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ABSTRACT As one of the popular and effective supervised classification methods, linear regression is
extensively used in image classification. However, the zero-one labeling matrix is too strict to be conducive
to linear regression methods for learning labeling information. In addition, the linear regression focuses only
on the fit of the input features to the corresponding output labels and ignores the distinctiveness between the
samples. To address these two issues, this paper proposes a new method, namely, discriminative regression
with latent label learning, for image classification. In contrast to the other methods, the proposed method
learns labeling information in the latent label space instead of the input zero-one labeling space, doing so has
the advantage that the proposed method can learn the labeling information in the data more flexibly. To guide
the transform matrix to learn the discriminative information in the data, a regularization term with the idea
of shortening the distance between samples within a class and lengthening the distance between samples
between classes is integrated into the objective function of the proposed method. To obtain the solution of
the proposed model, an iterative optimization algorithm is developed. Comprehensive experiments show that
the classification performance of the proposed method outperforms the current state-of-the-art methods and
deep learning methods on public image datasets with small sample sizes.

INDEX TERMS Linear regression, latent label learning, supervised learning, classification.

I. INTRODUCTION
Image classification plays an important role in the field of
pattern recognition [1]. However, the high dimensionality of
images poses challenges for image classification. To over-
come this challenge, researchers use suitable methods to find
low dimensional representations of images to improve the
classification performance of images. In other words, appro-
priate image representation can improve classification per-
formance [2]. Recent years, researchers have proposed some
better methods in face recognition and image classification.
For face recognition, Leng et al. proposed dynamic weighted
discrimination power analysis (DWDPA) [3] to enhance
the discrimination power of the selected discrete cosine
transform coefficients properties for improving recognition
performance. For image classification, Polap et al. presented
a new convolutional neural network (CNN) model [4] for
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building systems for vehicle image analysis. The model
achieves a classification accuracy of 94.78% in public
datasets, exceeding the metrics of known migration learning
models. Although the advantages of deep learning methods
are obvious when dealing with large-scale datasets, they are
less obvious when dealing with image datasets with smaller
sample sizes.

For the classification of image data with small sample
sizes, linear regression (LR) are one of the many simple
and effective methods. LR is an important statistical analysis
method that can help to better understand the nature of data
and phenomena, and to make more accurate predictions and
decisions. LR is commonly used in the fields of machine
learning and pattern recognition, with applications such as
natural language processing [5], image classification [6],
[7], [8], and speech recognition [9]. LR tries to find an optimal
linear mapping relationship that allows features in the source
data to predict the target data. In a specific implementation,
LR finds the optimal transform matrix by minimizing the
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sum of squares of the residuals between the predicted and
actual values [10]. This process is usually solved using the
least squares method, where the value of the sum of squared
residuals is gradually reduced by iteratively updating the
parameters of the transform matrix until an optimal solution
is found.

In recent years, researchers have proposed a large number
of methods based on linear regression, e.g., support vector
machine (SVM) [11], linear regression based classification
(LRC) [12], for image classification and face recognition.
To improve the classification accuracy, some LRC-based
variant methods have been proposed. To fully utilize the
information in the train space, a classifier based on LRC,
called global linear regression coefficient (GLRC) [13]
classifier, is proposed for recognition. To address the problem
of partial face occlusion, a novel approach based on LRC
and combined with chunked sampling, an improved distance-
based evidence fusion method is presented [14]. Recently,
subspace learning techniques and sparse techniques are also
often used to improve the classification performance of LRC.
To simultaneously accommodate both image representation
and attribution prediction, a joint optimization framework
of LR and nonnegative matrix factorization (LR-NMF) [15]
based on the self-organized graph is proposed. Based on
sparse and collaborative representation, kernel pairwise linear
regression classification (KPLRC) [16] is used for image
classification. After analysis, it can be found that the
improvement of the linear regression method can effectively
improve the classification accuracy.

Under certain conditions, the objective function of LR is
equivalent to the objective function of linear discriminant
analysis (LDA) [17]. Notice that LDA also seeks a transfer
matrix that pulls samples of the same class together and
pushes samples of different classes apart in the discriminant
subspace [18]. In comparison to LDA, LR is more flexible
and efficient. However, there are some limitations that restrict
the practical application of some LR-related methods. To deal
with this limitation that binary labeling matrices are stringent
for regression may lead to over-fitting [19], various soft
labeling techniques have been used to relax the labeling
matrix [20], [21], [22]. Zhang et al. proposed reoriented
least squares regression (ReLSR) [20] based on the idea
of learning regression targets directly from data. Han et al.
adapted the strict zero-one labeling matrix and graph
regularization term to a more flexible form to avoid the
over-fitting problem [21]. Zhang et al. proposed pairwise
relations oriented discriminative regression (PRDR) [22]
to avoid the over-fitting problem by preserving pairwise
labeling relations in the latent space. To better deal with
the problem of classification of noisy images, Su et al.
proposed regularized denoising latent subspace based linear
regression (RDLSLR) [23]. RDLSLR is used to learn the
discriminative information in the data by following two steps.
The first step is to obtain clean data by adding a denoised
latent space between the visual space and the labelling

space; the second step is to learn the regression target with
clean data using another transformation matrix. Wang et al.
proposed robust double relaxed regression (RDRR) [24]
for noisy image classification. The idea of RDRR is to
mitigate the conflict between increasing model flexibility
and exacerbating the over-fitting problem through noise
reduction.

To improve classification accuracy, researchers have added
various regularization terms to the linear regression [25],
[26], [27], [28]. By utilizing the L2,1-norm to model the
correlation between samples, Wen et al. proposed inter-
class sparsity based discriminative least square regression
(ICSDLR) [25]for image classification. Zhan et al. proposed
group low-rank representation-based discriminant linear
regression (GLRRDLR) by introducing a group low-rank
constraint on the transformed data. Although these methods
improve the discriminative ability of the regression to some
extent, they lead to a tedious and time-consuming optimiza-
tion effort. In view of the advantages of manifold learning in
enhancing model discrimination, Shi et al. integrated graph
embedding and sparse regression into one unifiedmodel [29],
which improves the recognition performance well.

In this paper, we simultaneously study two issues discussed
about LR, i.e., 1) the zero-one labeling matrix is too strict
to be conducive to linear regression methods for learning
labeling information; 2) how to improve the discrimination
of transformed data. To address these two issues, this paper
proposes a new method, namely, discriminative regression
with latent label learning (DRLLL), for image classification.
To relax the zero-one labeling matrix (i.e., to address the
first problem), DRLLL learns labeling information in the
latent label space instead of the input zero-one labeling
space. To improve the discrimination of transformed data
(i.e., to address the second problem), a discriminative
regularization term is used to guide the transform matrix to
learn the discriminative information in the data. Contributions
of our paper are as follows:

1) The proposed method learns labeling information in
the latent labeling space, which was found to avoid the
strict regression targets problem.

2) The label-approximating manifold regularization term
in the model can effectively avoid the over-fitting
problem.

3) The discriminative regularization term can effectively
improve the classification performance of the proposed
method.

4) An iterative optimization algorithm is developed to
obtain the solution of the DRLLL model.

The next sections are listed below. In Section II, the related
work of DRLLL, e.g., LR, to be introduced. In Section III,
the learning model of DRLLL and the developed iterative
optimization will be designed. In Section IV, several groups
of classification experiments on image datasets are used to
verify the validity of the proposed DRLLLmethod. Section V
presents brief conclusions.
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II. RELATED WORK
A review on the related work on linear regression is presented
in this section. Before describing the relatedwork, we provide
a description of some commonly used symbols. For a training
matrix X = [x1, x2, . . . , xn] ∈ Rm×n, where m is the number
of features in the training samples and n is the number
of training samples. The label matrix corresponding to the
training samples is Y = [y1, y2, . . . , yn] ∈ Rc×n, where
c is the number of classes. The goal of linear regression
is in finding an optimal transform matrix W ∈ Rc×m to
express the relationship between the training data and its
corresponding labeling matrix. I in the paper denotes the
identity matrix of the appropriate size. For a matrix X , Tr(X )
and XT denote the trace of the matrix X and the transpose
of the matrix X , respectively. ∥X∥F =

√∑
i
∑

j x
2
i,j denotes

the Frobenius norm of X , and ∥X∥2,1 =
∑

i

√∑
j x

2
i,j denotes

the L2,1-norm of X . In addition, the nuclear norm of ∥X∥∗ is
∥X∥∗ =

∑
i λi(X ), where λi(X ) is the i-th singular value of X .

A. STANDARD LINEAR REGRESSION
Normally, a projection matrix W ∈ Rc×m is used by linear
regression to establish a connection between a training data
X ∈ Rm×n and its corresponding class labels Y ∈ Rc×n.
To find the transform matrix W , the following objective
function is established:

min
W

∥Y −WX∥
2
F + α∥W∥

2
F (1)

where α is the regularization parameter. There is a closed
solution to problem (1) asW = YXT (XXT +αI )−1. However,
linear regression method is insufficient to fulfill the needs
in the face of datasets generated in different scenarios. As a
result, researchers have proposed a large number of variant
methods [20], [25] on the objective function of problem (1).
To take advantage of the correlation in high-dimensional
data, a low-rank constraint ∥W∥∗ is used in the objective
function (1) of LRLR [30] to replace the ∥W∥

2
F regularization

term.

B. LINEAR REGRESSION WITH REGULARIZATION TERMS
To be able to better explore the similarities in the data,
the researchers incorporated the objective function (1) with
different types of regularization terms. The objective function
for these types of methods are:

min
W

∥Y −WX∥
2
F + αψ(W ) + βφ(WX ) (2)

whereψ(W ) and φ(WX ) are regularization terms. To preserve
the local manifold structure in the data, a graph regularization
term is assembled into φ(WX ) by the method in the
literature [27]. To improve intra-class compactness in data
to facilitate classification, sparse and low-rank techniques
are also frequently used to constrain the regularization term
φ(WX ). The L2,1 norm technique is used by ICSDLR to con-
strain WX , i.e., φ(WX ) =

∑c
i=1 ∥WXi∥2,1, in a way that the

extracted features contain natural discriminability between

samples. Similarly, the low-rank technique, i.e., φ(WX ) =∑c
i=1 ∥WXi∥∗, is used by GLRRDLR [26] to explore the

correlation between classes. However, most of the linear
regression-based methods are generally time-consuming
in that they require learning multiple transform matrices.
In addition, the problem of strict regression targeting still
exists.

III. PROPOSED METHOD
In this section, the objective function of the proposed method,
the developed optimization algorithm, and the convergence
and computational complexity analysis of the optimization
algorithm are presented in detail.

A. DEVELOPMENT OF LEARNING MODEL
From the discussion of related work, it can be found
that the empirical loss function and regularization term on
the transform matrix in the linear regression method can
improve the discriminative property of the extracted features.
Therefore, to improve the classification accuracy, it is
extremely important to design the discriminant regularization
term and the empirical loss function. However, the zero-one
labeling matrix may be too strict and its not suitable for
empirical loss function modeling. To deal with this problem,
we introduce a matrix of latent label V in problem (3) as
follows:

min
W ,V

∥V −WX∥
2
F + α∥W∥

2
F

s.t.
n∑
j=1

vij = 1. (3)

where vij is the ij-th element of the matrix V ∈ Rc×n

and W ∈ Rc×m is a transform matrix. The constraint∑n
j=1 vij = 1 is imposed to relax the zero-one labeling

matrix. In doing so, the goal is to make the model more
flexible in learning the label information in the data. It is
clearer that the latent label matrix is the crucial to guide the
projection matrix V to learn the label information in the data.
In addition, the objective function (3) faces an over-fitting
problem in learning latent label information. To enhance the
differentiation between latent label in the data, the manifold
learning theory is introduced. According to the manifold
learning assumption, i.e., when two samples are located in
a small local neighborhood in the manifold, they have similar
class label, a manifold regularization term on the latent label
is added to the objective function (3). Then, we have

min
W ,V

∥V −WX∥
2
F + α∥W∥

2
F + β

c∑
i,j=1

∥vi − yj∥22sij

s.t.
n∑
j=1

vij = 1. (4)

where vi and yj are the elements in V and Y , respectively.
Here, the label matrix Y is used to avoid over-fitting of the
latent label matrix V in the update process. sij is used to
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penalize latent label in the portion of the latent label matrix
that does not match the local structure of the data point.
Usually, sij is pre-computed based on the a priori information
given in the data. In this paper, the settings for sij is shown
below:

sij =

{
1, if yi = yj,
0, otherwise.

(5)

Then, the third term in the objective function (4) can be
transformed into the following trace form:

c∑
i,j=1

∥vi − yj∥22sij = Tr(VDV T
− 2VSY T + YDY T ) (6)

where D ∈ Rn×n is the diagonal matrix and its i-th diagonal
element is dii =

∑
j=1 sij. The definition of S ∈ Rn×n is

the similarity matrix used to describe the similarity of two
labels. Notice that the incorporation of label-approximating
manifold regularization ensures that similar data points in
the original data space have similar latent label, while
local structural information in the latent label space can be
maintained to avoid over-fitting.

For classification purposes, one always hopes to reduce
the distance between similar samples while increasing the
distance between dissimilar samples. To accomplish this,
a discriminant regularization term inspired by LDA is
introduced as follow:

min
W

Tr(W (Sb − µSw)W T ) (7)

where Sb ∈ Rm×m and Sw ∈ Rm×m are pre-computed
inter-class scatter matrices and intra-class scatter matrices,
respectively. Specifically, the computation of Sb and Sw is as
follows:

Sb =
1
n

c∑
k=1

nk (uk − u)(uk − u)T (8)

and

Sw =
1
n

c∑
k=1

nk∑
i=1

(xki − uk )(xki − uk )T (9)

where uk denotes the average features of the k-th class of
samples, which is calculated as uk =

1
nk

∑nk
i=1 x

k
i . u is defined

as the average feature of all samples, which is calculated
as u =

1
n

∑c
k=1

∑nk
i=1 x

k
i . By combining the descriptions in

the objective function (4), Eq. (6) and Eq. (7), the overall
objective function of discriminative regression with latent
label learning (DRLLL) can be obtained.

min
W ,V

∥V−WX∥
2
F+α∥W∥

2
F+βTr(VDV T

−2VSY T + YDY T )

+ γTr(W (Sb − µSw)W T )

s.t.
n∑
j=1

vij = 1. (10)

where α, β and γ are balance parameters. As shown in
the objective function (10), the proposed DRLLL method

optimizes only the transform matrix W and the latent label
matrix V . To optimize these two variables simultaneously,
an iterative optimization algorithm is introduced.

B. EFFECTIVE SOLUTION OF THE LEARNING MODEL
In this section, a solution scheme of the proposed learning
model is introduced. To facilitate the optimization of
problem (10), an optimization algorithm based on the theory
of iterative optimization is developed. We solve problem (10)
by the following two steps: 1) by fixingW , updating V ; 2) by
fixingV ,updatingW . The procedure for solving problem (10)
is as follows.

1) UPDATE V
By fixing the variableW , we can update V with the following
sub-problem:

min
V

∥V −WX∥
2
F + βTr(VDV T

− 2VSY T )

s.t.
n∑
j=1

vij = 1. (11)

Due to the constraints
∑n

j=1 vij = 1, we use a method similar
to that used in the literature [22] to solve for V through the
following two steps. The first step is to remove the constraints
to find the intermediate variable V̄ . The suboptimization
problem (11) without the constraints is a convex optimization
problem. By setting its derivative with respect to V̄ to zero,
that is

V̄ −WX + β(V̄D− YST ) = 0

Then, the closed-form solution of the optimization prob-
lem (11) without the constraints is

V̄ = (WX + βYST )(I + βD)−1 (12)

In the second step, these constraints
∑n

j=1 vij = 1 are handled
through the following methods. Specifically, the optimal V
can be calculated as:

V = [v1, v2, · · · , vn] (13)

where vi = vi/
√∑c

j=1 v̄
2
ij.

2) UPDATE W
By fixing the variable V , we can updateW with the following
sub-problem:

min
W

∥V −WX∥
2
F + α∥W∥

2
F + γTr(W (Sb − µSw)W T )

(14)

In a similar way to updating V , by setting its derivative with
respect toW to zero, that is

WXXT + γW (Sb − µSw) + αW − VXT = 0

Then, the closed-form solution of the optimization prob-
lem (14) can be calculated as:

W = VXT (XXT + γ (Sb − µSw) + αI )−1 (15)
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By executing the first and second steps alternately, the
objective function value of problem (10) can be gradually
minimized until convergence. It can be noted that the (XXT +

γ (Sb − µSw) + αI ) in (15) is fixed in the iteration, so we
can compute its inverse outside the loop. The algorithm
used to solve the model (10) is presented in Algorithm 1.
To perform themulti-classification task, the transformed data,
i.e.,WX , is fed into a K-nearest neighbor classifier, and in this
experiment K is set to 1.

Algorithm 1 DRLLL (Solving the Objective Function (10))

Input: Data matrix X ∈ Rm×n, class label Y ∈ Rc×n,
parameters α, β, γ .

Initialization: W with random values, µ =

10−3;
1: Compute S by using (5);
2: Compute Sb by using (8);
3: Compute Sw by using (9);
4: while not converged do
5: Update V by solving (11);
6: Update W by using (15);
7: end while
Output: Transform matrixW ∈ Rc×m.

C. COMPLEXITY AND CONVERGENCE ANALYSIS
1) COMPUTATIONAL COMPLEXITY
The computational complexity of Algorithm 1 will be
analyzed in this part. The computational cost of Algorithm 1
is mainly divided into outside the loop and inside the loop.
On the outside of the iterative loop, the calculation cost
comes from the inverse calculation of matrix (XXT + γ (Sb −

µSw) + αI ) ∈ Rm×m, which has a calculation cost of
O(m3). In addition, the cost of computing S is O(n2). In the
iterative loop, the complexity of the inverse computation
of the matrix (I + βD) can be neglected since it is a
diagonal matrix. Thus, the calculation of updating V and W
costs mainly the multiplication of matrices. In summary, the
total computational complexity of Algorithm 1 is O(n2 +

m3
+ τ max{cmn, cn2}), where τ is the number of loop

iterations.

2) CONVERGENCE ANALYSIS
According to the previous introduction, all variables
can simply be computed using closed-form solutions in
their respective sub-problems. Also, the corresponding
sub-problems corresponding to updating W and V are
convex.
Theorem 1: The optimization method outlined in

Algorithm 1 monotonically reduces the objective value of the
problem (10).

Proof of Theorem 1: Let L(V t ,W t ) to be the value of
the objective function of the problem (10) at the t-th iteration,

that is

L(V t ,W t ) = ∥V t
−W tX∥

2
F + γTr(W t (Sb − µSw)(W t )T )

+ α∥W t
∥
2
F + βTr(V tD(V t )T

− 2V tSY T + YDY T ) (16)

In (t + 1)-th iterations, the optimal solution of vt+1 is first
obtained by tackling the convex subproblem (11). Thus,
we have:

L(V t+1,W t ) ≤ L(V t ,W t ) (17)

By similar means, the subproblem corresponding to the
updateW is convex. Thus, we can get:

L(V t+1,W t+1) ≤ L(V t+1,W t ) (18)

In combination with (17) and (18), we have:

L(V t+1,W t+1) ≤ L(V t ,W t ) (19)

Thus, the proof of Theorem 1 is complete.
Under the condition i.e., given a suitable µ such that the

third term Tr(W (Sb − µSw)W T ) ≥ 0 holds, the value of the
objective function in the problem (10) has a lower bound.
With the above conditions satisfied, the proposed method is
eventually going to find a locally optimal solution when the
value of the objective function of the problem (10) converges.

IV. EXPERIMENTS
In this section, several groups of comprehensive experiments
were set up to validate the effectiveness of the proposed
method. In particular, some commonly correlated methods,
e.g., LDA [17], robust discriminant regression (RDR) [27],
robust latent subspace learning (RLSL) [31], ICSDLR [25],
robust sparse linear discriminant analysis (RSLDA) [32],
PRDR [22], RDLSLR [23], RDRR [24], are used to do
the classification comparison. All the methods were used
to perform classification experiments on six real datasets,
and the classification experiments of all the methods were
repeated 10 times in a random combination of training and
test samples. The average classification accuracy and bias of
them are then reported for comparison.

A. DESCRIPTION OF THE EXPERIMENTAL DATASETS
The six image datasets commonly used to test linear
regression methods were used for the experiments in this
paper. The general statistics for these datasets are presented
in Table 1. Some sample pictures are shown in Figure 1. The
sources and descriptions of these experimental datasets are
given below.

1) ORL dataset1: The ORL dataset was sampled from
10 different images attached to each of 40 different
objects. These images varied in time and each image
was unique in terms of lighting, facial expression (e.g.,
eyes open and closed vs. smiling or not), and facial
details (e.g., whether or not glasses were worn). In this

1http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

VOLUME 12, 2024 77679



L. Lang et al.: Discriminative Regression With Latent Label Learning for Image Classification

TABLE 1. Some details of the six datasets used for the experiments.

FIGURE 1. Sample images of the datasets used in the experiment, from
top to bottom sample images from, the ORL, LFW, AR, YaleB, COIL100,
and PIE datasets.

experiment, the pixels of each image were scaled to
32 × 32. There are 3, 4, 5 and 6 images randomly
selected for training and the remaining images for
testing for each class, respectively.

2) LFW dataset2: The LFW dataset is a challenging
face dataset. The reason is that all the images in
the dataset are collected directly from the web, and
these samples present different poses, backgrounds,
expressions, lighting, and are captured by different
image acquisition devices. All the images were resized
to 32 × 32 beforehand. There are 5, 6, 7 and 8 images
randomly selected for training and the remaining
images for testing for each class, respectively.

3) AR dataset3: The samples in the AR face dataset
have the following differences, e.g., the samples have
different facial expressions, the samples have different
lighting conditions, have sunglasses, and the faces are
obscured by scarves. All the images were resized to
32 × 32 beforehand. There are 6, 8, 10 and 12 images
randomly selected for training and the remaining
images for testing for each class, respectively.

4) YaleB dataset4: The YaleB dataset is a face dataset
that is commonly used for classification tests. The
samples for this dataset are collected from 38 different
people, where each class has 59-64 frontal images
with different lighting. Similarly, all the images in this
dataset were resized to 32×32 beforehand. There are 8,
13, 18 and 23 images randomly selected for training

2http://vis-www.cs.umass.edu/lfw/
3http://www2.ece.ohio-state.edu/ aleix/ARdatabase.html
4http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

and the remaining images for testing for each class,
respectively.

5) COIL100 dataset5: The COIL100 dataset is an object
image dataset that is commonly used for classification
tests and contains 7200 images of 100 objects. All the
images in this dataset are pre-sized to 32 × 32 pixels.
There are 8, 13, 18 and 23 images randomly selected for
training and the remaining images for testing for each
class, respectively.

6) PIE dataset6: The PIE dataset, which contains more
than 11554 face images with different poses, lighting
conditions and expressions, is one of the challenging
databases in the field of face recognition. The samples
for this dataset were collected from 68 individuals,
each with 5 different poses, and nearly 170 samples
were collected. Similarly, all the images in this dataset
are pre-sized to 32 × 32 pixels. There are 8, 13,
18 and 23 images randomly selected for training
and the remaining images for testing for each class,
respectively.

B. PARAMETER SETTING AND ANALYSIS
For linear regression based on regularization terms the
methods, a suitable combination of parameters can improve
the classification accuracy. In the proposed method, three
parameters, e.g., α, β and γ , need to be tuned. To analyze
the effect of these three parameters on the model, we first set
up a candidate set (i.e., {0.0001, 0.001, 0.01, 0.1, 1, 10, 100})
for these three parameters. Here, the LFW, AR, YaleB
and COIL100 datasets were used for this experiment.
Specifically, in the LFW dataset, 5 samples in each class
were randomly selected as the training set and the remaining
samples were used for testing; for the AR dataset, 6 samples
in each class were randomly selected as the training set
and the remaining samples were used for testing; and for
the YaleB and COIL100 datasets, 8 samples in each class
were each selected as the training set and the remaining
samples were used for testing. Figures 2-3 presents the trend
of classification accuracy with different combinations of the
three parameters.

As shown in Figures 2-3, adaptively selecting optimal
regularization parameters for different datasets is very
difficult and remains an open problem. In this study, we use
the following strategy [25], [31], [32] to find the optimal
parameter combination for the proposed method. The analy-
sis shows that the proposedmethod is insensitive to the choice
of parameter γ . Therefore, we can first fix the parameter γ
and select the optimal combination of parameters α and β
in the provided candidate set. Then, we fix the values of
parameters α and β to the values corresponding to the
optimal classification accuracy obtained and perform the
same experiment to obtain the optimal parameter γ . Finally,
the best combination of the found parameters α, β and γ was

5https://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
6https://www.ri.cmu.edu/project/pie-database/
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FIGURE 2. Classification accuracy of DRLLL versus its different combinations of parameters on the LFW and AR datasets.

FIGURE 3. Classification accuracy of DRLLL versus its different combinations of parameters on the YaleB and COIL100 datasets.

FIGURE 4. T-SNE visualization of original samples and learned features of DRLLL on YaleB dataset.

FIGURE 5. T-SNE visualization of original data and ICSDLR, RDRR and DRLLL features on YaleB dataset with 13 images in each class for training.

used for the subsequent experiments. For all the compared
methods, their optimal parameter value ranges are referred to
as given in the corresponding papers.

C. CLASSIFICATION EXPERIMENTS
1) EXPERIMENTAL SETUP
To validate the effectiveness of the proposed DRLLL method
for image classification, we conducted image classification

experiments on the above six datasets. In particular, some
commonly correlated methods, e.g., LDA [17], RDR [27],
RLSL [31], ICSDLR [25], RSLDA [32], PRDR [22],
RDLSLR [23], RDRR [24], are used to do the classification
comparison. Noting that the RDR, RLSL, ICSDLR, PRDR,
RDLSLR, and RDRR are LR-based methods. Among these
methods, RLSL and ICSDLR are learning the labeling
information in the data by direct regression on the zero-
one labeling matrix. In the RDR and PRDR methods,
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TABLE 2. Acc(%) (mean±std) of the eight methods on ORL dataset.

TABLE 3. Acc(%) (mean±std) of the eight methods on LFW dataset.

TABLE 4. Acc(%) (mean±std) of the eight methods on AR dataset.

TABLE 5. Acc(%) (mean±std) of the eight methods on YaleB dataset.

TABLE 6. Acc(%) (mean±std) of the eight methods on COIL100 dataset.

TABLE 7. Acc(%) (mean±std) of the eight methods on PIE dataset.

TABLE 8. Classification results (%) (mean±std) of the nine methods on all the datasets in term of F1-score, where the number of samples used for
training in each dataset is 3, 5, 6, 8, 8, and 8, respectively.

the graph regularization term employed to explore the
similarity between data. LDA and RSLDA are multi-class
discriminant analysis methods which are related to the
discriminant regularization term of the proposed method.

For all the comparison methods the dimension of the
transformed data were set as follows. All the methods are set
to c except the dimension of LDA which is set to c−1, where
c is the number of classes of input data. For The experimental
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TABLE 9. Classification results (%) (mean±std) of the nine methods on all the datasets in term of MCC, where the number of samples used for training in
each dataset is 3, 5, 6, 8, 8, and 8, respectively.

process for the classification experiment is as follows. Firstly,
we input the training data into all the comparison methods
to output the transform matrix. The transformed data is then
fed into a 1-NN classifier for classification. To evaluate
the classification accuracy obtained by all the methods, the
commonly used classification accuracy metric (ACC(%) ),
i.e., ACC(%) = Ncorrect/Ntotal × 100%, is used, where
Ncorrect denotes the number of correctly assigned samples,
and Ntotal denotes the total number of samples involved in
the classification. Furthermore, to increase the credibility of
the experiments, we added two commonly used metrics, i.e.,
F1-score [33] and Matthews correlation coefficient
(MCC) [33], to test the performance of all the methods.
The classification experiments of all the methods were
repeated 10 times in a random combination of training and
test samples. All the classification results are presented in
Tables 2-7.

2) CLASSIFICATION RESULTS AND ANALYSIS
From the results output from the experiment, we are able to
make some interesting observations. As shown in Tables 2-7,
we had the following discussion.

1) In comparison with the multi-class discriminant anal-
ysis methods (e.g., LDA and RSLDA), the majority
of the linear regression-based methods (e.g., RLSL,
ICSDLR, PRDR and the proposed DRLLL) have
achieved good classification accuracy in the ORL,
LFW, YaleB, COIL100 and PIE datasets. This implies
that labeling regression can effectively facilitate the
transform matrix to learn the labeling information in
the data.

2) By comparing DRLLL with RLSL, ICSDLR, PRDR,
we can find that the classification accuracy of ICSDLR,
PRDR, and DRLLL always outperforms RLSL in most
of the scenarios. This is due to the fact that DRLLL,
ICSDLR, and PRDR all impose regularization terms
on the transform matrix to enhance the discrimination
of the transformed data. This shows that imposing
the regularization term on the transform matrix can
improve the image classification accuracy.

3) Figure 5 shows the visualization of the DRLLL features
where the number of images in each class in the
training set is 8, 18 and 23 respectively. At a training
size of 23 per subject, our DRLLL can achieve
a classification accuracy of 96.42%. Obviously, the
intra-class compactness and inter-class separability of
DRLLL are greatly improved in the studied features.

The discriminative power of the projection increases
as the training sample increases. Figure 5 shows the
visualization of original data and ICSDLR, RDRR and
DRLLL features on YaleB dataset with 13 images
in each class for training. The features of ICSDLR
and RDRR focus on expanding the distance between
different classes, and we use them as a comparison. It is
clear that the features of DRLLL have greater inter-
class scatter, and this suggests that DRLLL can learn
more discriminative features.

4) Revisiting the conclusions of the experiments in
Tables 2-7, we can find that the proposed DRLLL
method always obtains optimal or sub-optimal clas-
sification accuracy in all the classification scenarios.
As shown in Tables 8-10, the performance of the
proposed method is also better than all the comparison
methods. In addition, from Figure 4, we can clearly
observe that DRLLL can ensure a close distribution of
samples of the same class, and try to keep samples of
different classes as far away as possible. The proposed
DRLLL method obtains such good results due to the
following two aspects: 1) the proposed DRLLLmethod
to learn labeling information in the latent labeling
space can effectively avoid the strict regression target
problem. Also, the label-approximating manifold reg-
ularization term in the model can effectively avoid the
over-fitting problem; 2) the discriminant regularization
term is helpful in guiding the transform matrix in the
DRLLL model to explore similar relationships in the
data.

D. COMPARISON WITH DEEP LEARNING METHODS
In this subsection, the proposed method is compared with
some popular deep learning methods such as VGG16 [34],
ResNet50 [35], Xception [36], and MobileNet [37]. The
conclusions of all the methods on the AR and PIE datasets
are displayed in Table 10.
From the Table 10, it can be observed that as the number

of labels in the training set increases the performance of
the deep learning methods is also improved. However, the
performance of the proposed method is better than the deep
learning methods. The reason for this is that deep learning
based methods rely heavily on large scale data and deep
learningmethods require a large number of labeled datasets to
train the network. Therefore, the advantages of the proposed
method are more obvious compared to deep learning methods
on small sample size datasets.
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FIGURE 6. Classification accuracy of DRLLL versus its different combinations of parameters on the ORL dataset.

FIGURE 7. Classification accuracy of DRLLL versus its different combinations of parameters on the PIE dataset.

TABLE 10. Acc(%) (mean±std) of the methods on the AR and PIE
datasets.

E. HYPERPARAMETER ANALYSIS
The proposed DRLLL method has three hyperparameters,
i.e., α, β and γ . In this subsection, the three hyperparameters
can be tested and explained. The AR and PIE datasets are
used to tested. Figures 6-7 show the relationship between
hyperparameters and classification accuracy.We can find that

the classification accuracy of the proposed DRLLLmethod is
insensitive to the parameter of the number of samples of each
class in the training set. For the hyperparameter γ , we can
observe that a better classification accuracy is obtained
for DRLLL when the value of the hyperparameter γ is
around 10. When the value of the hyperparameter β is in the
set {0.001, 0.01, 0.1, 1, 10, 100}, DRLLL can obtain a better
classification accuracy. We can clearly know that DRLLL is
sensitive to the hyperparameter α. However, we can observe
that better classification accuracy is obtained for values of the
hyperparameter α around 1 for DRLLL.

F. CONVERGENCE ANALYSIS
The convergence theory of the proposed DRLLL method is
provided. In this subsection, convergence experiments of the
proposed DRLLL method with µ = 10−3 are continued
to be studied. Figure 8 shows the convergence curves of
the proposed method on ORL, LFW, YaleB and COIL100
datasets. We can find that the objective function value of the
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FIGURE 8. Convergence curve versus the number of iterations on all the datasets.

proposedmethod can reach the steady state very quickly. This
implies that the proposed iterative optimization algorithm in
fast and effective.

V. CONCLUSION
In this paper, we proposed a new linear regression based
methods, namely DRLLL, for image classification. The
objective function of the proposed DRLLL method can be
viewed as a framework which can be used to simultaneously
learn both latent labeling information and discriminative
information from the data. On several real-world classi-
fication experiments on image datasets, the classification
accuracy obtained by the proposed method outperforms
that of the related methods. The reasons why the proposed
method obtains such good image classification results are the
following: 1) the target regressed byDRLLL is the latent label
matrix rather than the zero-one label matrix; 2) the introduced
discriminant regularization term can effectively guide the
transformationmatrix to explore the discriminant information
in the data. In addition, the techniques devised in this paper
can be extended to other regression-basedmethods. However,
similar to many LR-related methods, the proposed method
has two drawbacks, i.e., 1) it may be sensitive to anomalies or
noise features in the data and 2) it requires more time to adjust
the three hyperparameters in the method. Therefore, we will
continue to investigate robust linear regression methods with
fewer hyperparameters in the future.
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