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ABSTRACT This study addresses the challenge of improving the downstream performance of pretrained
language models for morphologically rich languages, with a focus on Turkish. Traditional BERT models
use one-dimensional absolute positional embeddings, which, while effective, have limitations when dealing
with complex languages. We propose BERT2D, which is a novel BERT-based model that contributes to
positional embedding systems. This approach introduces a dual embedding system that targets all the
words and their subwords. Remarkably, this modification, coupled with whole word masking, resulted in a
significant increase in performance despite a negligible increase in the parameters. Our experiments showed
that BERT2D consistently outperformed the leading Turkish-focused BERT model, BERTurk, in terms of
various performance metrics in text classification, token classification, and question-answering downstream
tasks. For a fair comparison, we pretrained our BERT2D language model on the same dataset as that of
BERTurk. The results demonstrate that two-dimensional positional embeddings can significantly improve
the performance of encoder-only models in Turkish and other morphologically rich languages, suggesting a
promising direction for future research in natural language processing.

INDEX TERMS Transformer models, BERT, BERT2D, sentiment analysis, named entity recognition,

question answering, Turkish, NLP, positional embeddings, positional encoding.

I. INTRODUCTION

Transformer-based [1] large language models, such as
BERT [2], BART [3] and GPT [4], and the models derived
from them have been used as de facto tools in almost all
natural language processing (NLP) tasks for many years.
Their outstanding ability to represent the meaning of words
in a sentence as vectors has led to easy learning of the
latent semantics of words by training on massive unlabeled
text corpora, which are widely available for almost any
language. These models require words (more specifically,
tokens generated by the tokenizer) and learn the internal
interactions of words through self-attention layers. Because
the basic self-attention mechanism does not consider word
positions, these models resort to augment the input word
vectors with position vectors that indicate the absolute
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position of the word in the sentence or text. Transformer-
based models have achieved most of the state-of-the-art
results using learned absolute position embeddings for many
downstream NLP tasks, including named entity recognition
(NER), part-of-speech (POS) tagging, sentiment analysis,
and question answering, to name a few.

The order of the words in a sentence is crucial for
English, since the positions of the words together with the
prepositions determine their syntactic functions. However,
some languages, such as Turkish, have almost free word
order, or more precisely, free constituent order, which
makes the word position less important. Consider the
following example, which presents several Turkish sentences
that convey the same meaning (my little brother came
home from school in English) with slight differences in
emphasis:

Klicik kardesim okuldan eve geldi.

Kiiclik kardesim eve okuldan geldi.
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Okuldan eve kiiclik kardesim geldi.

Okuldan eve geldi kiiclik kardesim.

The syntactic functionalities of the constituents in these
sentences are determined by the affixes attached to the words
(usually the last word of the constituent). While the word
order within the constituent is important, the order of the
constituents in a sentence is not important for Turkish. For
example, while kiiciik kardesim translates into English as
my little brother, kardesim kiiciik translates into English as
my brother is small, which rebders the arbitrary word order
within the constituent invalid. This fact can be interpreted as
input word position embeddings still being beneficial for the
transformer architecture for Turkish, even though it is a free
constituent order language.

On the other hand, Turkish and many other languages,
such as Finnish and Hungarian, have complex agglutina-
tive morphological structures, where several suffixes can
be added to words. These suffixes can cause the word
to undergo inflectional or derivational changes, which
eventually makes the vocabulary size large, even theoreti-
cally unlimited. Because transformer-based architectures use
fixed-size vocabularies, they incorporate various tokenization
methods to mitigate out-of-vocabulary (OOV) words when
the actual vocabulary is too large. Common tokenization
methods such as WordPiece [5] and BPE [6], break words
into subwords.

For example, the English word unbelievable can be
tokenized as un #believ #able, with three subwords.
The granularity of tokenization (i.e., the number of subwords
generated after tokenization) is much higher for agglutinative
languages [7] because a wordform can consist of a root
word and several suffixes. An example Turkish wordform
goremediklerimizden (English: (of) what we cannot see) is
splitinto gére #me #dik #lerimiz #den.

In the basic approach of the Transformers tokenization
procedure, all tokens (mostly subwords in the Turkish case)
are treated as separate words in a sentence, and their positions
are used in the input embedding computation by completely
ignoring their relationship with the wordform, root, and other
subwords of the wordform, although the last subword is
very important in determining the part of speech of a word.
The positional encoding used in the original Transformers
paper and later in BERT relies on a linear, one-dimensional
positional embedding that is absolute and does not distinguish
between whole words and tokenized subwords. Treating
whole words and subwords in the same way has little
impact in languages such as English, where tokenization
granularity is low. However, for agglutinative languages, this
tokenization granularity is higher for Turkish, which means
that the treatment of subwords and whole words is more
critical. Therefore, we hypothesized that if we replace these
1D positional embeddings with two positional embeddings,
one for whole word positions and one for subword positions
relative to the whole word to which it belongs, we will better
capture the effect of word position. To test our hypothesis,
we introduced a new BERT variant called BERT2D.
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Masked language models replace some of the tokens
with mask tokens, and their training task is to predict
masked tokens. This approach makes BERT a successful
language model that captures the representation of tokens
in a self-supervised manner. However, this approach does
not distinguish between the subwords and whole words
during masking. For example, the word misconception can
be tokenized as mis + ##concept + ##ion, and if
the first token mis is masked, it becomes trivial to predict
the token. Because the information gain is reduced by
not distinguishing between whole words and subwords, the
whole word masking approach is introduced in the BERT
repository as a masking strategy that improves the results
even for the English language. This improvement is expected
to be much more significant for languages with compound or
agglutinated words, such as Turkish, German, and Chinese.
In Turkish, sentences with agglutinated words are ubiquitous
like miniature sentences, so that a single conjugated word can
consist of an entire English sentence. An extreme example
is Muvaffakiyetsizlestiriveremeyeleceklerimizdenmissinizce-
sine, which translates into English as: as if you were one of
those we would not be able to turn into a maker of. Because
of this property of Turkish, masking part of the agglutinated
word makes the mask prediction (cloze) task trivial. This
reduces the information obtained to a greater extent than in
many other non-agglutinative languages.

In this study, we empirically validated the effectiveness
of BERT2D in various NLP tasks by pretraining, fine-
tuning, and evaluation with grid search experiments to
compare the performance of novel language models with
benchmark BERT models (i.e., BERTurk and multilingual
BERT). In these experiments, we used a grid search to
determine the best configurations for 2D positional encoding
and whole word masking. The experiments show that
BERT2D, especially when combined with whole word
masking, achieves better performance than traditional BERT
models in most cases, setting a new state-of-the-art for
Turkish NLP applications.

Our contributions are as follows.

(1) We propose a novel positional encoding, which we
call 2D positional encoding, that includes word and
subword relative positional encodings. We use these
positional encodings to construct a BERT model, which
we call BERT2D, in which word position embedding
and subword relative position embedding replace the
1D absolute positional embedding in BERT.

(2) We trained BERT and BERT2D models with and
without whole word masking and BERT2D with
different hyperparameters and evaluated the models
on various text classification, token classification, and
question-answering tasks.

Il. RELATED WORK

A. POSITIONAL EMBEDDINGS

Positional embeddings have been extended in many ways to
accommodate various modalities and encoding paradigms.
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For example, [8] introduced Continuously Augmented Posi-
tional Augmentations (CAPEs), which exploit continuous
data augmentation to enhance a model’s generalization
capabilities in various domains, including speech and images.
Similarly, [9] extended traditional sinusoidal positional
encodings by incorporating complex-valued embeddings
and adding nuanced encoding capabilities. Reference [10]
explored the limitations of traditional sinusoidal encodings
and proposed alternative encodings based on a functional
analysis.

Research has also been conducted on relative position
embeddings. Reference [11] used an additional attention
mechanism for scalar biases to improve the standard
benchmarks of GLUE and SuperGLUE. Another paper,
called KERPLE [12], introduced an expressive kernel-based
framework for the nature of positional embeddings with
speed and perplexity higher than any other contemporary
counterpart. Reference [13] found that by multiplicatively
combining positional information, they could improve the
standard tasks of benchmarks, including SQuAD 1.1 and
SQuAD 2.0 with ‘Method 4’ and M4M. Reference [14]
proposed TUPE to solve the drawbacks observed in the
positional encodings of BERT. In this design, different
projection matrices were used for words and positions to
improve the expressiveness of the model. Reference [15]
proposed ALiBi, which mitigates bias by linearly adding
bias to the attention score and does not require additional
parameters from classical positional embeddings.

Reference [16] proposed Rotary Positional Embeddings
(RoPE), which use a rotation matrix to encode positions. This
method provides a stable coding process and has been shown
to outperform traditional methods in text classification tasks.

Reference [17] extended the self-attention mechanism
by incorporating dependency trees as structural positional
representations. This incorporation significantly improved
the translation tasks such as NIST Chinese to English and
WMT14 English to German.

In contrast, [18] questioned the need for explicit positional
encodings. The NoPos models show that competitive
performance can be achieved across a range of benchmarks
and sequence lengths even without learned positional
embeddings.

B. WHOLE WORD MASKING
Whole word masking (WWM) has attracted attention because
of its effectiveness in various languages and domains.
Reference [19] explored its utility in the morphologically
complex Turkish language, particularly in the banking sector,
and found that the overall increase in the accuracy of
WWDM is particularly beneficial when traditional token-based
approaches fail. Similarly, [20] and [21] focused on the Chi-
nese language, highlighting the advantages of WWM in miti-
gating the limitations of partial token masking and improving
NER by reducing the negative impact of random masking.
In the German context, [22] found that WWM significantly
improves BERT model performance in tasks by enhancing
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the training signal. Reference [23] also emphasized the
role of WWM in Chinese BERT models for grammatical
error correction, although its effectiveness levels off in
downstream sentence-level tasks. Reference [24] uniquely
applied WWM in the specialized domain of energy marketing
for NER, emphasizing its ability to effectively handle terms
with multiple meanings. Finally, [25] applied WWM as an
advanced strategy in Masked Language Models (MLM),
increasing the complexity of the task and improving the
robustness of the model, a feature that proved beneficial
to various Chinese NLP datasets. Despite its widespread
use, the effectiveness of WWM varies depending on the
language and the specific NLP task at hand, warranting
further investigation into its limitations and potential for
optimization.

Ill. PRELIMINARIES

In the original Transformers paper [1], the output of the
attention layer is computed as zf for each layer 1 and position
i, as shown in (1). xl? is the contextual representation of the
attention layer input for each layer. The attention scores o;;
were computed for each of these layers, as shown in (2).

i
Jd

A. ABSOLUTE POSITIONAL EMBEDDINGS

Note that these results do not depend on the positional
embeddings. The original Transformers paper suggested
using positional embeddings only for the first layer, that is,
the input layer, replacing xl.l = w; 4 p;. The formula is given
by (3).

o’ = % (owi+ powe!) (ow; + pj)wKﬁl)T 3)

This formula represents the absolute attention scores
Abs

a7 in a self-attention mechanism, incorporating both the
word embeddings w and position embeddings p, with the
query and key transformations W ! and WX-!, respectively.
Dimension d is typically the size of the query and key vectors,
and the square root serves as a scaling factor to control the
variance of the dot products.

For sinusoidal position encoding, the p; becomes a periodic
function, depending on the word position and dimension
as shown in (4). To provide a mathematical explanation of
sinusoidal positional encoding, we consider the formula used
to calculate the positional encoding for each position i and

dimension ¢.

where o = —=(xI W)W, 2)

i
10000 ( dmodel )

l
Pi2iy1 = COS(—B) 4)
IOOOO(dmodel )
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Using these sinusoidal functions, positional encodings for
different positions and dimensions can be calculated, provid-
ing a unique value for each position in the input sequence.
However, the limitations of this method in capturing the
complexities of Turkish have been acknowledged, leading to
research on alternative positional encoding mechanisms that
better accommodate the linguistic characteristics of Turkish.
For this purpose, BERT uses the learned absolute positions
instead of periodic functional values.

B. 2D POSITIONAL EMBEDDINGS

When we replace p; in absolute positional embedding further
with ppp,, that is, two-dimensional positional embedding,
we obtain (5) for the self-attention score calculation.

1 T
«i’ = (wi + p20)W2!) () + 20)WE!) " (5)

The pop, encoding is a linear combination of two other
embeddings, which are the whole word position embedding
P¢; and the relative subword position embedding py, denoted
in (6).

P2p; = Pe; + Ps; (6)

IV. 2D POSITIONAL ENCODING

A word can be split into subwords depending on the
granularity of the tokenization. If a word is not tokenized,
the number of tokens per word was only one. If a word was
tokenized into two subwords, the number of tokens per word
is two, with a start token and an end token. If a word is
tokenized into more than two subwords, we call the subwords
between the start and end tokens intermediate subwords and
denote their number by m. A word tokenized into fewer than
three tokens has m = 0.

In Fig. 1, we compare 1D absolute positional encoding
with 2D positional encoding consisting of whole word
positional encoding denoted by E and subword positional
encoding denoted by S. Note that relative subword position
encoding changes according to the maximum number of
intermediate subword positions to encode, denoted by M.
If M is one, then all intermediate subwords are encoded as
two, regardless of the number of intermediate subwords. If M
is greater than one, the intermediate subword encodings are
evenly distributed, as shown in (9).

Note that the whole word positional encoding e; is the same
for every subword of the same word, as depicted in (8), and
the subword positional encoding of the beginning subword
of each word is always equal to 0. If there is more than one
subword per word, the encoding of the last subword of each
word is always equal to one. In this way, we ensure that we
embed the last subword of each word with the same vector
so that the model learns what the first and last subwords
mean for a word. These two encodings will create two learned
embeddings that will make a two-dimensional separation
between words, where, for each word, a word positional
embedding vector is learned. In addition, a relative subword
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FIGURE 1. The encoding of a Turkish sentence using two different
methods - 1D Absolute Positional Encoding (the original BERT

encoding [2]) and 2D positional encoding proposes in this work. The 2D
positional encoding consists of one whole word positional encoding and
one subword positional encoding, which is shown for two different
values of M: M = 1 and M = 2. (English: | was getting out of the car when
1 saw you.)

position embedded relative to the word vector was learned.
The model learns a two-dimensional representation of the
word position feature as shown in Fig. 2.

=1 #HH#gU s=1
gor
e=1

“
e=2 e=3

Word Axis e;

e=0

FIGURE 2. How two-dimensional information is represented using the
Word Axis (e;) and Subword Axis (s;). The dark blue boxes represent
whole words or the first subword of a word. Light blue boxes represent
intermediate subwords, whereas orange boxes represent the last
subword in a word. The token index is denoted by i and is independent of
dimension, whereas j is the index of intermediate subwords used in (9)
to calculate subword encoding. (English: | was getting out of the car
when I saw you.)

In Fig. 3, we show that changing vocabulary size leads
to different tokenizations. Note that for each sentence, the
1D absolute positional encodings change almost randomly,
but the word position embeddings remain the same for each
tokenization, so the word position encoding is tokenization-
agnostic. The subword positional encoding changes with
different tokenization methods but again remains relative
to the word. These properties of the 2D encoding make it
more robust to hyperparameter changes that influence the
tokenization of a word, making positional encoding more
versatile than 1D positional encoding.

T=A{t1,t2,...,t}

E ={e,er,...,e,}, e €N

S={s1,5,...,5:}, sieN @)
0 if #; belongs to the first word

e; =1 ei—1 +1 ift; belongs to a new word ®)
ei_1 otherwise
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FIGURE 3. How vocabulary size affects the encodings. Above, we show
how a sentence tokenized with 32k vocabulary is encoded, comparing
original 1D absolute positional encoding with 2D positional encoding.
When we change the tokenization vocabulary size to 128k, the whole
word positional embedding does not change for words. However, the
subword positional embedding changes while staying relative to its
position in a word. The last subwords are always encoded with 1 (orange),
and the first subword or the whole word is always encoded with 0 (dark
blue) for subword positional encoding. The intermediate subwords (light
blue) disappear when the vocabulary size goes from 32k to 128k, due to
decreased tokenization granularity with increased vocabulary size.
(English: It started raining as | was leaving the bookstore)

0 if ¢; is the first subword
1 if ¢; is the last subword
— ix M 9
5 24+ \f X J ifm>M ©)
m
j otherwise

In (7), t; represents the i-th token in an input text with n
tokens. In (8), ¢; is the word position IDs, and in (9), s; is
the subword position IDs, m is the number of intermediate
subwords, and M is the maximum number of intermediate
subword positions encoded per word. The i-th index is
the token index in the sentence, and the j-th index is the
intermediate subword index in a word (see Fig. 2).

For example, if there is only one token per word, the
subword position ID for that word is 0. If only two tokens
exist, the subword positional encoding for that word is always
[0, 1]. However, if there are more than two tokens per word,
subword positional encoding depends on M. If M is one
and the word consists of three subwords, there is only one
intermediate subword. Thus, the subword encoding of this
word is [0, 2, 1]. Note that the last token is always encoded
as one because encoding the last subword of a word with
one, regardless of M or the number of subwords, increases
attention to the last token, which is more appropriate for
Turkish.

Positional encoding IDs function as indices for a vector
lookup table. Because the whole word positional encoding e
is the same for all subwords of a word, they contribute to the
same embedding. Thus, instead of using p; as the embedding
vector as in absolute positional embedding, we use a linear
combination of two embeddings p,; and py;, which we denote
as pap;, represented in (6).

Note that for the 768 intermediate layer size, we add
(M + 2) x 768 parameters to the model, which are only
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(142)%768 = 2304 forM = 1 and (10+2)%768 = 9216 for
M = 10, which are negligible compared with the sheer size of
the entire BERT model. In general, the number of parameters
in the model does not change for the BERT2D family models;
therefore, there is no additional training cost.

V. WHOLE WORD MASKING

The BERT language model learns by optimizing two tasks
simultaneously: masked token prediction (or Cloze task) and
next sentence prediction. However, modern BERT variations
have dropped the next sentence prediction in favor of only the
Cloze task, making new BERT models MLMs only.

Initially, the authors of BERT decided to use random word
masking (RWM) to mask a portion of tokens with a default
masking probability of 15% for self-supervised learning. This
approach eliminates the need for human data annotators,
because it can automatically generate annotations. The task
then becomes to predict the masked tokens. However, the
original authors of the BERT model added whole word
masking with an update to the model’s repository! so that the
model can mask only whole words instead of partial tokens,
improving performance even for the English language.

In Table 1, the first sentence has 14 tokens, and with a word
masking probability of 15%, the masking algorithm should
mask two tokens. Using a random word masking approach,
any two tokens can be masked, whether partial or whole
words. Note that in the first sentence, large compound words
are broken down into many partial words. Partial masking
of compound words provides no additional information
during pretraining for masked token prediction; however,
when whole words are masked, the words "yarin’ (tomorrow
in English) and ’ben’ (me in English) are learned. With
whole word masking, it is impossible to partially mask long
compound words, which makes learning more coherent.

The results were similar for the second sentence because
there were no long compound words. Nevertheless, random
word masking can mask only a single subword, and compared
to whole word masking, it is more challenging for the masked
language model to predict if the token is a partial token or a
whole word.

VI. EXPERIMENTAL EVALUATION AND RESULTS

A. EXPERIMENTAL SETUP

We pretrained, fine-tuned, and evaluated the language models
according to the pipeline shown in Fig. 4.

1) BERTURK CORPUS

We pretrained all our language models using the corpus
curated in [26] (which we refer to as the BERTurk corpus)
to train the BERTurk language model in the same work.
The BERTurk corpus combines and processes four datasets:
the OSCAR corpus [27], a recent Wikipedia dump, OPUS
corpora [28], and an unpublished corpus by Kemal Oflazer.
Because the BERTurk corpus is curated from various sources

1 https://github.com/google-research/bert/commit/Ofce551
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BERT I
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Wikipedia
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FIGURE 4. The five stages of experimenting and evaluating the language models. Fist, we start with pretraining corpus acquisition (BERTurk corpus [26]).
Second, we train the vocabularies with the corpus, Thirdly, we pretrain BERT and BERT2D family language models. Finally, we fine-tune and evaluate the
pretrained language models with respective downstream task datasets and report results.

TABLE 1. Word Masking Comparison.

Masking Tokenized Sentence

Strategy

Original Yarin gel ##di ##gin ##de beni bura ##da bula
Text 1 ##ma #tya ##bilir ##sin ##iz.*

Random Yarin gel [MASK] ##gin ##de beni [MASK]
Word ##da bula ##ma ##ya ##bilir ##sin ##iz.
Masking

Whole [MASK] gel ##di ##gin ##de [MASK] bura
Word ##da bula ##ma ##ya ##bilir ##sin ##iz.
Masking

Original Sen de mi on ##lar gibi ##sin?**

Text 2

Random Sen de mi on [MASK] gibi ##sin?

Word

Masking

Whole Sen [MASK] mi on ##lar gibi ##sin?

Word

Masking

* English: You may not find me here when (you come to-
morrow/he comes tomorrow/she comes tomorrow/tomorrow
comes).

** English: Are you like them, too?

that are not manually checked for bias and quality, researchers
are advised to consider these biases in the sentences when
interpreting the results of this study.

The BERTurk corpus has 300M sentences with 4.4B
tokens.

2) VOCABULARY LEARNING

We trained WordPiece vocabulary models using the BERTurk
corpus with 32k and 128k vocabulary sizes, each yielding
different vocabularies and tokenizations.

3) PRETRAINING
To answer our research questions, we pretrained the novel
models based on the following parameters:

« Positional embedding type
« Vocabulary size
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o Word masking type

o Training corpus

e Maximum number of intermediate subwords to be
mapped (M) for BERT2D family models

Fig. 5 shows the parameters leading to the pretrained
model. There are two families of models, BERT and
BERT2D. The difference lies in the choice of positional
encoding used in the first layer of the BERT architecture. The
BERT family models used 1D absolute position embeddings,
whereas the BERT2D family models used the proposed 2D
position embeddings.

BERT2D

M:1,3,10

WWM: YES/NO

Vocab Size: 32k, 128k

{12 x BERT2D Models}

FIGURE 5. Classification of BERT and BERT2D family models. Green
denotes benchmark models, whereas purple denotes the models
pretrained for this work. M/ denotes the number of intermediate
subwords, and M denotes whole word masking. Combining three M
options, two wiM options, and two vocab sizes results

in 12 BERT2D-family model combinations.

Additionally, we fine-tuned multilingual BERT (mBERT)
as a multilingual baseline, which includes Turkish. Any
model other than mBERT was pretrained with the same
BERTurk corpus. For our Turkish-dominant BERT family,
where random word masking was the previous state-of-the-
art baseline, we fine-tuned 32k and 128k BERTurk models.

We used the same dataset as that used for the BERTurk.
In addition to the new BERT2D family model that we
pretrained, we pretrained two BERT family models with
whole word masking to isolate the effect of whole word
masking: the 32k and 128k ITUTurkBERT-WWM models
(ITUTurkBERT refers to our previous work [7], where we
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analyzed the effect of tokenization granularity and mainly
vocabulary size using the BERTurk corpus).

We pretrained 12 BERT2D-family models, which Were
combinations of:

o 32k and 128k vocabulary (2 options)

+ Random word masking and Whole Word Masking
(2 options)

e Maximum number of intermediate subwords to be
mapped (M) for the BERT2D family models (1, 3,
and 10; 3 options)

A word can consist of one, two, three, or more subwords.
In the first two cases, there were no intermediate subwords.
For three or more subwords, we have intermediate subwords,
and their count m is calculated as two subtracted by the total
subwords for the first and last subwords.

The BERT family models were pretrained using the
default configuration of the BERT base architecture. The
configuration comprised a Transformer with 12 attention
heads, which was used only for decoding. It has 12 hidden
layers, each consisting of 768 hidden vector units, and a
feedforward intermediate size of 3072. The model had a
maximum sequence length of 512 and used GELU activation.
Furthermore, the model has a dropout rate of 0.1 for both
hidden and attention probabilities.

The hyperparameters used for the BERT2D family of
models were the same as those used for the BERT family
of models. However, the 1D absolute positional embedding
layer was replaced with the 2D positional embedding layer,
resulting in a negligible difference in the parameters with
respect to M and hidden vector units.

Furthermore, we pretrained some of our language models
with whole word masking, and others with random word
masking. Furthermore, we pretrained some of our models
using a 32k vocabulary and others with a 128k vocabulary.

4) FINE-TUNING

For fine-tuning, we used hyperparameters as close as possible
to [29]. The original BERTurk model also used [29] as a
reference for hyperparameters. The hyperparameters used
to fine-tune our language models are shown in Table 2.
We fine-tune the language models using train splits for the
downstream tasks of named entity recognition, POS tagging,
question answering, and sentiment analysis, and evaluated
them using the dev and test splits of the data provided by the
respective data repositories.

TABLE 2. Fine-tuning hyperparameters of language models for
downstream tasks.

Hyper Parameter NER | POS | QA | SA
Batch size 16 16 |64 |64
Epochs 10 10 |20 |3
Max Sequence Length | 512 | 512 |384 |256
Doc Stride N/A | N/A | 128 | N/A
Max Answer Length | N/A |N/A |64 |N/A
Learning Rate Se-5 | 5e-5 | 3e-5 | 3e-5
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B. TEXT CLASSIFICATION

For the text classification task, we fine-tuned all language
models, including the novel BERT2D models using a
combination of two-dimensional embeddings and whole
word masking using the same corpus as BERTurk, the
ITUTurkBERT models using whole word masking with the
original BERT architecture and using the same corpus as
BERTurk, the BERTurk models using the Turkish corpus
with the original BERT architecture, and the multilingual
BERT which uses a multilingual corpus including Turkish
with the original BERT architecture for sentiment analysis
on an unbalanced sentiment dataset from HuggingFace.

1) DATASET

For sentiment analysis, we used the "turkish-sentiment-
analysis-dataset"? provided in the HuggingFace datasets
repository. The dataset consists of 441k training examples
and 49k test examples. Of these 441k train examples, 53.5%
were positive, and 11.6% were labeled as negative, collected
from various repositories, including the HUMIR dataset
prepared for the [30] paper. The remainder of the dataset
consists of neutral examples. For binary sentiment analysis
(i.e., classification as Positive or Negative), neutral
examples were removed. After up-sampling the negative
sentences, there were 235k positive and 50k negative unique
sentences in the training split and 26k positive and 5.6k
negative unique sentences in the test split. If we remove
positive examples to balance negative and positive sentences,
we would have lost a considerable amount of valuable data.
Instead, we randomly upsampled the negative sentences so
that there were an equal number of positive and negative
sentences in the training and test sets.

2) HOW WE EVALUATE

In this study, we addressed the imbalance in our Turkish
sentiment analysis dataset by increasing the number of
negative sentences in the training set, instead of creating
synthetic sentences using methods such as SMOTE [31].
This decision was driven primarily by the unique linguistic
characteristics of Turkish. Turkish is an agglutinative and
morphologically rich language, that poses significant chal-
lenges for the generation of syntactically and semantically
accurate synthetic sentences. The Turkish language’s exten-
sive inflection and derivation make it challenging to generate
synthetic sentences that accurately reflect the language’s
nuances.

Furthermore, techniques such as SMOTE would have
introduced an additional layer of dependency on the quality
of synthetic sentence generation. This could have led to a
misrepresentation of the actual task, which was to compare
the performance of language models in processing natural
Turkish language data. In this context, using a simpler, more
direct approach of upsampling negative sentences ensures

2https ://huggingface.co/datasets/winvoker/turkish-sentiment-analysis-
dataset

77435



IEEE Access

Y. B. Kaya, A. C. Tantug: BERT2D: Two Dimensional Positional Embeddings for Efficient Turkish NLP

that the training data remain grounded in actual language
use, thereby avoiding the pitfalls of potentially inaccurate or
misleading synthetic data generation.

Additionally, [32] found empirically that balancing is
useful in moving the focus of the classifiers towards the
minority class, resulting in better prediction of the minority
samples and worse prediction of the majority samples.
This was found to improve the prediction performance for
weak classifiers, but not for strong ones. Given that BERT
is a strong classifier, it is reasonable to avoid using the
SMOTE.

The upsampling method aligns with established machine
learning practices for addressing class imbalances in the
datasets. By augmenting the representation of the under-
represented class (in this case, negative sentences), the
goal was to train a model that was more sensitive to
the intricacies of both positive and negative sentiments in
Turkish. The decision to train on this artificially balanced
dataset and test on an unaltered, real-world class distribution
ensures that the model’s performance is evaluated under
realistic conditions, providing a more accurate measure of
its effectiveness in processing Turkish sentiment analysis.
This methodological choice prioritizes linguistic authenticity
and practical feasibility, reflecting a nuanced understanding
of the constraints and requirements of Turkish language
processing.

Sentiment analysis is typically evaluated based on accu-
racy. However, owing the highly skewed dataset, we also
provided the F1 metric, which is a straightforward method
for sentence classification (refer to (10)). To calculate F1,
the precision and recall must be calculated. Precision is
defined as the ratio of correctly predicted positive sentences
(True Positive, TP) to all sentences predicted to be positive
as shown in (11) (i.e., True Positive, TP + False Positive,
FP). Recall is defined as the ratio of true positives to all
real positive sentences in the test dataset (True Positive,
TP + False Negatives, FN), as shown in (12). F1 provides
a balanced measure of precision and recall for unbalanced
datasets.

Precision x Recall

Fl1=2x — (10)
Precision + Recall
.. TP
Precision = ——— (11
TP + FP
TP
Recall = ——— (12)
TP 4+ FN

3) RESULTS

Table 3 shows that while all BERT2D models signifi-
cantly outperform the mBERT and BERTUrk models, the
ITUTurkBERT model, which combines BERT with whole
word masking, performs the best. It can be argued that this
is because sentiment analysis is a sentence classification task
that focuses only on a single special sentence token [CLS];
thus, the use of the BERT2D architecture does not contribute.
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However, whole word masking clearly improved accuracy
and F1 values for this task.

TABLE 3. Sentiment Analysis (Unique) Accuracy/F1.

Vocabulary Size

32k 128k
Model RWM WWM RWM WWM
mBERT N/A N/A 94.60/96.72 N/A
BERTurk 96.04/97.61 N/A 96.02/97.60 N/A

ITUTurkBERT N/A 96.14/97.66 N/A 96.19/97.70
BERT2D (M =1) |96.16/97.67 | 96.16/97.68 | 96.15/97.68 | 96.11/97.65
BERT2D (M = 3) |96.11/97.64 | 96.14/97.66 | 96.08/97.63 | 96.15/97.67
BERT2D (M = 10) | 96.14/97.66 | 96.15/97.67 | 96.14/97.67 | 96.16/97.68

C. TOKEN CLASSIFICATION

We fine-tuned all language models for named entity
recognition and POS tagging downstream tasks for token
classification evaluation.

1) DATASET

The Turkish-WikiNER? [33] dataset was utilized for this
study due to its high data quality and the inclusion of more
than three named entity classes. This dataset contains 18,000
training, 1000 test, and 1000 development sentences, and
includes 19 label classes such as DATE, TIME, ORG, and
PERSON. It is available in the CoNLL format.

The most recent version of the IMST* dataset was used for
the POS tagging. The dataset is a semi-automatic conversion
of the IMST Treebank [34] (and [35]), which in turn
is a re-annotated version of the METU-Sabanci Turkish
Treebank [36] (and [37]). All three treebanks share identical
raw data, consisting of a collection of 5635 sentences
obtained from daily news reports and novels.

We also used the BOUN dataset® [38], which includes
9,761 manually annotated sentences from various topics,
including biographical texts, national newspapers, instruc-
tional texts, articles on popular culture and essays for the POS
tagging task.

2) HOW WE EVALUATE

The performance of the named entity recognition task was
evaluated using the CoNLL F1 score [39]. This score
quantifies the accuracy of named entity recognition by
balancing precision and recall. Precision is the proportion of
correctly identified entities, whereas recall is the proportion
of entities that are actually recognized. The CoNLL F1 score
is calculated using the harmonic mean of the precision and
recall, ensuring that both metrics are given equal weights.
This method achieves a balance between the accurate identi-
fication and comprehensive detection of entities, making the
F1 score a robust measure for evaluating system performance
in named entity recognition tasks.

3 https://github.com/turkish-nlp-suite/Turkish-Wiki-NER-Dataset
4https ://github.com/UniversalDependencies/UD_Turkish-IMST
5 https://github.com/UniversalDependencies/UD_Turkish-BOUN
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For the POS tagging task, we simply evaluated the
accuracy of the dev and test splits and reported the results
as dev/test results.

3) RESULTS

Table 4 presents the NER results for the dev/test sets. The
ITUTurkBERT+WWM@128k model achieves the best dev
performance, closely followed by the BERT2D (M=1) @32k
model. The same BERT2D model achieved the best results for
the test split, with significant improvement over the baseline.
These results demonstrate that BERT2D and whole word
masking consistently outperformed the baseline for different
dataset splits.

TABLE 4. NER dev/test F1.

Vocabulary Size

32k 128k
Model RWM WWM RWM WWM
mBERT N/A N/A 76.53/76.13 N/A
BERTurk 77.03/77.46 N/A 77.06/77.38 N/A

ITUTurkBERT N/A 77.38/77.54 N/A 77.40/77.93
BERT2D (M = 1) |77.17/77.68 | 77.30/77.90 | 77.39/78.22 | 76.54/77.62
BERT2D (M = 3) |77.24/77.24 | 77.12/77.46 | 77.18/77.44 | 77.31/78.20
BERT2D (M = 10) | 76.94/77.39 | 77.06/77.41 | 76.87/77.90 | 77.35/77.74

Table 5 shows that BERT2D models with whole word
masking outperformed the baseline in the POS-tagging tasks.
Furthermore, in Table 6, BERT2D significantly outperformed
the baseline in dev and matched the accuracy of whole word
masking ITUTurkBERT in the test. These results demonstrate
that the combination of BERT2D and whole word masking is
the most effective model for this problem.

TABLE 5. POS IMST dev/test accuracy.

Vocabulary Size

32k 128k
Model RWM WWM RWM WWM
mBERT N/A/N/A | N/A/N/A | 94.47/94.70 | N/A/N/A
BERTurk 96.01/96.17 | N/A/N/A | 95.70/96.25 | N/A/N/A
ITUTurkBERT N/A/N/A 195.92/96.20 | N/A/N/A | 95.66/96.00

BERT2D (M =1) |95.93/96.28 | 95.89/96.22 | 95.88/96.23 | 95.76/96.20
BERT2D (M = 3) |95.94/96.21 | 96.06/96.36 | 95.67/96.19 | 95.77/96.13
BERT2D (M = 10) | 95.96/96.31 | 95.95/96.26 | 95.76/96.09 | 95.96/96.28

TABLE 6. POS BOUN dev/test accuracy.

Vocabulary Size

32k 128k
Model RWM WWM RWM WWM
mBERT N/A/N/A | N/A/N/A |91.93/92.51 | N/A/N/A
BERTurk 92.58/92.85 | N/A/N/A |90.90/90.99 | N/A/N/A
ITUTurkBERT N/A/N/A 192.75/93.05 | N/A/N/A | 92.57/92.64

BERT2D (M =1) |[92.81/93.05|92.81/92.97 | 92.61/92.82 | 92.72/93.01
BERT2D (M = 3) |92.80/92.92|92.75/93.02 | 92.79/92.90 | 92.81/92.91
BERT2D (M = 10) | 92.69/92.94 | 92.74/92.96 | 92.74/92.92 | 92.86/92.96

D. QUESTION ANSWERING
We fine-tuned all language models for question-answering
downstream tasks, such as other downstream tasks.
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1) DATASET

The THQuad6 [40] dataset was used to evaluate the
performance of the language models in a downstream task.
The dataset was used to assess the performance of questions
and answers. This Turkish QA dataset focuses on Turkish
and Islamic science history, and was curated as part of the
Teknofest 2018 Al competition. It includes 753 titles, 2,507
paragraphs, and 9,300 question-answer pairs. We used the
train/dev split provided by the repository as shown in Table 7.

TABLE 7. THQuad Train/Dev Split.

Title | Paragraph | Q&A
Train | 681 2232 | 8308
Dev | 72 275 892

2) HOW WE EVALUATE

Fig. 6 shows how to calculate the precision, recall, and F1
scores for the question-answer task. The exact match score
was the proportion of correctly answered questions without
any errors.

BN Kl BN DN D e Em e 3

Correct Answer

N El O EN 2 EX E3 BED 3 £

Predicted

o W el s e e [ W W

True Positive (TP)

N En EN EN 3 e
False Positive (FP)
False Negative (FN)

BN EN Zh BN O ED S EE EN e

True Negative (TN)

FIGURE 6. The true positive (TP), false positive (FP), true negative (TN),
and false negative (FN) for the question-answering task. (English: On July
13, 1841, in the city of London)

3) RESULTS

Table 8 lists the EM and F1 scores for the THQuad dataset.
BERT2D outperformed the baseline in both EM and FI,
especially when combined with whole word masking.

TABLE 8. QA EM/F1.

Vocabulary Size

32k 128k
Model RWM WWM RWM WWM
mBERT N/A/N/A N/A/N/A | 58.54/77.29 N/A
BERTurk 60.07/77.60 | N/A/N/A | 61.19/78.56 | N/A/N/A
ITUTurkBERT N/A/N/A 161.35/79.00 | N/A/N/A | 61.64/79.07

BERT2D (M =1) |60.11/78.03 |60.61/77.85 | 62.00/78.85 | 61.30/78.31
BERT2D (M = 3) |60.99/78.95 | 61.86/79.69 | 60.58/77.86 | 61.61/78.30
BERT2D (M = 10) | 60.56/77.95 | 61.35/78.57 | 61.70/79.29 | 60.78/78.43

(’https:// github.com/TQuad/turkish-nlp-qa-dataset
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a: mBERT

(Devlin et al., 2018)
b: BERTurk@32k
(Schweter, 2020)
c: BERTurk@128k
(Schweter, 2020)

d: ITUTurkBERT@32k WWM
(Kaya et al., 2023)

e: ITUTurkBERT@128k WWM
(Kaya et al., 2023)

f: BERT2D@32k M=1
g: BERT2D@32k M=3
h: BERT2D@32k M=10

i: BERT2D@32k WWM M=1
j: BERT2D@32k WWM M=3
k: BERT2D@32k WWM M=10

I: BERT2D@128k M=1 o
m: BERT2D@128k M=3
n: BERT2D@128k M=10

o: BERT2D@128k WWM M=1
p: BERT2D@128k WWM M=3
q: BERT2D@128k WWM M=10

Sentiment Analysis (Unique) Accuracy

Sentiment Analysis (Unique) F1

FIGURE 7. Statistical significance for Sentiment Analysis Accuracy/F1: Minimal distance ¢ for Almost Stochastic Order at level « = 5%. Blue
cells mean that the left model is significantly better than the bottom model. Red cells mean the opposite.

a: mBERT

(Devlin et al., 2018)
b: BERTurk@32k
(Schweter, 2020)
c: BERTurk@128k
(Schweter, 2020)

d: ITUTurkBERT@32k WWM
(Kaya et al., 2023)

e: ITUTurkBERT@128k WWM
(Kaya et al., 2023)

f: BERT2D@32k M=1
g: BERT2D@32k M=3
h: BERT2D@32k M=10

i: BERT2D@32k WWM M=1
j: BERT2D@32k WWM M=3
k: BERT2D@32k WWM M=10

I: BERT2D@128k M=1 n
m: BERT2D@128k M=3
n: BERT2D@128k M=10

o: BERT2D@128k WWM M=1
p: BERT2D@128k WWM M=3
q: BERT2D@128k WWM M=10

Named Entity Recognition dev

Named Entity Recognition test

o p q a b cde f g h ik

I'mn o p q

FIGURE 8. Statistical significance for Named Entity Recognition CoNLL F1 score for dev/test splits: Minimal distance ¢ for Almost Stochastic
Order at level « = 5%. Blue cells mean that the left model is significantly better than the bottom model. Red cells mean the opposite.

VII. DISCUSSION AND CONCLUSION

Our studies show that BERT2D models consistently out-
perform or match the performance of BERT-based models
in token classification, text classification, and question
answering, with only a negligible increase in the number of
parameters. The improvement in performance in these tasks
was found to be statistically significant, which underscores
the robustness of our findings.

To ensure the rigor of our conclusions, we employed
extensive statistical methods to analyze performance dif-
ferences. These methods are detailed in the Appendix (see
Appendix), which explains the statistical tests used, such
as the Almost Stochastic Dominance (ASD) and Almost
Stochastic Order (ASO) tests. These tests are particularly
suited to the complex nature of Deep Neural Network (DNN)
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performance evaluation, where traditional statistical methods
may fall short.

We demonstrated that whole word masking is a significant
hyperparameter of BERT, that improves performance without
altering the architecture. In addition, we combined whole
word masking and BERT2D to consistently achieve the
best results. We concluded that two-dimensional embeddings
benefit token-focused downstream tasks, such as token
classification and question-answering, whereas whole word
masking benefits text classification tasks.

A. FUTURE WORK

The encoding has two components consisting of relative
subword positions and absolute whole-word positions. For
the sake of brevity, we focus only on subword relativity, but in
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a: mBERT

(Devlin et al., 2018)
b: BERTurk@32k
(Schweter, 2020)
c: BERTurk@128k
(Schweter, 2020)

d: ITUTurkBERT@32k WWM
(Kaya et al., 2023)

e: ITUTurkBERT@128k WWM
(Kaya et al., 2023)
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FIGURE 9. Statistical significance for POS-tagging with IMST/BOUN datasets for dev/test splits: Minimal distance ¢ for Almost Stochastic Order at
level « = 5%. Blue cells mean that the left model is significantly better than the bottom model. Red cells mean the opposite.

a: mBERT

(Devlin et al., 2018)
b: BERTurk@32k
(Schweter, 2020)
c: BERTurk@128k
(Schweter, 2020)

d: ITUTurkBERT@32k WWM
(Kaya et al., 2023)
e: ITUTurkBERT@128k WWM
(Kaya et al., 2023)

f: BERT2D@32k M=1
g: BERT2D@32k M=3
h: BERT2D@32k M=10

i: BERT2D@32k WWM M=1
j: BERT2D@32k WWM M=3
k: BERT2D@32k WWM M=10

I: BERT2D@128k M=1
m: BERT2D@128k M=3
n: BERT2D@128k M=10

o: BERT2D@128k WWM M=1
p: BERT2D@128k WWM M=3
q: BERT2D@128k WWM M=10

Question Answering EM

Question Answering F1

FIGURE 10. Statistical significance for Question answering EM/F1: Minimal distance ¢ for Almost Stochastic Order at level « = 5%. Blue cells mean
that the left model is significantly better than the bottom model. Red cells mean the opposite.

future work we are considering adding relative word positions
as well. In addition, we plan to pretrain BERT2D models
in other agglutinative and non-agglutinative languages to
analyze their impact. We also plan to add 2D positional
encoding to newer BERT-based models to evaluate the impact
of 2D positional encoding in general.

APPENDIX

STATISTICAL SIGNIFICANCE STUDY

In NLP, evaluating DNN models for tasks such as NER,
POS tagging, sentiment analysis, and question answering
is a complex challenge due to their stochastic nature.
Traditional statistical significance tests often fail to provide a
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comprehensive comparison because they focus on individual
scores. This approach does not sufficiently consider the
variability inherent in DNNs because of the numerous
hyperparameters and non-convex nature of their optimiza-
tion landscapes. Consequently, the performance of these
models can vary significantly, depending on the random
initialization and stochastic elements encountered during
training. To address this issue, we opted to use ASD [41]
as a more robust and informative method to compare DNN
models. By running the models multiple times with different
seed values (typically five in our analysis), we generated
empirical score distributions for each model on unseen data.
The Almost Stochastic Dominance test enables a nuanced
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comparison between these distributions, providing insight
into the models’ performance across a range of possible
outcomes, rather than relying on a single-point estimate.

In our comparative analysis of BERT2D and BERT under
various operational conditions, ASO test, conducted at an «
level of 0.05 formed the backbone of our methodological
approach. This statistical framework is adept at identifying
the minimum e value required to detect a significant
performance difference between models. This € value is
particularly important when evaluating the impact of specific
configurations, such as the implementation of the whole
word masking hyperparameter. This feature significantly
influences how models interpret contextual subtleties during
language processing. The robustness of the ASO test ensures
that our analysis accurately captures the influence of these
hyperparameters on the model performance.

Furthermore, the variation in the number of intermediate
subword embeddings is central to our study. This parameter
is essential for understanding how the models navigate and
process complex linguistic structures. By manipulating this
variable, we gain insight into the models’ ability to deal with
linguistic complexity.

In presenting our results, we use color codes linked to
epsilon values as in [42] in Fig. 7, 8, 9, and 10: blue
indicates that the model on the left is significantly better
than the model on the bottom when the € value is less than
0.5, and red indicates the opposite when the epsilon value
exceeds 0.5. This color coding provides an intuitive visual
representation of model performance in relation to epsilon
values. Adherence to the level of statistical significance
0.05 « ensures a high degree of confidence in our results,
effectively ruling out the influence of random variance and
solidifying the validity of our conclusions under different test
conditions.
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