β2−2λ g2ϕ+λ−1,

g4ϕ−1 =

2m+1∑
λ=−2m

β2λ g2ϕ+λ−1,

g4ϕ =

2m+1∑
λ=−2m

β2−2λ g2ϕ+λ,

g4ϕ+1 =

2m+1∑
λ=−2m

β2λ g2ϕ+λ.

(10)
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Now we have to find out values of g2ϕ−2m−1, g2ϕ−2m,
g2ϕ−2m+1, . . ., g2ϕ+2m, g2ϕ+2m+1. For this, first we evalu-
ate (3) for n = 2m + 1 and then by increasing or decreasing
the subscript, we get the required unknowns.

g2ϕ−1 = β−4m gϕ−2m−1 + β2−4m gϕ−2m + β4−4m

× gϕ−2m+1 + β6−4m gϕ−2m+2 + β8−4m

×gϕ−2m+3 + β10−4m gϕ−2m+4 + β12−4m

×gϕ−2m+5 + . . . + β4m−8gϕ+2m−5 + β4m−6

×gϕ+2m−4 + β4m−4 gϕ+2m−3 + β4m−2

×gϕ+2m−2 + β4mgϕ+2m−1 + β4m+2gϕ+2m,

g2ϕ = β4m+2 gϕ−2m + β4m gϕ−2m+1 + β4m−2

×gϕ−2m+2 + β4m−4 gϕ−2m+3 + β4m−6

×gϕ−2m+4 + β4m−8 gϕ−2m+5 + β4m−10

× gϕ−2m+6 + . . . + β10−4m gϕ+2m−4

+β8−4m gϕ+2m−3 + β6−4m gϕ+2m−2

+β4−4m gϕ+2m−1 + β2−4m gϕ+2m

+β−4m gϕ+2m+1.

(11)

Now we replace ϕ by ϕ − m in the first and second rules
of (11), we get

g2ϕ−2m−1 = β−4m gϕ−3m−1 + β2−4m gϕ−3m + β4−4m

× gϕ−3m+1+β6−4m gϕ−3m+2+β8−4m gϕ−3m+3

+ β10−4mgϕ−3m+4 + β12−4mgϕ−3m+5 + β14−4m

× gϕ−3m+6 + . . . + β4m−8 gϕ+m−5 + β4m−6

× gϕ+m−4 + β4m−4 gϕ+m−3 + β4m−2 gϕ+m−2

+ β4m gϕ+m−1 + β4m+2gϕ+m,

g2ϕ−2m = β4m+2 gϕ−3m + β4mgϕ−3m+1 + β4m−2gϕ−3m+2

+ β4m−4 gϕ−3m+3 + β4m−6 gϕ−3m+4 + β4m−8

× gϕ−3m+5 + β4m−10 gϕ−3m+6 + . . . + β10−4m

× gϕ+m−4 + β8−4m gϕ+m−3 + β6−4m gϕ+m−2

+ β4−4mgϕ+m−1+β2−4mgϕ+m+β−4mgϕ+m+1.

Now we replace ϕ by ϕ −m+ 1 in the first and second rules
of (11), we get

g2ϕ−2m+1 = β−4mgϕ−3m + β2−4mgϕ−3m+1 + β4−4mgϕ−3m+2

+ β6−4mgϕ−3m+3+β8−4m gϕ−3m+4+β10−4m

× gϕ−3m+5 + β12−4mgϕ−3m+6 + . . . + β4m−8

× gϕ+m−4 + β4m−6gϕ+m−3+β4m−4 gϕ+m−2

+ β4m−2gϕ+m−1+β4m gϕ+m+β4m+2 gϕ+m+1,

g2ϕ−2m+2 = β4m+2gϕ−3m+1+β4mgϕ−3m+2+β4m−2gϕ−3m+3

+ β4m−4 gϕ−3m+4 + β4m−6 gϕ−3m+5 + β4m−8

× gϕ−3m+6 + β4m−10 gϕ−3m+7 + . . . + β10−4m

× gϕ+m−3 + β8−4m gϕ+m−2 + β6−4m gϕ+m−1

+ β4−4mgϕ+m+β2−4mgϕ+m+1+β−4mgϕ+m+2.

Now we replace ϕ by ϕ −m+ 2 in the first and second rules
of (11), we get

g2ϕ−2m+3 = β−4mgϕ−3m+1 + β2−4mgϕ−3m+2 + β4−4m

× gϕ−3m+3 + β6−4m gϕ−3m+4 + β8−4m

× gϕ−3m+5 + β10−4m gϕ−3m+6 + β12−4m

× gϕ−3m+7 + . . . + β4m−8 gϕ+m−3 + β4m−6

× gϕ+m−2 + β4m−4 gϕ+m−1 + β4m−2gϕ+m

+ β4m gϕ+m+1 + β4m+2 gϕ+m+2,

g2ϕ−2m+4 = β4m+2 gϕ−3m+2 + β4m gϕ−3m+3 + β4m−2

× gϕ−3m+4 + β4m−4gϕ−3m+5 + β4m−6gϕ−3m+6

+ β4m−8gϕ−3m+7 + β4m−10gϕ−3m+8 + . . .

+ β10−4m gϕ+m−2 + β8−4m gϕ+m−1 + β6−4m

× gϕ+m + β4−4m gϕ+m+1 + β2−4m gϕ+m+2

+ β−4m gϕ+m+3.

...
...

...

continuiting this process, we replace ϕ by ϕ + m− 2 in first
and second rules of (11), we get

g2ϕ+2m−5 = β−4m gϕ−m−3 + β2−4m gϕ−m−2 + β4−4m

× gϕ−m−1 + β6−4m gϕ−m + β8−4m gϕ−m+1

+ β10−4m gϕ−m+2 + β12−4m gϕ−m+3 + . . .

+ β4m−8 gϕ+3m−7 + β4m−6 gϕ+3m−6 + β4m−4

× gϕ+3m−5 + β4m−2gϕ+3m−4 + β4mgϕ+3m−3

+ β4m+2 gϕ+3m−2,

g2ϕ+2m−4 = β4m+2 gϕ−m−2 + β4mgϕ−m−1 + β4m−2gϕ−m

+ β4m−4 gϕ−m+1 + β4m−6 gϕ−m+2 + β4m−8

× gϕ−m+3 + β4m−10 gϕ−m+4 + . . . + β10−4m

× gϕ+3m−6 + β8−4m gϕ+3m−5 + β6−4m

× gϕ+3m−4 + β4−4mgϕ+3m−3 + β2−4mgϕ+3m−2

+ β−4m gϕ+3m−1.

Now we replace ϕ by ϕ +m− 1 in the first and second rules
of (11), we get

g2ϕ+2m−3 = β−4m gϕ−m−2 + β2−4m gϕ−m−1 + β4−4m

× gϕ−m + β6−4m gϕ−m+1 + β8−4m gϕ−m+2

+ β10−4m gϕ−m+3 + β12−4m gϕ−m+4 + . . .

+ β4m−8 gϕ+3m−6 + β4m−6 gϕ+3m−5 + β4m−4

× gϕ+3m−4 + β4m−2gϕ+3m−3 + β4mgϕ+3m−2

+ β4m+2 gϕ+3m−1,

g2ϕ+2m−2 = β4m+2 gϕ−m−1 + β4mgϕ−m + β4m−2gϕ−m+1

+ β4m−4 gϕ−m+2 + β4m−6 gϕ−m+3 + β4m−8

× gϕ−m+4 + β4m−10 gϕ−m+5 + . . . + β10−4m

× gϕ+3m−5 + β8−4m gϕ+3m−4 + β6−4m

× gϕ+3m−3 + β4−4mgϕ+3m−2 + β2−4mgϕ+3m−1

+ β−4m gϕ+3m.
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Now we replace ϕ by ϕ + m in the first and second rules
of (11), we get

g2ϕ+2m−1 = β−4m gϕ−m−1 + β2−4m gϕ−m + β4−4m

× gϕ−m+1 + β6−4mgϕ−m+2 + β8−4mgϕ−m+3

+ β10−4m gϕ−m+4 + β12−4m gϕ−m+5 + . . .

+ β4m−8gϕ+3m−5 + β4m−6gϕ+3m−4 + β4m−4

× gϕ+3m−3 + β4m−2gϕ+3m−2 + β4mgϕ+3m−1

+ β4m+2 gϕ+3m,

g2ϕ+2m = β4m+2 gϕ−m + β4mgϕ−m+1 + β4m−2gϕ−m+2

+ β4m−4 gϕ−m+3 + β4m−6 gϕ−m+4 + β4m−8

× gϕ−m+5 + β4m−10 gϕ−m+6 + . . . + β10−4m

× gϕ+3m−4 + β8−4m gϕ+3m−3 + β6−4m

× gϕ+3m−2 + β4−4m gϕ+3m−1 + β2−4m gϕ+3m

+ β−4m gϕ+3m+1.

Nowwe replace ϕ by ϕ+m+1 in the first rule of (11), we get

g2ϕ+2m+1 = β−4m gϕ−m + β2−4m gϕ−m+1 + β4−4m

× gϕ−m+2 + β6−4m gϕ−m+3 + β8−4mgϕ−m+4

+ β10−4m gϕ−m+5 + β12−4m gϕ−m+6 + . . .

+ β4m−8gϕ+3m−4 + β4m−6gϕ+3m−3 + β4m−4

× gϕ+3m−2 + β4m−2 gϕ+3m−1 + β4m gϕ+3m

+ β4m+2 gϕ+3m+1.

Now, we get all the unknowns g2ϕ−2m−1, g2ϕ−2m, g2ϕ−2m+1,
. . ., g2ϕ+2m, g2ϕ+2m+1. Further, we substitute these in the set
of equations (10), which in the short form can be written as

g4ϕ−2 =

m∑
λ=−m

β2−4λ

 2m+1∑
α=−2m

β2α gϕ+α+λ−1


+

m∑
λ=−m

β−4λ

 2m+1∑
α=−2m

β2−2α gϕ+α+λ

 ,

g4ϕ−1 =

m∑
λ=−m

β4λ

 2m+1∑
α=−2m

β2α gϕ+α+λ−1


+

m∑
λ=−m

β2+4λ

 2m+1∑
α=−2m

β2−2α gϕ+α+λ

 ,

g4ϕ =

m∑
λ=−m

β2−4λ

 2m+1∑
α=−2m

β2−2α gϕ+α+λ


+

m∑
λ=−m

β−4λ

 2m+1∑
α=−2m

β2α gϕ+α+λ

 ,

g4ϕ+1 =

m∑
λ=−m

β4λ

 2m+1∑
α=−2m

β2−2α gϕ+α+λ


+

m∑
λ=−m

β2+4λ

 2m+1∑
α=−2m

β2α gϕ+α+λ

 .

(12)

Which completes the required result. □
The following theorem derives a relation between the

(4m + 2)-point binary and the (6m + 2)-point relaxed
quaternary subdivision schemes.
Theorem 5: If n = 2m + 1, then the subdivision

equations given in (12) gives the four subdivision rules of the
(6m+2)-point relaxed quaternary subdivision scheme whose
coefficients of the control points in the subdivision rules are
the non-linear combination of the coefficients of the control
points of the (4m+ 2)-point binary subdivision scheme.

Proof: Now we add the subdivision level on the
subdivision rules given in (12), Hence we get the following
(6m+ 2)-point relaxed quaternary subdivision scheme

gk+1
4ϕ−2 =

m∑
λ=−m

2m+1∑
α=−2m

β2−4λβ2α gkϕ+α+λ−1

+

m∑
λ=−m

2m+1∑
α=−2m

β−4λβ2−2α gkϕ+α+λ,

gk+1
4ϕ−1 =

m∑
λ=−m

2m+1∑
α=−2m

β4λβ2α gkϕ+α+λ−1

+

m∑
λ=−m

2m+1∑
α=−2m

β2+4λβ2−2α gkϕ+α+λ,

gk+1
4ϕ =

m∑
λ=−m

2m+1∑
α=−2m

β2−4λβ2−2α gkϕ+α+λ

+

m∑
λ=−m

2m+1∑
α=−2m

β−4λβ2α gkϕ+α+λ,

gk+1
4ϕ+1 =

m∑
λ=−m

2m+1∑
α=−2m

β4λβ2−2α gkϕ+α+λ

+

m∑
λ=−m

2m+1∑
α=−2m

β2+4λβ2α gkϕ+α+λ.

(13)

The mask coefficients of quaternary subdivision scheme (13)
is the non-linear combination of the mask of the following
(4m + 2)-point binary subdivision scheme which we get by
using n = 2m+ 1 in (2).

gk+1
2ϕ−1 =

2m+1∑
λ=−2m

β2λ gkϕ+λ−1,

gk+1
2ϕ =

2m+1∑
λ=−2m

β2−2λ gkϕ+λ,

(14)

Hence proved. □
In the next section, we will validate the results of

Theorem 3 and Theorem 5.

III. APPLICATIONS OF THE PRESENTED TECHNIQUES
In this section, we implement and validate the results, which
are proved in Theorem 3 and Theorem 5 of Section II,
to the known even-point binary approximating subdivision
schemes. We also inspects the graphical results of both type
of schemes using the same initial data.We use non-parametric
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binary subdivision schemes in the Corollaries 6-13, but the
given procedure can be applied on all the parametric as well
as the non-parametric linear even-point binary subdivision
schemes. The first three corollaries are the applications of
Theorem 3 whereas the next four are the applications of
Theorem 5.
Corollary 6: We expand the binary subdivision scheme

which is defined in (9) for m = 1, thus we get{
gk+1
2ϕ−1 = β−2 gkϕ−2 + β0 gkϕ−1 + β2 gkϕ + β4 gkϕ+1,

gk+1
2ϕ = β4 gkϕ−1 + β2 gkϕ + β0 gkϕ+1 + β−2 gkϕ+2.

(15)

To get the values of β−2, β0, β2, β4, we compare the general
form of the 4-point binary scheme (15) with the 4-point
scheme defined by [30], hence we get

β−2 =
1

384
, β0 =

121
384

, β2 =
235
384

, β4 =
9
128

. (16)

Now by using the mask (16), we can get the mask/coefficients
of the quaternary subdivision scheme. Hence by expand-
ing (8) for m = 1, we get

gk+1
4ϕ−2 = (β2

4 + β2β−2)gkϕ−2 + (β4β2 + β0β4 + β2β0

+ β2
−2)g

k
ϕ−1 + (β4β0 + β0β2 + β2

2 + β−2β0)gkϕ
+ (β4β−2 + β2

0 + β2β4 + β−2β2)gkϕ+1 + (β0

× β−2 + β−2β4)gkϕ+2,

gk+1
4ϕ−1 = (β−2β4 + β0β−2)gkϕ−2 + (β−2β2 + β2β4 + β2

0

+ β4β−2)gkϕ−1 + (β−2β0 + β2
2 + β0β2 + β4β0)

× gkϕ + (β2
−2 + β2β0 + β0β4 + β4β2)gkϕ+1 + (β2

× β−2 + β2
4 )g

k
ϕ+2,

gk+1
4ϕ = (β4β−2)gkϕ−2 + (β4β0 + β0β−2 + β2β4)gkϕ−1

+ (β4β2 + β2
0+β2

2 + β−2β4)gkϕ+(β2
4 + β0β2 + β2

× β0 + β−2β2)gkϕ+1 + (β0β4 + β2β−2 + β−2β0)

× gkϕ+2 + (β2
−2)g

k
ϕ+3,

gk+1
4ϕ+1 = (β2

−2)g
k
ϕ−2 + (β−2β0 + β2β−2 + β0β4)gkϕ−1

+ (β−2β2 + β2β0 + β0β2 + β2
4 )g

k
ϕ + (β−2β4 + β2

2

+ β2
0 + β4β2)gkϕ+1 + (β2β4 + β0β−2 + β4β0)

× gkϕ+2 + (β4β−2)gkϕ+3.

By using the values of β−2, β0, β2 and β4 from (16) in above,
we get

gk+1
4ϕ−2 = Â1gkϕ−2 + Â2gkϕ−1 + Â3gkϕ + Â4gkϕ+1

+Â5gkϕ+2,

gk+1
4ϕ−1 = Â5gkϕ−2 + Â4gkϕ−1 + Â3gkϕ + Â2gkϕ+1

+Â1gkϕ+2,

gk+1
4ϕ = B̂1gkϕ−2 + B̂2gkϕ−1 + B̂3gkϕ + B̂4gkϕ+1

+B̂5gkϕ+2 + B̂6gkϕ+3,

gk+1
4ϕ+1 = B̂6gkϕ−2 + B̂5gkϕ−1 + B̂4gkϕ + B̂3gkϕ+1

+B̂2gkϕ+2 + B̂1gkϕ+3,

(17)

where

Â1 =
241

36864
, Â2 =

1189
4608

, Â3 =
1209
2048

, Â4 =
83
576

,

Â5 =
37

36864
, B̂1 =

3
16384

, B̂2 =
9733
147456

,

B̂3 =
38119
73728

, B̂4 =
3213
8192

, B̂5 =
3623

147456
, B̂6 =

1
147456

(18)

Which is the 5-point relaxed quaternary subdivision
scheme. The mask/coefficients of this quaternary subdivision
scheme (17) is just the non-linear combination of the mask of
the binary subdivision scheme (15).
The graphical inspection and comparison of the binary
subdivision scheme (15) and the quaternary subdivision
scheme (17) after one and two subdivision steps is given
in Figure 1. This figure clearly shows that the quaternary
subdivision scheme smooths the model more efficiently as
compare to the binary subdivision scheme.
Remark 7: In captions of the Figures 1-7, SS, BSS andQSS

denote the Subdivision Step, Binary Subdivision Scheme and
the Quaternary Subdivision Scheme respectively. Moreover,
in Figures 1-7 red solid lines represent the initial polygons,
blue solid lines show the curves fitted by the binary and the
quaternary subdivision schemes after one subdivision level,
while the black solid lines show the curves fitted by the binary
and quaternary subdivision schemes after two subdivision
steps.
Corollary 8: This corollary is the application of Theo-

rem 3 for m = 2. The binary subdivision scheme (9) for
m = 2 is:

gk+1
2ϕ−1 = β−6 gkϕ−4 + β−4 gkϕ−3 + β−2 gkϕ−2

+β0 gkϕ−1 + β2 gkϕ + β4 gkϕ+1

+β6 gkϕ+2 + β8 gkϕ+3,

gk+1
2ϕ = β8 gkϕ−3 + β6 gkϕ−2 + β4 gkϕ−1

+β2 gkϕ + β0 gkϕ+1 + β−2 gkϕ+2

+β−4 gkϕ+3 + β−6 gkϕ+4.

(19)

(19) is the general form of 8-point binary subdivision scheme,
the coefficients β−6, β−4, . . . , β6, β8 of which can be get
by any of the known 8-point binary subdivision scheme.
Therefore, in order to get coefficients we compare the
scheme (19) with the 8-point scheme presented by [30], so we
get

β−6 =
1

82575360
, β−4 =

26039
27525120

, β−2 =
1385999
27525120

,

β0 =
26672209
82575360

, β2 =
4210971
9175040

, β4 =
1440007
9175040

,

β6 =
806047
82575360

, β8 =
243

9175040
.

(20)

If we put m = 2 in (8), we get the 12-point relaxed
quaternary subdivision scheme whose mask is the non-linear
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FIGURE 1. Curves generated by the binary and quaternary subdivision schemes (15) and (17) respectively.

combination of the mask β−6, β−4, . . . , β6, β8 of the 8-
point binary subdivision scheme. Therefore, by using (20),
we get the mask of the following quternary subdivision
scheme

gk+1
4ϕ−2 = Ǎ1gkϕ−5 + Ǎ2gkϕ−4 + Ǎ3gkϕ−3 + Ǎ4gkϕ−2

+Ǎ5gkϕ−1 + Ǎ6gkϕ + Ǎ7gkϕ+1 + Ǎ8gkϕ+2

+Ǎ9gkϕ+3 + Ǎ10gkϕ+4 + Ǎ11gkϕ+5,

gk+1
4ϕ−1 = Ǎ11gkϕ−5 + Ǎ10gkϕ−4 + Ǎ9gkϕ−3 + Ǎ8

×gkϕ−2 + Ǎ7gkϕ−1 + Ǎ6gkϕ + Ǎ5gkϕ+1

+Ǎ4gkϕ+2 + Ǎ3gkϕ+3 + Ǎ2gkϕ+4

+Ǎ1gkϕ+5,

gk+1
4ϕ = B̌1gkϕ−5 + B̌2gkϕ−4 + B̌3gkϕ−3 + B̌4gkϕ−2

+B̌5gkϕ−1 + B̌6gkϕ + B̌7gkϕ+1 + B̌8gkϕ+2

+B̌9gkϕ+3 + B̌10gkϕ+4 + B̌11gkϕ+5

+B̌12gkϕ+6,

gk+1
4ϕ+1 = B̌12gkϕ−5 + B̌11gkϕ−4 + B̌10gkϕ−3 + B̌9

×gkϕ−2 + B̌8gkϕ−1 + B̌7gkϕ + B̌6gkϕ+1

+B̌5gkϕ+2 + B̌4gkϕ+3 + B̌3gkϕ+4 + B̌2

×gkϕ+5 + B̌1gkϕ+6,

(21)

where

Ǎ1 =
698627

852336259891200
, Ǎ2 =

3879598117
284112086630400

,

Ǎ3 =
350941180003

142056043315200
, Ǎ4 =

36602385889
676457349120

,

Ǎ5 =
5641800724981
20293720473600

, Ǎ6 =
247891317863
579820584960

,

Ǎ7 =
527402518309
2536715059200

, Ǎ8 =
2067049873661
71028021657600

,

Ǎ9 =
48690122269

56822417326080
, Ǎ10 =

1902910423
852336259891200

,

(22)



Ǎ11 =
239

20293720473600
B̌1 =

27
84181359001600

,

B̌2 =
30898837

108233175859200
, B̌3 =

1754117761421
6818690079129600

,

B̌4 =
32344488846199
2272896693043200

, B̌5 =
163622535291293
1136448346521600

,

B̌6 =
12926815750607
32469952757760

, B̌7 =
56015931444329
162349763788800

,

B̌8 =
104604880235159
1136448346521600

, B̌9 =
75466139809

12025908428800
,

B̌10 =
148716800989

2272896693043200
, B̌11 =

58359331
2272896693043200

,

B̌12 =
1

6818690079129600
.

(23)
Figure 2 shows the models fitted by the binary subdivision
scheme (19) and the quaternary subdivision scheme (21)
after one and two subdivision steps. Again this graphical
inspection shows the superiority of the quaternary subdivi-
sion scheme over the binary subdivision scheme.
Corollary 9: In this corollary, we use the even-point

binary subdivision scheme (9) and expand it when m = 3.
As the result we get the following 12-point binary subdivision
scheme:



gk+1
2ϕ−1 = β−10 gkϕ−6 + β−8 gkϕ−5 + β−6 gkϕ−4

+β−4 gkϕ−3 + β−2 gkϕ−2 + β0 gkϕ−1

+β2 gkϕ + β4 gkϕ+1 + β6 gkϕ+2 + β8

×gkϕ+3 + β10 gkϕ+4 + β12 gkϕ+5,

gk+1
2ϕ = β12 gkϕ−5 + β10 gkϕ−4 + β8 gkϕ−3 + β6

×gkϕ−2 + β4 gkϕ−1 + β2 gkϕ + β0 gkϕ+1

+β−2 gkϕ+2 + β−4 gkϕ+3 + β−6 gkϕ+4

+β−8 gkϕ+5 + β−10 gkϕ+6.

(24)

A 12-point binary subdivision scheme which we get by
the algorithm presented by [30] gives the coefficients
β−10, β−8, . . . , β10, β12 of this scheme. Hence the coeffi-
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cients are:

β−10 =
1

167423193907200
, β−8 =

48828113
167423193907200

,

β−6 =
410601629

2232309252096
, β−4 =

52548530917
6200859033600

,

β−2 =
2471063221063
27903865651200

, β0 =
1680588922139
5580773130240

,

β2 =
2134020225233
5580773130240

, β4 =
69086299223
372051542016

,

β6 =
1785493468247
55807731302400

, β8 =
261595441397

167423193907200
,

β10 =
1975200979

167423193907200
, β12 =

2187
2066953011200

.

(25)

Now first we simplify (8) for m = 3 and then substitute these
12 values from (25) into (8), thus we get the 17-point relaxed
quaternary approximating subdivision scheme, that is

gk+1
4ϕ−2 = C1gkϕ−8 + C2gkϕ−7 + C3gkϕ−6 + C4gkϕ−5

+C5gkϕ−4 + C6gkϕ−3 + C7gkϕ−2 + C8gkϕ−1

+C9gkϕ + C10gkϕ+1 + C11gkϕ+2 + C12gkϕ+3

+C13gkϕ+4 + C14gkϕ+5 + C15gkϕ+6 + C16gkϕ+7

+C17gkϕ+8,

gk+1
4ϕ−1 = C17gkϕ−8 + C16gkϕ−7 + C15gkϕ−6 + C14gkϕ−5

+C13gkϕ−4 + C12gkϕ−3 + C11gkϕ−2 + C10

×gkϕ−1 + C9gkϕ + C8gkϕ+1 + C7gkϕ+2 + C6

×gkϕ+3 + C5gkϕ+4 + C4gkϕ+5 + C3gkϕ+6

+C2gkϕ+7 + C1gkϕ+8,

gk+1
4ϕ = D1gkϕ−8 + D2gkϕ−7 + D3gkϕ−6 + D4gkϕ−5

+D5gkϕ−4 + D6gkϕ−3 + D7gkϕ−2 + D8gkϕ−1

+D9gkϕ + D10gkϕ+1 + D11gkϕ+2 + D12gkϕ+3

+D13gkϕ+4 + D14gkϕ+5 + D15gkϕ+6 + D16

×gkϕ+7 + D17gkϕ+8 + D18gkϕ+9,

gk+1
4ϕ+1 = D18gkϕ−8 + D17gkϕ−7 + D16gkϕ−6 + D15

×gkϕ−5 + D14gkϕ−4 + D13gkϕ−3 + D12gkϕ−2

+D11gkϕ−1 + D10gkϕ + D9gkϕ+1 + D8gkϕ+2

+D7gkϕ+3 + D6gkϕ+4 + D5gkϕ+5 + D4gkϕ+6

+D3gkϕ+7 + D2gkϕ+8 + D1gkϕ+9,

(26)

where

C1 =
170185003

143012887031060669399040000
,

C2 =
11618623511827

2275205020948692467712000
,

C3 =
2639470801758827761

87595393306524660006912000
,

C4 =
268509519026918532793

25027255230435617144832000
,

C5 =
16029066874929664797821

23358771548406576001843200
,

C6 =
11208054761546257498631183
875953933065246600069120000

,

C7 =
32207048328244229783317
361964435150928347136000

,

C8 =
4187024370524574208415201
15926435146640847273984000

,

C9 =
678810440255672301860419
1930476987471617851392000

,

(27)



C10 =
689073490261723216665251
3185287029328169454796800

,

C11 =
338960562772283782004933
5688012552371731169280000

,

C12 =
1191634131193759734219757
175190786613049320013824000

,

C13 =
8792959297188237328469

31852870293281694547968000
,

C14 =
19346249685396093203

6488547652335160000512000
,

C15 =
1048707451741153

218988483266311650017280
,

C16 =
245027153519101

875953933065246600069120000
,

C17 =
2450263

1401526292904394560110592000
,

(28)



D1 =
27

4272294750508747325440000
,

D2 =
358812277001921

28030525858087891202211840000
,

D3 =
2203625183357673913

3503815732260986400276480000
,

D4 =
103411470339072618307

140152629290439456011059200
,

D5 =
637615639085108558009

6229005746241753600491520
,

D6 =
23767610644231508920682471

7007631464521972800552960000
,

D7 =
132394698240692877731080079
3503815732260986400276480000

,

D8 =
7705315847678086375114273
45504100418973849354240000

,

D9 =
17075025982837018547243819
50964592469250711276748800

,

(29)
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FIGURE 2. Curves generated by the binary and quaternary subdivision schemes (19) and (21) respectively.

FIGURE 3. Curves generated by the binary and quaternary subdivision schemes (24) and (26) respectively.



D10 =
1033280151597605241630239
3397639497950047418449920

,

D11 =
40126522029222497908818157
318528702932816945479680000

,

D12 =
79334867894972096989478381
3503815732260986400276480000

,

D13 =
11078992716719243713520413
7007631464521972800552960000

,

D14 =
3248016674151168146933

93435086193626304007372800
,

D15 =
4496423852919659533

28030525858087891202211840
,

D16 =
231433236694503691

3503815732260986400276480000
,

D17 =
8680597683899

28030525858087891202211840000
,

D18 =
1

28030525858087891202211840000
.

(30)

Figure 3 illustrates that the 17-point relaxed quaternary
subdivision scheme (26) uses only one subdivision iterations
to smooth the model while the 12-point binary subdivision
scheme (24) uses two subdivision iterations to acheives that
level of smoothness.

Now we present the applications of the Theorem 5 in the
next few results.
Corollary 10: Here we use the result which we get from

Theorem 5 for m = 0, Thererfore we expand the (4m + 2)-
point binary subdivision scheme (14) for m = 0. Hence we

get {
gk+1
2ϕ−1 = β0 gkϕ−1 + β2 gkϕ,

gk+1
2ϕ = β2 gkϕ + β0 gkϕ+1.

(31)

For the values of β0 and β2, we compare the 2-point binary
subdivision scheme (31) with the well-known Chaikin’s
subdivision scheme, so we get:

β0 =
1
4
, β2 =

3
4
. (32)

We get the 2-point relaxed quaternary subdivision scheme by
putting m = 0 in (13) whose mask elements attained by the
mask (32) of the scheme (31). The scheme is:

gk+1
4ϕ−2 = â1gkϕ−1 + â2gkϕ + â3gkϕ+1,

gk+1
4ϕ−1 = â3gkϕ−1 + â2gkϕ + â1gkϕ+1,

gk+1
4ϕ = b̂1gkϕ + b̂2gkϕ+1,

gk+1
4ϕ+1 = b̂2gkϕ + b̂1gkϕ+1,

(33)

where

â1 =
3
16

, â2 =
3
4
, â3 =

1
16

b̂1 =
5
8
, b̂2 =

3
8
.

Figure 4 shows the two dimensional shapes fitted by the 2-
point binary subdivision scheme (31) and the 2-point relaxed
quaternary subdivision scheme (33). This figure shows the
speedy convergence of the quaternary subdivision scheme as
compare to the binary subdivision scheme.
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FIGURE 4. Curves generated by the binary and quaternary subdivision schemes (31) and (33) respectively.

Corollary 11: Let gkϕ : ϕ ∈ Z be the control points
at the k-th subdivision step and gk+1

ϕ : ϕ ∈ Z be the
refined data/points at the (k+1)-th refinement step. If we use
m = 1 in the (2m+ 2)-point binary subdivision scheme (14),
we get the generalized form of the following 6-point binary
subdivision scheme:

gk+1
2ϕ−1 = β−4 gkϕ−3 + β−2 gkϕ−2 + β0 gkϕ−1

+β2 gkϕ + β4 gkϕ+1 + β6 gkϕ+2,

gk+1
2ϕ = β6 gkϕ−2 + β4 gkϕ−1 + β2 gkϕ
+β0 gkϕ+1 + β−2 gkϕ+2 + β−4 gkϕ+3.

(34)

After comparing 6-point binary subdivision scheme (34) with
6-point approximating subdivision scheme by [30], we get the
values of following 6 unknowns:

β−4 =
1

122880
, β−2 =

3119
122880

, β0 =
6719
20480

,

β2 =
31927
61440

, β4 =
15349
122880

, β6 =
81

40960
.

(35)

Now if m = 1, the coefficients of the control points in the
8-point relaxed quaternary subdivision scheme (13) are:

a1 = β6β−4, ǎ2 = β6β−2 + β2β−4 + β4β6,

ǎ3 = β6β0 + β2β−2 + β−2β−4 + β2
4 + β0β6,

ǎ4 = β6β2 + β2β0 + β2
−2 + β4β2 + β0β4

+ β−4β6, ǎ5 = β6β4 + β2
2 + β−2β0 + β4β0

+ β0β2 + β−4β4, ǎ6 = β2
6 + β2β4 + β−2β2

+ β4β−2 + β2
0 + β−4β2, ǎ7 = β2β6 + β−2β4

+ β4β−4 + β0β−2 + β−4β0, ǎ8 = β−2β6

+ β0β−4 + β−4β−2, ǎ9 = β2
−4 b̌1 = β2

6 + β4

× β−4, b̌2 = β6β4 + β2β6 + β4β−2 + β0β−4,

b̌3 = β6β2 + β2β4 + β−2β6 + β4β0 + β0β−2

+ β2
−4, b̌4 = β6β0 + β2

2 + β−2β4 + β4β2 + β2
0

+ β−4β−2, b̌5 = β6β−2 + β2β0 + β−2β2 + β2
4

+ β0β2 + β−4β0, b̌6 = β6β−4 + β2β−2 + β−2β0

+ β4β6 + β0β4 + β−4β2, b̌7 = β2β−4 + β2
−2

+ β0β6 + β−4β4, b̌8 = β−2β−4 + β−4β6. (36)

By using the values of β−4, β−2, β0, β2, β4, β6 from (35)
into the (36) and after simplification, we get the following
quaternary approximating subdivision scheme:

gk+1
4ϕ−2 = ǎ1gkϕ−4 + ǎ2gkϕ−3 + ǎ3gkϕ−2 + ǎ4gkϕ−1

+ǎ5gkϕ + ǎ6gkϕ+1 + ǎ7gkϕ+2 + ǎ8gkϕ+3

+ǎ9gkϕ+4,

gk+1
4ϕ−1 = ǎ9gkϕ−4 + ǎ8gkϕ−3 + ǎ7gkϕ−2 + ǎ6gkϕ−1

+ǎ5gkϕ + ǎ4gkϕ+1 + ǎ3gkϕ+2 + ǎ2gkϕ+3

+ǎ1gkϕ+4,

gk+1
4ϕ = b̌1gkϕ−3 + b̌2gkϕ−2 + b̌3gkϕ−1 + b̌4gkϕ

+b̌5gkϕ+1 + b̌6gkϕ+2 + b̌7gkϕ+3 + b̌8gkϕ+4,

gk+1
4ϕ+1 = b̌8gkϕ−3 + b̌7gkϕ−2 + b̌6gkϕ−1 + b̌5gkϕ

+b̌4gkϕ+1 + b̌3gkϕ+2 + b̌2gkϕ+3 + b̌1gkϕ+4,

(37)

where

ǎ1=
27

1677721600
, ǎ2=

2275789
7549747200

, ǎ3=
9086963
301989888

,

ǎ4=
699721619
2516582400

, ǎ5=
369990379
754974720

, ǎ6=
1426235351
7549747200

,

ǎ7=
31530847
2516582400

, ǎ8=
16027

301989888
, ǎ9=

1
15099494400

b̌1=
37199

7549747200
, b̌2=

33580087
7549747200

, b̌3=
290148073
2516582400

,

b̌4=
674031991
1509949440

, b̌5=
558397097
1509949440

, b̌6=
157912247
2516582400

,

b̌7=
9801833

7549747200
, b̌8=

1681
7549747200

.

(38)
The graphical results of the 6-point binary subdivision
schemes (34) and the 8-point relaxed quaternary approxi-
mating subdivision schemes (37) are reviewed in Figure 5.
It is clear that 8-point relaxed quaternary approximating
subdivision scheme uses less iterations for smoothness
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FIGURE 5. Curves generated by the binary and quaternary subdivision schemes (34) and (37) respectively.

comparatively to its corresponding 6-point binary subdivision
scheme.
Corollary 12: The binary subdivision scheme (14) for

m = 2 reduces to an approximating subdivsion scheme
whose each subdivision rule use the linear combination of
10 control points of subdivision level k to get a control point
at subdivision level k + 1. So the general form of this scheme
is:

gk+1
2ϕ−1 = β−8 gkϕ−5 + β−6 gkϕ−4 + β−4 gkϕ−3 + β−2

×gkϕ−2 + β0 gkϕ−1 + β2 gkϕ + β4 gkϕ+1+

+β6 gkϕ+2 + β8 gkϕ+3 + β10 gkϕ+4,

gk+1
2ϕ = β10 gkϕ−4 + β8 gkϕ−3 + β6 gkϕ−2 + β4

×gkϕ−1 + β2 gkϕ + β0 gkϕ+1 + β−2 gkϕ+2

+β−4 gkϕ+3 + β−6 gkϕ+4 + β−8 gkϕ+5.

(39)

To get the values of 10 unknowns β−8, β−6 . . . β8, β10,
we uses the 10-point binary subdivision scheme presented by
[30] so that the control points at level k + 1 in (39) become
the convex combination of the control points of level k. Hence
the values of unknowns are:

β−8 =
12155

33554432
, β−6 =

−138567
33554432

, β−4 =
188955
8388608

,

β−2 =
−692835
8388608

, β0 =
4849845
16777216

, β2 =
14549535
16777216

,

β4 =
−969969
8388608

, β6 =
230945
8388608

, β8 =
−159885
33554432

,

β10 =
13585

33554432
.

(40)

Now we simplify (13) for m = 2 and get the general
form of the 14-point relaxed quaternary subdivision scheme.
Now we use the unknowns from (40) into (13) and get the
following quaternary subdivision scheme which is relaxed
bacasue its two subdivision rules are the convex combination
of 14 control points of level k whereas the remaining two
subdivision rules are the convex combination of 15 control

points of level k.



gk+1
4ϕ−2 = ã1gkϕ−7 + ã2gkϕ−6 + ã3gkϕ−5 + ã4gkϕ−4

+ã5gkϕ−3 + ã6gkϕ−2 + ã7gkϕ−1 + ã8gkϕ
+ã9gkϕ+1 + ã10gkϕ+2 + ã11gkϕ+3 + ã12
×gkϕ+4 + ã13gkϕ+5 + ã14gkϕ+6 + ã15
×gkϕ+7,

gk+1
4ϕ−1 = ã15gkϕ−7 + ã14gkϕ−6 + ã13gkϕ−5 + ã12
×gkϕ−4 + ã11gkϕ−3 + ã10gkϕ−2 + ã9gkϕ−1

+ã8gkϕ + ã7gkϕ+1 + ã6gkϕ+2 + ã5gkϕ+3

+ã4gkϕ+4 + ã3gkϕ+5 + ã2gkϕ+6 + ã1gkϕ+7,

gk+1
4ϕ = b̃1gkϕ−6 + b̃2gkϕ−5 + b̃3gkϕ−4 + b̃4gkϕ−3

+b̃5gkϕ−2 + b̃6gkϕ−1 + b̃7gkϕ + b̃8gkϕ+1

+b̃9gkϕ+2 + b̃10gkϕ+3 + b̃11gkϕ+4 + b̃12
×gkϕ+5 + b̃13gkϕ+6 + b̃14gkϕ+7,

gk+1
4ϕ+1 = b̃14gkϕ−6 + b̃13gkϕ−5 + b̃12gkϕ−4 + b̃11
×gkϕ−3 + b̃10gkϕ−2 + b̃9gkϕ−1 + b̃8gkϕ
+b̃7gkϕ+1 + b̃6gkϕ+2 + b̃5gkϕ+3 + b̃4gkϕ+4

+b̃3gkϕ+5 + b̃2gkϕ+6 + b̃1gkϕ+7,

(41)

where



ã1 =
165125675

1125899906842624
, ã2 =

896759435
140737488355328

,

ã3 =
208816685055

1125899906842624
, ã4 =

−350111003385
140737488355328

,

ã5 =
15443267900775
1125899906842624

, ã6 =
−845664470365
17592186044416

,

ã7 =
165267038051115
1125899906842624

, ã8 =
66176709385215
70368744177664

,

ã9 =
−67374962898815
1125899906842624

, ã10 =
1418419563275
140737488355328

,

ã11 =
−772276338691

1125899906842624
, ã12 =

−17904682965
140737488355328

,

ã13 =
6861145005

1125899906842624
, ã14 =

351267345
70368744177664

,

(42)
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FIGURE 6. Curves generated by the binary and quaternary subdivision schemes (39) and (41) respectively.



ã15 =
147744025

1125899906842624
b̃1 =

−879424975
562949953421312

,

b̃2 =
−7313797205

562949953421312
, b̃3 =

198710020223
281474976710656

,

b̃4 =
−1928438555615
281474976710656

, b̃5 =
20280883755275
562949953421312

,

b̃6 =
−78511743180975
562949953421312

, b̃7 =
105752643189765
140737488355328

,

b̃8 =
63006444414771
140737488355328

, b̃9 =
−64970510830665
562949953421312

,

b̃10 =
17600920061725
562949953421312

, b̃11 =
−1671012940025
281474976710656

,

b̃12 =
163784577385

281474976710656
, b̃13 =

−3080205843
562949953421312

,

b̃14 =
−759578105

562949953421312
.

(43)
In Figure 6, we present the graphical shapes generated
by the binary subdivision scheme (39) and the quaternary
approximating subdivision scheme (41). The difference at
first two subdivision levels can be visualized clearly from this
figure.
Corollary 13: This corollary also shows the application

of Theorem 5 for m = 2. So the general form of the 10-
point binary subdivision scheme is same as given in (39) of
Corollary 12 and the values of unknowns can be get by [30],
that are:



β−8 =
1

95126814720
, β−6 =

390623
19025362944

,

β−4 =
13138903

3397386240
, β−2 =

1704546247
23781703680

,

β0 =
14871214991
47563407360

, β2 =
19761725357
47563407360

,

β4 =
833871641
4756340736

, β6 =
488824339

23781703680
,

β8 =
40156777

95126814720
, β10 =

243
1174405120

.

(44)

Hence the coefficients of the following 14-point relaxed
quaternary subdivision scheme which we get from (13) for
m = 2 are the non-linear combination of the values given

in (44)



gk+1
4ϕ−2 = c1gkϕ−7 + c2gkϕ−6 + c3gkϕ−5 + c4gkϕ−4

+c5gkϕ−3 + c6gkϕ−2 + c7gkϕ−1 + c8gkϕ + c9
×gkϕ+1 + c10gkϕ+2 + c11gkϕ+3 + c12gkϕ+4

+c13gkϕ+5 + c14gkϕ+6 + c15gkϕ+7,

gk+1
4ϕ−1 = c15gkϕ−7 + c14gkϕ−6 + c13gkϕ−5 + c12

×gkϕ−4 + c11gkϕ−3 + c10gkϕ−2 + c9gkϕ−1

+c8gkϕ + c7gkϕ+1 + c6gkϕ+2 + c5gkϕ+3 + c4
×gkϕ+4 + c3gkϕ+5 + c2gkϕ+6 + c1gkϕ+7,

gk+1
4ϕ = d1gkϕ−6 + d2gkϕ−5 + d3gkϕ−4 + d4gkϕ−3

+d5gkϕ−2 + d6gkϕ−1 + d7gkϕ + d8gkϕ+1 + d9
×gkϕ+2 + d10gkϕ+3 + d11gkϕ+4 + d12gϕ+5

+d13gϕ+6 + d14gkϕ+7,

gk+1
4ϕ+1 = d14gkϕ−6 + d13gkϕ−5 + d12gkϕ−4 + d11gkϕ−3

+d10gkϕ−2 + d9gkϕ−1 + d8gkϕ + d7gkϕ+1

+d6gkϕ+2 + d5gkϕ+3 + d4gkϕ+4 + d3gkϕ+5

+d2gkϕ+6 + d1gkϕ+7,

(45)

where 

c1 =
3

1379227385882214400
,

c2 =
103850537699

1131138859846651084800
,

c3 =
384468662194361

603274058584880578560
,

c4 =
193184601091081183

1131138859846651084800
,

c5 =
62359154801651076991
9049110878773208678400

,

c6 =
10438071559376400791
141392357480831385600

,

c7 =
116970620124289395991
430910041846343270400

,

c8 =
137915687699480465
359091701538619392

,

(46)
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

c9 =
648462053977087642339
3016370292924402892800

,

c10 =
17125519634472990817
377046286615550361600

,

c11 =
28434156344565775493
9049110878773208678400

,

c12 =
19659422070653153

377046286615550361600
,

c13 =
186238665573617

1809822175754641735680
,

c14 =
346544687

80795632846189363200
,

c15 =
1

9049110878773208678400
,

(47)



d1 =
213788633

4524555439386604339200
,

d2 =
8408857474501

646365062769514905600
,

d3 =
646332081504007

46168933054965350400
,

d4 =
989843345911370179

754092573231100723200
,

d5 =
23601083531203039271
904911087877320867840

,

d6 =
241716880028225596243
1508185146462201446400

,

d7 =
136704671280724852463
377046286615550361600

,

(48)



d8 =
40597867969395053203
125682095538516787200

,

d9 =
24196254751816504787
215455020923171635200

,

d10 =
1800718087517760407
129273012553902981120

,

d11 =
1128217272575781919

2262277719693302169600
,

d12 =
7348484779529681

2262277719693302169600
,

d13 =
1843780220327

1508185146462201446400
,

d14 =
986399

4524555439386604339200
.

(49)

Figure 7 also give the comparison between the models
generated by the 10-point binary and the 14-point relaxed
quaternary subdivision schemes when masks of the subdivi-
sion schemes are all positive.

IV. HÖLDER’S REGULARITY OF THE PRESENTED PAIRS
OF SUBDIVISION SCHEMES
In this section, we evaluate and compare the Hölder’s
regularity of the each pair of binary and quaternary subdi-
vision schemes which we have discussed in the corollaries

of Section III. This evaluation is done by a well-known
technique presented by [21] which is defined here.
Definition 14: Hölder regularity is an extension of the

Laurent’s polynomial of continuity which givesmore informa-
tion about any scheme. The Hölder regularity of subdivision
scheme with Laurent’s polynomial µ(c) can be computed in
the following way. Let

µ(c) =

(
1 + c+ c2 + . . . + cs−1

s

)p

ν(c),

without loss of generality, we can suppose that e0, e1,. . . ,
et−1,et to be the non-zero coefficients of ν(c) and let E0, E1,
. . . , Et−1, Et be the t × t matrices with elements:

(Eq)ij = et+i−sj+q, i, j = 1, 2, . . . , t and q = 0, 1, . . . , t.

(50)

Then theHölder regularity of the subdivision schemes is given
by

r = p− logs(ξ ).

where ξ is the joint spectral radius of the matrices E0, E1, . . . ,
Et−1, Et , i.e

ξ = ρ(E0,E1, . . . ,Et−1,Et )

= lim sup
l→∞

(max{∥Ei(l)Ei(l−1). . .Ei(2)Ei(1)∥
1
l
∞ : il ∈ [0, 1]}).

and

max{ρ(E0), . . . , ρ(Et )} ≤ max{∥E0∥∞, . . . , ∥Et∥∞} (51)

Since ξ is bounded from below by the spectral radii and above
from the norm of the matrices E0, E1, . . . , Et−1, Et .
Then

max{ρ(E0), . . . , ρ(Et )} ≤ ξ ≤ max{∥E0∥∞, . . . , ∥Et∥∞}.

Given is an important remark about the Laurent polynomial
representation of the binary and quaternary subdivision
schemes.
Remark 15: Througout the paper, the Laurent poly-

nomial of the 4m-point binary subdivision scheme is
denoted by µ4m(c), while the Laurent polynomial of the
(4m + 2)-point binary subdivision scheme is denoted by
µ4m+2(c). In the same way, the Laurent Polynomial of
the (6m − 1)-point relaxed quaternary schemes is denoted
by U6m−1(c), while the Laurent polynomial of the (6m +

2)-point relaxed quaternary scheme is denoted by the
symbol U6m+2(c).
In the following theorem, we estimate the Hölder’s

continuity of the 4-point binary and its corresponding 5-point
relaxed quaternary subdivision schemes.
Theorem 16: The Hölder’s regularity of the 4-point

binary subdivision scheme (15) is 4.124809715, whereas
the Hölder’s regularity of the 5-point relaxed quaternary
subdivision scheme (17) is 4.12397897.

Proof: To follow the procedure for Hölder’s regularity,
firstly we write the Laurent’s polynomial µ4(c) of the binary
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FIGURE 7. Curves generated by the pair of subdivision schemes given in Corollary 13.

subdivision scheme (15). That is:

µ4(c) =
1
384

(c−3
+ 27c−2

+ 121c−1
+ 235c0 + 235c1

+ 121c2 + 27c3 + c4).

This implies that

µ4(c) =

(
1 + c
2

)5

ν4(c), (52)

where

ν4(c) =
1 + 22c+ c2

12c3
. (53)

Now from (50) we know that (Eq)ij = et+i−sj+q, so by (53)
we have
e0 =

1
12 , e1 =

11
6 , e2 =

1
12 , p = 5, t = 2 and s = 2, thus

q = 0, 1, 2 and then E0, E1 and E2 are the matrices with the
elements: 

(E0)ij = e2+i−2j,

(E1)ij = e2+i−2j+1,

(E2)ij = e2+i−2j+2,

where i, j = 1, 2.
Hence

E0 =


11
6

0

1
12

1
12

 , E1 =


1
12

1
12

0
11
6

 and

E2 =

 0
11
6

0
1
12

 .

Now we calculate the largest eigenvalues of E0, E1 and E2,
that are:

ρ(E0) = 1.8333, ρ(E1) = 1.8333, ρ(E2) = 0.0833.

Further, the norm-infinity of these three matrices are:

||E0||∞ = 1.8352, ||E1||∞ = 1.8352, ||E2||∞ = 1.8352.

By using (51), we have

max{1.8333, 1.8333, 0.0833} ≤ ξ

≤ max{1.8352, 1.8352, 1.8352}.

This implies that

ξ = 1.834250000

Thus the Hölder’s regularity of scheme (15) is:

r = p− logs(ξ ) = 5 − log2(1.834250000) = 4.124809715.

The Laurent polynomial U5(c) of the quaternary subdivision
scheme (17) is

U5(c) = B̂6c−10
+ B̂1c−9

+ Â5c−8
+ Â1c−7

+ B̂5c−6

+ B̂2c−5
+ Â4c−4

+ Â2c−3
+ B̂4c−2

+ B̂3c−1

+ Â3c0 + Â3c1 + B̂3c2 + B̂4c3 + Â2c4 + Â4c5

+ B̂2c6 + B̂5c7 + Â1c8 + Â5c9 + B̂1c10 + B̂6c11,

where the values of Â1, . . . , Â5, and B̂1, . . . , B̂6 are given
in (18). This implies that

U5(c) =

(
1 + c+ c2 + c3

4

)5

V5(c), (54)

where

V5(c) =
1

144c10
(1 + 22c+ 23c2 + 484c3

+ 23c4 + 22c5 + c6).

It is given from (50) that (Eq)ij = et+i−sj+q, so by (54),
we have
e0 =

1
144 , e1 =

11
72 , e2 =

23
144 , e3 =

121
36 , e4 =

23
144 ,

e5 =
11
72 , e6 =

1
144 , p = 5, t = 6 and s = 4. Thus

q = 0, 1, 2, . . . , 6 and then E0, E1, . . . , E6 are the matrices
with the elements:

(E0)ij = e6+i−4j

(E1)ij = e6+i−4j+1,

...

(E5)ij = e6+i−4j+5,

(E6)ij = e6+i−4j+6,

(55)

where i, j = 1, 2, 3, 4, 5, 6.
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So, we have

E0 =


e3 0 0 0 0 0
e4 e0 0 0 0 0
e5 e1 0 0 0 0
e6 e2 0 0 0 0
0 e3 0 0 0 0
0 e4 e0 0 0 0

 ,

E1 =


e4 e0 0 0 0 0
e5 e1 0 0 0 0
e6 e2 0 0 0 0
0 e3 0 0 0 0
0 e4 e0 0 0 0
0 e5 e1 0 0 0

 ,

E2 =


e5 e1 0 0 0 0
e6 e2 0 0 0 0
0 e3 0 0 0 0
0 e4 e0 0 0 0
0 e5 e1 0 0 0
0 e6 e2 0 0 0

 ,

E3 =


e6 e2 0 0 0 0
0 e3 0 0 0 0
0 e4 e0 0 0 0
0 e5 e1 0 0 0
0 e6 e2 0 0 0
0 0 e3 0 0 0

 ,

E4 =


0 e3 0 0 0 0
0 e4 e0 0 0 0
0 e5 e1 0 0 0
0 e6 e2 0 0 0
0 0 e3 0 0 0
0 0 e4 e0 0 0

 ,

E5 =


0 e4 e0 0 0 0
0 e5 e1 0 0 0
0 e6 e2 0 0 0
0 0 e3 0 0 0
0 0 e4 e0 0 0
0 0 e5 e1 0 0



and E6 =


0 e5 e1 0 0 0
0 e6 e2 0 0 0
0 0 e3 0 0 0
0 0 e4 e0 0 0
0 0 e5 e1 0 0
0 0 e6 e2 0 0


The largest eignevalues of E0, E1, . . . , E6 are:

ρ(E0) = 3.3611, ρ(E1) = 0.1890, ρ(E2) = 0.1890,

ρ(E3) = 3.3611, ρ(E4) = 0.1890, ρ(E5) = 0.1890,

ρ(E6) = 3.3611.

The norm-infinity of matrices E0, E1, . . . , E6 are:

||E0||∞ = 3.3745, ||E1||∞ = 3.3756, ||E2||∞ = 3.3756,

||E3||∞ = 3.3745, ||E4||∞ = 3.3745, ||E5||∞ = 3.3756,

||E6||∞ = 3.3756.

Now from (51), we have

max[ρ(E0), ρ(E1), . . . , ρ(E5), ρ(E6] ≤ ξ

≤ max[||E0||∞, ||E1||∞, . . . , ||E5||∞, ||E6||∞].

This implies that

max[3.3611, 0.1890, . . . , 0.1890, 3.3611] ≤ ξ

≤ max[3.3745, 3.3756, . . . , 3.3756, 3.3756].

Since the largest eigenvalue and themax-norm of thematrices
is between (3.3611 and 3.3756) and we choose the mid
value 3.368350000 of the above given values, so the Hölder
regularity is given by

r = p− logs(ξ ) = 5 − log4(3.368350000) = 4.123978973.

□
The proof of the following theorems follows the proof of

Theorem 16.
Theorem 17: The Hölder’s regularity of the 6-point binary

subdivision scheme (34) is 6.383689358, while the Hölder’s
regularity of the 8-point relaxed quaternary subdivision
scheme (37) is 6.378805452.
Theorem 18: The Hölder’s regularity of the 8-point binary

subdivision scheme (19) is 8.575077912 and the Hölder’s
regularity of the 11-point relaxed quaternary subdivision
scheme (21) is 8.561638397.
Theorem 19: The Hölder’s regularities of the 10-point

binary subdivision scheme (39) and the 14-point relaxed
quaternary subdivision scheme (41) are 3.768111637 and
4.571743466 respectively.
Theorem 20: The Hölder’s regularity of the 10-point

binary subdivision scheme corresponding to the mask (44)
is 10.67905327, although the Hölder’s regularity of the
14-point relaxed quaternary subdivision scheme (45) is
10.65483615.
Theorem 21: The Hölder’s regularity of the 12-point

binary subdivision scheme (24) is 12.72368201, whereas
the Hölder’s regularity of the 17-point relaxed quaternary
subdivision scheme (26) is 12.69332847.

V. DEGREE OF PRECISION
Degree of precision of a subdivision scheme is the ability
of a subdivision scheme to produce the same polynomial
from which the initial data is taken. In other words, degree
of precision of a subdivision scheme is n if it produces
polynomials of degree 0, 1, . . . , n when the initial data is
taken from these polynomials respectively, but not produces
the polynomial of degree n+1 when initial data is taken from
that specific polynomial of degree n+ 1. Whereas the degree
of polynomial generation of a subdivision scheme is its ability
to produces the polynomial of same degree from which the
initial data is chosen.

In this section, we discuss the response of the pair of binary
and quaternary schemes on polynomial data. We summerize
these responses in Table 1. In this table, BSS, QSS, DoP
and DoG denote binary subdivision scheme, quaternary
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TABLE 1. Response of the pairs of binary and quaternary subdivision
schemes to the polynomial data.

subdivision scheme, degree of precision and degree of
polynomial generation respectively. The table indicates that
there is no impact on these two characteristics of the pair
of schemes when we move from binary to its corresponding
quaternary subdivision scheme.

VI. CONCLUSION
In this research, we presented a new study about the binary
and quaternary subdivision schemes. We proved that every
even-point binary subdivision scheme can be used to get
a relaxed quaternary subdivision scheme. We presented an
intresting link between the masks of theses pairs of schemes,
that the mask of the quaternary scheme is just the non-linear
combination of the mask of the binary subdivision scheme.
The results are applicable on all linear and stationary even-
point binary subdivision schemes without any restriction.
Moreover, we validated our general results by different even-
point binary subdivision schemes.The graphical inspections
and theoratical analysis of the pairs of schemes are also
presented. Which shows that the final models of both type of
schemes are almost same but quaternary subdivision schemes
give us final models in less number of iterations as compare
to the parent binary subdivision schemes.

A. FUTURE TRENDS, GAPS, FEASIBILITIES, AND
LIMITATIONS
In looking to the future, it is essential to explore the
conversion methods between different arity and complexity
subdivision schemes beyond the binary to quaternary tran-
sition currently in progress. This expansion could address
the gap in understanding how various subdivision schemes
interrelate and can be optimized for different geometric
modeling tasks. While our research has demonstrated the
feasibility of converting even-point binary schemes to
quaternary schemes, similar methodologies could be applied
to ternary, quintary, or even higher arity schemes. However,
this comes with limitations, such as increased computational
complexity and the need for extensive validation across
various types of geometric data. Practical implementation
challenges also exist, including ensuring compatibility with
existing modeling software and maintaining efficiency.
Despite these hurdles, exploring these conversion methods
holds significant promise for advancing geometric mod-
eling, making it more adaptable and efficient for diverse
applications.
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