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ABSTRACT In the imaging process of Complementary Metal Oxide Semiconductor (CMOS) image sensor,
noise is inevitably introduced at various stages. This effect is particularly serious when detecting weak
signals, such as ultraviolet light. Through theoretical analysis of CMOS noise, we deduce that the main noise
under illumination is non-uniformity noise by averaging the images to eliminate granular noise. Existing
image denoising methods rely on simulated noise, which perform poorly when applied to real detectors.
To address this issue, we establish a novel CMOS image dataset. Initially, we obtain the non-uniformity noise
blocks from the CMOS imaging system designed in this paper. Then, we utilize a GAN network to augment
the noise data. Next, we randomly combine these noise blocks with high-quality images from the DF2K
dataset to form paired image datasets. In recent years, the development of various deep learning algorithms
has significantly improved the effectiveness of image noise reduction compared to traditional algorithms.
This paper combines convolutional neural network and proposes the MSR-Net denoising algorithm, which
is based on the U-Net network and incorporates the Res2Netmodule as its main network structure. It provides
features with different scale receptive fields and enhances image details. Additionally, to more accurately
reflect the visual perceptual effects of the images, we propose a novel image evaluationmetric, Uniform pixel
outliers (UPO), making the image evaluation more adequate. Experiments were conducted on our proposed
image dataset, results indicate that compared with similar noise reduction algorithms, this method performs
better in both qualitative and quantitative aspects, effectively suppressing noise dominated by non-uniform
noise.

INDEX TERMS CMOS image sensors, convolutional neural network (CNN), FPGA, real image, real noise,
image denoising.

I. INTRODUCTION
Deep space exploration includes lunar, planetary, interplan-
etary, and interstellar exploration. It can help human under-
stand Earth, study the formation and evolution of the solar
system and the universe, and lay the foundation for the
investigation, exploration, and settlement of the solar sys-
tem. In the field of deep space exploration, the ultraviolet to
far-ultraviolet range (50-380 nanometers) is commonly used
for remote sensing of celestial bodies within the solar system

The associate editor coordinating the review of this manuscript and

approving it for publication was Jeon Gwanggil .

[1], [2], [3], [4]. However, signals in this wavelength range are
extremely weak and can be easily affected by environmental
and detector influences. Therefore, imaging sensors used in
deep space exploration need to possess characteristics of low
noise and high sensitivity. Currently, making breakthroughs
in improving image systems through hardware equipment
is challenging. Using algorithms for noise correction is a
simpler and more effective approach.

Complementary Metal Oxide Semiconductor (CMOS)
image sensors are commonly accompanied by various types
of noise, including reset noise, photon shot noise, dark cur-
rent noise, and non-uniformity noise. Various noise reduction
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methods for CMOS sensors have been proposed, which can
be categorized into additive noise and multiplicative noise
based on their modes of action. Gaussian white noise is
often treated as additive noise in denoising processes. Tra-
ditional denoising techniques such as BM3D [5], bilateral
filtering, and Gabor utilize linear interpolation between mul-
tiple reference images for correction [6]. Additionally, deep
learning based algorithms such as CBDNET [7], DANet
[8], Dual-GAN [9], are effective in handling additive noise.
Multiplicative noise, predominantly influenced by CMOS
non-uniformity, is addressed by Kang et al. [10], who assume
Gaussian white noise for the PRNU (photo response non-
uniformity) noise under ideal circumstances. They achieve
non-uniformity noise handling by utilizing Fourier transfor-
mation to retain only the phase components of the noise
residue. Rao and Wang [11] propose a method to suppress
these interference noises by decorrelating them.

While the algorithms mentioned above have demonstrated
effective denoising capabilities, many of them rely on noise
models obtained through simulation. This approach often
struggles to accurately characterize real noise components,
leading to processing outcomes on images from real-world
scenarios that may not meet expected standards. To clarify
the characteristics of the noise, we conducted a detailed
analysis of CMOS sensor noise. We identified that after
averaging multiple frames to eliminate shot noise, multiplica-
tive noise (especially PRNU) dominates. Consequently, our
primary focus is on removing multiplicative noise. Diverg-
ing from the approach of establishing noise models through
simulation, we collected a real dataset of non-uniformity
noise by constructing a CMOS imaging system. Additionally,
we employed the GAN network to generate samples that are
challenging to distinguish from real data. We propose the
Multistage Supervised Residual Net (MSR-Net), which based
on the U-Net architecture as the primary denoising model.
After processing with theMSR-Net, the non-uniformity noise
is reduced from 1.3% to 0.3%, and the visual quality of the
image is also significantly improved.

Briefly, the main contributions of this paper are as follows:
1) We established a comprehensive CMOS imaging sys-

tem and conducted measurements of the system indi-
cators.

2) We modeled CMOS noise, revealing that after aver-
aging the images to eliminate granular noise, the pri-
mary noise under illumination is non-uniformity noise.
We constructed an optical testing platform, collected,
and established a dataset of CMOS non-uniformity
noise. Additionally, we employed GAN networks for
data augmentation of the noise dataset.

3) We proposed the Multistage Supervised Residual Net
(MSR-Net) denoising network and conducted testing
on the real noise dataset, achieving favorable results.

4) We introduced a new image evaluation metric, Uni-
form Pixel Outliers (UPO), designed to offer a more
authentic representation of the visual perceptual impact
of images.

The remainder of this article is organized as follows. We pro-
vide a brief introduction to the CMOS imaging system in
Section II. In Section III, we present a theoretical analysis of
the noise model of the CMOS image sensor, followed by the
practical system measurement method and data analysis in
Section IV. In Section V, we provide experiments including
the MSR-Net structure and comparison results with various
methods. Finally, we conclude this article in Section VI.

II. IMAGING SYSTEM DESIGN
The CMOS imaging system employs Field Programmable
Gate Array (FPGA) as the control core. The overall system
diagram is illustrated in FIGURE 1, including the power
module, CMOS driver, image reception and processing,
and system communication. The Gpixel GSENSE400BSI
is employed as the CMOS image sensor in this study.
It features a resolution of 2048 × 2048 and operates as
a back-illuminated sensor with a peak quantum efficiency
reaching 95%. The system frame rate can be adjusted by
FPGA, achieving a maximum frame rate of 48 fps at a max
resolution. The implementation of the high-speed parallel
architecture in this paper is primarily divided into three parts.

FIGURE 1. CMOS system design block diagram.

Firstly, the CMOS image sensor is driven by FPGA, con-
verting optical signals to digital signals within the chip and
outputting 8 channels of Low-Voltage Differential Signaling
(LVDS) data, with each pixel represented by 12 bits. Due to
variations in PCB routing and external environmental con-
ditions (such as temperature), issues arise in multi-channel
high-speed data transfer, leading to delays in data synchro-
nization between channels and disparities between data and
clock signals. Therefore, formal image data preprocessing
and correction are necessary within the FPGA. Subsequently,
after calibration, pixel signals are buffered through RAM,
enabling real-time data transmission through a Ping-Pong
operation. Eventually, the image is sent to the upper com-
puter, with the CMOS outputting 12-bit data at a rate of
200 million per second. Finally, the Camera Link Medium
mode is adopted to output camera control timing signals
and valid data, allowing image inspection through ground
detection equipment.
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III. CMOS IMAGE SENSOR NOISE MODEL
In a CMOS imaging system, noise is introduced at various
stages, including during the photoelectric conversion, uneven
signal enhancement, AD sampling noise, dark current, etc.
The generation and injection mechanisms of these noises are
diverse. A typical column-level CIS structure is illustrated
in FIGURE 2. After photoelectric conversion, the pixels are
output row by row through the row decoder. After passed
through PGA (Programmable Gain Amplifier), the output
voltage is read out through correlated double sampling. The
pixels in the same column share an AD to complete the
analog-to-digital conversion.

FIGURE 2. Structure of column level CIS.

The 4T-APS pixel structure, as illustrated in FIGURE 2,
is comprised of a photodiode (PD), a transfer transistor,
a reset transistor, a source follower, and a row-select transis-
tor. This 4T-APS configuration allows for the storage of the
reset voltage signal, facilitating correlated double sampling
[12], [13]. The signal acquisition output can be divided into
three stages. In the first stage, the reset transistor M1 and the
transfer transistor M2 are conducting. At this point, the FD
node completes the reset, and the pixel reset voltage is Vrst.

Vrst = VCC − Vth (1)

The second stage is the photoelectric conversion phase.
The reset transistor M1 and the transfer transistor M2 are
turned off. The photodiode PD generates photo-generated
electrons Qpd as shown in equation (2), where T is the inte-
gration time, Ipd is the photo-generated current produced by
PD, and Ileak is the dark current. The row select transistor M4
is turned on, and the reset voltage Vrst is output.

Qpd = (Ipd + Ileak )T (2)

The third stage is the photoelectron transfer phase. The
transfer transistor M2 and the row select transistor M4 are
turned on. The accumulated photoelectric in PD is transferred
to FD, converting into a voltage signal VFD, which is output
through the source follower:

VFD = Vrst −
Qpd

C
(3)

Therefore, the final output signal, after correlation dou-
ble sampling and q-bit analog-to-digital (AD) conversion,
is given by:

Ei,j =
Vrst − VFD

Vref
× 2q =

(Ipd + Ileak) × T

C×V ref
× 2q (4)

However, in practical CIS systems, noise is injected at
various stages [14], such as PD photoconversion, charge
transfer, signal readout, and the mechanisms behind the
generation of these noises are diverse. Due to the different
characteristic parameters of each pixel, the output signal
will be non-uniformity, known as fixed pattern noise (FPN).
This type of non-uniformity can be divided into dark signal
non-uniformity (DSNU) and photo response non-uniformity
(PRNU), depending on whether there is light. In the absence
of light, dark signal non-uniformity (DSNU) mainly origi-
nates from the non-uniformity of dark current, which is usu-
ally correlated with ambient temperature and linearly depen-
dent on exposure integration time:

NDSNU = Nd0 + NITexp (5)

Dark shot noise (SNdark) is generated by the pixel’s leakage
current [15], [16], following a Poisson distribution, and is
directly proportional to the integration time. The variance of
SNdark is equal to the mean of the dark current signal:

SN 2
dark = NDSNU (6)

We assume that the signal output in the ideal state is
represented as Ei,j. After introducing the dark shot noise, the
output signal ED is given by:

ED = Ei,j + NDSNU + SN dark (7)

Considering the influence of illumination, due to the
unevenness in the silicon chip and defects in the sensor manu-
facturing process, different pixels exhibit varying sensitivities
in their photodiodes, which leads to different output signal
values under identical illumination. This type of noise is
known as Photo-Response Non-Uniformity (PRNU). And the
photoelectric conversion charge follows the Poisson distribu-
tion, this type of noise is determined by fundamental physical
laws and applies to all photoelectric devices, which is referred
to as photon shot noise. Therefore, when considering illumi-
nation, the ideal signal can be expressed as:

Eph(I) = ED + Ei,jNPRNU + SNph(I)

= Ei,j + NDSNU + SNdark + Ei,jNPRNU + SNph(I)

(8)

Furthermore, the disparity between the CIS readout cir-
cuit and signal amplification circuit introduces readout noise
Nread, and Limited bit width for AD, the quantization error
Nq is introduced during the analog-to-digital conversion of
the output signal. As the CIS system in this study produces
grayscale images, other noise factors such as Bayer array non-
uniformity, demosaicing noise, and algorithmic enhancement
noise are not taken into consideration [17]. The final CIS
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output signal, incorporating all relevant noise components,
is given by:

Ecap = Ei,j + NDSNU + SN dark

+ Ei,jNPRNU + SN ph(I ) + Nread + Nq (9)

IV. MEASUREMENT OF THE CMOS IMAGING SYSTEM
A. SYSTEM CONVERSION GAIN
The system conversion gain corresponds to the relationship
between the signal from electrons (e-) to the measured value
(DN). For shot noise, which follows a Poisson distribution,
its noise equals the signal mean. Therefore, we can calculate
the CG using the following formula:

CG =
σ 2
yDN

µyDN
(10)

Therefore, we take 16 evenly spaced exposure times, and
for each exposure time, we collected L = 100 images to
obtain the mean and variance in the temporal domain:

σ 2
y =

1
LMN

L∑
l=1

∑M

i=0

∑N

j=0
(El,i,j − Ei,j)

2
(11)

µy =
1

LMN

∑L

l=1

∑M

i=0

∑N

j=0
(El,ij) (12)

FIGURE 3 illustrates the measurement results, where
the red line represents the linear fit of the measured
values, and the blue dots indicate the actual signal
values. We can observe that before the pixel signal
reaches full well capacity, the variance linearly increases
with the mean gray value. By fitting its linear regres-
sion curve, the system gains CG can be determined
as: CG_7.25x = 1.897 DN/e-, CG_4.95x = 1.26 DN/e-,
CG_1.29x = 0.353DN/e-, CG_0.66x = 0.169 DN/e-. It is
consistent with the system’s expected PGA gain change
factor.

FIGURE 3. Variance related to average gray of dark image for different
PGA.

B. DARK SIGNAL
Due to CMOS sensor fabrication defects, dark current Ileak is
generated on the photosensitive surface and depletion layer of
the sensor, which significantly affects the sensor’s dynamic

range and signal-to-noise ratio. From Equation (4) and (7),
the dark field signal is not constant in the absence of illu-
mination, the signal output is correlated with dark current,
integration time, dark field non-uniformity, and dark field
shot noise. Dark current remains nearly constant under con-
stant temperature conditions, temporal averaging and spatial
averaging of the image can eliminate non-uniformity and
shot noise from dark field signals. Therefore, under constant
temperature conditions, dark current µI can be calculated
based on the dark mean signalµdark and exposure integration
time Texp.

Four dark current measurement results for PGA gains rang-
ing from 0.66 to 7.25 are shown in FIGURE 4. The mean
signal under dark conditions linearly increases with exposure
time, exhibiting good linearity. The solid red line represents
the fitted curve of the measurement values and the blue dots
indicate the actual signal values. Dividing by the system gain
CG obtained in Section A, the dark current measurement
values with four different CG are 260 e-/s/pixel, 266.74 e-
/s/pixel, 269.8 e-/s/pixel, and 283.62 e-/s/pixel.

FIGURE 4. Average gray of dark image related to exposure time.

Due to the small measured values obtained during the dark
field signal measurement, the readout noise dominates the
noise source, introducing measurement errors. The readout
noise includes thermal noise σ 2

th, 1/f noise σ 2
1/f and shot noise

σ 2
floor. According to [18], [19], [20], and [21], the readout

noise can be expressed as (14), αth and α1/f in the equation
exhibit an inverse relationship with the CMS sampling order
M. This implies that the overall power spectral density of
readout noise is negatively correlated with the CMS transfer
function |HCMS(f)|2 andM.As the sampling order increases,
the area under the transfer function |HCMS(f)|^2 decreases.
However, since the CMOS has a fixed sampling order, the
only viable strategy is to mitigate readout noise by reducing
the temperature.

Qn,tot =

√
αthσ

2
th + α1/f σ

2
1/f + σ 2

floor (13)

C. SPATIAL NONUNIFORMITY
The spatial non-uniformity of the sensor primarily stems
from two sources: Dark Signal Non-Uniformity (DSNU) and
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PRNU. DSNU is independent of illumination and exhibits a
linear relationship with the exposure time. Thus, at a constant
exposure time (Texp), DSNU can be suppressed by subtract-
ing two images, one with illumination (bright field) and the
other without illumination (dark field). PRNU is also corre-
lated with the intensity of illumination, representing a form of
multiplicative noise. Traditional correction algorithms for the
non-uniformity of CMOS image sensors are primarily based
on the classical formula proposed by [22] as the generalized
model:

E = E0 + KE0 + 2 (14)

In this equation, E represents the actual output value of
the pixel in the imaging sensor. E0 represents the ideal output
of the imaging sensor. K refers to PRNU, which acts multi-
plicatively on E0 and is similar to the distribution of Gaussian
white noise. 2 represents the compound of other additive
noises during the image signal acquisition process, including
DSNU, shot noise, etc.

In accurately measure the non-uniformity noise, it is nec-
essary to suppress the influence of experimental environ-
mental errors and other noise sources from the imaging sys-
tem. We conducted the imaging experiments in a darkroom
environment, where we illuminated a diffuse reflectance
panel with an adjustable xenon lamp to create a uniformly
adjustable light source. The CMOS image system was posi-
tioned within a 30◦ range of the normal line of the reflectance
panel to capture images. It can be considered that all pixels
receive the same intensity of light. Simultaneously, set the
light intensity to more than 50% of the CMOS saturated
brightness to reduce the impact of CMOS dark current.

FIGURE 5. Schematic diagram of the Nonuniformity noise testing system.

PRNU can be calculated as:

PRNU =

√
s2y − s2dark

µy − µdark
(15)

where s2y and µy represent the spatial variance and mean of
the bright field image, s2dark and µdark are the spatial variance

and mean of the dark field image. According to actual mea-
surements, the sensor PRNU is about 1.3%.

Under different light intensities, the proportion of each
noise component differs. To evaluate the impact of individ-
ual noises, the Signal-to-Noise Ratio (SNR) is introduced,
(16), as shown at the bottom of the page.

According to system test results. Ndark = 260 e−/s/pixel,
so it can be ignored under microsecond exposure time.We set
NPRNU = 1.3%, Nread + Nq = 20,SN2ph(I) = µp, NDSNU
can also be negligible under short exposure times. FIGURE 6
illustrates the relationship between SNR and the mean value
of photoelectrons µp. Sensor noise consists only of photon
shot noise in ideal conditions [23]. The ideal SNR is the dot-
ted line SN_ideal shown in the graph. The dotted line SNRread
in the graph represents the signal-to-noise ratio including
only Nread and Nq, and the dotted line SNRPRNU represents
the SNR including only NPRNU.

FIGURE 6. SNR with each noise source.

From FIGURE 6, it can be concluded that, readout noise
and quantization noise dominate at low signal levels. Pho-
ton shot noise becomes dominant at moderate signal levels
and the non-uniformity becomes predominant at high signal
levels. Based on the previous analysis, the non-uniformity
in the CMOS imaging system predominates the noise under
illumination, and the larger the illumination, the greater the
proportion. Therefore, after averaging to eliminate temporal
noise such as shot noise, the CMOS signal can be simplified
to a multiplicative noise model, expressed as E = KE0. There
have been many works on image non-uniformity processing
based on such generalized models, such as BM3D [24], bilat-
eral filtering, Fourier transform and Simulate realistic noise
using multivariate Gaussian models and Bayesian non-local
methods [25]. However, the methods mentioned above still
cannot accurately simulate real CMOS images. The actual
image non-uniformity goes beyond the expressions of the
mentioned models. It also depends on the stability of testing
conditions and the testing pixels. In real exposure scenarios,

SNR = 20log[
ηµp√

N 2
DSNU + SN 2

dark + (NPRNU × ηµp)2 + SN 2
ph(I ) + N 2

read + N 2
q

] (16)
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the non-uniformity among pixels varies with different expo-
sure times or under different lighting conditions. FIGURE 7
shows the normalized image after temporal averaging under
the flat-field illumination with different exposure times in the
real test scene. It can be observed that there is a noticeable
variation in the non-uniformity of the CMOS sensor at dif-
ferent exposure times. Therefore, in this paper, we collect a
dataset under various exposure times and intensities in real
testing conditions. Use convolutional neural network training
model to eliminate sensor non-uniformity under different test
conditions.

FIGURE 7. Spatial Nonuniformity under different exposure time with
normalization processing.

V. NONUNIFORMITY CORRECTION
Based on the previous analysis, we simplify the CMOS signal
output into a noise model dominated by non-uniformity:

E = KE0 (17)

where E0 represents the noise-free image, E is its correspond-
ing real noisy signal, and K is the non-uniformity noise. Thus,
the mapping relationship can be expressed as:

E0 = F(E) (18)

A. SYSTEM CONVERSION GAIN
Based on the analysis of noise in the previous sections,
the non-uniformity noise in a real system is complex and
challenging to model through mathematical analysis. Tra-
ditional denoising algorithms may lead to the loss of crit-
ical structural details in the image. In such cases, deep
learning-based approaches have achieved superior denoising
effects. Therefore, we propose Multistage Supervised Resid-
ual Denoise Net (MSR-Net) based on convolutional neural
networks. Its main structure is shown in FIGURE 8. The
network consists of image estimate denoise module (ImgEst
Module) and noise estimation module (NosEst Module).

The NosEst Module is a noise estimation sub-network,
which outputs an estimated noise map of the same size as
the input image, that is used to eliminate unreasonable bright
spots. Its structure consists of multiple residual modules
of Res2Net-SE. Multiple residual blocks enhances network
depth and increases network capacity.

The ImgEst Module combines the noisy image with the
estimated noise image as its input. Its main structure is
based on the traditional U-Net network. The U-Net network

comprises encoding, decoding, and skip connections, which
allows for the acquisition of features at multiple scales,
enriching the representation of image characteristics and
ensuring a more comprehensive capture of image details.
On this foundation, Res2Net residual blocks and SE (Squeeze
and Excitation) modules, proposed by Gao et al. [26], are
incorporated into each layer of the U-net. Res2Net is a novel
residual structure that can obtain different scale receptive
field features by setting the convolution kernel scale dimen-
sion of Res2Net. Simultaneously, the residual connections
aid in establishing contextual connections and has the capa-
bility for multi-channel adaptive modulation. In this work,
we enhance the richness of image details by configuring
convolution kernel of each layer of Res2Net to different
sizes. The U-Net network involves three scales, which are
encoded and decoded through PixelShuffle, UnpixelShuffle
and convolution kernels [27], [28], [29].

B. LOSS FUNCTIONS
Loss functions inMSR-Net include Pixelwise Loss and Noise
estimate loss.

1) PIXELWISE LOSS
To encourage the denoising network output to have matching
pixel levels and gradient levels with the ground truth image,
we use MSE and SSIM to supervise the estimated denoising
results and reference clean images. In constrain perceptual
similarity, a perceptual loss lvgg is to obtain by utilizing
pretrained VGG network to characterize the feature space
distance between images.

lMSE is the mean squared error between the predicted
image and the ground truth and can be written as:

lMSE =
1
WH

∑W

x=1

∑H

y=1
(prex,y − gtx,y)

2 (19)

The loss function lSSIM computes the similarity between
two images. The SSIM value ranges from −1 to 1, where a
higher SSIM indicates greater image similarity. And it can be
written as:

lSSIM = 1 − SSIM (pre− gt) (20)

lvgg is to obtain the perceptual similarity in the feature
space by introducing the pre-trained VGG19 model. lvgg can
be written as:

lVGG = (VGG (pre) − VGG (gt))2 (21)

2) NOISE ESTIMATE LOSS
to evaluate the noise estimation submodule, we calculate the
loss function by measuring the distance between the ratio of
estimated noise to true noise and 1.

lN =
1
WH

∑W

x=1

∑H

y=1
(
FN (yx,y)
Nx,y

− 1)2 (22)

3) FINAL LOSS

lGAN = λMSE lMSE + λSSIM lSSIM + λvgglVGG + λnlN (23)
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FIGURE 8. Overall framework of our proposed MSR-Net. (a) The architecture of the proposed model. (b) The various modules within the network.
(c) Res2Net module and SE block module.

C. DATASETS
We obtain high-quality images from existing image datasets
and add noise blocks representing the image non-uniformity
obtained from the CMOS imaging system designed in this
paper, based on the simplified noise model. Therefore, before
constructing the paired training dataset, it is necessary to
generate the non-uniformity noise blocks.

1) NOISE BLOCK CONSTRUCTION
At each combination of exposure time and intensity, captured
L = 2000 images, and the mean value of all pixels in each
group was taken as the ideal output value Et,ph.

Et,p h =

(∑L

l=0

∑M

m=0

∑N

n=0
El,m,n

)
· mean() (24)

Within each group, an average of P = 10 images are
computed to derive the correction image Si, aiming to mit-
igate granular noise. This process yields the uniformity noise
coefficient ki. In an ideal scenario, all ki values are equal.

ki =
Si
Et,ph

(25)

After obtaining the dataset K = (k1, k2 . . . , kl), In order to
improve the performance of the network, an effective method
is to model the real dataset K, use the GAN network to

generate more noise data, and expand the dataset for training.
This paper uses the existing BAGAN network to obtain the
expanded dataset K’ [30], [31].

2) PAIRED DATASET CONSTRUCTION
We use the DF2K dataset [32] as the real noise free image,
which includes two datasets: DIV2K and Flickr2K. There are
approximately 4000 real-world images captured in different
scenes, with an image size of 2K. In the experiment, all
these images were cropped to 256 × 256 and 3000 sets were
selected as the training set X. Crop another 500 sets of images
of the same size from the remaining scenes as the test set X∧.
Randomly add noise blocks from the expanded dataset K’
to the training set X and test set X∧, obtaining noisy image
sets Y and Y∧, where y = kx. Set Y and X form a paired
training dataset (x, y). At different training cycles, changing
the combination of x and noise k to obtain a new dataset (x,
y’), which can further enhance the dataset.

D. EVALUATION METRICS AND IMPLEMENTATION
DETAILS
To evaluate the quality of denoised images, we employ Peak
Signal-to-Noise ratio (PSNR) and Structure Similarity Index
Measure (SSIM) as quantitative evaluation metrics for the
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FIGURE 9. Visual demonstration of different methods for denoising in example 1. (a) Groud truth. (b) Noise image. (c) PMRID. (d) DANet. (e) CBDNET.
(f) BM3D. (g) Bilateral filter. (h) SRM. (i) CTNet. (j) ours.

FIGURE 10. Visual demonstration of different methods for denoising in example 2. (a) Groud truth. (b) Noise image. (c) PMRID. (d) DANet.
(e) CBDNET. (f) BM3D. (g) Bilateral filter. (h) SRM. (i) CTNet. (j) ours.

model. PSNR primarily reflects differences between pixels,
while SSIM primarily indicates the similarity between two
images.

We employed various approaches to denoise the same
noisy images, including five deep learning-based mod-
els: CBDNET [7],DANet [8], PMRID [33], SRM [34],
CTNet [35], and two traditional models: BM3D [5], bilat-
eral filtering [36]. We optimize the parameters by the Adam
optimization method and decay them by cosine anneal-
ing as training progresses. The specific training equipment
and experimental hyperparameter settings are presented in
TABLE 1.

E. QUANTITATIVE EVALUATIONS
To compare the effectiveness of the proposed method,
FIGURE 9-11 illustrate the representative results from the

TABLE 1. Implementation details.

dataset. The denoised images obtained by BM3D exhibit
excessive smoothing, resulting in the loss of details from
the original images. Bilateral filtering is not very effective
in handling multiplicative noise, as it can hardly remove
noise effectively. Although the DANet method can suppress
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FIGURE 11. Visual demonstration of different methods for denoising in example 3 of real-world image. (a) Groud truth. (b) Noise image. (c) PMRID.
(d) DANet. (e) CBDNET. (f) BM3D. (g) Bilateral filter. (h) SRM. (i) CTNet. (j) ours.

the noise, it still exhibits some unreasonable bright spots
and nonuniform noise. Additionally, due to the use of
adversarial loss, slight stripe artifacts can be observed. The
PMRID model exhibits poor generalization ability, result-
ing in increased brightness of the original image and still
containing a significant amount of noise points. The SRM
performs well, but this method makes the image appear too
smooth. The CBDNET and CTNet demonstrate excellent
noise suppression effects, nearly eliminating all unreasonable
pixel bright spots. However, they introduce smearing artifacts
and additional noise signals into the image. Furthermore,
some noticeable unreasonable bright spots are still present in
the image.

Therefore, in comparison, our proposed model demon-
strates strong performance across all images, effectively
removing image noise while preserving finer details and
cleanliness. This is attributed to the integration of the Res2
residual network within the U-Net architecture and the addi-
tion of perceptual loss. Leveraging Res2Net’s features, such
as residual connections and multi-scale fusion, enables finer
extraction of both local and global image features. Addi-
tionally, the integration of the Res2Net module enhances the
U-Net model’s capacity to adaptively adjust its denoising
strategies based on noise present in the input images. Overall,
the Res2Net-U-Net architecture offers a unique and effective
approach to noise reduction by leveraging the complementary
strengths of the U-Net architecture and the Res2Net mod-
ule. Compared to other architectures, it excels in capturing
multi-scale contextual information, learning nonlinear fea-
ture mappings, and adapting to different noise characteristics,
making it suitable for various denoising scenarios.

F. QUANTITATIVE EVALUATIONS
For quantitative evaluations, we utilize Peak Signal-to-Noise
ratio (PSNR) and Structure Similarity IndexMeasure (SSIM)
as quantitative evaluation metrics to assess the model’s

performance. However, it’s important to note that high scores
in either metric alone may not fully capture the true denoising
capability of the model.

TABLE 2 presents the evaluation results of various meth-
ods on the datasets. The performance of the two test sets is
generally similar. Traditional methods exhibit relatively poor
denoising capability. BM3D introduces excessive smooth-
ing, which results in blurred image details and consequently,
lower SSIM scores. Although CBDNET and DANet have
achieved good results in objective evaluation metrics such
as PSNR and SSIM, their network structures struggle to
eliminate noise artifacts. Specifically, these methods rely on
the MSE loss function for denoising, which fails to cap-
ture all aspects of image quality and utilize available infor-
mation for denoising, especially in complex or real-world
scenarios. While SRM achieves a good PSNR score, its over-
smoothed denoising results lead to lower SSIM scores. On the
other hand, the transformer-based CTNet implements adap-
tive spatial aggregation and achieves good scores. However,
it requires substantial computational costs, resulting in long
model runtime.

The model proposed in this paper achieves higher PSNR
results compared to other models and performs well in bal-
ancing noise removal and structural preservation. However,
due to the increased weight of the smoothing loss, its SSIM
results are slightly lower than CBDNET.

Although there is a significant difference in visual per-
ception, when measured by PSNR and SSIM metrics, there
is little difference between CBDNET, DANet, and our
model. Therefore, to provide a clearer quantitative evalu-
ation, this paper proposes a new evaluation metric, which
assesses image visual quality through Uniform Pixel Outliers
(UPO). UPO mainly calculates the number of uniform pixel
regions containing obvious noise points, which are particu-
larly prominent in subjective visual evaluation. UPO is cal-
culated as follows:
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TABLE 2. The quantitative comparisons of different methods. Average
PSNR (DB)/SSIM/RUNNING time.

1) Obtain uniform image patches. Scan the entire image
with a q × q sized window, calculate the variance
of each local scanned image block after removing
the maximum and minimum values (It is commonly
assumed that the potential data outliers are the max-
imum and minimum values. Therefore, the removal
of the maximum and minimum values is performed
initially to determine whether it qualifies as a uniform
image block). If the variance is less than the set value σ ,
then the local block is considered as uniform data. This
method can exclude image edge areas, obtain locally
uniform pixel blocks including outlier points.

2) Calculate the local uniform pixel block mean value µ

obtained from (1). If there is a pixel p in the pixel block
that is greater than λup ×µ or less than λdown ×µ, they
are considered as pixel outliers, UPO+1. In this way,
all uniform pixel blocks in (1) are traversed to obtain
the uniform data outliers for the entire image.

To better illustrate, we use examples from FIGURE.9 (a),
(i), and (j), representing the Ground Truth, CTNet, and
our denoising algorithm. The results are summarized in
TABLE 3. The SSIM value for image (i) is 0.9347, and
for image (j), it is 0.9046. Both images have similar PSNR
values. Therefore, based on traditional evaluation metrics,
image (i) appears superior to image (j). However, from a
subjective visual perspective, it is apparent that the denoising
effect of image j is superior, as there are still noticeable
particles and stripes in image (i). According to the UPO
proposed in this paper, images (i) and (j) have UPO scores
of 469 and 318, respectively. This indicates that image (j)
significantly outperforms image (i).

FIGURE 12. Comparison of image (a), (i), (j) in FIGURE 9.

Therefore, the UPO metric effectively complements tra-
ditional image evaluation metrics. Table 4 illustrates the

TABLE 3. Comparison of evaluation metrics for fig.9 images.

TABLE 4. The UPO results for various denoising methods.

UPO results for different denoising methods. The MSR-Net
demonstrates significantly fewer outlier data points compared
to other algorithms, which contains less noise and exhibits
cleaner visual performance. However, the UPO score will be
high for overly smoothed images, which is also the reason
why BM3D exhibits significantly fewer UPOs compared to
other algorithms. Therefore, it is necessary to combine mul-
tiple evaluation criteria for assessment.

The results above demonstrate that MSR-Net outperforms
similar denoising algorithms in quantitative evaluation. This
indicates that our method exhibits superior denoising per-
formance, as well as better structural fidelity, and robust
generalization capabilities.

G. ABLATION STUDY
In this section, we conducted ablation experiments primarily
to test various components of the MSR network, aiming to
verify the effectiveness of the added modules. The results of
the ablation experiments are shown in TABLE 5. Two sets of
experiments were conducted: 1) Removing the Res2Net-SE
module and utilizing the original U-Net network as an alter-
native. 2) Removing the noise estimation module (NosEst
Module).

The results indicate that the addition of Res2Net-SE have
improved on all metrics, demonstrating the effectiveness of
Res2Net-SE. The reason is that Res2Net-SE can obtain fea-
tures with different receptive fields in multi-scale dimen-
sions, which is more conducive for obtaining both global and
local features. The Noise estimate network contributes to a
reduction in pixel-level errors within the network and achieve
better results in eliminating complex noise. In terms of the
SSIM metric, since all models are based on U-Net, which
provides finer pixel-level feedback, the results of the ablation
experiments are relatively similar. MSRNet achieved the best
performance in both PSNR and UPO. In terms of the SSIM
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metric, the results of the ablation experiments were relatively
similar due to the shared foundation of the U-Net, which
provides finer pixel feedback.

TABLE 5. The ablation results.

VI. CONCLUSION AND DISCUSSION
In this article, we construct a CMOS imaging system and
establish a real CMOS sensor noise dataset. Subsequently,
we conduct a detailed analysis of the CMOS noise model,
elucidating the primary sources of noise under various condi-
tions. To address these challenges, we propose the MSR-Net
denoising algorithm, which is based on the U-Net network
and incorporates the Res2Net module as its main network
structure. This algorithm provides different scale recep-
tive field features and enriches image details. Additionally,
to more accurately reflect the visual perceptual effects of
the images, a novel image evaluation metric Uniform pixel
outliers (UPO) is proposed, making the image evaluation
metrics more adequate.

However, there are still some limitations in this work. The
new image evaluation method, UPO, could be improved to
identify outliers across the entire image rather than just focus-
ing on uniform areas. Additionally, both the dataset images
and noisy images were cropped, and the fully collected
CMOS bright field uniform images were not used. Further-
more, our proposed algorithm mainly processes images dom-
inated by non-uniform noise, leaving room for future research
to explore its effectiveness with other types of CMOS noise.
Lastly, there are also areas for improvement in image training
models. Due to the slightly more computational cost, both
dataset images and noisy images were cropped, and only a
three-layer U-Net network structure was used. In the future,
the network framework can be further improved to improve
performance.

In conclusion, experimental results indicate that our
method exhibits superior performance compared to simi-
lar denoising algorithms in both qualitative and quantitative
aspects.
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