
Received 11 May 2024, accepted 27 May 2024, date of publication 31 May 2024, date of current version 7 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3408029

Provisioning Deterministic Finite Automata
for QoS Monitoring in Blockchain
Decentralized Applications
TAWFIQ ALRAWASHDEH 1, KHALED ALMI’ANI 2, (Member, IEEE), YOUNG CHOON LEE 3,
TAHA H. RASHIDI 4, AND ZEESHAN HAMEED MIR 2, (Senior Member, IEEE)
1Computer Science Department, Faculty of Information Technology, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
2Higher Colleges of Technology, Fujairah, United Arab Emirates
3School of Computing, Macquarie University, Sydney, NSW 2109, Australia
4School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia

Corresponding author: Taha H. Rashidi (rashidi@unsw.edu.au)

ABSTRACT To address the critical need for enhancing Quality of Service (QoS) monitoring in the logistics
service delivery domain, this paper introduces a blockchain-based QoS monitoring framework that aims
to automate service delivery and dispute resolution processes. Traditional QoS monitoring solutions rely
heavily on human judgment and intervention, which may increase operational costs and reduce service
reliability. Such behaviour highlights the demand for more efficient and transparent logistics services,
which underlines the importance of utilizing blockchain technology’s immutable and decentralized nature.
The proposed framework in this paper employs a graph-based approach to transform QoS requirements
into Deterministic Finite Automata (DFA) format. This strategy simplifies delivery monitoring and the
identification of service violations through efficient DFA traversal. By using the Ethereum network as
the deployment environment, we demonstrate that traversing a DFA is computationally efficient and
reduces operational costs. Extensive experiments were conducted to evaluate the cost-effectiveness of the
framework, showing that monitoring a delivery using this framework costs approximately $2.59. This
finding underscores the framework’s advantages in operational cost optimization compared to traditional
human-based methods. Moreover, the decentralized nature of our proposed framework allows customers
and businesses to define and monitor QoS parameters jointly. Therefore, the business partners can establish
a transparent and trust-based relationship.

INDEX TERMS Blockchain oracle problem, smart contracts, distributed ledger technology, Ethereum,
decentralized applications.

I. INTRODUCTION
Due to its transparency and temper-proof characteristics,
blockchain technology has the potential to revolutionize the
decentralized applications (DApps) domain. In a blockchain,
participating entities have an identical copy of the business
transactions (ledger) arranged as blocks. Each block’s hash
value is inserted into the following block to link the blocks
together. In blockchain-based applications, business logic is

The associate editor coordinating the review of this manuscript and
approving it for publication was P. K. Gupta.

enforced using smart contracts, which are written programs
(code) designed to be executed in a decentralized manner.
The execution of such contracts starts based on predetermined
application-related events, such as registering a new user and
the arrival of a new order. The ability of the smart contract
to automate business processes has emerged as a promising
paradigm to streamline the flow of business transactions.

In several application domains, services (or goods) are
expected to be exchanged between participating entities.
For instance, in the transportation domain, such services
could include the delivery of goods or people to a specific

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

77379

https://orcid.org/0000-0003-0084-5102
https://orcid.org/0000-0002-8869-2157
https://orcid.org/0000-0001-8560-6199
https://orcid.org/0000-0002-0673-5011
https://orcid.org/0000-0002-6849-185X

T. Alrawashdeh et al.: Provisioning DFA for QoS Monitoring in Blockchain DApps

location. The delivery performance metrics of these services
are typically monitored to ensure business growth. In this
context, the monitoring process aims to gather the required
information to obtain Proof-of-Delivery (PoD) [1], [2], [3],
[4], [5], [6] and to ensure the satisfaction of the performance
metrics. On-time and on-full delivery can be considered the
most critical metrics [7]. On-time refers to the requirement
of delivering the goods within the agreed-upon time window.
Whereby in-full denotes the requirements of delivering the
agreed-upon quantity and quality. Additionally, in the event
of a dispute, the collected information to monitor the delivery
performance metrics is used to settle the dispute.

The complexity of a dispute is mainly influenced by the
nature of the provided services (or goods). For instance, in e-
commerce applications, services typically involve physical
goods. For such goods, breaking the service agreement can
be easily detected since the physical condition of the goods
can be used to indicate any breach in the agreement. However,
when the provided services are not physical or digital,
detecting any violation of the service agreement requires
further effort. For example, in the transportation domain,
a service such as guaranteeing the delivery of goods or people
while satisfying conditions such as the used path and storage
temperature are not of physical or digital nature. In such
a scenario, ensuring the satisfaction of end-user conditions
in case of a dispute may require human judgment and the
execution of several auditing functionalities.

Utilizing the decentralized nature of blockchain tech-
nology to automate Quality-of-Service (QoS) monitoring
is expected to enhance services for customers in the
transportation sector and improve business flow. Blockchain
technology offers flexibility in defining participant roles
and rewards. For example, consider trucks equipped with
GPS responsible for delivering goods, where commercial
logistics management software is not necessarily attached to
the trucks. In this scenario, not only the truck owners but also
the owners of the logistics software used to validate delivery
requirements will receive rewards. Additionally, blockchain’s
decentralized nature can differentiate between Business-
to-Business (B2B) and Business-to-Customer (B2C) cases,
acknowledging the distinct differences between these two
models. B2B cases often prioritize operating costs, whereas
B2C customers focus on timely and high-quality delivery,
not necessarily the shortest path. It is important to note that
early arrivals might be problematic for customers if they are
not home, although this may not be an issue for businesses
equipped with digital delivery monitoring mechanisms.

Accordingly, this paper introduces a transformative
blockchain-based framework tailored to redefine Quality
of Service (QoS) monitoring within the logistics services
delivery domain. By utilizing blockchain technology, the
proposed framework automates the monitoring of service
quality and the resolution of dispute processes. A key
factor of the proposed framework lies in its flexibility.
It enables participants to define performance metrics that
match their needs, aiming to expand the traditional ‘‘on-time,

on-full’’ delivery concepts [1], [8]. The proposed framework
distinguishes between customers and business requirements.
Customers and businesses monitor different types of require-
ments. Furthermore, we introduce a ranking mechanism that
evaluates service providers and logistics personnel based on
their performance, encouraging a competitive environment
that incentivizes high service quality. Toward this goal,
the proposed framework employs a Deterministic Finite
Automata (DFA) based strategy to monitor and detect any
service violation.

In logistics, QoS monitoring involves tracking various
performance metrics such as delivery times, transit times, and
paths. QoS agreements must be satisfied in a pre-determined
sequence (pattern). Such a pattern could simply restrict the
pickup and delivery time. In this domain, the conditions
of the QoS agreements are expected to monitor a limited,
well-defined number of service aspects, such as pickup
and delivery time. The limited number of service aspects
highlights the potential of representing the QoS agreement
as a regular expression, where service aspects and their
associated requirements can be represented as strings. For
example, the requirement of picking up goods and delivering
them before 11 can be represented as PDB11. Using this
representation, P refers to the pickup requirement, and D
refers to the delivery requirement. Additionally, B denotes
a delivery time restriction (11). Accordingly, a DFA can
be used to recognize this regular expression and to enforce
the QoS conditions. A DFA will comprise several states
representing the delivery status (e.g., in transit or picked
up). The transition function would map the input (delivery
transaction) to the following status of the DFA. The DFA will
also include accepting states that represent the fulfillment of
the QoS agreement. The traversing process of any DFA is
computationally inexpensive, and such behavior underlines
the benefits of proposing DFA-based strategies to be executed
on a blockchain network. Accordingly, this paper addresses
the following research questions (RQs):
• RQ1: Is it economically feasible to implement the
proposed QoS monitoring framework?

• RQ2: What are the computational and operational
challenges related to the implementation of the proposed
DFA-based monitoring strategy on the blockchain?

In response to these questions, the contributions of this
paper can be summarized as follows:
• We develop a blockchain-based QoS monitoring frame-
work for logistics-oriented services.

• We designed a ranking mechanism that evaluates the
participants based on their contribution to the delivery.

• We implement the proposed framework in solidity
(0.8.17), where Hardhat is used as the development
environment. Whereby the Ethereum blockchain is
identified as the targeted network.

We have performed several experiments to analyze the pro-
posed framework’s cost feasibility. Accordingly, the results
have shown that the cost of monitoring a service delivery
consisting of five transition states (pickup, delivery,· · ·)

77380 VOLUME 12, 2024

T. Alrawashdeh et al.: Provisioning DFA for QoS Monitoring in Blockchain DApps

is around 2.59$. Considering the proposed framework’s
flexibility in designing theQoS requirements and the business
process automation, such cost can be considered justifiable.
Additionally, as we will discuss in the results section, the
functionality of the proposed framework is implemented
using several smart contracts to ensure code reusability
and reduce the cost of re-deployment. Compared to prior
studies where human intervention is required, the presented
framework offers a more dynamic and cost-effective solution
to QoS monitoring, highlighting its potential to revolutionize
how logistics services are managed for businesses (service
providers) and customers.

The rest of this paper is organized as follows. Section II
discusses the most related proposals from the literature,
where Section III presents a detailed discussion of the
proposed framework. Results and discussion are presented in
Section IV, where we conclude the paper in Section V.

II. RELATED WORK
The use of blockchain technology to monitor and facilitate
the delivery of goods has been investigated by several
proposals [9], [10], [11], [12], [13], [14], [15], [16]. Nandi
et al. [11] have shown that adopting blockchain technology in
supply chain management is expected to improve compliance
and operation-level functionalities. Rohan et al. [2] have also
discussed the importance of incorporating an IoT system
along with blockchain technology to improve the reliability
of the monitoring process. In this line, Demir et al. [17]
have highlighted the benefits of using blockchain technology
to improve the flow of information between the supply
chain participants. Harish et al. [12] proposed a logistic
financing blockchain-based framework. As part of the pro-
posed framework, the authors have discussed the benefits of
employing blockchain technology to facilitate the monitoring
of goods delivery. Moreover, in [13], [14], and [15], the
authors have discussed the impact of adopting the blockchain
in the international trade supply chain and its benefits toward
simplifying the authentication and monitoring components in
such a supply chain.

Madhwal et al. [1] proposed a blockchain-based system to
monitor delivery performance in the supply chain domain.
In the proposed system, a smart contract is deployed by
the buyer’s address for each order delivery. Accordingly, the
seller has to confirm the implementation of the agreement
represented in the deployed contract.When public blockchain
is used, deploying a smart contract for each order will
increase the operational cost. Additionally, in the proposed
system, resolving any dispute is not presented as an
automated process. In [1], the authors have also highlighted
the importance of constructing a negotiation process that
helps to establish agreements between the entire supply
chain participants. The importance of such a process has
also been emphasized in [18] and [19]. Concerning delivery
performance metrics, Gunasekaran et al. [7] have discussed
in detail each performance metric, where the authors have
argued that on-time and in full can be considered the most

critical metrics. In [8], the authors addressed the on-time,
in-full delivery requirements by proposing the DelivChain
framework. In this framework, the smart contract layer is
expected to have the needed functionalities to calculate the
on-time, in-full matrices.

In [16], the authors proposed a blockchain-based frame-
work architecture for sustainable urban logistics, where the
presented framework focuses on delivering food material.
The authors adopted four performance metrics that con-
tribute to customer satisfaction in the proposed architecture.
These metrics are on-time, in-full, cost and Information
transparency. Accordingly, the authors employ a fuzzy
analytic hierarchy process to determine each performance
metric’s weight and calculate the overall score. Additionally,
an LSTM model is used to predict customer satisfaction,
where the used model is trained on historical available
information. Moreover, the authors proposed a compensation
mechanism to refund the customer in case of unsatisfactory
service. The presented mechanism works on the assumption
that trading parties act honestly. In this line, a refund is
issued based on manual verification for the four performance
metrics.

To address the requirements for providing proof of
delivery for software updates, Zhao et al. [3] proposed a
blockchain-based protocol to perform such delivery securely
and reliably. The proposed protocol addresses privacy issues
raised due to IoT device use. To handle the on-time and
proof of delivery requirements in the restaurant food delivery
domain, Talukder et al. [20] proposed a blockchain-based
food delivery system. Using the proposed system, the
involved restaurant will be penalized automatically in case
of late delivery. The benefits of adopting a blockchain-based
system in food delivery have also been discussed by
Tokkozhina et al. [21]. Several other proposals have security
and performance issues related to the proof of delivery
requirements [22], [23]

Unlike the proposals discussed in this section, the proposed
framework aims to proactively track the status of delivered
services and/or goods. The delivery status is processed and
reflected in the blockchain at each step of the service
delivery. Accordingly, any QoS violation is detected on time,
which helps automate the violation dispute component. Such
mechanisms can also help by allowing businesses to act
responsibly about any service violation to ensure customers’
satisfaction. Furthermore, inspired by the predictable steps
of the service delivery, the proposed framework aims to
establish a unified lightweight delivery tracking component
that customers and businesses can use.

III. THE PROPOSED FRAMEWORK
Figure 1 shows the conceptual workflow of the pro-
posed framework functionalities. The user (customer/service
provider) must register with the framework through the
registration component to use the provided functionalities.
Registered users (customers and service providers) are
expected to submit the logistics service details to the

VOLUME 12, 2024 77381

T. Alrawashdeh et al.: Provisioning DFA for QoS Monitoring in Blockchain DApps

FIGURE 1. The proposed framework conceptual workflow.

framework for monitoring. Accordingly, using the service
component, the QoS requirements for any active logistic
service can be submitted by the service providers. The
provided QoS requirements are presented as a regular
expression, which is used to build the DFA that recognizes
the utilized regular expression. To track the fulfillment of
the QoS requirements, an IoT component is employed to
gather any requested external data in an event-driven fashion.
Additionally, the monitoring component is used to rank the
logistic entities and penalize QoS violators.

A. REGISTRATION
To use the proposed framework, users must register as
customers or service providers. User can link their account
to an existing Ethereum address during registration. If a
new Ethereum address must be created, the end-user must
submit identification documents, which will be linked to
the newly generated Ethereum address. All identification
documents will be stored off-chain on the InterPlanetary
File System network (IPFS1). A registered service provider
can (de-)register participants as data sources in the proposed
framework. These actors represent the logistic personnel
(e.g., drivers) and any registered devices from the IoT
component.

B. SERVICE COMPONENT
Figure 2 illustrates the steps performed by the service
component. Initially, to activate QoSmonitoring requests, the
service agreements must be signed by the service provider
or both the service provider and the customer. The identity
of the required signing parties depends on the nature of the
QoS constraints, internal or external. Internal requirements
are mainly imposed by the service provider, aiming to
monitor the trading aspects that impact the operational cost.
For instance, a transportation company may introduce QoS
constraints to monitor the drivers’ efficiency, which could

1https://ipfs.tech/

cover the drivers’ used path. The service provider must
sign internal constraints. External constraints represent the
QoS requirement that the service provider has guaranteed
to the customer, and therefore, the service provider and the
customer must sign the external constraints. Additionally,
concerning external constraints, the service provider is
expected to deposit an insurance fee to the collection account.
This is an Ethereum account the proposed framework uses
to automate reimbursement in case of service violation. The
external constraints are expected to cover the pickup and
delivery time. Other service-related constraints, such as the
used path and the temperature of goods vehicles (trucks),
are also part of the external constraints. Once the QoS
requirements are approved (signed), an agreement number
(AN) for the submitted QoS requirements is issued. For each
active QoS agreement, the submitted QoS requirements are
represented as regular expressions that are then transformed
into DFA.

To further clarify the processes employed by the proposed
framework, we will use the example shown in Figure 3
throughout the rest of this section. In this example, the
service provider will arrange for goods to be picked up from
customer A and delivered to customer B before 20 : 00 on
a pre-determined date (d). Once the service provider and/or
the customer sign the agreement, an agreement number will
be issued. Then, the service provider is expected to determine
the logistics personnel involved in the service delivery and
the steps they must perform to fulfill the service agreement.
The service provider will also register the logistics and the
tracking devices that will be used as part of this delivery.
In this example, we assume that driver D will handle this
delivery, whereas his logistic device will also handle the
tracking responsibility (time and date).

1) QOS CONSTRAINTS AND REGULAR EXPRESSION
Using the proposed framework, each QoS requirement is
represented as a set of characters and symbols that define
a pattern. Such patterns capture all logistics transactions
that result in satisfying the QoS constraints. For instance,
let us assume that the QoS constraint for a logistic service
is picking up goods before 8:00 am and delivering them
before 12:00 pm. In such a situation, if we refer to the
picking-up constraint as A and the delivering constraint as B,
the expression that captures the QoS constraints can be
represented as follows: AB. This paper represents the QoS
constraints as a set of regular expressions. The notations
of logistics transactions must be pre-determined to facilitate
such a process. Table 1 summarizes all the notation and
symbols used to construct the regular expression. However,
the service provider can add a new notation to the defined
list in Table 1, where the newly added notation can be
used for future service agreements. The presented table
consists of two parts: transactions and constraints. The
transactions capture the logistic step that the service delivery
is expected to encounter, where the constraints represent
the QoS requirement associated with each transaction. The

77382 VOLUME 12, 2024

T. Alrawashdeh et al.: Provisioning DFA for QoS Monitoring in Blockchain DApps

FIGURE 2. The service component processes flow.

FIGURE 3. Example: agreement signing and logistic personnel registering.

table shows that the in-transit transaction has an optional
field [∗,+]. If the star symbol is selected, zero or more
in-transit transactions are expected to occur consecutively.
In comparison, the plus symbol denotes the possibility of one
more in-transit transaction. The in-transit transaction must
occur once if neither of these symbols is used. This table
works as a lookup table, and it is small in size. Thus, it can
be implemented off-chain or on-chain.

To simplify the process of repressing the QoS constraints
as a regular expression, we divide the roles associated
with each regular expression into two types: (1) sequence
and (2) constraint roles. Each regular expression has a single
sequence role and one or more constraint roles. A sequence
role represents the order of the events (transitions), and it is
represented as follows:

r → [t1][t2][t3] · · · (1)

r is a root notation that refers to starting the regular
expression. The presence of each transaction in the sequence
role depends on the QoS constraint. Additionally, we assume
that order dependence exists between the transactions. For
instance, goods cannot be delivered before performing a
pickup transaction. When QoS requirements require a set of
transition transactions to be performed several times, such
requirements can be divided into regular expressions. For
instance, if the imposed requirement is t1, t2, t1, t2. Such
requirements can be represented as two regular expressions,
each denoted as t1, t2. The employed division strategy does
not impact the overall performance since regular expressions
are closed under addition. Constraint roles represent the
requirements associated with each transaction, and it is
represented as follows:

ti→ [c1][c2] · · · . (2)

Each transaction (t) can be associated with one or more
constraint roles. At the same time, each constraint role
is represented as a function that takes the requested QoS
requirement as input and returns a true/false value. Once all
internal and external requirements are specified as regular

expressions, they are sent as input to the DFAs construction
process.

To clarify this process further, let us revisit the example
shown in Figure 3. Now, the requirements will be processed to
build the regular expression representation. We only assume
that external constraints are used to simplify the presented
example. The sequence role for the presented example is as
follows:

r → PID

In this example, the service provider adds the in-transit
state (I) since the delivery process is expected to be in one
or more transit states. The constraints roles represent the
location of the customers and the requirements of performing
the delivery before 20 : 00 and these constraints roles are
represented as follows:

P→ l(A)

D→ l(B)T (20 : 00,B, d, on)

2) DFA CONSTRUCTION
A DFA is a 5-tuple (Q,

∑
, δ, q0,F), where Q represents a

finite set of states and
∑

represents the input alphabet. The
input to the transition function δ represents a state and an
input symbol, whereas the output is a state. q0 is the initial
state, andF represents the accepted states. In situations where
the DFA is not in an accepted state after processing the entire
input, the processed input is rejected by the DFA. Otherwise,
the processed input is considered accepted.

In this work, the states (Q) represent the logistics
transition transactions (e.g., pickup, delivery, etc.). Whereas
the transition function δ captures the QoS requirements.
The proposed framework employs a graph-based strategy to
transform the specified regular expression to the equivalent
DFA (Algorithm 1). The graph used to represent a DFA
consists of |Q| + 1 vertices representing the states and a
virtual vertex representing the root of the regular expression
(initial state q0). Starting with the sequence role, a direct
edge between the service transactions is added based on

VOLUME 12, 2024 77383

T. Alrawashdeh et al.: Provisioning DFA for QoS Monitoring in Blockchain DApps

TABLE 1. Transactions and constraints notation summary.

Algorithm 1 transformREtoDFA
Data: RE : regular expression, LT : notations list, AN

:agreement number
Result: DFA

1 s← getSequanceRole(RE)
2 C ← getConstraintRoles(RE)
3 DFA←< V ,E >

4 V ← createVertics(LT)
5 T ′← extractVistingSequance(s)
6 E ← createDirectEdges(DFA,T ′)
7 lableInitialstate(DFA,T ′)
8 lableFinalstate(DFA,T ′)
9 for ci ∈ C do
10 sn← registerIoTevent(ci,AN , S)
11 attachSNtoVertix(sn,DFA, ci)

12 return DFA

the appearance order in the regular expression. For instance,
if the regulation expression for the root notation is described
as follows: r → PD, a direct edge is established from
vertices r to vertices P, followed by a direct edge between
vertices P and D (lines 5-6). If any of the transactions in
the regular expression has a repeat symbol (∗,+), a self-
loop direct edge will be added on the corresponding vertex.
This work assumes that such a symbol can only be associated
with the in-transit transaction. However, such an assumption
can be eliminated if a new transaction with a repetition
nature is added to the lookup table (Table 1). The constraint
roles will be processed once the sequence role is mapped
(line 9). constraint roles require the involvement of the IoT
component. Each constraint role is submitted to the IoT
component, the agreement number (AN), and the script to
be executed. The IoT component returns a list of events
distinguished by their serial numbers. Each constraint’s
(event) serial number is added to the vertices associated with
it. For instance, if the delivery must be before 8:00, the IoT
component will have a unique event number that captures this
requirement. If such an event is executed, the IoT will return
true if the time is before 8:00. Otherwise, it will return false.

The computational complexity of the DFA construction
process can grow significantly while increasing the number
of sequence and constraint roles. Such behavior may increase

FIGURE 4. Example: DFA construction.

the operational cost since computations are not free of charge
in the Ethereum network. However, if a high number of
roles are expected, the DFA construction process can be
implemented off-chain. In this paper, the DFA is maintained
and stored on-chain. However, the process of constructing the
DFA is performed off-chain.

Regarding the example shown in Figure 3, the DFA con-
struction process uses the obtained sequence and constraint
roles to obtain the equivalent DFA. During the construction
of the DFA, the registerIotEvent() will be called three times
to register two location events and one delivery event.
Accordingly, the serial numbers of these events will be
attached to the corresponding vertices in the DFA graph,
as shown in figure 4.

C. IOT COMPONENT
The proposed system supports various business-related
processes involving several IoT devices, such as sensors,
PDAs, and mobile phones. These devices serve as transaction
feeders and initiators. Based on their roles, IoT devices can
be categorized into trading, logistics, and tracking devices.
Customers and service providers use trading devices to
finalize the QoS agreement and manage other administrative
tasks. Any device supporting phone and/or web applications
can perform such tasks where logistics personnel use PDAs
or/and any other type of logistics devices. Tracking devices
such as sensors and GPS are utilized to monitor the
fulfillment of QoS requirements.

Trading devices host applications for customers and
service providers. Thus, they are expected to interact with
the proposed framework without significant restrictions,
as a registration process must be completed before using
these applications. Logistics devices are part of the service
provider’s infrastructure and can be registered or deregistered

77384 VOLUME 12, 2024

T. Alrawashdeh et al.: Provisioning DFA for QoS Monitoring in Blockchain DApps

Algorithm 2 registerIoTevent
Data: C : list of conditions); AN : aggrement number;

S: list of conditions scripit
1 for ci ∈ C do
2 T ′c ← identifyTaskCode(ci)
3 d ′← identifyDevice(T ′c,AN)
4 e′← createEvent(d ′,AN , si)
5 sn← genarateSN (e′)
6 add < sn, e′ > to Levent

by the service provider to interact with the system. Tracking
devices can be owned by the service provider or any
other external participant. For example, a service provider
might lease tracking devices from other entities. Thus, the
responsibility of registering these devices is assigned to the
service provider. These tracking devices are registered to
interact with the framework as needed.

Registered tracking devices interact with the framework
using a publish-subscribe event approach, as described in
Algorithm 2. Each tracking device is identified by the
combined AN and task code (tc). Each task code corresponds
to a single constraint role (Table 1). During the DFA
construction process, a request is submitted to the IoT
component for each constraint role to create and register
corresponding events. A request comprises the AN, a list of
conditions expressed in the constraint role, and a script to be
executed for each condition. The provided constraints list is
then used to map and identify the requested task code for each
condition. Using the AN and the obtained task codes, the IoT
component identifies the tracking devices needed to address
the constraint role under consideration. For each identified
tracking device, an event outlines the requested task (e.g.,
location and temperature). The IoT component returns a list
of events for each processed constraint role, with the serial
numbers of these events attached to the request-initiating
vertex in the constructed DFA.

Typically, in an IoT-based application, performing threat
modeling is a crucial step in identifying all vulnerabilities
and determining countermeasures to overcome the risks
imposed by such vulnerabilities. However, performing threat
modeling is considered outside the scope of this paper, and
we assume that the IoT devices are trustworthy. Nevertheless,
the integrity of the provided data by the IoT devices can be
ensured using oracle components [24], [25].

D. MONITORING COMPONENT
Figure 5 illustrates the flow of processes employed by
the monitoring component. From a business perspective,
logistics devices work as event initiators that capture the
current status of active service (e.g., transit, delivering).
Accordingly, once a new transaction is received from the
logistics devices, the monitoring component traverses and
updates the status of the constructed DFA. Besides DFA

FIGURE 5. The monitoring component processes flow.

traversing, the monitoring component hosts the ranking
mechanism that updates the rank of the participated entities
based on the provided QoS. This mechanism also works by
penalizing any service violator entity.

1) DFA TRAVERSING
Algorithm 3 illustrates the DFA traversing steps. The
traversing of a DFA starts with its initial state (r). At any
stage, this component expects a new transition transaction to
be received, where each transaction is associated with two
values, AN and the transaction type (e.g., pickup or delivery).
If there is a direct edge between the current state and the
new transaction state, the new state will be considered as the
current state. If such an edge does not exist, a QoS violation
will be reported (lines 2-5), and the process of traversing
the DFA will be terminated since having an unexpected
transaction can be considered a major issue.

When the new state has role constraints (line 12), the
registered event in the IoT component will be triggered to
evaluate the constraint. If the IoT component returns false,
a QoS violation will also be reported (lines 13-14). In such a
situation, the DFA traversing will not be terminated since an
overall evaluation for the violated requirement is expected to
help the service provider and the customer.

Once the last state (transaction) in the sequence role is
reached (accept state), the traversing of the DFA under
consideration will be considered complete. At that stage,
the service provider and the customer will have full access
to the reported violations (line 16). Meanwhile, the ranking
mechanism uses the reported violations to evaluate the
satisfaction of the QoS constraints. Moreover, each DFA
is associated with a pre-determined time deadline. Suppose
such a deadline is reached, and the accept state for the DFA
under consideration has not been reached. In that case, the
users (customers and/or service providers) can terminate the
DFA traversing. In such a situation, a major QoS violation
will be reported.

With respect to the example shown in Figure 3, during the
fulfillment of this delivery, the first expected transaction is
the pickup transaction (P). Once the pickup state is reached in
the DFA, the IoT component will be triggered to confirm the
pickup location (l(A)). After picking the goods, the in-transit
transaction is expected to be received at least once. When the
DFA’s current state becomes the in-transit state, receiving any
new in-transit state will not change the DFA’s current state.
The accept state in the presented DFA is the delivery state

VOLUME 12, 2024 77385

T. Alrawashdeh et al.: Provisioning DFA for QoS Monitoring in Blockchain DApps

Algorithm 3 DFATraversing
Data: AN : aggrement number; TT : transaction type
Result: Rv: violation report

1 DFA← retrieveDFA(AN)
2 if checkTransaction(DFA,TT) not valid then
3 e′← createTermationLog(DFA,TT)
4 add e′to Rv
5 rank(AN ,Rv)
6 else
7 updatedDFA(DFA,TT)
8 s′← getCurrentState(DFA)
9 if hasConstraint(s’) then
10 event ← callIoT (s′)
11 if event is false then
12 e′← createMVLog(DFA,TT , s′)
13 add e′ to Rv

14 if s′is accept state then
15 rank(AN ,Rv)

16 return Rv

(D), and once it is reached, the IoT component will be called
twice to confirm the delivery location and time. The last step
in this process is called the ranking mechanism. Using this
mechanism, since no violation is reported, the ranking of the
service provider will be updated, and the service delivery will
be considered fulfilled.

During the service delivery, several unplanned events could
occur. For instance, upon reaching the customer’s B location,
the customer was not present to receive the goods. In this
situation, upon contacting the customer B, the delivered
goods could be left on the premises. If this is not an
option, a new delivery request could be arranged where the
customer B has an additional charge. In this situation, the
location of the driver and any established communication will
be performed and authenticated using the driver’s logistic
device. Moreover, if the delivery deadline is reached and the
delivery status is still open, the customer can issue a service
termination request that the ranking mechanism will handle.

2) RANKING MECHANISM
This mechanism penalizes any service violator based on
reported QoS violations. Such mechanisms help the service
provider track the logistic personnel’s performance. The
customer benefits from this mechanism by automatically
receiving reimbursement in case of confirmed service
violations.

Once a DFA has reached an accept state or been terminated
due to a major violation, the associated QoS report is
submitted to the ranking mechanism (Algorithm 4). The
actions performed by this mechanism depend on the type of
violated requirements (internal or external). As mentioned,
the service provider submits the internal requirements to

capture the operational cost and performance. The external
requirements capture the guaranteed QoS requirements of
the service provider. Accordingly, violating the internal
requirements impacts service providers, whereas violating
the external requirements impacts service providers and
customers.

If the QoS shows confirmed violation incidences, the rank
of the involved logistics personnel or service provider is
updated to reflect the reported violation. Violating internal
requirements results in updating the logistic personnel rank
(lines 5-9), whereas violating the external requirements
impacts the service provider rank (lines 12-14). We employ
a weighted strategy to determine the rank of each participant
(logistics personnel or service providers). Accordingly, each
participant is associated with a set of counter variables V =
{vp, vd , vl, vt } representing the constraints shown in Table 1.
vp denotes the path counter, where vd captures the time
and date counter. vl representes the location counter and
vt denotes the time counter. The value stored in a counter
variable represents the number of deliveries the involved
participant has performed without violating the targeted
constraints. For instance, if the delivery of a service that
involves a path constraint has been performed without any
violation, the vp value for the participant is incremented by
one. Regarding the external requirements, the same process
will be applied; however, the service provider’s constraint
variables will be updated in this case. Accordingly, the rank of
a participant a (logistics personnel and/or service provider)
is calculated as follows:

Rank(a) =
∑

i∈{p,d,l,t}

vi
d(i)
× wi (3)

where wi = [0, 1] represents the weights for each
performance metric and d(i) represents the total number of
deliveries participant (a) has performed with a constraint
of type i. The highest value for a participant rank is |C|,
where C is a set of defined constraints in the lookup table
(Table 1). This value is achieved when each constraint weight
is assigned to one.

Using on-time and in-full metrics to evaluate the quality
of delivery has been extensively studied in the literatures [1],
[8], [26], and [27]. In this work, we expand the evaluation
metrics by allowing the user (customer or service provider)
to introduce new metrics, such as path and temperature.
Furthermore, this work adopts a weighted mechanism to
calculate the users’ ranks, enabling the framework to re-rank
based on users’ interests (customers or service providers).
Other mechanisms could be used to calculate the rank [1], [8],
[26], [27]. However, this paper adopts a weighted version to
accommodate more general application scenarios.

Regarding the reimbursement process, the customer can
be entitled to full or partial reimbursement if external
requirements are violated. The customer is entitled to full
reimbursement if the violation terminates the DFA traversing
process (major violation) (line 16). Moreover, the customer
will receive the security fee deposited by the service

77386 VOLUME 12, 2024

T. Alrawashdeh et al.: Provisioning DFA for QoS Monitoring in Blockchain DApps

Algorithm 4 rank
Data: AN : aggrement number; Rv: violation

report;W : weights
1 s′← getServiceProvider(AN)
2 c′← getCustomer(AN)
3 if |Rv| > 0 then
4 if ANN is internal then
5 P← determineLogisticP(AN ,Rv)
6 for pi ∈ P do
7 {vp, vd , vl, vt } ← getCounters(pi)
8 updateCounters(vp, vd , vl, vt ,Rv, pi)
9 updateRank(pi,W)

10 else
11 {vp, vd , vl, vt } ← getCounters(s′)
12 updateCounters(vp, vd , vl, vt ,Rv, s′)
13 updateRank(s′,W)
14 if Rvhas termination then
15 reimburse(c′,AN ,F)
16 else
17 reimburse(c′,AN ,P)

18 close(AN)

provider. When a minor violation occurs, the customer
receives a partial reimbursement representing the security
fees deposited by the services provider (line 18).

IV. RESULTS
This section describes the experiments’ settings, including
the implementation details and the evaluated scenarios. Then,
we discuss in detail the results of the performed experiments.

A. EXPERIMENTAL SETTINGS
The proposed framework’s design and implementation
followed the experimental methodology (Figure 6). This
methodology begins with the design phase, during which
the framework’s initial design is created. Then, in the
implementation phase, the framework is implemented in
Solidity2 (0.8.17), where Hardhat3 is used as the development
environment and Ethereum as the targeted network. The
interaction with the Ethereum network is chargeable, where
each participant pays for the computation and storage
used by his/her interaction. Accordingly, each participant
address must have enough Ether balance to execute the
requested functionality. The performance of each proposed
algorithm is evaluated in the experimentation phase through
an extensive set of experiments. Based on the outcomes
of the experimentation phase, the structure of the proposed
framework is re-optimized. The final phase of the adopted
methodology is the validation phase, where the performance

2The source code can be obtained by contacting the first author.
3https://hardhat.org/

FIGURE 6. The steps of the adopted experimental methodology.

of the proposed framework is evaluated to investigate its
efficiency.

The proposed framework is implemented as four smart
contracts: the Trade, DFA, DIDRecord, and IoT. Splitting the
framework functionality into four contracts aims to ensure the
upgradability of the proposed framework. At any time, the
code for one of the used contracts can be updated without
impacting the others. In this case, the updated contract
must be redeployed, whereas the other contract should only
update the stored address for the redeployed contract. Table 2
summarizes the main functionalities of the four contracts.
The implementation of the IoT contract depends on the
application scenario. Accordingly, examining the contract’s
performance is outside this paper’s scope. However, for
completeness, the main functionalities of this contract are
implemented.

Figure 7 illustrates the expected interaction between
the participants (seller and buyer) and the implemented
contracts to activate a new service request in the proposed
framework. Once the buyer approves the service details
submitted by the seller, the Trade contract is called to
construct and store the corresponding DFA. To simplify
the implementation of the ‘‘createDFA’’ function, the actual
DFA is constructed off-chain and passed to the createDFA
function as a 2-dimensional array. The IoT contract is called
to create the requested events during this construction. Using
the DIDRecord contract, the seller registers the logistic
personnel, who are expected to provide status information
Regarding the newly activated service. Figure 8 shows
the triggered processes once a new transaction is received
from logistic personnel. The presented diagram represents
the main scenario where no QoS violation has occurred.
A new transaction’s arrival triggers the DFAGraph contract’s
traverse function. When the new state is associated with an

VOLUME 12, 2024 77387

T. Alrawashdeh et al.: Provisioning DFA for QoS Monitoring in Blockchain DApps

TABLE 2. Smart contracts main functionalities.

event, the IoT contract is called to execute the event. Once
the traverse function is executed, a confirmation is propagated
back to the logistic personnel device.

To reduce the number of stochastic variables, the exper-
iments presented in this section assume that no service
violation occurs. Additionally, the upper bound for the
number of transactions is three, the transactions presented in
table 1.

B. COST ANALYSIS AND DISCUSSION
The experiments presented in this section aim to investigate
the cost of using the proposed framework. Accordingly,
in addition to the cost incurred by using each smart contract
functionality, we aim to investigate the impact of the number
of QoS requirements and the number of involved logistic
personnel on the operational cost.

Next, we ran the experiments to explore the cost of using
the framework functionalities. At the same time, we assumed
that the seller and the buyer had agreed and submitted
the QoS requirements for a single service. Accordingly,
the seller registered single logistic personnel to update the
service status during delivery. For the sake of this experiment,
we assume that the registered logistics personnel is expected
to update the status once (one constraint) during service
delivery. Furthermore, we ran the experiments ten times
and populated the framework with n of services in each
experiment. n is a random value selected to be in [1 : 100].
Populating the framework helps by capturing the impact of
an operational lifetime on cost.

Participants are charged to interact with the framework
functionalities based on the computational and/or storage
requirements of the called functions. Such cost is typically
represented as a ‘‘gas’’ fee, and for each function call,
the consumed gas fee is eventually converted to Ether.
Table 3 shows the cost associated with each performed action
(transaction), where the used price for gas is 14.3 Gwei, and

one Gwei is equal to Ether−9. To obtain the cost in USD,
we used the exchange rate provided by Coinbase.4

From the table, we can see that the cost of deploying
the contracts is noticeable. However, this is an initialization
cost since the contracts are not expected to be redeployed
often. In the case of a contract redeployment, breaking the
framework functionalities into four contracts will reduce
the redeployment cost. Regarding the cost of execution of
the createService function, this cost also includes the cost
of the following functions (from the DFA, IoT, and Trade):
activateService, createDFA, and the registerEvent. Combined
with the processInput cost, we can see that the total charge
of creating and traversing the service during the service
delivery is around 3$. The processInput cost includes the cost
of the traverse, isAccepted and payDataSources functions.
The number of involved constraints and logistic personnel
typically impacts such costs. However, the trade supply chain
for the addressed service in this work is not expected to
involve many logistics personnel and constraints. Therefore,
such a cost is doable.

To investigate the impact of the number of transactions
(QoS requirements) on the overall monitoring cost, we ran
experiments while varying the number of transactions.
Figure 9 shows the results of this experiment, where we
assume that single logistics personnel handles the delivery.
As we can see from the results, increasing the number of
transactions has a semi-linear impact on the cost. To clarify
this behavior, let us reconsider the mechanisms employed
by the proposed framework. Increasing the number of QoS
requirements (transactions) mainly impacts the performance
by increasing the number of calls to the traverse function.
This behavior is established because the DFA graph size
(number of nodes) is fixed and bounded by the number of
transactions in the lookup table (Table 1).

4https://www.coinbase.com/

77388 VOLUME 12, 2024

T. Alrawashdeh et al.: Provisioning DFA for QoS Monitoring in Blockchain DApps

FIGURE 7. Sequence diagram showing the steps of activating new service.

FIGURE 8. Sequence diagram showing the steps of processing the new transaction.

TABLE 3. Cost of transactions.

Next, we evaluated the impact of the number of involved
logistic personnel on the overall cost. Accordingly, we con-
ducted experiments while varying the number of logistic
personnel. Figure 10 presents the results of this evaluation,
where the number of used transactions (meeting the Quality
of Service requirements) is five. The figure indicates that
an increase in the number of involved logistic personnel
leads to a slight increase in the operation cost. This
behavior is expected, as increasing the number of logistic
personnel primarily augments the costs associated with their
registration.

During the operational lifetime of the framework, logistic
personnel are expected to serve multiple services before
being deregistered. Accordingly, in the next experiment,

the cost incurred by registering the personnel is counted
once, and 100 services are created and used for each report
result point. Figure 5 shows the average cost of executing
a monitoring request on the proposed framework, where we
have varied the number of QoS requirements. The figure
shows that the average cost has dropped significantly to
become $2.59 compared to Figures 9 and 11, where the
average cost is shown to be around $3.8 and $6; respectively.
The average cost can be even reduced further if we allow
the initialized service-related variables for a closed service
to be reinitialized and used by other services. Considering
the proposed framework’s advantages, the average reported
cost of $2.59 can be considered doable. Moreover, the cost
of executing the framework can be reduced significantly

VOLUME 12, 2024 77389

T. Alrawashdeh et al.: Provisioning DFA for QoS Monitoring in Blockchain DApps

FIGURE 9. Impact of the number of transactions on the overall cost.

by employing other deployment environments with cheaper
cryptocurrency exchange rates, such as the Avalanche
blockchain,5 which is known for its support for the designing
and the implementation of DApp. In such a scenario, the
proposed framework’s cost can be reduced to significantly
less than $1, ensuring the proposed framework’s economic
feasibility (RQ1).

Next, we discuss the cost of using the employed frame-
work, where we compare the cost of using the framework
against a human-based mechanism. This mechanism assumes
an employee will oversee the delivery process and resolve any
service dispute that has been raised. In such a configuration,
we assume that the employee will require s minutes to
monitor the delivery of a service that consists of 5 trans-
actions. In addition, we assume the probability of a service
violation for such a service is e%, where the time required
to resolve the service violation is d minute. Accordingly,
the average time (taverage) an employee requires to handle
a single delivery is s + e% × d . In this line, if the cost
of using the proposed framework to handle such a service
is ≤ taverage, the framework can be considered efficient in
terms of cost. Besides the salary of the employee and the
expected gas cost, the evaluation depends on the values of s,
e%, and d . For instance, let us assume that the employee is
paid $100 for eight hours and values for the three variables are
5, 25%, and 30, respectively. In this example, the cost of using
an employee to handle a single service delivery is around
$2.6 compared to $2.59 using the proposed framework. This
further highlights the efficiency of the proposed framework
in terms of cost.

V. DISCUSSION
Employing decentralized QoS monitoring empowers the
framework to support transparency and allow users (busi-
nesses and customers) to determine their monitoring require-
ments. The cost of using and operating the proposed frame-
work is mainly influenced by the number of transactions,
logistics personnel involved, and the nature of the IoT events.
From a service delivery perspective, increasing the number
of transactions and logistics personnel is expected to increase
the cost linearly. This behavior is accepted since the number

5https://www.avax.network/

FIGURE 10. Impact of the number of logistic personnel on the overall
cost.

FIGURE 11. Impact of the number of transactions on the average cost.

of transactions and logistics personnel are indirectly bounded
by the number of transactions in the lookup table (Table 1).
Furthermore, the proposed framework’s cost can be reduced
significantly by moving the DFA traversing functionality
off-chain. Services’ DFAs have the same number of nodes
(transactions) and this simplifies the process of moving
this functionality off-chain since DFA’s edges can be stored
on-chain using smaller space compared to the entire DFAs.
The ability to shift part of the functionalities off-chain
helps in addressing any raised computational and operational
challenges (RQ2).

Regarding IoT events, the nature of these events is
application-dependent. From a blockchain perspective, event
registration and results are stored on-chain, while the actual
event evaluation is performed using an external call. This
behavior allows businesses (service providers) to register and
de-register IoT devices as required

VI. CONCLUSION
The presented discussion has highlighted the benefits of the
proposed framework tailored for the logistics service delivery
domain, where precision, efficiency, and reliability are
crucial requirements. The proposed framework distinguishes
itself by providing customers and businesses with the
ability to define their own QoS monitoring requirements,
employing a lightweight DFA-based mechanism to monitor
QoS constraint satisfaction.

The demonstrated empirical evidence illustrates the ben-
efits of adopting the proposed framework, with the cost
of monitoring a delivery comprising five transactions at

77390 VOLUME 12, 2024

T. Alrawashdeh et al.: Provisioning DFA for QoS Monitoring in Blockchain DApps

an affordable $4. The potential penalties and reputational
damage arising from non-compliance with QoS standards
underscore the financial viability of the proposed framework.

DFA is memoryless and, therefore, cannot capture con-
straints that require memory capabilities. For instance,
DFA cannot be used to maintain an average temperature
below a predetermined threshold, as computing the average
temperature requires memory capabilities not supported by
DFA. Accordingly, as part of our future work, we plan
to study the applicability of employing more powerful
automata, such as pushdown automata. Additionally, we aim
to explore the adoption of application scenarios to investi-
gate the application-dependent component (IoT component)
performance. Such adoption is also important to quantify
the proposed framework’s benefits. Additionally, we plan
to investigate the use of profiling methods to predict the
performance of logistics personnel involved in the delivery.

REFERENCES
[1] Y. Madhwal, Y. Borbon-Galvez, N. Etemadi, Y. Yanovich, and A. Creazza,

‘‘Proof of delivery smart contract for performance measurements,’’ IEEE
Access, vol. 10, pp. 69147–69159, 2022.

[2] R. Rohan, S. Varma, andM. Sivaramakrishna, ‘‘Blockchain-based solution
for proof of pick-up of a physical asset,’’ in Proc. Int. Conf. Mainstreaming
Block Chain Implement. (ICOMBI), Feb. 2020, pp. 1–7.

[3] Y. Zhao, Y. Liu, A. Tian, Y. Yu, and X. Du, ‘‘Blockchain based
privacy-preserving software updates with proof-of-delivery for Internet
of Things,’’ J. Parallel Distrib. Comput., vol. 132, pp. 141–149,
Oct. 2019.

[4] K. Park, K. Cho, D. Han, T. Kwon, and S. Pack, ‘‘Proof of delivery in a
trustless network,’’ in Proc. IEEE Int. Conf. Blockchain Cryptocurrency
(ICBC), May 2019, pp. 196–200.

[5] L. M. Corbett, ‘‘Delivery windows—A new view on improving manu-
facturing flexibility and on-time delivery performance,’’ Prod. Inventory
Manage. J., vol. 33, no. 3, p. 74, 1992.

[6] F. Li, J. Wang, and L. Zhou, ‘‘Two-way delay compensation mechanism
based on full-load delivery,’’ in Proc. 16th Int. Conf. Intell. Syst. Knowl.
Eng. (ISKE), Nov. 2021, pp. 117–123.

[7] A. Gunasekaran, C. Patel, and R. E. McGaughey, ‘‘A framework for supply
chain performance measurement,’’ Int. J. Prod. Econ., vol. 87, no. 3,
pp. 333–347, 2004.

[8] M. H. Meng and Y. Qian, ‘‘A blockchain aided metric for predic-
tive delivery performance in supply chain management,’’ in Proc.
IEEE Int. Conf. Service Oper. Logistics, Informat. (SOLI), Jul. 2018,
pp. 285–290.

[9] K. Almiani, M. A. Alrub, Y. C. Lee, T. H. Rashidi, and A. Pasdar,
‘‘A blockchain-based auction framework for location-aware services,’’
Algorithms, vol. 16, no. 7, p. 340, Jul. 2023.

[10] P. Gupta and K. N. Jha, ‘‘A decentralized contracting system in digital
construction,’’ J. Legal Affairs Dispute Resolution Eng. Construct., vol. 15,
no. 1, Feb. 2023, Art. no. 02522002.

[11] M. L. Nandi, S. Nandi, H.Moya, and H. Kaynak, ‘‘Blockchain technology-
enabled supply chain systems and supply chain performance: A resource-
based view,’’ Supply Chain Manag., Int. J., vol. 25, no. 6, pp. 841–862,
Jul. 2020.

[12] A. R. Harish, X. L. Liu, R. Y. Zhong, and G. Q. Huang, ‘‘Log-flock: A
blockchain-enabled platform for digital asset valuation and risk assessment
in e-commerce logistics financing,’’Comput. Ind. Eng., vol. 151, Jan. 2021,
Art. no. 107001.

[13] Y. Cao and B. Shen, ‘‘Adopting blockchain technology to block less
sustainable products’ entry in global trade,’’ Transp. Res. Part E, Logistics
Transp. Rev., vol. 161, May 2022, Art. no. 102695.

[14] S. Cao, H. Johnson, and A. Tulloch, ‘‘Exploring blockchain-based
traceability for food supply chain sustainability: Towards a better way
of sustainability communication with consumers,’’ Proc. Comput. Sci.,
vol. 217, pp. 1437–1445, 2023.

[15] Y. Khaoua, Y. Mouzouna, J. Arif, F. Jawab, and M. Azari, ‘‘The
contribution of blockchain technology in the supply chain management:
The shipping industry as an example,’’ in Proc. 14th Int. Colloq. Logistics
Supply Chain Manage., May 2022, pp. 1–6.

[16] Z. Tian, R. Y. Zhong, A. Vatankhah Barenji, Y. T. Wang, Z. Li, and
Y. Rong, ‘‘A blockchain-based evaluation approach for customer delivery
satisfaction in sustainable urban logistics,’’ Int. J. Prod. Res., vol. 59, no. 7,
pp. 2229–2249, Aug. 2020.

[17] M. Demir, O. Turetken, and A. Ferwom, ‘‘Blockchain and IoT for delivery
assurance on supply chain (BIDAS),’’ in Proc. IEEE Int. Conf. Big Data,
Dec. 2019, pp. 5213–5222.

[18] N. Six, C. Negri Ribalta, N. Herbaut, and C. Salinesi, ‘‘A blockchain-based
pattern for confidential and pseudo-anonymous contract enforcement,’’
in Proc. IEEE 19th Int. Conf. Trust, Secur. Privacy Comput. Commun.,
Dec. 2020, pp. 1965–1970.

[19] S. Azzopardi, G. J. Pace, and F. Schapachnik, ‘‘On observing contracts:
Deontic contracts meet smart contracts,’’ in Proc. Int. Conf. Legal Knowl.
Inf. Syst., 2018, pp. 1–12.

[20] A. A. Talha Talukder, M. A. I. Mahmud, A. Sultana, T. H. Pranto,
A. B. Haque, and R. M. Rahman, ‘‘A customer satisfaction cen-
tric food delivery system based on blockchain and smart contract,’’
J. Inf. Telecommun., vol. 6, no. 4, pp. 501–524, Oct. 2022, doi:
10.1080/24751839.2022.2117121.

[21] U. Tokkozhina, B. M. Mataloto, A. L. Martins, and J. C. Ferreira,
‘‘Decentralizing online food delivery services: A blockchain and IoT
model for smart cities,’’Mobile Netw. Appl., pp. 1–11, Feb. 2023.

[22] H. R. Hasan and K. Salah, ‘‘Blockchain-based proof of delivery of
physical assets with single and multiple transporters,’’ IEEE Access, vol. 6,
pp. 46781–46793, 2018.

[23] H. R. Hasan and K. Salah, ‘‘Proof of delivery of digital assets
using blockchain and smart contracts,’’ IEEE Access, vol. 6,
pp. 65439–65448, 2018.

[24] K. Almi’Ani, Y. C. Lee, T. Alrawashdeh, and A. Pasdar, ‘‘Graph-
based profiling of blockchain oracles,’’ IEEE Access, vol. 11,
pp. 24995–25007, 2023.

[25] N. Truong, G.M. Lee, K. Sun, F. Guitton, andY.Guo, ‘‘A blockchain-based
trust system for decentralised applications: When trustless needs trust,’’
Future Gener. Comput. Syst., vol. 124, pp. 68–79, Nov. 2021.

[26] H. Forslund and P. Jonsson, ‘‘Integrating the performance management
process of on-time delivery with suppliers,’’ Int. J. Logistics Res. Appl.,
vol. 13, no. 3, pp. 225–241, Jun. 2010.

[27] J. Zhang, W. H. K. Lam, and B. Y. Chen, ‘‘On-time delivery probabilistic
models for the vehicle routing problem with stochastic demands and time
windows,’’ Eur. J. Oper. Res., vol. 249, no. 1, pp. 144–154, Feb. 2016.

TAWFIQ ALRAWASHDEH received the Ph.D.
degree from Universiti Sultan Zainal Abidin,
Malaysia, in 2020. He is currently a Lecturer with
the Computer Science Department, Al-Hussein
Bin Talal University, Jordan, where he also acts
as the Computer and Information Technology
Center Director. His research interests include
cloud computing and task scheduling.

KHALED ALMI’ANI (Member, IEEE) received
the Ph.D. degree in information technology from
The University of Sydney, in 2010. He is currently
a member of the Faculty of Computer Information
Science, Higher Colleges of Technology, United
Arab Emiratis. His research interests include
algorithms for distributed systems, network opti-
mization, and transportation network modeling.

VOLUME 12, 2024 77391

http://dx.doi.org/10.1080/24751839.2022.2117121

T. Alrawashdeh et al.: Provisioning DFA for QoS Monitoring in Blockchain DApps

YOUNG CHOON LEE received the Bachelor
of Science (Hons.) and Ph.D. degrees from The
University of Sydney, Australia, in 2004 and 2008,
respectively. He is currently a Senior Lecturer
with the School of Computing, Macquarie Uni-
versity, Sydney, Australia. His research interests
include distributed systems and high-performance
computing.

TAHA H. RASHIDI is currently a Professor of
transport engineering with the School of Civil
and Environmental Engineering, University of
New South Wales (UNSW), and the Director
of the Research Centre for Integrated Transport
Innovation (rCITI). He is leading research into
the interconnectivity between travel behavior and
time use and the potential of new mobility
technologies to influence this paradigm. He is a
Board Member of the International Association

for Travel Behaviour Research (IATBR) and an Editor of IATBR NEWS.
He serves as the Managing Editor of Transportation Letters journal.
He sits on the editorial board of several journals, including Transportation
Research—A: Policy and Practice, Transportation Research—C: Emerging
Technologies, Transportation, and Travel Behaviour and Society.

ZEESHAN HAMEED MIR (Senior Member,
IEEE) received the B.S. degree from SSUET,
Pakistan, in 1999, the M.S. degree from
NUST, Pakistan, in 2004, and the Ph.D. degree
from Ajou University, South Korea, in 2009.
From 2013 to 2016, he was with QMIC,
Qatar University, Qatar, as a Research Scientist.
From 2009 to 2012, he was a Member of the
Technical Staff (MTS) with the Electronics and
Telecommunication Research Institute (ETRI),

South Korea. From 2001 to 2005, he was a Faculty Member of the CS
Department, Institute of Business Administration (IBA), Pakistan. He is
currently an Assistant Professor and the Division Chair (DC) with the CIS
Division, Higher Colleges of Technology (HCT), United Arab Emirates.
He has published his researchwork inmajor research publications worldwide
and also served on the program/reviewer committees of several reputed
conferences and journals. His research interests include mobile/ubiquitous
computing, wireless networking/communications, and smart mobility and
urban analytics. He is a fellow of HEA.

77392 VOLUME 12, 2024

