
Received 19 March 2024, accepted 23 May 2024, date of publication 31 May 2024, date of current version 7 June 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3408143

Scalable, Federated Gaussian Process Training
for Decentralized Multi-Agent Systems
GEORGE P. KONTOUDIS 1, (Member, IEEE), AND
DANIEL J. STILWELL 2, (Member, IEEE)
1Department of Mechanical Engineering, Colorado School of Mines, Golden, CO 80401, USA
2Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA

Corresponding author: George P. Kontoudis (george.kontoudis@mines.edu)

This work was supported by the Office of Naval Research under Grant N00014-18-1-2627 and Grant N00014-19-1-2194.

ABSTRACT Gaussian process (GP) training of kernel hyperparameters still remains amajor challenge due to
high computational complexity. The typical GP training method employs maximum likelihood estimation to
solve an optimization problem that requires cubic computations for each iteration. In addition, GP training
in multi-agent systems requires significant amount of inter-agent communication that typically involves
sharing of local data. In this paper, we propose scalable optimization algorithms for federated training using
Gaussian processes (GPs) in decentralized multi-agent systems. To decentralize the implementation of GP
training with maximum likelihood estimation, we employ the alternating direction method of multipliers
(ADMM). We provide a closed-form solution of the decentralized proximal ADMM for the case of GP
hyperparameter training using the separable squared exponential kernel. Federated learning is promoted
in decentralized networks by prohibiting local data exchange between agents. Moreover, we extend a
centralized GP training method by augmenting local datasets to improve the GP training estimation accuracy
with large-scale multi-agent systems. The efficiency of the proposed methods is illustrated with numerical
experiments.

INDEX TERMS Gaussian processes, multi-agent systems, federated learning.

I. INTRODUCTION
Teams of agents have received considerable attention in
recent years, as they can address tasks that cannot be
performed efficiently by a single entity. Multi-agent systems
are attractive for their inherent property of collecting
simultaneously data from multiple locations—a group of
agents can collect more data than a single agent during
the same time period. Central to machine learning (ML)
methodologies is the collection of large datasets in order to
ensure reliable training. To this end, networks of agents favor
learning techniques due to their data collection capabilities.
However, they face major challenges including limited
computational resources and communication restrictions.
A typical approach to address these challenges relies on
centralizing the collected data in a single node (e.g., cloud or

The associate editor coordinating the review of this manuscript and

approving it for publication was Okyay Kaynak .

data center), which requires high computational and storage
resources. However, gathering data on a central server may
cause network traffic congestion and security/privacy issues.
To ensure data privacy, a promising solution is federated
learning (FL) [1]. FL aims to implement ML techniques in
centralized or decentralized networks, but without real data
communication to comply with the General Data Protection
Regulation (GDPR) of the EU / UK [2]. For certain applica-
tions, such as in GPS-denied environments, it is unfeasible to
implementML algorithms in a centralized network, as distant
nodes may not be able to establish communication directly
with the central node due to communication range limitations
or bandwidth [3]. Yet, even if we manage to collect all data
in a central node, the time and space complexity for rapid
updates of the ML models require resources that are not
available to agents operating in the field.

Our aim in this work is to develop fully decentralized
algorithms for approximate Gaussian process (GP) training

77800

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-2193-7700
https://orcid.org/0000-0002-5410-2024
https://orcid.org/0000-0002-4789-6700

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated GP Training for Decentralized Multi-Agent Systems

FIGURE 1. Decentralized GP training in multi-agent systems using federated learning. The exploration area of interest is an unknown spatial field. The
unknown field can be of higher input dimension, i.e. D > 2, but for illustrative reasons we depict a 2D input environment. Same colored circles
correspond to a local dataset of the matching colored agent. Each agent trains a local GP model using its dataset. The agents coordinate to produce a
global GP model with no data exchange that promotes federated learning.

that relax the computation and communication requirements
with no data sharing and achieve similar performance to
centralized GP training methods. We propose the first
decentralized methods to estimate GP hyperparameters with
maximum likelihood estimation, based on the alternating
direction method of multipliers (ADMM) [4]. The decen-
tralized GP training concept is presented in Fig. 1. Let us
consider an unknown spatial field, where each agent samples
the environment and maintains a local dataset. The proposed
decentralized GP training methods (middle row in Fig. 1)
consist of three steps: i) train a local GP surrogate model
based on the information of local datasets; ii) decentralized
coordination of local GP models; and iii) decentralized
aggregation of a global GP model. Step (ii) requires the
solution of a distributed optimization problem with ADMM.
The proposed generalized decentralized GP training (bottom
row in Fig. 1) requires three steps: i) communication of local
datasets to generate the local augmented datasets; ii) train a
local GP surrogate model based on local augmented datasets;
and iii) decentralized coordination of local augmented GP

models to produce the global augmented GP model. We also
extend a centralized method [5] by augmenting local datasets
to improve the GP hyperparameter estimation accuracy for
the case of large fleet multi-agent systems.

Gaussian processes [6], [7] are used in various multi-
agent applications [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], but their major disadvantage is the poor
scalability with the number of observations. In particular,
provided N observations, the training entails O(N 3) and
the prediction requires O(N 2) computations. Although GP
training is significantly more expensive than GP prediction,
the majority of research is focused on improving the GP
prediction scalability by assuming a priori knowledge of the
hyperparameters. This is a strong assumption and in practice
leads to inaccurate regression and deteriorates the adaptabil-
ity of GPs. Another limitation for the implementation of
GPs in multi-agent systems is the communication [3]. For
centralized GPs, every agent has to communicate to a central
node. However, excessive communication is challenging
in decentralized networks, because the agents can pass

VOLUME 12, 2024 77801

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated GP Training for Decentralized Multi-Agent Systems

messages only within a range [19], which may vary in space
and time [20].

Two major research directions for GP approximations
are based on global and local approaches [21]. Global
approximation methods promote sparsity by using either a
subset of Nsub observations or by introducing a set of Nsub
pseudo-inputs, where Nsub ≪ N to perform GP training with
a much smaller dataset [22], [23]. Sparse GPs have been used
in mobile sensor networks to model spatial fields [9]. In [8],
a GP with truncated observations is proposed, and in [10]
a subset of observations is used for traffic modeling. These
methods require global knowledge of the observations, which
increases inter-agent communications. Also, the interpolation
property is not retained with pseudo-input methods.

The second research direction uses local approximation
methods to reduce the computational burden of GP training.
A local approximate method with maximum likelihood
estimation (MLE) is the factorized GP training [24] (FACT-
GP). That is a centralized algorithm which is based on
a server-client structure. The main idea is to assume
statistical independence between clients, which results in
the approximation of the inverse covariance matrix by
the inverse of a block diagonal matrix. To this end,
a significant reduction in computing the inverse of multiple
covariance matrices is achieved at the cost of excessive
communication overhead. More specifically, every local
entity transmits multiple inverted blocks of the covariance
matrix per MLE iteration. Multiple studies revealed that
the alternating direction method of multipliers (ADMM) [4]
is appealing in centralized multi-agent missions [25], [26].
Xu et al. [27] reformulated the FACT-GP method by using
the consensus ADMM [4] (c-GP). The c-GP method reduces
the communication overhead of GP training, but requires
high computational resources to solve a nested optimization
problem at every ADMM-iteration. Subsequently, the authors
in [5] employed the inexact proximal ADMM [28] to alleviate
the computation demand (apx-GP). However, both ADMM-
based factorized GP training methods (c-GP and apx-GP)
require a centralized network topology and perform poorly
with large fleet multi-agent systems. In [29], the authors
introduced an efficient centralized methodology for large
fleet multi-agent systems termed as generalized factorized
GP training (g-FACT-GP). The latter entails additional
communication between agents to enrich local datasets with
a global random dataset that violates the requirements of
federated learning.

Federated GP learning has recently received attention.
In [30], the authors presented an module-driven GP method
where each module is characterized by a local sparse GP
model. Then, a global sparse GPmodel is trained with no data
exchange between modules. The main idea is an extension
of FACT-GP training [24], but with stochastic variational
inference. The authors in [31] derived convergence bounds
for a federated GP method that employs an aggregation
strategy and stochastic gradient descent. This federated GP
method has also been applied to multi-output GPs [32]. All

these federated GP methods are distributed, but require a
central entity for the aggregation. Our focus with federated
GP training is on decentralized networks with inter-agent
communication.

In [33] we present preliminary results of this work.
In particular, we discuss the main concept of DEC-c-GP
and DEC-apx-GP. This paper introduces a decentralized
generalized GP training method (DEC-gapx-GP) that can
be used in large-scale multi-agent systems. In addition,
we discuss an improved centralized GP training method
(gapx-GP) that extends [5] for large-scale multi-agent
systems. Finally, we provide a rigorous proof for DEC-
apx-GP in Appendix C, derive the computation, space, and
communication complexity of all proposed methods (gapx-
GP, DEC-c-GP, DEC-apx-GP, DEC-gapx-GP), and provide
additional numerical examples that illustrate the efficiency of
our methods.

The contribution of this paper is the formulation of
decentralized GP training methods (DEC-c-GP, DEC-apx-
GP, and DEC-gapx-GP). The proposed decentralized meth-
ods cover a broad spectrum of multi-agent missions for
GP training and they simultaneously achieve similar GP
model accuracy with centralized GP training methods [5],
[24], [29] and global GPs [6]. The first method (DEC-
c-GP) is computationally expensive, but provides accurate
model estimation for small and medium fleet sizes. Next,
we derive a closed-form solution for the GP hyperparameter
optimization problem (DEC-apx-GP). The latter enables
scalable computations with significantly faster GP training
than global GPs and achieves accurate model estimation for
small andmediumfleet sizes. Both DEC-c-GP andDEC-apx-
GP require no data exchange to promote federated learning.
The third decentralized GP training method (DEC-gapx-GP)
addresses the GP training problem for large-scale multi-agent
systems by allowing partial data exchnage to provide global
information to local datasets. Lastly, we propose a centralized
GP trainingmethod (gapx-GP) to improve the accuracy of GP
hyperparameter estimation for the case of large fleet multi-
agent systems, while maintaining scalable computations.

In Section II we overview GP training and discuss the fac-
torized GP training, Section III discusses existing centralized
GP training techniques, and Section III-B proposes a new
centralized GP training algorithm. In Section IV, we propose
methods for decentralized GP training, Section V provides
numerical experiments, and Section VI concludes the paper.

II. PRELIMINARIES AND PROBLEM STATEMENT
In this section, we discuss the foundations of algebraic graph
theory, overview GP training [6], describe the factorized GP
training method [24], and state the problem.

A. FOUNDATIONS
The notation here is standard. The set of all positive real
numbers R>0 and the set of all non-negative real numbers
R≥0. We denote by In the identity matrix of n× n dimension.
The vector of n zeros is represented as 0n and the matrix

77802 VOLUME 12, 2024

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated GP Training for Decentralized Multi-Agent Systems

of n × m zeros as 0n×m. The superscript in parenthesis
y(s) denotes the s-th iteration of an estimation process. The
cardinality of the set K is denoted card(K), the absolute
values is denoted | · |, the L2 norm is denoted ∥ · ∥2, and
∥ · ∥∞ denotes the infinity norm. The notation λ(F) denotes
the minimum eigenvalue of matrix F. The i-th element of
a vector x is denoted xi and xi denotes the vector x of
agent i. A collection of elements of a vector x ∈ RN is
denoted {xi}Ni=1.
The communication complexity is denoted by O(·) and

describes the total number of bits required to be transmitted
over the course of the algorithm up to convergence [19,
Chapter 3]. Time and space complexity are also denoted by
O(·) and provide themaximum computations to be performed
and space to be occupied at any instant of an algorithm
respectively. All complexities are calculated with respect to
the total number of observations N , the input dimension D,
and the number of agentsM . In addition, the communication
complexity considers the iterations required for an algorithm
to converge send.
Suppose a network consists of M agents that can perform

local computations. The network is described by an undi-
rected graph G = (V, E), where V = v1, . . . , vM is the set
of nodes and E ⊆ V × V the set of edges. Nodes represent
agents and edges their communication. The neighbors of the
i-th node are denoted Ni = {vj ∈ V | (vi, vj) ∈ E}. The
adjacency matrix of G is denoted A = [aij] ∈ RM×M ,
where aij = 1 if (vi, vj) ∈ E and aij = 0 otherwise.
We consider a decentralized network topology described
by a path graph that represents the most parsimonious
connected graph [34]. This means that as we increase network
connectivity the performance of the proposed algorithms will
improve, because we test our methods on the worst case
network topology.
Assumption 1 ([35]): A graph G is strongly connected if

for every pair of distinct agents (vi, vj) there exists a path.

B. GAUSSIAN PROCESS TRAINING
Let the observations be modeled by,

y(x) = f (x)+ ϵ, (1)

where x ∈ RD is the input location with D the input space
dimension, f (x) ∼ GP(0, k(x, x′)) is a zero-mean GP with
covariance function k : RD

× RD
→ R, and ϵ ∼ N (0, σ 2

ϵ)
is the i.i.d. measurement noise with variance σ 2

ϵ > 0. We use
the separable squared exponential (SSE) covariance function,

k(x, x′) = σ 2
f exp

{
−
1
2

D∑
d=1

(
xd − x ′d

)2
l2d

}
, (2)

where σ 2
f > 0 is the signal variance and ld > 0 the

lengthscale hyperparameter at the d-th direction of the input
space. The goal of GPs is to infer the underlying latent
function f given data D = {X, y}, where X = {xn}Nn=1
the inputs, y = {yn}Nn=1 the outputs, and N the number of
observations.

1) TRAINING
A GP is trained to find the hyperparameter vector
θ = (l1, . . . , lD, σf , σϵ)⊺ ∈ 2 ⊂ RD+2 that maximizes the
marginal log-likelihood,

L = log p(y | X) = −
1
2

(
y⊺C−1θ y+ log |Cθ | + N log 2π

)
,

where Cθ = K + σ 2
ϵ IN is the positive definite covariance

matrix with K = k(X,X) ⪰ 0 ∈ RN×N the
positive semi-definite correlation matrix. The minimization
problem employs the negative marginal log-likelihood (NLL)
function,

(P1) θ̂ = argmin
θ

y⊺C−1θ y+ log |Cθ | (3a)

s.to θ > 0D+2. (3b)

The bound constraints (3b) on the lengthscales ld ensure
that the correlation matrix is positive semi-definite. First-
order iterative methods (e.g., conjugate gradient descent) or
second-order iterative methods with approximated Hessian
(e.g., L-BFGS-B) are widely used to tackle (P1) in (3).
Both optimization approaches require the computation of the
gradient,

∂L(θ)
∂θ
=

1
2
tr

{(
C−1θ − C

−1
θ yy⊺C−1θ

) ∂Cθ

∂θ

}
. (4)

The partial derivative of the covariance matrix ∂Cθ/∂θ

depends on the covariance function. For our covariance
function selection (2), the partial derivative is provided
in Appendix A.

2) COMPLEXITY
The time complexity of the training is O(N 3) for computing
the inverse of the covariance matrix of (P1) in (3). Note
that only the inverse of the covariance matrix C−1θ is
required to be computed for the training (P1) in (3) and
not the logarithm of its determinant log |Cθ | [6, Appendix
A.4]. The inverse computation of the covariance matrix
is performed repeatedly in the optimization (P1) to find
the hyperparameters θ̂ . After solving (P1) and obtaining
the hyperparameter vector θ̂ , we store the inverse C−1

and N observations, which results in O(N 2
+ DN) space

complexity.

C. FACTORIZED GP TRAINING (FACT-GP)
Let each agent i to collect local observations and form
the local dataset {Di = {X i, yi}}

M
i=1 corresponding to Ni

observations for M agents with
∑M

i=1 Ni = N and global
dataset D = ∪

M
i=1Di. All local datasets have the same

number of observations, i.e., Ni = Nj = N/M for all
i, j ∈ V with i ̸= j. In practice, even if all agents
have access to the global dataset D, the GP computational
complexity (Section II-B2) is prohibitive if D is large.
Factorized GP training (FACT-GP) [24], [36] assumes a
centralized topology, where every entity i communicates to
a central node with significant computational and storage

VOLUME 12, 2024 77803

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated GP Training for Decentralized Multi-Agent Systems

resources. The centralized topology arises several problems:
i) security and robustness, as the central node is vulnerable
to malicious attacks or even failure; ii) traffic network
congestion, when all agents communicate their local datasets
with the central entity; and iii) privacy, because a single entity
has access to the global dataset. In addition, for certain cases
(e.g., multi-robot systems), distant agents may be subject
to communication range limitations, thus the centralized
topology may not be feasible.
Assumption 2: Every agent i can communicate only with

agents in its neighborhood Ni and the communication shall
not include any data exchange.
Assumption 3: Every agent i can communicate only with

agents in its neighborhood Ni and the communication shall
include partial exchange of the local dataset Di.
Assumption 2 prohibits the communication of any obser-

vation, whereas Assumption 3 allows the communication
of a subset of the local dataset Di. This distinction
has been made to propose different methodologies in
case that partial communication of the local dataset is
permitted.
Assumption 4: All local sub-models Mi are statisti-

cally independent and local datasets represent distinct
areas.
Remark 1: Assumption 4 is a standard assumption in

distributed optimization and leads to problems with a
global decomposed objective function that is the sum of
all local objective functions [37], [38]. The distinction in
areas of local datasets ensures that agents cannot gather
information from the same input locations with different
observations.

The factorized GP training relies on Assumption 4.
This implies that the global marginal likelihood can be
approximated by the product of local likelihoods, which leads
to,

p(y | X) ≈
M∏
i=1

pi(yi | X i), (5)

where pi(yi | X i) ∼ N (0,Cθ,i) is the local marginal
likelihood of the i-th node with local covariance matrix
Cθ,i = K i + σ 2

ϵ INi and K i = k(X i,X i) ∈ RNi×Ni .
Moreover, the factorized approximation (5) yields a block
diagonal approximation of the covariance matrix C−1θ ≈

diag(C−1θ,1, . . . ,C
−1
θ,M). Subsequently, the globalmarginal log-

likelihood is approximated by L ≈
∑M

i=1 Li (Remark 1)
which results in,

log p(y | X) ≈
M∑
i=1

log pi(yi | X i),

with local marginal log-likelihood Li = log pi(yi | X i),

Li = −
1
2

(
y⊺i C

−1
θ,i yi + log |Cθ,i| + Ni log 2π

)
. (6)

The gradient of the global log-likelihood in FACT-GP is
computed by ∇θL =

∑M
i=1 ∇θLi [5], [27]. The optimization

uses the local negative marginal log-likelihood (LNLL),

(P2) θ̂ = argmin
θ

M∑
i=1

y⊺i C
−1
θ,i yi + log |Cθ,i| (7a)

s.to θi > 0D+2, ∀i ∈ V, (7b)

where θ i = {l1,i, . . . , lD,i, σf ,iσϵ,i} the local hyperparameters
of agent i. Similarly to (3), constraint (7b) imposes positivity
on the agreed hyperparameters for all agents i ∈ V .

The computation of (6) for the FACT-GP (7) yields
O(N 3

i) = O(N 3/M3) time complexity for each local entity
to invert the local covariance matrix C−1θ,i . Additionally,
for the storage of the local inverted covariance matrix and
the local observations O(N 2

i + DNi) = O(N 2/M2
+

D(N/M)) space is needed. The factorized training requires
communication from every node i to the central node.
Provided that the central node implements gradient descent,
every node communicates the local gradient of LNLL
∇θLi at every iteration s. That is O(send(D + 2)M) =
O(send(DM + 2M)) total communications from all agents to
the central node, where send is the total number of iterations
to reach convergence. Additionally, the central node needs
to store at each iteration: i) the hyperparameter vector on
the previous iteration {θ (s)i }

M
i=1 from all M nodes; and ii)

their gradient of LNLL {∇θLi}Mi=1, which results in O((D +
2)M + (D + 2)) = O(DM + 2M) space complexity.
Finally, after the optimization algorithm converges, each node
communicates the local inverted covariance matrix C−1θ,i that
yields O(MN 2

i) = O(N 2/M) communications to the central
node. All local inverted covariance matrices need to be stored
in the central node leading to O(N 2/M) space complexity.
A computational complexity comparison between FULL-GP
and FACT-GP is provided in Table 1. Since Ni = N/M < N ,
FACT-GP requires less time and space than FULL-GP.

D. PROBLEM DEFINITION
Problem 1: Under Assumption 2 and 3, solve the optimiza-

tion problem (P2) in (7) to estimate the GP hyperparmeters
θ̂ for a connected decentralized network topology (Assump-
tion 1) with independent local GP models (Assumption 4).

Problem 1 is twofold with partial data exchange and no
data exchange between agents. In particular, Assumption 2
allows no data exchange to satisfy federated learning,
whereas Assumption 3 relaxes the problem by allowing
partial data exchange. Both versions of Problem 1 consider
a connected decentralized network (Assumption 1) and take
the independence approximation assumption between local
datasets (Assumption 4). Recent advancements in distributed
GP training [5], [27] have addressed the centralized version
of Problem 1. In Section III we review [5], [27] and propose
an extension for centralized networks. However, the main
focus of this paper is on decentralized networks without
requiring a central coordinator with massive computational
and storage capabilities. In Section IV, we propose the

77804 VOLUME 12, 2024

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated GP Training for Decentralized Multi-Agent Systems

TABLE 1. Time, space, and communication complexity of GP training and factorized GP training methods.

first decentralized methods to perform GP training for both
versions of Problem 1.

III. CENTRALIZED GP TRAINING
In this section, we discuss two existing centralized GP
training methods [5], [27] that reduce the computational
complexity of FACT-GP (7) based on the alternating direction
method of multipliers (ADMM) [4]. Next, we propose
a centralized GP training method that is efficient for
large fleet multi-agent systems. In addition, we derive
all computational and communication complexities to
compare existing methods with the proposed centralized
method.

The following Assumptions are required for first-order
approximations and convergence properties.
Assumption 5: A function f : RN

→ R is Lipschitz
continuous with positive parameter L > 0 if it satisfies,

∥∇f (x)−∇f (y)∥2 ≤ L∥x− y∥2, ∀x, y. (8)

Assumption 6: A function f : RN
→ R is strongly convex

with positive parameter m > 0 if it satisfies,

(∇f (x)−∇f (y))⊺ (x− y) ≥ m ∥x− y∥22 , ∀x, y. (9)
Remark 2: Assumption 6 requires the local log-likelihood

function Li to be strongly convex. Usually Li is nonconvex
with respect to the hyperparameters θ i [6], [39], [40]. This
is a well known issue of GP training with MLE. A common
trick to address the nonconvexity problem is to use multiple
starting points to the optimization [6], [41], [42]. However,
as we increase the dataset size, the local log-likelihoods tend
to be unimodal distributions [39], and thus Assumption 6
holds.

A. EXISTING CENTRALIZED GP TRAINING METHODS
To address the centralized factorized GP training problem (7)
an exact consensus ADMM and an inexact proximal con-
sensus ADMM have been used in [5] and [27]. Using the
logarithmic transformation, (7) can be expressed as,

(P3) θ̂ = argmin
θ

M∑
i=1

y⊺i C
−1
θ,i yi + log |Cθ,i| (10a)

s.to θ i = z, ∀i ∈ V, (10b)

where θ i = {l1,i, . . . , lD,i, σf ,iσϵ,i} is the local vector
of hyperparameters of agent i, and z ∈ RD+2 is an
auxiliary variable. In other words, constraint (10b) implies
that every agent i is allowed to have its own opinion for the
hyperparameters θ i, yet at the end of the optimization all
agents must agree on the global vector value z. Recognize
that (10) has the same formulation with the exact consensus
ADMM problem [4]. Thus, after formulating the augmented
Lagrangian, the consensus GP training (c-GP) iterative
scheme [27] yields,

z(s+1) =
1
M

M∑
i=1

(
θ
(s)
i +

1
ρ
ψ

(s)
i

)
, (11a)

θ
(s+1)
i = argmin

θ i

{
Li(θ i)+

(
ψ

(s)
i

)⊺ (
θ i − z(s+1)

)
+

ρ

2

∥∥∥θ i − z(s+1)∥∥∥2
2

}
, (11b)

ψ
(s+1)
i = ψ

(s)
i + ρ

(
θ
(s+1)
i − z(s+1)

)
, (11c)

where ψ i ∈ RD+2 is the vector of dual variables of node i,
s ∈ Z≥0 is the iteration number, and ρ > 0 is the penalty
constant term of the augmented Lagrangian.

Let sendnest be the number of iterations required from the
nested optimization (11b) to converge. The computational
complexity of c-GP is cubic in the number of local
observations O(sendnestN

3
i) = O(sendnest(N

3/M3)). The nested
optimization problem (11b) requires the evaluation of the
local log-likelihood Li(θ i) at every internal iteration snest
which entails cubic computations to invert the local covari-
ance C−1θ,i (6). The communication complexity to transmit all
local hyperparameter vectors yields O(sendM (D+ 2)). After
convergence, every agent i transmits the local inverted covari-
ance C−1θ,i requiring O(MN 2

i) = O(N 2/M) communications.
Every agent i occupies O(N 2

i + 3(D + 2) + D(N/M))) =
O(N 2/M2

+ DN/M) memory to store C−1θ,i , θ
(s)
i , z(s), ψ (s)

i ,
and Di.

The major disadvantage of c-GP is the time complexity
of the nested optimization problem (11b). To address this
issue, the authors in [5] employed the proximal consensus
ADMM [28] and derived an analytical solution for the case

VOLUME 12, 2024 77805

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated GP Training for Decentralized Multi-Agent Systems

TABLE 2. Time, space, and communication complexity of centralized GP training methods.

of centralized factorized GP training to form the analytical
proximal GP training (apx-GP). Note that apx-GP employs
a first-order approximation (linearization) on the local log-
likelihood Li around z(s+1),

Li(θ i) ≈ ∇⊺
θ Li

(
z(s+1)

) (
θ i − z(s+1)

)
+
Li
2

∥∥∥θ i − z(s+1)∥∥∥2
2
,

(12)

where Li > 0 is a positive Lipschitz constant that satisfies
Assumption 5 of the local log-likelihood function Li for all
i ∈ V . The apx-GP iteration steps [5] are given by,

z(s+1) =
1
M

M∑
i=1

(
θ
(s)
i +

1
ρ
ψ

(s)
i

)
, (13a)

θ
(s+1)
i = z(s+1) −

1
ρ + Li

(
∇θLi

(
z(s+1)

)
+ ψ

(s)
i

)
(13b)

ψ
(s+1)
i = ψ

(s)
i + ρ

(
θ
(s+1)
i − z(s+1)

)
, (13c)

where the gradient of the local log-likelihood ∇θLi has
similar structure to the the gradient of the log-likelihood (4).
The only difference on the workflow of apx-GP and c-GP is
that the second step of θ (s+1)i is computed analytically (13b),
while the former incorporates a nested optimization prob-
lem (11b) at every ADMM-iteration.

The space and communication complexity of apx-GP is
identical to c-GP. The time complexity of apx-GP entails
O(N 3

i) = O(N 3/M3) computations, significantly reduced
from O(sendnestN

3/M3) of c-GP. In other words, there is no
nested optimization problem in apx-GP (13). Thus, apx-GP
requires just one inversion of the local covariance matrix
C−1θ,i per ADMM-iteration instead of sendnest inversions per
ADMM-iteration of c-GP. Both c-GP and apx-GP inherit fast
convergence properties of the exact consensus ADMM [4]
and the inexact proximal consensus ADMM [28].

A disadvantage of both centralized methods (c-GP (11)
and apx-GP (13)) is that they are based on factorized GP
training and thus they inherit poor approximation capabilities
when the number of agent increases. In other words, for a
bounded space of interest, Assumption 4 is violated as we
increase the number of sub-models Mi. In what follows,
we seek to improve the approximation error for large scale
multi-agent systems by inheriting global information to all
local Di.

Algorithm 1 Gapx-GP
Input: Di(X i, yi), k(·, ·), ρ, Li,Ni, V , TOLADMM

Output: θ̂ , C−1θ , D+i
1: for each i ∈ V do ▷ Local Sample Dataset
2: Dc,i ← Sample(Di)
3: communicate Dc,i to central node
4: end for
5: scatter Dc = {Dc,i}

M
i=1 from central node to every agent

6: for each i ∈ V do ▷ Local Augmented Dataset
7: D+i ← Di ∪Dc
8: end for
9: repeat ▷ ADMM Optimization

10: communicate θ (s)i to central node
11: z(s+1) ← prim-2(θ (s)i ,ψ

(s)
i , card(V)) (13a)

12: scatter z(s+1) from central node to every agent
13: for each i ∈ V do
14: θ

(s+1)
i ← prim-1(θ (s)i , z(s+1),ψ (s)

i , ρ,Li,D+i) (13b)
15: ψ

(s+1)
i ← dual(θ (s+1)i , z(s+1),ψ (s)

i , ρ) (13c)
16: end for
17: until ∥θ (s+1)i − z(s+1)∥2 < TOLADMM, for all i ∈ V
18: for each i ∈ V do ▷ Local Augmented Covariance Inversion
19: θ̂ ← θendi
20: C−1θ,+i ← invert(k,X+i, θ̂)
21: communicate C−1θ,+i to central node
22: end for
23: C−1θ ← diag(C−1

θ,+1,C
−1
θ,+2, . . . ,C

−1
θ,+M) ▷ Block Diagonal

24: Return θ̂ , C−1θ , D+i

B. PROPOSED CENTRALIZED GP TRAINING
The first method we propose is a centralized factorized
GP training technique that extends apx-GP with a local
augmented datatset D+i for all i ∈ V . The goal is to
limit the approximation error of apx-GP for large fleet sizes
inherited by Assumption 4 at the cost of allowing partial
data exchange (Assumption 3). Data exchange leads to larger
datasets that entail higher computations. In other words,
we aim to improve GP hyperparameter estimation accuracy
for centralized large fleet networks with higher yet reasonable
computations. Our methodology is termed as generalized
apx-GP (gapx-GP).

The main idea of gapx-GP is to equip every agent with a
new dataset that has global information on the underlying
latent function. Every agent i selects randomly without
replacement Ni/M data from its local dataset Di to form
the local sample dataset D−i ∈ RNi/M ⊂ Di. Then,

77806 VOLUME 12, 2024

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated GP Training for Decentralized Multi-Agent Systems

the local sample datasets are communicated to every other
agent (Assumption 3) to compose the communication dataset
Dc = {D−i}Mi=1 = {Xc, yc}. Next, every agent i fuses
the communication dataset Dc ∈ RNi with its local dataset
Di to form the local augmented dataset D+i = Di ∪

Dc ∈ R2Ni . The local augmented dataset D+i is a new
dataset for every agent i that includes the local dataset
Di and the communication dataset Dc, providing a global
representation. Note that in [29], the communication dataset
Dc is randomly selected from the full dataset D, while
we consider a slight variation for decentralized networks.
In other words, the communication dataset Dc is selected
by the local datasets Di and then fused through information
exchange. Next, we implement the apx-GP (13), but now
every agent is equipped with the local augmented dataset
D+i (Algorithm 1).

The local time complexity of gapx-GP yieldsO((2Ni)3) =
O(8(N 3/M3)) computations to invert the local augmented
covariance matrix Cθ,+i = K+i + σ 2

ϵ I2Ni ∈ R2Ni×2Ni .
The total communication overhead is the same with c-GP
and apx-GP. After convergence, each agent i communicates
the local augmented covariance matrix C−1θ,+i that entails
O(M (2Ni)2) = O(4(N 2/M)) communications. The space
complexity of every agent i yields O((2Ni)2 + 3(D + 2) +
D(2Ni)) = O(4(N 2/M2) + 2D(N/M)) to store the local
augmented covariance matrix, the optimization variables at
the previous iteration, and the local augmented dataset.

In Table 2, we list the time, space, and communication
complexity for all centralized factorized GP training methods
based on ADMM. The proposed method is more demanding
in space than c-GP. In terms of time complexity, gapx-GP is
more affordable than c-GP, because the nested optimization
of the latter (11b) takes on average more than eight iterations
to converge, i.e., sendnest > 8, but more demanding than apx-GP.
The proposed method supports Assumption 4, and thus we
expect to produce more accurate hyperparameters.
Proposition 1 ([28, Theorem 2.10]): Consider a strongly

connected decentralized network (Assumption 1) where
the agents are allowed to communicate partially their
datasets (Assumption 3). Let Assumption 4 hold for the
local sub-models Mi and Assumption 6 hold for all
local log-likelihoods Li (6), then the gapx-GP converges
lims→∞ ∥θ

(s)
i − z(s)∥D = 0 to a stationary solution

(θ⋆
i , z

⋆,ψ⋆
i) for all agents i ∈ V . □

Proposition 1 implies that the convergence properties of the
optimization scheme (13) hold for gapx-GP to address (P3)
in (10). In other words, the proposed centralized gapx-GP
equipped with the local augmented datasets D+i converges
to the optimal hyperparameters θ⋆

i for all agents i ∈ V .

IV. PROPOSED DECENTRALIZED GP TRAINING
In this section, we introduce three methods to address
Problem 1 based on the edge formulation of ADMM [43] that
yields parallel updates and decentralizes the factorized GP
training. Algorithmic implementation details are discussed

FIGURE 2. The structure of the proposed decentralized GP training
methods. Blue dotted lines correspond to communication (strongly
connected). a) Every agent i has access to the local dataset Di . b) Every
agent i has access to Di . Next, they communicate to form the local
augmented dataset D+i which comprises of Di (local color) and the
global communication dataset Dc (gray color).

for all proposed methods. In addition, we provide a time,
space, and communication complexity analysis.

The edge formulation is a variation (10) for decentralized
networks. Let Assumption 1 hold, then (10) yields,

(P4) θ̂ = argmin
θ

M∑
i=1

y⊺i C
−1
θ,i yi + log |Cθ,i| (14a)

s.to θ i = τ ij, ∀i ∈ V, j ∈ Ni, (14b)

θ j = τ ij, ∀i ∈ V, j ∈ Ni, (14c)

where τ ij are auxiliary variables. Constraints (14b) and (14c)
imply that every agent i is allowed to have its own opinion
for the hyperparameters θ i, yet at the end of the optimization
all agents in the neighborhood Ni must agree on the
neighborhood values τ ij. The edge formulation requires each
node i to store and update variables for all of its neighbors
Ni. Conversely, one can employ the node formulation that
relaxes the storage capacity, as each agent i is required to
store and update variables of itself [44]. In addition, the group
ADMM [45] offers a decentralized optimization method,
yet for a specific graph topology. Thus, we find the edge
formulation more suitable for decentralized GP training.

A. PROPOSED DEC-c-GP
The first proposed method is based on the decentralized
consensus ADMM [46] to perform GP training (DEC-c-GP).
After rendering the augmented Lagrangian for (P4) in (14) we
obtain the decentralized consensus ADMM iterative scheme,

p(s+1)i = p(s)i + ρ
∑
j∈Ni

(
θ
(s)
i − θ

(s)
j

)
, (15a)

θ
(s+1)
i = argmin

θ i

{
Li(θ i)+ θ⊺

i p
(s+1)
i

+ρ
∑
j∈Ni

∥∥∥∥∥θ i − θ
(s)
i + θ

(s)
j

2

∥∥∥∥∥
2

2

 , (15b)

VOLUME 12, 2024 77807

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated GP Training for Decentralized Multi-Agent Systems

Algorithm 2 DEC-c-GP
Input: Di(X i, yi), k(·, ·), ρ,Ni, α, sendDEC-c-GP
Output: θ̂ , C−1θ,i

1: initialize p(0)i = 0

2: for s = 1 to sendDEC-c-GP do ▷ ADMM Optimization
3: for each i ∈ V do
4: communicate θ (s)i to neighborsNi

5: p(s+1)i ← duals(p(s)i , θ
(s)
i , {θ

(s)
j }j∈Ni , ρ) (15a)

6: θ
(s+1)
i ← prim(p(s+1)i , θ

(s)
i , {θ

(s)
j }j∈Ni , ρ, α,Di) (15b)

7: end for
8: end for
9: for each i ∈ V do ▷ Local Covariance Inversion
10: θ̂ ← θendi
11: C−1θ,i ← invert(k,X i, θ̂)
12: end for
13: Return θ̂ , C−1θ,i

Algorithm 3 DEC-Apx-GP
Input: Di(X i, yi), k(·, ·), ρ,Ni, κi, sendDEC-apx-GP

Output: θ̂ , C−1θ,i
1: Identical to Algorithm 2 with (15b) replaced by (19b)

where ρ > 0 is the penalty term of the augmented
Lagrangian and p(s)i =

∑
j∈Ni

(u(s)ij + v(s)ij) is the sum

of the dual variables u(s)ij and v(s)ij corresponding to con-
straints (14b) and (14c). Note that (15a) imposes initial values
p(0)i = 0.
The workflow is as follows. Every agent i communicates

to its neighbors j ∈ Ni the current estimate of the
hyperparameters θ (s)i . After each agent gathers all θ (s)j vectors
from its neighborhood, then the sum of the dual variables
vector is updated (15a) to obtain p(s+1)i . Next, every agent
i solves a nested optimization problem (15b) to compute
θ
(s+1)
i . The method iterates until it reaches a predefined

maximum iteration number sendDEC-c-GP. The main routine
of DEC-c-GP is provided in Algorithm 2. The proposed
method is decentralized, requiring exclusively neighbor-wise
communication as shown in Fig. 2-(a). Note that the inter-
agent communications do not involve any data exchange
which satisfies Assumption 2. Provided that the graph
topology is connected (Assumption 1), then DEC-c-GP (15)
addresses Problem 1.
Proposition 2 ([46, Proposition 2]): Consider a strongly

connected decentralized network (Assumption 1) where the
agents are not allowed to communicate their datasets
(Assumption 2). Let Assumption 4 hold for the local sub-
models Mi and Assumption 6 hold for all local log-
likelihoods Li (6), then the DEC-c-GP (15) converges to a
stationary solution lims→∞ θ

(s)
i = θ

⋆ for all agents i ∈ V . □
Proposition 2 implies that the convergence properties

of the optimization scheme (15) hold for DEC-c-GP to
address (14). In other words, the proposed decentralized
DEC-c-GP converges to the optimal hyperparameters θ⋆

i for
all i ∈ V .

Remark 3: A disadvantage of the proposed DEC-c-GP is
the cubic computations on the number of local observations
for every iteration of the nested optimization. That is because
at every ADMM iteration we need to solve the nested
optimization problem (15b) which entails the computation
of Li (6) that involves the inversion of the local covariance
matrix C−1θ,i .

B. PROPOSED DEC-apx-GP
To address the computational scalability of DEC-c-GP
(Remark 3) we employ the decentralized inexact proximal
consensus ADMM [47] and derive an analytical solution
to perform GP training (DEC-apx-GP). A proximal step is
taken based on a first-order approximation on the local log-
likelihood Li around θ (s),

Li(θ i) ≈ ∇⊺
θ Li

(
θ
(s)
i

) (
θ i − θ

(s)
i

)
+

κi

2

∥∥∥θ i − θ (s)i ∥∥∥2
2
, (16)

where κi > 0 is a penalty parameter of the proximal term
for all i ∈ V and ∇⊺

θ Li can be computed as in (20). After
rendering the augmented Lagrangian in (14) we obtain the
decentralized inexact proximal consensus ADMM iterative
scheme,

p(s+1)i = p(s)i + ρ
∑
j∈Ni

(
θ
(s)
i − θ

(s)
j

)
, (17a)

θ
(s+1)
i = argmin

θ i

{
∇

⊺
θ Li

(
θ
(s)
i

) (
θ i − θ

(s)
i

)
+

κi

2

∥∥∥θ i − θ (s)i ∥∥∥2
2
θ

⊺
i p

(s+1)
i

+ρ
∑
j∈Ni

∥∥∥∥∥θ i − θ
(s)
i + θ

(s)
j

2

∥∥∥∥∥
2

2

 . (17b)

The linearization (16) allows the evaluation of the local
log-likelihood function Li (6) at a fixed point θ (s)i and
not at the optimizing variable θ i. To this end, the nested
optimization of (17b) entails significantly less computations
than (15b), because we need to compute ∇⊺

θ Li(θ
(s)
i) just

one time in (17b) and not at every iteration of the nested
optimization problem (15b) (Remark 3). In the following
Theorem, we extend [47] by deriving a closed-form solution
for the nested optimization (17b) that reduces significantly
the computations.
Theorem 1: Consider a strongly connected decentralized

network (Assumption 1) where the agents are not allowed to
communicate their datasets (Assumption 2). Let Assumption 4
hold for the local sub-modelsMi, Assumption 6 hold for all
local log-likelihoods Li (6), and allow the penalty term of the
first-order approximation κi to be sufficiently large,

κi >
L2i
m2
i

− ρλ(D+ A) > 0, ∀i ∈ V. (18)

Then, the nested optimization for the hyperparameter
update (17b) admits a closed-form solution, resulting in the

77808 VOLUME 12, 2024

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated GP Training for Decentralized Multi-Agent Systems

TABLE 3. Time, space, and communication complexity of decentralized GP training methods.

FIGURE 3. Five random function generations of the synthetic GP with known hyperparameter values θ = (1.2,0.3,1.3,0.1)⊺ for N = 8,100 data.

Algorithm 4 DEC-Gapx-GP
Input: Di(X i, yi), k(·, ·), ρ,Ni, κi, sendDEC-gapx-GP

Output: θ̂ , C−1θ,+i, D+i
1: for each i ∈ V do
2: Dc,i ← Sample(Di)
3: Dc ← flooding(Dc,i)
4: D+i = Di ∪Dc
5: end for
6: C−1θ,+i ← DEC-apx-GP(D+i, k, ρ,Ni, κi, sendDEC-gapx-GP)

7: Return θ̂ , C−1θ,+i, D+i

iterative optimization scheme of DEC-apx-GP,

p(s+1)i = p(s)i + ρ
∑
j∈Ni

(
θ
(s)
i − θ

(s)
j

)
, (19a)

θ
(s+1)
i =

1
κi + 2card(Ni)ρ

ρ
∑
j∈Ni

θ
(s)
j −∇θLi

(
θ
(s)
i

)
+

(
κi + card(Ni)ρ

)
θ
(s)
i − p

(s+1)
i

)
, (19b)

that converges to a stationary (θ⋆
i , p

⋆) for all agents i ∈ V .
Proof: The proof is provided in Appendix C. □

Remark 4: The condition to select the penalty parameter
κi (18) depends on the graph topology as the minimum
eigenvalue of the degree and adjacency matrix is required
λ(D + A). Thus, the stronger the network connectivity, the
faster the convergence of the proposed DEC-apx-GP (19).
The workflow of DEC-apx-GP is similar to DEC-c-GP,

yet the hyperparameter update step (19b) is performed
analytically without requiring a nested optimization update
as in (15b) or (17b). Implementation details are given in
Algorithm 3 and the structure is illustrated in Fig. 2-(a).
The gradient of the local log-likelihood ∇θLi is provided in
Appendix B-(20).

Remark 5: A disadvantage of both decentralized methods
DEC-c-GP and DEC-apx-GP is the poor approximation
capabilities when the number of agents increases. In partic-
ular, Assumption 4 is violated as we increase the number of
sub-modelsMi, which leads to inaccurate GP hyperparam-
eter estimation for large fleet multi-agent systems.

C. PROPOSED DEC-gapx-GP
Wepropose to extend the computationally efficient DEC-apx-
GP method (Section IV-B) with a local augmented dataset
D+i for all i ∈ V to address the poor approximation
capabilities of (19) when the network has large number of
agents (Remark 5). The idea is similar to the centralized
gapx-GP method (Section III-B). In order to reduce the
approximation error, we relax Assumption 2 by allowing
partial exchange of local subsets of data (Assumption 3).
We term the proposed method as generalized DEC-apx-GP
(DEC-gapx-GP).

Since the network has a decentralized topology, flood-
ing [48] is employed to broadcast the local sample datasets
Dc,i and form the communication dataset Dc. The rest
is a direct application of DEC-apx-GP with the local
augmented datatset D+i for all i ∈ V . Algorithm 4 presents
the implementation details of DEC-gapx-GP. We show
the structure of the proposed method in Fig. 2-(b). The
communication dataset Dc is illustrated in gray for every
agent. The larger rectangular blocks represent the double size
of local augmented datasets D+i ∈ R2Ni when compared
to the local datasets D1, . . . ,DM . Larger circular objects
indicate that the augmented covariance matrices Cθ,+i ∈

R2Ni×2Ni of DEC-gapx-GP have double dimension, when
compared to the local covariance matrices Cθ,i ∈ RNi×Ni

for all i ∈ V of DEC-c-GP and DEC-apx-GP. Note
that DEC-gapx-GP inherits the properties of DEC-apx-GP
(Theorem 1).

VOLUME 12, 2024 77809

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated GP Training for Decentralized Multi-Agent Systems

FIGURE 4. Accuracy of GP hyperparameter training using N = 8,100 data for four fleet sizes and 50 replications. The true values are demonstrated with
a black dotted line. The existing GP training methods are shown in blue boxes. And the proposed in maroon coloured boxes.

FIGURE 5. Accuracy of GP hyperparameter training using N = 32,400 data for four fleet sizes and 50 replications. The true values are demonstrated with
a black dotted line. The existing GP training methods are shown in blue boxes and the proposed in maroon boxes.

D. TIME, SPACE, AND COMMUNICATION COMPLEXITY
Let the total number of iterations for the nested optimization
problem (15b) be sendnest. The time complexity of every agent i is
dominated by the inverse of the local covariance matrix C−1θ,i
for every iteration of the nested optimization problem (15b),
which results in O(sendnestN

3
i) = O(sendnest(N

3/M3)) computa-
tions. The gradient for the nested optimization is provided in
Appendix B.Moreover, every agent i occupiesO(N 2

i +DNi+
(D+ 2)+ (card(Ni)+ 1)(D+ 2)) = O(N 2/M2

+D(N/M)+

(card(Ni) + 2)(D + 2)) memory to store C−1θ,i , Di, p
(s)
i , θ (s)i ,

and {θ (s)j }j∈Ni . The total number of communications for each
agent isO(sendDEC-c-GP(D+2)) to transmit the hyperparameters
to its neighbors. The complexity of DEC-c-GP is presented in
Table 3 along with the other two proposed decentralized GP
training methods.

The local time complexity of DEC-apx-GP is reduced
to O(N 3

i) = O(N 3/M3) for the inversion of the local
covariance matrix C−1θ,i just once at every ADMM itera-

77810 VOLUME 12, 2024

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated GP Training for Decentralized Multi-Agent Systems

tion. The space complexity is identical to DEC-c-GP and
the total communications entail O(sendDEC-apx-GP(D + 2))
messages. The complexity of DEC-apx-GP is provided in
Table 3 along with DEC-c-GP and another decentralized
GP training method that is presented in the following
Section.

The local time complexity of DEC-gapx-GP entails
O((2Ni)3) = O(8(N 3/M3)) computations to invert the
local augmented covariance Cθ,+i = K+i + σ 2

ϵ I2Ni ∈
R2Ni×2Ni . The proposedmethod requiresO((2Ni)2+D(2Ni)+
(card(Ni) + 2)(D + 2)) = O(4(N 2/M2) + 2D(N/M) +
(card(Ni) + 2)(D + 2)) space to store C−1θ,+i, D+i, p

(s)
i ,

θ
(s)
i , and {θ (s)j }j∈Ni . The total communication overhead is
O(sendDEC-gapx-GP(D+ 2)).
In Table 3, we list the time, space, and communication

complexities for the proposed decentralized factorized GP
trainingmethods. TheDEC-c-GP is themost computationally
expensive method, but it requires less communications than
the other methods to converge. Therefore, the DEC-c-GP
method favors applications with significant computational
resources on the local nodes. Note that this method can
also be extended with local augmented dataset D+i for
all i ∈ V . Next, the DEC-apx-GP is the computationally
most affordable method. The DEC-gapx-GP stands between
the two former methods on time complexity, but requires
more space and it is designed for large fleet multi-agent
systems.

V. NUMERICAL EXPERIMENTS
In this section, we perform numerical experiments to
illustrate the efficiency of the proposed methods. Synthetic
data with known hyperparameters values are employed
to evaluate the GP training methods in four aspects: i)
hyperparameter estimation accuracy; ii) computation time per
agent; iii) communications per agent; and iv) comparison
with centralized GP training techniques. All numerical
experiments are conducted in MATLAB on an Intel Core
i7-6700 CPU @3.40 GHz.

We conduct 2,000 numerical experiments where we
generate datasets by using the observation model (1) and
the separable squared exponential kernel (2) with hyper-
parameters θ = (l1, l2, σf , σϵ)⊺ = (1.2, 0.3, 1.3, 0.1)⊺.
In particular, we have two dataset sizes (N = 8, 100 and
N = 32, 400) for five generative random functions and
perform 50 replications on each function. An example of
five generative GP functions for N = 8, 100 data is
presented in Fig. 3. Note that the smaller the length-scale
l, the more wiggly is the random function. Since l2 < l1,
the profile of the generative GP functions is more uneven
along the y-axis rather than the x-axis. We equally partition
the space of interest S = [0, 2]2 (Remark 1) along the
x-axis according to fleet sizes M = {4, 10, 20, 40}, and
assign local datasets that lie in the corresponding local
space. We compare the global GP training FULL-GP; the
centralized FACT-GP [24], g-FACT-GP [29], c-GP [27],

TABLE 4. Time & communication rounds of GP training methods.

and apx-GP [5]; to the proposed centralized (gapx-GP)
and decentralized (DEC-c-GP, DEC-apx-GP, DEC-gapx-GP)
methods. All decentralized GP training methods follow a
path graph topology that is the most parsimonious connected
network. Thus, we study the worst case scenario in terms
of network connectivity (Remark 4). All methods start
from the same initial vector value (l(0)1 , l(0)2 , σ

(0)
f , σ

(0)
ϵ)⊺ =

(2, 0.5, 1, 1)⊺. The penalty parameter of the augmented
Lagrangian is set to ρ = 500, the decentralized ADMM
tolerance TOLADMM = 10−3, the positive Lipschitz constant
of the approximation (12) Li = 5, 000, and the regulation
positive constant of the approximation (16) κi = 5, 000 for
all i ∈ V . For the nested optimization of c-GP (11b) and
DEC-c-GP (15b) we use gradient descent with step size
α = 10−5. All decentralized GP training methods terminate
after send = 100 predetermined communication rounds,
yielding identical communication complexity (Table 3).
Any algorithm that takes over 3,000 s to be executed is
terminated.

VOLUME 12, 2024 77811

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated GP Training for Decentralized Multi-Agent Systems

TABLE 5. Comparison of centralized and decentralized GP training.

In Fig. 4, we show the boxplots of the estimated
hyperparameters usingN = 8, 100 data. Blue boxes illustrate
existing GP training methods and maroon boxes represent the
proposed GP training methods. The corresponding average
computation time per agent and the communication rounds
are shown in Table 4. Provided the communication rounds
send, the communication complexity can be computed accord-
ing to Table 1, 2. For the case ofM = 4 agents, all centralized
methods provide accurate hyperparameters estimates except
of the c-GP on l1. In terms of computation time, c-GP is
the more demanding method, whereas FACT-GP, apx-GP,
and gapx-GP converge very fast, outperforming FULL-GP
by two orders of magnitude for similar or even better level
of accuracy. The least communication rounds are achieved
by the proposed methodology gapx-GP which results in the
lowest communication complexity. Regarding the decentral-
ized methods, both DEC-apx-GP and DEC-gapx-GP produce
accurate hyperparameter estimates, whereas DEC-c-GP is
inaccurate on l1. DEC-apx-GP requires less computation time
per agent than the other two decentralized methods. As we
increase the number of agents (M = 10 andM = 20 agents),
the hyperparameter estimation accuracy deteriorates for
all centralized methods except of the proposed gapx-GP.

In addition, gapx-GP results in the lowest communication
complexity and in competitive computation time per agents,
outperformed only by apx-GP. Regarding the decentralized
GP training methods, the hyperparameter estimation of DEC-
gapx-GP is the most accurate. Both DEC-apx-GP and DEC-
c-GP provide reasonable estimates for all hyperparameters
other than l1. The lowest computation per entity is measured
for DEC-apx-GP, while themost accuratemethodDEC-gapx-
GP requires four times more computations than DEC-apx-
GP. For M = 40 agents, the proposed gapx-GP produces
the most accurate hyperparameter estimates with only g-
FACT-GP competing. However, g-FACT-GP requires more
computation time per agent and exchanges double the amount
ofmessages to converge than the proposed gapx-GP. From the
proposed decentralized methods, DEC-gapx-GP is accurate
(Remark 5) for larger fleet sizes and requires reasonable local
computations (Table 4).

We present the boxplots of the estimated hyperparameters
using N = 32, 400 data in Fig. 5, and in Table 4 we list the
computation time per agent as well as the communication
rounds. The FULL-GP, c-GP, and DEC-c-GP methods are
not implemented for N = 32, 400 data, as we expect
significantly high computation time (Remark 3). For M = 4
agents, both g-FACT-GP and DEC-gapx-GP exceeded the
time limit of 3,000 s for convergence. Among the feasible
centralized methods for N = 32, 400 data, apx-GP and
gapx-GP are more accurate than FACT-GP. All methods are
computationally expensive as each agent i is assigned with
Ni = 32, 400/4 = 8, 100 data, yet apx-GP is the fastest.
Regarding the decentralized methods, DEC-apx-GP is the
only feasible method and produces accurate hyperparameter
estimates. As we increase the number of agents (M = 10
and M = 20 agents), the number of data is distributed
to local agents, and thus g-FACT-GP and DEC-gapx-
GP can be implemented. Since the number of data is
high, all centralized methods produce accurate hyperpa-
rameters estimates. Yet, apx-GP is computationally more
efficient. Although the proposed gapx-GP requires more
time to converge, the communication overhead is the least.
Among the decentralized methods, DEC-gapx-GP is more
accurate, but computationally more demanding than DEC-
apx-GP. For the case of M = 40 agents, the most
accurate centralized hyperparameter estimator is the gapx-
GP with the lowest information exchange requirements.
The fastest centralized method is the apx-GP, yet its
accuracy is moderate. Regarding the decentralized methods,
DEC-gapx-GP remains accurate and requires reasonable
computation time.

In Table 5, we compare qualitatively all methods, where
the proposed methods are shown in magenta font. Overall,
for N = 8, 100 the proposed gapx-GP is the most
accurate centralized GP training method, especially as the
fleet size increases. Moreover, gapx-GP requires reasonable
computations and it is the most efficient method with
respect to communication. Among the proposed decentral-
ized GP trainingmethods, DEC-gapx-GP is the most accurate

77812 VOLUME 12, 2024

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated GP Training for Decentralized Multi-Agent Systems

method, yet DEC-apx-GP produces competitive hyperparam-
eter estimates for medium and small fleet size. DEC-apx-GP
is the fastest decentralized GP training method, while DEC-
gapx-GP is more demanding with reasonable computational
resources. In principle, as we increase the number of agents,
the computation is distributed and thus yields lower computa-
tion time per agent. Note that the hyperparameter estimation
accuracy improves as we obtain more data which leads to
higher accuracy for N = 32, 400 data. Some techniques are
not scalable for the larger dataset N = 32, 400, especially
when the fleet size is small M = 4. However, for larger
fleet size the distribution of data facilitates the execution
of most methods. Among the centralized methods, apx-
GP is accurate and requires significantly less computational
time for small fleet size, but as we increase the number
of agents the proposed gapx-GP becomes computationally
more efficient and remains accurate. Similarly, DEC-apx-
GP is accurate and computationally less demanding for
small fleet size, but DEC-gapx-GP becomes more com-
putationally efficient as we distribute the data to more
agents.

VI. CONCLUSION AND FUTURE WORK
This paper proposes decentralized methods to implement
GP training in networks that cover a broad spectrum of
multi-agent learning applications. The proposed methods
can be employed for various fleet sizes with different
computation and communication capabilities. We use dis-
tributed optimization methods of ADMM to aggregate local
GP models. A closed-form solution of the decentralized
ADMM is derived for the case of GP hyperparameter
training with maximum likelihood estimation. DEC-apx-GP
is shown to achieve competitive accuracy in hyperparameter
estimates for small and medium fleet sizes, whereas DEC-
gapx-GP produces accurate hyperparameter estimates for all
fleet sizes with reasonable computations of local entities.
Additionally, we propose a centralized GP training method,
the gapx-GP, that improves the accuracy of hyperparam-
eter estimates for medium and large fleet sizes, entails
reasonable computations, and requires little information
exchange.

A. PARTIAL DERIVATIVE OF SSE COVARIANCE FUNCTION
The partial derivative of the covariance matrix in (4)
is computed with respect to each hyperparameter as
∂Cθ/∂θ = (∂Cθ/∂l1, ∂Cθ/∂l2, . . . , ∂Cθ/∂lD, ∂Cθ/∂σf ,

∂Cθ/∂σϵ)⊺ ∈ R(D+2)N×N . Using the SSE kernel (2) we
obtain,[

∂Cθ

∂ld

]
ij
= σ 2

f

[
exp

{
−
1
2

D∑
d=1

(xdi − xdj)2

l2d

}
(xdi − xdj)2

l3d

]
ij

=

[K]ij
[
(xdi − xdj)2

]
ij

l3d
,

where ∂Cθ/∂ld ∈ RN×N . For the signal variance we get,[
∂Cθ

∂σf

]
ij
= 2σf

[
exp

{
−
1
2

D∑
d=1

(xdi − xdj)2

l2d

}]
ij

=
2[K]ij

σf
,

where ∂Cθ/∂σf ∈ RN×N . Note that we express the partial
derivatives as functions of the correlation matrix K , because
it has already been computed to construct the covariance
matrix, i.e., Cθ = K + σ 2

ϵ IN . Lastly, for the noise variance
∂Cθ/∂σϵ = 2σϵIN ∈ RN×N .

B. GRADIENT FOR NESTED PROBLEM OF DEC-c-GP
Let the objective for the nested optimization problem (15b) of
the DEC-c-GP to beKi = Li(θ i)+θ⊺

i p
(s+1)
i +ρ

∑
j∈Ni
∥θ i−

(θ (s)i + θ
(s)
j)/2∥22, then its gradient yields,

∂Ki

∂θ
= ∇θLi(θ i)+ p(s+1)i + 2ρ

∑
j∈Ni

θ i −
θ
(s)
i + θ

(s)
j

2
.

The gradient of the local log-likelihood ∇θLi yields,
∂Li(θ i)

∂θ
=

1
2
tr

{(
C−1θ,i − C

−1
θ,i yiy

⊺
i C
−1
θ,i

) ∂Cθ,i

∂θ

}
, (20)

where ∂Cθ,i/∂θ is derived in Appendix A for the SSE
covariance function (2).

C. PROOF OF THEOREM 1
Let us employ the local objective of (17b) as,

Qi(θ i) = ∇
⊺
θ Li

(
θ
(s)
i

) (
θ i − θ

(s)
i

)
+

κi

2

∥∥∥θ i − θ (s)i ∥∥∥2
2

+ θ
⊺
i p

(s+1)
i + ρ

∑
j∈Ni

∥∥∥∥∥θ i − θ
(s)
i + θ

(s)
j

2

∥∥∥∥∥
2

2

.

where Qi : RD+2
→ R. Factor out the optimizing

parameter θ i to obtain,

Qi(θ i) = ∇
⊺
θ Li

(
θ
(s)
i

)
θ i−c1 +

κi

2

(
θ

⊺
i θ i − 2θ⊺

i θ
(s)
i + c2

)
+ θ

⊺
i p

(s+1)
i + Ti

= θ
⊺
i

(
∇θLi

(
θ
(s)
i

)
− κiθ

(s)
i + p

(s+1)
i

)
+

κi

2
θ

⊺
i θ i + Ti,

(21)

where Ti = ρ
∑

j∈Ni
∥θ i − (θ (s)i + θ

(s)
j)/2∥22, c1 =

−∇
⊺
θ Li(θ

(s)
i)θ (s)i , and c2 = θ

⊺(s)
i θ

(s)
i . Note that c1, c2 are con-

stants with respect to θ i and thus irrelevant to the optimization
(14). For any strongly connected graph topology, Ti can be
expressed as,

Ti = ρ
∑
j∈Ni

∥∥∥∥∥θ i − θ
(s)
i + θ

(s)
j

2

∥∥∥∥∥
2

2

= ρ
∑
j∈Ni

θ
⊺
i θ i − θ

⊺
i

(
θ
(s)
i + θ

(s)
j

)
+ c3

VOLUME 12, 2024 77813

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated GP Training for Decentralized Multi-Agent Systems

= ρcard(Ni)θ
⊺
i θ i − ρ

∑
j∈Ni

θ
⊺
i θ

(s)
i + θ

⊺
i θ

(s)
j

= ρcard(Ni)θ
⊺
i θ i − ρcard(Ni)θ

⊺
i θ

(s)
i − ρθ

⊺
i

∑
j∈Ni

θ
(s)
j

= card(Ni)ρθ
⊺
i θ i − ρθ

⊺
i

card(Ni)θ
(s)
i +

∑
j∈Ni

θ
(s)
j

 ,

(22)

where c3 = (1/4)(θ (s)i + θ
(s)
j)⊺(θ (s)i + θ

(s)
j) is a constant and

thus ignored. The local objective Qi results in,

Qi(θ i) = θ
⊺
i

(
∇θLi

(
θ
(s)
i

)
− κiθ

(s)
i + p

(s+1)
i

)
+

κi

2
θ

⊺
i θ i

+ card(Ni)ρθ
⊺
i θ i−ρθ

⊺
i

card(Ni)θ
(s)
i +

∑
j∈Ni

θ
(s)
j

= θ

⊺
i

(
∇θLi

(
θ
(s)
i

)
−

(
κi + card(Ni)ρ

)
θ
(s)
i

+ p(s+1)i − ρ
∑
j∈Ni

θ
(s)
j

)
+

(
κi

2
+ card(Ni)ρ

)
θ

⊺
i θ i.

(23)

Next, we show that the local objective Qi (23) is a convex
function in a quadratic form [49] by computing its Hessian,

HQi =
∂2Qi

∂θ2i
= (κi + 2card(Ni)ρ) ID+2 ≻ 0.

Since the local objective Qi is convex and quadratic,
we can obtain a closed-form solution by computing the first
derivative,

∂Qi

∂θ i
= ∇θLi

(
θ
(s)
i

)
−

(
κi + card(Ni)ρ

)
θ
(s)
i + p

(s+1)
i

− ρ
∑
j∈Ni

θ
(s)
j + 2

(
κi

2
+ card(Ni)ρ

)
θ i,

and then setting ∂Qi/∂θ i = 0 to obtain,

θ i =
1

κi + 2card(Ni)ρ

ρ
∑
j∈Ni

θ
(s)
j −∇θLi

(
θ
(s)
i

)
+ (κi + card(Ni)ρ) θ

(s)
i − p

(s+1)
i

)
.

The rest proof is a direct consequence of [47, Theorem 1].

REFERENCES
[1] J. Koneč ný, H. Brendan McMahan, F. X. Yu, P. Richtárik, A. Theertha

Suresh, and D. Bacon, ‘‘Federated learning: Strategies for improving
communication efficiency,’’ 2016, arXiv:1610.05492.

[2] E. Horvitz andD.Mulligan, ‘‘Data, privacy, and the greater good,’’ Science,
vol. 349, no. 6245, pp. 253–255, 2015.

[3] J. Gielis, A. Shankar, and A. Prorok, ‘‘A critical review of communications
in multi-robot systems,’’ Current Robot. Rep., vol. 3, pp. 1–13, Aug. 2022.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, ‘‘Distributed
optimization and statistical learning via the alternating direction method
of multipliers,’’ Found. Trends Mach. Learn., vol. 3, 2011.

[5] A. Xie, F. Yin, Y. Xu, B. Ai, T. Chen, and S. Cui, ‘‘Distributed Gaussian
processes hyperparameter optimization for big data using proximal
ADMM,’’ IEEE Signal Process. Lett., vol. 26, no. 8, pp. 1197–1201,
Aug. 2019.

[6] C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine
Learning, 2nd ed. Cambridge, MA, USA: MIT Press, 2006.

[7] R. B. Gramacy, Surrogates: Gaussian Process Modeling, Design and
Optimization for the Applied Sciences. Boca Raton, FL, USA: Chapman
Hall/CRC, 2020.

[8] Y. Xu, J. Choi, and S. Oh, ‘‘Mobile sensor network navigation using
Gaussian processes with truncated observations,’’ IEEE Trans. Robot.,
vol. 27, no. 6, pp. 1118–1131, Dec. 2011.

[9] D. Gu and H. Hu, ‘‘Spatial Gaussian process regression with mobile
sensor networks,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 8,
pp. 1279–1290, Aug. 2012.

[10] J. Chen, K. H. Low, Y. Yao, and P. Jaillet, ‘‘Gaussian process decentralized
data fusion and active sensing for spatiotemporal traffic modeling and
prediction inmobility-on-demand systems,’’ IEEE Trans. Autom. Sci. Eng.,
vol. 12, no. 3, pp. 901–921, Jul. 2015.

[11] W. Luo and K. Sycara, ‘‘Adaptive sampling and online learning in multi-
robot sensor coverage with mixture of Gaussian processes,’’ in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 6359–6364.

[12] T. N. Hoang, Q. M. Hoang, K. H. Low, and J. How, ‘‘Collective online
learning of Gaussian processes in massive multi-agent systems,’’ in Proc.
AAAI Conf. Artif. Intell., vol. 33, no. 1, 2019, pp. 7850–7857.

[13] M. Tavassolipour, S. A. Motahari, and M. T. M. Shalmani, ‘‘Learning of
Gaussian processes in distributed and communication limited systems,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 8, pp. 1928–1941,
Aug. 2020.

[14] G. P. Kontoudis and D. J. Stilwell, ‘‘Prediction of acoustic communication
performance in marine robots using model-based kriging,’’ in Proc. Amer.
Control Conf. (ACC), May 2021, pp. 3779–3786.

[15] G. P. Kontoudis and D. J. Stilwell, ‘‘Model-based learning of underwater
acoustic communication performance for marine robots,’’ Robot. Auto.
Syst., vol. 142, Aug. 2021, Art. no. 103811.

[16] V. Suryan and P. Tokekar, ‘‘Learning a spatial field in minimum time with
a team of robots,’’ IEEE Trans. Robot., vol. 36, no. 5, pp. 1562–1576,
Oct. 2020.

[17] G. P. Kontoudis and D. J. Stilwell, ‘‘Decentralized nested Gaussian
processes for multi-robot systems,’’ in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2021, pp. 8881–8887.

[18] M. Santos, U.Madhushani, A. Benevento, andN. E. Leonard, ‘‘Multi-robot
learning and coverage of unknown spatial fields,’’ inProc. Int. Symp.Multi-
Robot Multi-Agent Syst. (MRS), Nov. 2021, pp. 137–145.

[19] F. Bullo, J. Cortes, and S. Martinez, Distributed Control of Robotic
Networks: A Mathematical Approach to Motion Coordination Algorithms,
vol. 27. Princeton, NJ, USA: Princeton Univ. Press, 2009.

[20] G. P. Kontoudis and D. J. Stilwell, ‘‘A comparison of Kriging and cokriging
for estimation of underwater acoustic communication performance,’’ in
Proc. Int. Conf. Underwater Netw. Syst., 2019, pp. 1–8.

[21] H. Liu, Y.-S. Ong, X. Shen, and J. Cai, ‘‘When Gaussian process meets big
data: A review of scalable GPs,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 31, no. 11, pp. 4405–4423, Nov. 2020.

[22] J. Quiñonero-Candela and C. E. Rasmussen, ‘‘A unifying view of sparse
approximate Gaussian process regression,’’ J. Mach. Learn. Res., vol. 6,
pp. 1939–1959, Dec. 2005.

[23] E. Snelson and Z. Ghahramani, ‘‘Sparse Gaussian processes using pseudo-
inputs,’’ in Proc. Adv. NeurIPS, 2006, pp. 1257–1264.

[24] M. Deisenroth and J. W. Ng, ‘‘Distributed Gaussian processes,’’ in Proc.
Int. Conf. Mach. Learn., 2015, pp. 1481–1490.

[25] T. Halsted, O. Shorinwa, J. Yu, and M. Schwager, ‘‘A survey of distributed
optimization methods for multi-robot systems,’’ 2021, arXiv:2103.12840.

[26] V.-A. Le, L. Nguyen, and T. X. Nghiem, ‘‘ADMM-based adaptive sampling
strategy for nonholonomic mobile robotic sensor networks,’’ IEEE Sensors
J., vol. 21, no. 13, pp. 15369–15378, Jul. 2021.

[27] Y. Xu, F. Yin, W. Xu, J. Lin, and S. Cui, ‘‘Wireless traffic prediction
with scalable Gaussian process: Framework, algorithms, and verification,’’
IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp. 1291–1306, Jun. 2019.

[28] M. Hong, Z.-Q. Luo, and M. Razaviyayn, ‘‘Convergence analysis of
alternating direction method of multipliers for a family of nonconvex
problems,’’ SIAM J. Optim., vol. 26, no. 1, pp. 337–364, 2016.

77814 VOLUME 12, 2024

G. P. Kontoudis, D. J. Stilwell: Scalable, Federated GP Training for Decentralized Multi-Agent Systems

[29] H. Liu, J. Cai, Y. Wang, and Y. S. Ong, ‘‘Generalized robust Bayesian
committee machine for large-scale Gaussian process regression,’’ in Proc.
Int. Conf. Mach. Learn., 2018, pp. 3131–3140.

[30] P. Moreno-Muñoz, A. Artés, and M. Alvarez, ‘‘Modular Gaussian
processes for transfer learning,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 34, 2021, pp. 24730–24740.

[31] X. Yue and R. Al Kontar, ‘‘Federated Gaussian process: Convergence,
automatic personalization and multi-fidelity modeling,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 46, no. 6, pp. 4246–4261, Jun. 2024.

[32] S. Chung and R. Al Kontar, ‘‘Federated multi-output Gaussian processes,’’
Technometrics, vol. 66, no. 1, pp. 90–103, 2024.

[33] G. P. Kontoudis and D. J. Stilwell, ‘‘Decentralized federated learning using
Gaussian processes,’’ in Proc. Int. Symp. Multi-Robot Multi-Agent Syst.,
2023, pp. 1–7.

[34] M. Hong, Z.-Q. Luo, and M. Razaviyayn, ‘‘Effective graph resistance,’’
Linear Algebra Appl., vol. 435, no. 10, pp. 2491–2506, 2011.

[35] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent
Networks. Princeton, NJ, USA: Princeton Univ. Press, 2010.

[36] J. W. Ng andM. P. Deisenroth, ‘‘Hierarchical mixture-of-experts model for
large-scale Gaussian process regression,’’ 2014, arXiv:1412.3078.

[37] T. Yang, X. Yi, J. Wu, Y. Yuan, D.Wu, Z. Meng, Y. Hong, H.Wang, Z. Lin,
and K. H. Johansson, ‘‘A survey of distributed optimization,’’ Annu. Rev.
Control, vol. 47, pp. 278–305, 2019.

[38] Y. Zheng and Q. Liu, ‘‘A review of distributed optimization: Prob-
lems, models and algorithms,’’ Neurocomputing, vol. 483, pp. 446–459,
Apr. 2022.

[39] D. J. C. Mackay, ‘‘Introduction to Gaussian processes,’’ in Proc. NATO ASI
Series F Comput. Syst. Sci., 1998, pp. 133–165.

[40] F. Perez-Cruz, S. Van Vaerenbergh, J. J. Murillo-Fuentes, M. Lazaro-
Gredilla, and I. Santamaria, ‘‘Gaussian processes for nonlinear signal
processing: An overview of recent advances,’’ IEEE Signal Process. Mag.,
vol. 30, no. 4, pp. 40–50, Jul. 2013.

[41] Z. Chen and B. Wang, ‘‘How priors of initial hyperparameters
affect Gaussian process regression models,’’ Neurocomputing, vol. 275,
pp. 1702–1710, Jan. 2018.

[42] S. Basak, S. Petit, J. Bect, and E. Vazquez, ‘‘Numerical issues in maximum
likelihood parameter estimation for Gaussian process interpolation,’’ in
Proc. Int. Conf. Mach. Learn., Optim. Data Sci., 2021, pp. 116–131.

[43] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, ‘‘On the linear convergence
of the ADMM in decentralized consensus optimization,’’ IEEE Trans.
Signal Process., vol. 62, no. 7, pp. 1750–1761, Apr. 2014.

[44] A. Makhdoumi and A. Ozdaglar, ‘‘Convergence rate of distributed
ADMM over networks,’’ IEEE Trans. Autom. Control, vol. 62, no. 10,
pp. 5082–5095, Oct. 2017.

[45] A. Elgabli, J. Park, A. S. Bedi, M. Bennis, and V. Aggarwal, ‘‘GADMM:
Fast and communication efficient framework for distributed machine
learning,’’ J. Mach. Learn. Res., vol. 21, no. 76, pp. 1–39, 2020.

[46] G. Mateos, J. A. Bazerque, and G. B. Giannakis, ‘‘Distributed sparse linear
regression,’’ IEEE Trans. Signal Process., vol. 58, no. 10, pp. 5262–5276,
Oct. 2010.

[47] T.-H. Chang, M. Hong, and X. Wang, ‘‘Multi-agent distributed optimiza-
tion via inexact consensus ADMM,’’ IEEE Trans. Signal Process., vol. 63,
no. 2, pp. 482–497, Jan. 2015.

[48] D. M. Topkis, ‘‘Concurrent broadcast for information dissemination,’’
IEEE Trans. Softw. Eng., vol. SE-11, no. 10, pp. 1107–1112, Aug. 1985.

[49] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

GEORGE P. KONTOUDIS (Member, IEEE)
received theM.S. and Ph.D. degrees in mechanical
engineering and electrical engineering from
Virginia Tech, in 2018 and 2021, respectively.

From January 2022 to December 2023, he was
a Postdoctoral Research Associate with the
Aerospace Engineering Department, University
of Maryland, College Park, MD, USA. Since
2024, he has been an Assistant Professor with the
Mechanical Engineering Department, Colorado

School of Mines. His research interests include multi-agent systems,
Gaussian processes, motion planning, and optimal control.

DANIEL J. STILWELL (Member, IEEE) received
the B.S. degree in electrical engineering from the
University ofMassachusetts Amherst and theM.S.
and Ph.D. degrees in electrical engineering from
Johns Hopkins University. He is currently a Pro-
fessor with the Bradley Department of Electrical
and Computer Engineering, Virginia Tech. His
research interests include robotics, control theory,
and estimation.

VOLUME 12, 2024 77815

