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ABSTRACT Lately, a novel improved adaptive progressive censored strategy of Type-II was developed
that can ensure that the experiment duration does not overextend a specific span. When a sample is
formed using such censoring, three estimation issues of the model parameter and certain reliability metrics
of the inverted Lindley lifetime distribution are taken into consideration. In addition to the traditional
likelihood methodology, Bayesian and E-Bayesian methodologies with squared error loss are considered.
The asymptotic distribution of frequentist estimates over the empirical Fisher information is employed to get
the estimated confidence intervals for each parameter. A technical procedure called Monte-Carlo Markov-
Chain is operated to provide the required Bayes and E-Bayes estimations as well as to construct their
credible intervals. We deliver extensive empirical comparisons to explain the applicability and usefulness
of the various suggested strategies. Lastly, two actual data collections gathered from the engineering and
medical disciplines are analyzed to verify the offered model’s relevance and viability in the context of reality.
The study findings suggest that, in order to get the required estimations, the E-Bayesian paradigm via the
Metropolis-Hastings sampler is preferable in comparison to the other approaches.

INDEX TERMS New inverted Lindley, improved adaptive progressive Type-II censoring, likelihood,
Bayesian and E-Bayesian estimations, MCMC technique.

I. INTRODUCTION
Enhancing some lifespan models as well as employing
them effectively to solve modelling issues in a range of
fields, including but not restricted to engineering, health,
and finance, among several others, has been the focus of
significant work in recent years. Lindley [1] developed
the Lindley distribution (LD), which is a hybrid of the
gamma and exponential models. Data with non-monotone
forms may not be as relevant for the LD because it is
only suitable for fitting data with an increasing hazard rate
function (HRF). Therefore, Sharma et al. [2] presented the
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inverted-Lindley (IL) model with an inverse (upside-down)
bathtub-shaped HRF as an inverted version of the LD.

Consider that the random variable X > 0 pursues the IL
distribution, utilize IL(φ) as its symbol, and let φ be a scale
parameter with φ̄ = 1/(1+ φ). Then, the probability density
function (PDF) that corresponds to X is defined as

f (x;φ) =
φφ̄e−

φ
x (1+ x)
x3

, x > 0, φ > 0, (1)

and its cumulative distribution function (CDF) is

F(x;φ) =
(
1+

φ̄

x

)
e−

φ
x . (2)
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The reliability function (RF) and HRF of the IL model at a
given time t are, respectively, given by

R(t;φ) = 1−
(
1+

φ̄

t

)
e−

φ
t (3)

and

h(t;φ) =

(
φ
t

)2
(1+ t)[

t(1+ φ)
(
e

φ
t − 1

)
− φ

] . (4)

Considering the IL distribution as the parent distribution,
many authors considered some of its estimation concerns.
Using a Type-I censored sample, Basu et al. [3] examined
different of its estimation concerns. Basu et al. [4] studied
the IL model via a progressive hybrid censored strategy with
binomial removals. Based on hybrid censoring, Basu et al.
[5] examined the conventional and Bayesian predictions for
the IL distribution. Using ranked set sampling, Hassan et al.
[6] considered the estimation of the IL reliability factor.
Evaluating the PDF and CDF for the IL distribution was
handled by Asgharzadeh et al. [7]. Given an adaptive Type-II
progressively censored (AT-IIPC) sample, Alotaibi et al. [8]
discussed the IL distribution.

In light of the limited time and financial commitment, full-
life testing is not practical in engineering investigations or
life tests. This has led to the development and widespread
usage of censored experiments that terminate when a certain
percentage of the units yield. A popular technique that has
caught the interest of researchers and reliability specialists
is the progressive Type-II censoring (PT-IIC) strategy. Under
this system, n products are assigned to a life test; in advance,
the researcher uses the progressive censoring scheme (PCS)
S = (S1, . . . , Sm) to get the number m of failure
units. Following the initial failure X1:m:n, S1 of the test’s
surviving products will be randomly drawn. Proceeding,
S2 of the remaining products is randomly extracted upon
the occurrence of the subsequent failure X2:m:n, and so forth.
Eventually, all of the remaining units, indicated by Sm, are
drawn from the test when themth failure appears with lifetime
Xm:m:n. Numerous writers took this plan into consideration,
for instance Sultan et al. [9], Mondal and Kundu [10],Wu and
Gui [11] and Abo-Kasem et al. [12]. The AT-IIPC strategy is
a more general censoring plan in which the PT-IIC plan can
be acquired as a particular matter. Ng et al. [13] suggested the
AT-IIPC approach to improve statistical inference efficiency.
Similar to the PT-IIC plan, the PCS S = (S1, . . . , Sm) and
the failure size m are preassigned before beginning the trial;
however, testing time is authorized to go beyond a preset limit
τ1. The PCS is changed in this instance by pausing to remove
any units until the final failure time Xm:m:n. At this stage, all
remaining units have to be removed from the test. For more
detail regarding the AT-IIPC strategy, one can refer to Nassar
and Abo-Kasem [14], Kohansal and Shoaee [15], Ren and
Gui [16] and Schmiedt and Cramer [17].

Ng et al. [13] highlighted that the AT-IIPC plan works
well in the area of statistical inference when the test’s overall

duration is not an important factor. On the other hand, if the
testing period is very long, as in the case of reliable products,
the AT-IIPC scheme will not guarantee a suitable overall test
length. To address this issue, Yan et al. [18] proposed an
innovative censorship technique called an improved AT-IIPC
(IAPT-IIC) method. This strategy can successfully guarantee
that the trial ends within the time frame specified. Regarding
the number of n units, prefixedm, and PCS S = (S1, . . . , Sm),
this scheme’s description is comparable to that of the PT-IIC
and AT-IIPC. But two thresholds are offered: τ1 and τ2, where
τ1 < τ2. Upon seeing the ith failure time Xi:m:n, Si units are
arbitrarily removed.

In this approach, the experiment can end in three different
ways, denoted by C-I, C-II and C-III, as shown below
• C-I: The PT-IIC plan can be seen in this case, where the
test stops at Xm:m:n if Xm:m:n < τ1.

• C-II: The AT-IIPC plan is demonstrated in this situation,
where the test terminates at Xm:m:n if τ1 < Xm:m:n < τ2.
Here, the PCS is changed by setting Sr1+1 = · · · =
Sm−1 = 0, after acquiring Xr1:m:n, where r1 is the
observed failures over τ1. Following that, every last unit
is eliminated at the moment of mth failure.

• C-III: The experiment is terminated at τ2 if τ1 <

τ2 < Xm:m:n. After getting Xr1:m:n, there are no more
withdrawals, i.e. Sr1+1 = · · · = Sr2−1 = 0, where
r2 < m is the observed failures over τ2. All of the
leftover units, namely S• = n − r2 −

∑r1
i=1 Si, are

eliminated at τ2.
Regarding the IAPT-IIC plan, not much work has been

completed. The notable works are those of Nassar and
Elshahhat [19], Elshahhat and Nassar [20], Elbatal et al. [21]
and Dutta and Kayal [22]. Let xi = xi:m:n, i = 1, . . . ,m for
simplicity of notation. Then, based on the observed IAPT-IIC
sample x = (x1 < · · · < xr1 < τ1 < · · · < xr2 < τ2), with
PCS S = (S1, . . . , Sr1 , 0, . . . , 0, S

∗), the likelihood function
(LF) becomes

L(φ|x) =
M2∏
i=1

f (xi)
M1∏
i=1

[1− F(xi)]Si [1− F(τ )]S
∗

, (5)

whereM1,M2, τ and S∗ are specified as follow

M1 =


m, for C-I
r1, for C-II
r1, for C-III,

M2 =


m, for C-I
m, for C-II
r2, for C-III.

and

τ =


0, for C-I
xm, for C-II
τ2, for C-III,

S∗ =


n− m−

∑m

i=1
Si, for C-I

n− m−
∑r1

i=1
Si, for C-II

n− r2 −
∑r1

i=1
Si, for C-III.

In this work, we aim to investigate the estimation issues
of the IL distribution based on IAPT-IIC data, considering
the flexibility of the IL distribution in modeling real data
and the efficiency of the IAPT-IIC scheme in ending the
experiment. One classical and two Bayesian estimation
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approaches are considered for this purpose.We compare three
point estimations for the unknown parameter as well as the
two reliability indices. Additionally, we explore three interval
estimation techniques for different parameters. It is worth
mentioning that this is the first instancewhere calculations for
the IL distribution, alongwith its reliability indices, have been
compared. We anticipate that this will capture the attention of
a wide range of readers. We can outline our study’s objectives
as follows:

1) From classical perspective, we obtain the maximum
likelihood estimates (MLEs) as well as approximate
confidence intervals (ACIs) of φ, RF, and HRF.

2) Apply the Bayesian method via the squared error loss
function (SELF) to get the Bayes estimates (BEs) of φ,
RF, and HRF. The Bayes credible intervals (BCIs) are
also computed.

3) Obtaining the Expected-BEs (EBEs) and Expected-
BCIs (EBCIs) of φ, RF, and HRF using the SELF by
implementing the E-Bayesian method as an alternative
to the Bayesian approach.

4) Comparing the performance of the different point
and interval estimation techniques using simulation
analysis. This comparisonwill help us identify themost
efficient method for evaluating the IL distribution in the
presence of IAPT-IIC data.

5) Highlighting the practical value of various techniques
through the analysis of two real data sets in engineering
and medicine.

The rest of this study is organized as follows: Section II
reports the MLEs and ACIs of the IL distribution.
In Section III, the Bayesian estimations of the IL distribution
are considered. Section IV covers the EBEs and EBCIs.
Section V presents the numerical results and the design of
the simulation. Section VI offers two applications related to
the engineering field. The paper concludes in Section VII.

II. LIKELIHOOD ESTIMATION
Acquiring an IAPT-IIC sample x with PCS S =

(S1, . . . , Sr1 , 0, . . . , 0, S
∗), one can express the joint LF in (5)

using the PDF and CDF given by (1) and (2), respectively,
as follow

L(φ|x) = (φφ̄)M2 [w(τ ;φ)]S
∗

e−φu(x)
M1∏
i=1

[w(xi;φ)]Si , (6)

where xi = 1/xi, w(xi;φ) = eφxi − (1 + φ̄xi) and u(x) =∑M2
i=1 xi +

∑M1
i=1 Sixi + S

∗τ . The natural logarithm of (6) is

l(φ|x) = M2 log(φφ̄)− φu(x)

+ S∗ log[w(τ ;φ)]+
∑M1

i=1
Si log[w(xi;φ)]. (7)

The MLE of φ, denoted by φ̂, is the solution of the
subsequent formula

dl(φ|x)
dφ

=
M2

φ
+

M2

φ(1+ φ)
− u(x)+ S∗w1(τ ;φ)

+

∑M1

i=1
Siw1(xi;φ) = 0, (8)

where w1(xi;φ) =
xi
[
(1+φ)2eφxi−1

]
(1+φ)2w(xi;φ)

. It is crucial to point out
that Equation (8) is unable to be solved analytically. As such,
it is hard to get the MLE φ in explicit structure. Numerous
numerical schemes like the Newton-Raphson method can
yield the needed estimate. From (3) and (4), the MLEs R̂(t)
and ĥ(t) employing the invariance feature can be acquired as

R̂(t) = 1−

(
1+
ˆ̄φ

t

)
e−

φ̂
t

and

ĥ(t) =

(
φ̂
t

)2
(1+ t)[

t(1+ φ̂)
(
e

φ̂
t − 1

)
− φ̂

] .

Obtaining the ACIs of φ, together with the RF and HRF,
is the next task in this section. To accomplish this, we use the
asymptotic characteristics linked to the MLEs.

We initially take the inverse of the observed Fisher’s matrix
(V̂1) in order to estimate the variance of φ̂ where

V̂1 =
(
−
d2l(φ|x)
dφ2

)−1
φ=φ̂

,

where

d2l(φ|x)
dφ2 =

M2

(1+ φ)2
−

2M2

φ2 + S
∗w2(τ ;φ)+

M1∑
i=1

Siw2(xi;φ),

where w2(xi;φ) =
xi
[
xi(1+φ)3eφxi+2

]
(1+φ)3w(xi;φ)

− w2
1(xi;φ). It is simple

to find the standard error for the estimate φ̂, represented by
ŜE1, by taking the square root of V̂1. Then, the ACI of φ can
be expressed as, given any significance level, say α,

φ̂ ± z α
2
ŜE1,

with z α
2
is the upper (α

2 )
th standard normal percentile point.

However, in order to acquire these ACIs for the RF
and HRF, we have to first acquire the SEs linked to their
relevant MLEs. This can be accomplished by using the delta
method (DM). The DM is a very commonly used approach to
approximate the variances of complex functions.

To apply it, we require to get the derivatives of R(t) and
h(t) regarding the unknown parameter φ as given below

dR(t)
dφ
=

φ̄e−
φ
t [1+ v(t;φ)]
tq(t;φ)

and

dh(t)
dφ
=

φ(1+ t)
{
e−

φ
t [v(t;φ)+ φ2]− v(t;φ)

}
t2
{
φ + q(t;φ)[1− e−

φ
t ]
}2 .

where q(t;φ) = t(1 + φ) and v(t;φ) = q(t;φ) + 2t . Let
D̂1 =

dR(t)
dφ

∣∣
φ=φ̂

and D̂2 =
dh(t)
dφ

∣∣
φ=φ̂

. Then, the respective

estimated variances of theMLEs R̂(t) and ĥ(t) can be obtained
as

V̂2 ≈ D̂1V̂1D̂⊤1 and V̂3 ≈ D̂2V̂1D̂⊤2 .
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Now, we can calculate the ACIs for R(t) and h(t) as

R̂(t)± z α
2
ŜE2, and ĥ(t)± z α

2
ŜE3,

respectively, where ŜE j =
√
V̂j, j = 2, 3.

III. BAYESIAN ESTIMATION
The BEs and BCIs for φ, R(t), and h(t) are examined in
this section. The ability of the Bayesian method to integrate
historical data about the unknown parameter with the
available observed data makes it a very valuable estimation
technique. The technique improves statistical inference’s
effectiveness when compared with classical ones. From the
perspective of the Bayesian paradigm, determining the prior
knowledge which indicates our understanding about the
studied parameter is the first step.

In this instance, we use the same assumption as Sharma
et al. [2], who took the gamma PDF into account as a prior
distribution for φ, in the following form

g(φ) ∝ φa−1e−bφ, φ > 0, a, b > 0. (9)

The observed data provided by the LF, as given by (6), can
be combined with previously available information, as given
by the prior knowledge in (9), to derive the posterior PDF of
φ as follows

G(φ|x) =
φa+M2−1φ̄M2

A
[w(τ ;φ)]S

∗

e−φ[b+u(x)]

×

∏M1

i=1
[w(xi;φ)]Si , (10)

where A =
∫
∞

0 L(φ|x)g(φ)dφ.
For the parameter φ or any function on it, say π (φ), the BE

using the SELF can be acquired as

π̃B(φ) = A−1
∫
∞

0
π(φ)φa+M2−1φ̄M2 [w(τ ;φ)]S

∗

e−φ[b+u(x)]

×

M1∏
i=1

[w(xi;φ)]Sidφ. (11)

As predicted, the ratio of integrals in (11) prevents finding
a closed form for the BE π̃B(φ). To create a solution around
this problem and obtain both the necessary BE and the BCI,
we recommend to use the MCMC process.

Before using the MCMC technique, it is required to
ascertain whether the posterior distribution matches any
well-known distribution. It is obvious that the posterior
distribution in (10) cannot be described by any well-known
distribution. The Metropolis-Hastings (M-H) procedure is
suited in the present instance for collecting the necessary
samples from (10) with normal proposal distribution (NPD).
To collect MCMC samples and obtain the BEs and BCIs,
follow the steps reported in Algorithm 1.

Algorithm 1 The MCMC Method in Bayesian Setup
Input: Size of iterations H and the size of burn-in H⋆

Input: Set j = 1
Input: Set φ(0)

= φ̂

Output: Get φ(j) by M-H steps from G(φ|x)
1: for j← 1toH do
2: Create φ∗ from N (φ̂, V̂1)
3: Obtain ξφ = min

{
1, G(φ∗|x)

G(φ(j−1)|x)

}
4: Generate a variate u from U (0, 1)
5: if (u ⩽ ξφ) then
6: Set φ(j)

= φ∗

7: end if
8: if (u > ξφ) then
9: Set φ(j)

= φ(j−1)

10: end if
11: end for
12: return j = j+ 1
13: return Repeat j to H and set H̄ = H−H⋆

Output: Get
(
φ(j),R(j), h(j)

)
, j = H⋆

+ 1, . . . , H

Output: Compute the BE of φ as φ̃B =
1
H̄

H∑
i=H⋆+1

φ(j)

Output: Compute the BE of R(t) as R̃B = 1
H̄

H∑
i=H⋆+1

R(j)

Output: Compute the BE of h(t) as h̃B = 1
H̄

H∑
i=H⋆+1

h(j)

14: for j← H⋆
+ 1toH do

15: Order φ(j) as φ[H⋆
+1] < · · · < φ[H]

16: Order R(j) as R[H
⋆
+1] < · · · < R[H]

17: Order h(j) as h[H
⋆
+1] < · · · < h[H]

18: end for
Output: Get the BCI of φ as

{
φ[(H̄) α

2 ], φ[(H̄)(1− α
2 )]
}

Output: Get the BCI of R(t) as
{
R[(H̄) α

2 ],R[(H̄)(1− α
2 )]
}

Output: Get the BCI of h(t) as
{
h[(H̄) α

2 ], h[(H̄)(1− α
2 )]
}

IV. E-BAYESIAN ESTIMATION
The hyper-parameters in the standard Bayesian estimation are
regarded as constants. The method of E-Bayesian estimation
is another strategy that considers the hyper-parameters
as random variables with known probability distributions.
Han [23] is the first to examine this method in order to obtain
the exponential distribution estimation. Numerous authors
have up to this point, explored this method for examining
specific E-Bayesian estimation problems related to various
statistical models. Consider, for instance, Okasha and Wang
Han [24], Yousefzadeh [25] and Athirakrishnan and Abdul-
Sathar [26]. According to the E-Bayesian approach, the EBE
is obtained by taking the expected value of the standard BE
with respect to the joint hyper-parameter distribution. Let
p(a, b) be the joint hyper-parameters probability distribution.
Then, for the IL distribution with the IAPT-IIC data, the EBE
of π(φ), can be expressed as

π̃EB(φ) =
∫ ∫

�

π̃B(φ) p(a, b) da db, (12)

101832 VOLUME 12, 2024



I. Elbatal et al.: Bayesian and E-Bayesian Reliability Analysis

where � refer to the domain of the hyper-parameters a and
b, while π̃B(φ) refers to the BE of the parameter π (φ). It is
important to build the joint PDF of the hyper-parameters
(a, b) to ensure that the prior distribution of the φ is a
decreasing function of φ, as noted by Han [23]. It is evident
that the gamma distribution is capable of achieving this
feature when 0 < a < 1 and b > 0. Thus, in our case, the
beta distribution is chosen to be the probabilistic density of
the hyper-parameter a.
Alternatively, the uniform probability distribution on the

interval (0, c) is used as the distribution of the hyper-
parameter b. Following this, the combined PDF of a and b
(say p(a, b)) can be formulated as

p(a, b) =
aκ−1(1− a)ν−1

c B(κ, ν)
, 0 < a < 1, 0 < b < c, κ, ν > 0.

(13)

From (11) and (13), one can get the EBE of π(φ) as given
below

π̃EB(φ) =
∫ c

0

∫ 1

0
π̃B(φ)

aκ−1(1− a)ν−1

c B(κ, ν)
da db. (14)

Analogously to the Case of obtaining the BEs and BCIs in
the preceding section, the integrals in (14) render the work
of obtaining the EBEs extremely challenging. We consider
applying the MCMC approach to obtain the necessary
estimations in order to get around this problem as proposed by
Nassar et al. [27]. This MCMC procedure work by generating
the parameters a and b from the beta and uniform densities
instead of setting their values as constants. Rather than setting
the weights of the hyper-parameters a and b as constants, the
MCMC algorithm generates them from the beta and uniform
distributions. The required samples can be generated, and the
EBEs and EBCIs of the relevant parameters can be obtained
by following the steps described in Algorithm 2.

V. NUMERICAL COMPARISONS
We utilize simulations in this part to assess the accuracy
and practicality of the estimates for a IL’s parameters and
reliability measurements. We use the IAPT-IIC mechanism
1,000 times to evaluate the findings of φ, R(t), or h(t)
from IL(0.75). When t = 0.1, the estimates of R(0.1) =
0.99708 and h(0.1) = 019613 are considered.
We also choose values for n which can be 40 or 80, τ1(=

0.5, 1.5), τ2(= 0.8, 2.8), and m is the percentage of failures
such as 50% or 75% of each n. Also, for every combination
of numbers (n,m), we also look at different PT-IIC designs S
as

S1 :
(
n− m, 0m−1

)
, S2 :

(
0
m
2 −1, n− m, 0

m
2

)
,

and

S3 :
(
0m−1, n− m

)
,

where, for example, 1m means 1 is repeated m times.
Once we collect 1,000 IAPT-IIC samples, we will use the

Algorithm 2 The MCMC Method in E-Bayesian Setup
Input: Size of iterations D and the size of burn-in D⋆

Input: Set j = 1
Input: Set φ(0)

= φ̂

Input: Get a(j) and b(j) from beta and uniform distributions,
respectively

Output: Get φ•(j) by M-H steps from G(φ|x)
Output: Get R•(j) and h•(j) by setting φ•(j) in place of φ.
1: return j = j+ 1
2: return Repeat j to D and set D̄ = D− D⋆

Output: Get
(
φ•(j),R•(j), h•(j)

)
, j = D⋆

+ 1, . . . , D

Output: Get the EBE of φ as φ̃EB =
1
D̄

D∑
i=D⋆+1

φ•(j)

Output: Get the EBE of R(t) as R̃EB = 1
D̄

D∑
i=D⋆+1

R•(j)

Output: Get the EBE of h(t) as h̃EB = 1
D̄

D∑
i=D⋆+1

h•(j)

3: for j← D⋆
+ 1toD do

4: Order φ•(j) as φ•[D
⋆
+1] < · · · < φ•[D]

5: Order R•(j) as R[D
⋆
+1] < · · · < R[D]

6: Order h•(j) as h•[D
⋆
+1] < · · · < h•[D]

7: end for
Output: Get the EBCI of φ as

{
φ•[(D̄) α

2 ], φ•[(D̄)(1− α
2 )]
}

Output: Get the EBCI of R(t) as
{
R•[(D̄) α

2 ],R•[(D̄)(1− α
2 )]
}

Output: Get the EBCI of h(t) as
{
h•[(D̄) α

2 ], h•[(D̄)(1− α
2 )]
}

‘maxLik’ package (by Henningsen and Toomet [28]) to find
the acquired classical point and interval estimations for all
unknown parameters.

Next, the BEs and EBEs as well as their BCIs and
EBCIs of φ, R(t), or h(t) are computed by the ‘coda’ (by
Plummer et al. [29]) package. To show the implementation
of the proposed gamma information, by simulating 5,000
past-complete samples (with n = 50) from IL(0.75),
we took the values of (a, b) as (89.28626,117.5833). In
E-Bayes’ calculations, we set (κ, ν, c) as (10,5,1). Following
Section III, we set H = 12, 000 and B = 2, 000. The average
point estimates (APEs), root mean squared errors (RMSEs),
mean absolute biases (MABs), average confidence lengths
(AILs), and coverage percentages (CPs) of φ (for example)
are obtained by

APE(φ̇) =
1

1000

1000∑
i=1

φ̇j,

RMSE(φ̇) =

√√√√ 1
1000

1000∑
i=1

(
φ̇j − φ

)2

MAB(φ̇) =
1

1000

1000∑
i=1

∣∣∣φ̇j − φ

∣∣∣,
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AIL:(1−α) (φ) =
1

1000

1000∑
i=1

(
Uφ̇j − Lφ̇j

)
,

CP(1−α) (φ) =
1

1000

1000∑
i=1

1∗∗(
L

φ̇j ;Uφ̇j

) (φ),

respectively, where φ̇j is the desired estimate of the parameter
φ at ith sample, 1∗∗(·) is an indicator.
In Tables 1-3, the APE, RMSE, and MAB are listed in the

1st, 2nd, and 3rd columns, respectively. In Tables 4-6, the AIL
and CP are listed in the 1st and 2nd columns, respectively.
From Tables 1-6, we can report the following comments in
terms of the lowest level of RMSEs, MABs, and AILs as well
as the highest level of CPs:
• All received estimates for φ, R(t), or h(t) created by all
suggested methodologies behaved well.

• As n raises, all estimates of φ,R(t), and h(t) act well. The
same note is also reached when m increases or

∑m
i=1 Ri

deceases.
• As τ1 and τ2 increase, all simulated findings of φ, R(t),
or h(t) become even better.

• Based on the prior information via gamma distribution,
the point and credible interval estimations formed by the
Bayes’ setup for all studied parameters perform satisfac-
torily when compared to the likelihood estimates.

• Based on the uniform and gamma distributions as
probabilistic distributions for the hyper-parameters, the
point and credible findings acquired using the E-Bayes’
setup for all studied parameters operate effectively when
versus those created from the Bayesian or likelihood
approaches.

• Comparing the suggested removal plans Si for i =
1, 2, 3, the offered results of φ (founded by S1) and of
R(t) or h(t) (using S3) servemore acceptable than others.

• As a guideline, in the case of data generated by the
suggested mechanism, the studied IL model parameters
should be estimated using the E-Bayes approach.

VI. DATA APPLICATIONS
This part of the study examines two groups of actual data from
engineering and medical areas to notice how the estimating
strategies operate in genuine life.

A. ENGINEERING DATA
We shall analyze here an engineering data set describing
the failure durations for fifty parts (in 1000 h) presented by
Murthy et al. [30]. Henceforth, we’ll refer to this type of data
as Murthy’s data set. Table 7 presents the new transformed
time points after each item is multiplied by ten times.

First, we need to see if the IL model works well with the
provided data or not. Before continuing, we calculate the
MLE(standard error (Std.Er)) of φ and Kolmogorov-Smirnov
(K-S) with its p-value. Therefore, the MLE(Std.Er) of φ

is 2.1788(0.2491) and the K-S (p-value) is 0.1586(0.162).
Therefore, it can be concluded that the IL distribution is an

TABLE 1. Point estimations of φ.

TABLE 2. Point estimations of R(t).

effective model for analyzing Murthy’s data. To indicate that
the MLE of φ exists and is unique, Figure 1(a) depicts the
log-likelihood function of φ. It suggests that the acquired
MLE φ̂ ∼= 2.1788 from the complete data exists and is
also unique. We offer this estimate as a trustworthy starting
point for future calculations. Figures 1(b)-1(c) display graphs
of estimated reliability and density functions. These graphs
reveal the same outcomes as Figure 1(a).

To evaluate the acquired theoretical findings of φ, R(t), and
h(t) fromMurthy’s data group, by fixingm = 25 and different
options of S and τi for i = 1, 2, three IAPT-IIC data sets are
created; see Table 8. Subsequently, from Table 8, the point
estimates (along with their Std.Ers) as well as the interval
estimates (with their widths) developed by the maximum
likelihood, Bayes, and E-Bayes approaches of φ, R(t), and
h(t) at t = 1 are computed; see Table 9. In Table 9, for each
parameter, the first row shows the obtained measure using the
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TABLE 3. Point estimations of h(t).

TABLE 4. Interval estimations of φ.

MLE. The second row is based on the BE, while the third row
is based on the EBE.

All Bayes and E-Bayes evaluations are done by setting
H = 40, 000 and B = 10, 000. To develop the E-Bayes
inferences, without loss of generality, we assumed that κ =

ν = c = 1. The results in Table 9 illustrate that the EBEs
and EBCIs outperform all other estimates in terms of lowest
Std.Ers and Widths.

Figure 2 illustrates the log-likelihood curve for all
IAPT-IIC samples from Murthy’s data for varied choices
of φ, demonstrating that the newly obtained φ̂ exists and
is unique. It supports the same conclusions provided in
Table 9 and advises using the value of φ̂ in every sample
as a starting guess for the needed Bayes’ and E-Bayes’
assessments. Based on sample A (as an example), Figures 3
and 4 show density and trace plots of φ, RF, and HRF to show
their convergence state. The solid and dashed lines represent

TABLE 5. Interval estimations of R(t).

TABLE 6. Interval estimations of h(t).

TABLE 7. Time points of 50 components.

the sample mean and 95% credible boundaries, respectively.
Figures 3 and 4 demonstrate that the collected Markovian
variates of all parameters converge adequately. It likewise
indicates that the Bayes iterations of φ are substantially
symmetrical, while those for RF and HRF are negatively
and positively skewed, respectively. The similar conclusion
is also drawn in the case of E-Bayes iterations. The plots
established in instances B and C are offered as supplemental
materials.
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FIGURE 1. Diagrams for fit of the IL model from Murthy’s data.

B. MEDICAL DATA
In this part, from the medical domain, we analyze a realistic
data set consisting of 45 annually survival spans of a set
of patients who acquired only chemotherapy therapy; see

TABLE 8. Three IAPT-IIC samples from Murthy’s data.

TABLE 9. Estimates of φ, R(t), and h(t) from Murthy’s data.

Bekker et al. [31]. In Table 10, each number in the patients’
data is scaled up by hundred to facilitate handling. Before
delving into the developed estimations, one question is
whether the IL lifetime model coincides with the provided
data or not. From Table 10, the MLE(Std.Er) of φ is
42.005(6.1277), while the K-S(p-value) is 0.1586(0.186).
This means that the IL model suits the patient’s data group
satisfactorily. Figure 5(a) exhibits that the acquired MLE
φ̂ ∼= 42.005 from the full patient data exists and is also
unique. To perform the next calculations, we use this estimate
as a good starting value. Figures 5(b)-5(c), which display
estimated reliability and density lines, support the fitting
result.

Just like the same calculation scenarios presented in
Subsection VI-A, from Table 10, different IAPT-IIC samples
with specified m = 20 and different alternatives of τi, i =
1, 2, and Si, i = 1, . . . ,m are created; see Table 11.
In Table 12, the results of φ, R(t), and h(t) (at t = 20)

101836 VOLUME 12, 2024



I. Elbatal et al.: Bayesian and E-Bayesian Reliability Analysis

FIGURE 2. The log-likelihoods of φ from Murthy’s data.

are presented. The results in Table 12 demonstrate that the
EBEs and EBCIs for the various parameters function better
than all others. To demonstrate the existence and uniqueness

FIGURE 3. The density (left) and trace (right) plots of φ, R(t) , and h(t)
using BE method from Murthy’s data.

TABLE 10. Survival times for 45 patients.

TABLE 11. Three IAPT-IIC data sets from patient data.

properties of φ̂, Figure 6 displays the log-likelihood curves
of φ. It indicates that the acquired estimates of µ̂ based on all
samples exist and are unique.

To see the convergence status of the acquired Bayes
and E-Bayes estimates, employing sample A (for instance),
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FIGURE 4. The density (left) and trace (right) plots of φ, R(t) , and h(t)
using EBE method from Murthy’s data.

TABLE 12. Estimates of φ, R(t), and h(t) from patient data.

Figures 7 and 8 display both the density and trace plots of φ,
RF and HRF. It shows that the simulated Bayes and E-Bayes
variates converge well. It also shows that all Bayes and

FIGURE 5. Diagrams for fit of the IL model from patient data.

E-Bayes findings of φ, R(t), and h(t) are symmetric, as well
as supporting the same characteristics listed in Table 12.
Additionally, in the supplemental file, the Bayes and E-Bayes
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FIGURE 6. The log-likelihoods of φ from patient data.

plots of φ, RF and HRF based utilizing samples B and C are
given.

FIGURE 7. The density (left) and trace (right) plots of φ, R(t) , and h(t)
using BE method from patient data.

FIGURE 8. The density (left) and trace (right) plots of φ, R(t) , and h(t)
using EBE method from patient data.

VII. CONCLUDING REMARKS
Performing a novel censoring plan, namely an improved
adaptive Type-II progressively censoring, this paper
compared various estimations using themaximum likelihood,

VOLUME 12, 2024 101839



I. Elbatal et al.: Bayesian and E-Bayesian Reliability Analysis

Bayesian, and E-Bayesian estimation approaches for the
inverted Lindley model. The asymptotic confidence and
credible ranges using both Bayesian and E-Bayesian
approaches for each unknown parameter are also obtained.
Utilizing the squared error loss under the presumption of
gamma prior, all point and interval estimations developed
using both Bayesian setups are computed via the MCMC
approximation procedure. Several Monte Carlo simulations
are conducted based on four accuracy metrics to notice the
efficiency of the various point and interval approaches. Two
real-life applicable examples using data groups from the
engineering and medical domains are discussed to confirm
the relevancy of the proposed setups to real-life statuses.
The numerical investigation yields indicated that the E-Bayes
paradigm supplies acceptable point estimates and adequate
credible intervals compared to its competitive paradigms.
As a result, the analysis results using the proposed censoring
scheme from the engineering and medical data sets provide a
good justification for the inverted Lindley model, support the
simulation conclusions, and demonstrate the applicability of
the presented strategies in various practical situations.
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