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ABSTRACT With the increasing emphasis on environmental issues, the utilization of renewable energy
has been recognized as a feasible solution to address the energy crisis and reduce environmental pollution.
In view of this, this article proposes a multi-modal renewable energy hybrid power supply optimization
model based on heterogeneous cloud wireless access. The model innovatively combines heterogeneous cloud
wireless access technology and various intelligent optimization algorithms, including k-clustering algorithm,
particle swarm optimization algorithm, and whale optimization algorithm, forming a hybrid optimization
algorithm. In order to comprehensively evaluate the actual performance of the model, this study recruited
20 experts to provide detailed ratings on four core dimensions: cost-benefit ratio, reliability, robustness,
and user satisfaction. The results showed that the model scored 95.1, 96.4, 95.6, and 96.2 in the four
dimensions of cost-benefit ratio, reliability indicators, robustness, and user satisfaction, respectively. This
series of significant data not only confirms the theoretical superiority of the model, but also demonstrates its
strong potential and practical value in practical applications. In summary, this study provides a promising
and innovative solution for the field of renewable energy supply.

INDEX TERMS K-clustering algorithm, heterogeneous cloud radio access, particle swarm optimization
algorithm, WOA algorithm, energy supply optimization.

I. INTRODUCTION

With the growing global energy demand and the rapid devel-
opment of renewable energy (RE), multimodal renewable
energy hybrid supply (MREHS) systems have become a
potential and attractive solution. Such systems combine mul-
tiple RE sources (e.g., solar, wind, hydro, etc.) to meet
the energy demand, and achieve a balanced and optimized
supply of energy through energy storage and energy con-
version technologies. However, MREHS systems face some
challenges [1]. First, energy production and consumption
in these systems is characterized by uncertainty and time-
varying nature, such as changes in weather conditions and
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volatility of energy supply. Second, different energy types
and equipment have different characteristics and technical
requirements, e.g., the availability of solar and wind energy
is limited by seasonal, weather and geographical conditions.
In addition, the cost and efficiency of energy storage and
energy conversion devices are also factors to be consid-
ered [2], [3]. And the traditional methods often can only
find the local optimal solution because they rely on fixed
search strategies or heuristic rules and cannot fully explore
the solution space of the problem. To solve the above prob-
lems, the researchers proposed a new hybrid energy supply
model. The model combines cloud computing and wireless
communication technologies to intelligently schedule energy
production and consumption. In contrast, the new model
can adaptively adjust parameters and search strategies to
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optimize according to the characteristics of the problem or
the progress of the search process. This allows the algorithm
to have better performance on different problems and better
complex problem solving. However, in practical applications,
how to choose the right learner and how to carry out the
combination of predicted results is the challenge facing the
current research. Researchers need to choose the right learner
according to the characteristics of the data, the complexity of
the model, and the cost of computing resources. The overfit-
ting problem can be avoided by reducing the complexity of
the model, regularization, feature selection, cross-validation
and other methods. In view of this, the study uses K-clustering
algorithm (KCA) based on heterogeneous cloud radio access
(H-CRA) to divide the nodes into different clusters, and
the nodes within each cluster possess similar characteristics.
Then, particle swarm optimization (PSO) and whale opti-
mization algorithm (WOA) are applied to optimize the nodes
within each cluster, and by adjusting the node’s parameters
such as energy output, energy consumption, etc., a hybrid
K-WOA-PSO optimization algorithm driven by heteroge-
neous cloud access is finally designed. In hybrid optimization
models, each optimization algorithm plays an indispensable
role. The KCA algorithm effectively groups nodes with sim-
ilar characteristics in the energy supply system by clustering
them, providing a foundation for subsequent optimization.
The Particle Swarm Optimization (PSO) algorithm, with its
global search capability, helps the algorithm quickly locate
possible optimal solution regions. The Whale Optimiza-
tion Algorithm (WOA) uses its local fine search ability to
conduct deep searches in specific regions, accelerating the
convergence speed of the algorithm. Through the organic
combination of these three algorithms, the hybrid model not
only improves search efficiency, but also enhances the ability
to solve complex problems, achieving global optimization
of the energy supply system. The study provides important
theoretical support and practical guidance for promoting the
development and application of RE. The article consists of
four main components. A review of the state of the art in
the field of MREHS population optimization methods and
H-CRA research is presented in the second section. The
third part establishes the MREHS optimization model of
the heterogeneous cloud access-driven K-WOA-PSO hybrid
optimization algorithm. In the fourth section, an applicability
analysis is conducted and the algorithmic performance of the
model is compared with experiments.

The innovation of this study is mainly reflected in
the following aspects. First of all, the H-CRA technol-
ogy is combined with a multimodal renewable energy
hybrid power supply system, utilizing its distributed archi-
tecture and dynamic resource management capabilities to
improve the system’s adaptability to environmental changes
and flexibility in energy supply. A novel hybrid optimiza-
tion algorithm (K-WOA-PSO) was proposed by combining
k-clustering algorithm (KCA), particle swarm optimization
algorithm (PSO), and whale optimization algorithm (WOA).
This fusion not only improves the search efficiency of the

VOLUME 12, 2024

algorithm, but also enhances its global and local search
capabilities, thereby more effectively finding the global opti-
mal solution. The research utilizes H-CRA technology for
intelligent scheduling, achieving real-time monitoring and
optimization of energy production and consumption. This
intelligent management strategy helps to improve energy
utilization efficiency, reduce waste, and enhance system reli-
ability and user satisfaction.

The main contributions of this study can be summa-
rized as follows: a multi-modal renewable energy hybrid
power supply optimization model based on heterogeneous
cloud wireless access (H-CRA) is proposed. This model
provides a new perspective and solution for the effective
management and optimization of renewable energy by com-
bining advanced communication technology and multi-agent
algorithms. A hybrid optimization algorithm (K-WOA-PSO)
has been studied and designed, which effectively improves
the performance of energy supply systems. The fusion of
this algorithm not only improves search efficiency, but also
enhances the ability to solve complex problems. The research
results contribute to promoting the efficient utilization of
renewable energy, reducing environmental pollution, and pro-
moting sustainable development of energy supply. This is of
great significance for addressing the global energy crisis and
environmental protection. The abbreviations and full names
in the article are shown in Table 1.

Il. RELATED WORKS

The creation of energy optimization models has received an
increasing amount of attention due to the quick development
of wireless communication and cloud computing technolo-
gies as well as the rising popularity of renewable energy. For
5G and future wireless networks with high data rates, low
energy consumption, and low latency, Moosavi et al. propose
an orthogonal frequency division multiple access (OFDMA)
and non-orthogonal multiple access (NOMA)-based hetero-
geneous cloud radio access network (H-CRAN) architecture.
The findings showed that, with less complexity than the ideal
solution, the suggested algorithm accomplishes a fair balance
between energy efficiency and delay in terms of EC and
EEE [4]. Pérez et al. developed a strategy in a shared back-
haul fiber-optic wireless (FiWi)-enhanced H-CRAN with
multi-access edge computing and offloading to fulfill the
arithmetic complexity requirements of 5G+ network services
and applications. According to the data, the approach works
better than the traditional way in terms of energy usage and
average latency, with an 80% improvement in average latency
under heavy load [5]. Zhang et al. addressed the complex
interference problem caused by the separation of the control
and broadcast functions from the baseband processing unit
(BBU) pool in H-CRAN by proposing a joint channel matrix
sparsity and normalized water injection resource allocation
algorithm, which reduces the computational complexity by
reducing the cooperative transmission. The technique can
successfully lower baseband energy consumption and raise
system energy efficiency, according to simulation results [6].
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TABLE 1. Article abbreviations.

Abbreviation Full name
RE Renewable Energy
Multi-Modal Renewable Energy Hybrid
MREHS Supply
System
H-CRA Heterogeneous Cloud Radio Access
PSO Particle Swarm Optimization
WOA Whale Optimization Algorithm
KCA K-Clustering Algorithm
EEE Energy Efficiency
NOMA Non-Orthogonal Multiple Access
Fiw Fiber-Wireless
BBU Baseband Unit
RPF Regularized Particle Filter
KDE Kernel Density Estimation
niell(r;s mproved Swarm-based K-means
loT Internet of Things
QEA Quantum Evolution Algorithm
DWOA Dynamic Whale Optimization Algorithm
NWEFSSP No-Wait Flow Shop Scheduling Problem
ACO mproved Ant Colony Optimization
K++ An Improved K-means Algorithm
ESO Energy Supply Optimization
IACO mproved Ant Colony Optimization

Aiming at the problems of real-time applications demanding
high data rates, increasing number of connected devices,
and limited spectrum and energy resources in 5G networks,
Odwa et al. proposed an efficient wireless resource alloca-
tion scheme based on Regularized Particle Filtering (RPF)
and state estimation using Monte Carlo Markov chain. The
results revealed that the average throughput was improved
by 5.94%-52.98% compared to the SISR method, proving
the effectiveness of the RPF scheme [7]. Zhu et al. pro-
posed an improved soft k-means (IS-k-means) clustering
algorithm that combines fast search and peak density clusters
(CFSFDPs) with kernel density estimation (KDE) to opti-
mize the selection of the initial clustering centers in order
to address the complex energy-load-balancing problem in
functional systems. Comparing the approach to various tech-
niques published in the literature, simulation results showed
that for small-scale WSNs with single-hop transmission,
the algorithm can, on average, delay the time of first node
death, half node death, and last node death [8]. For contin-
uous monitoring applications in wireless sensor networks,
Sathyamoorthy et al. suggested an efficient clustering and
load balancing technique based on Q-learning. This technique
uses an enhanced K-Means algorithm for sensor node deploy-
ment and Q-learning for cluster head election. According
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to the findings, the technique shortens the network lifetime
by 3.34%, boosts throughput by 2.34%, lowers end-to-end
latency by 8.23%, and raises packet delivery rate by 1.56%
[9].

Currently, PSO is widely used in many fields by virtue
of its simplicity and ease of implementation. For example,
Abualigah et al. proposed the Grasshopper Optimization
Algorithm, which was modified, hybridized, and extended
to binary, chaotic, and multi-objective scenarios, to explore
optimization problems in various fields. The results revealed
that the algorithm is effective and verified in several appli-
cation examples. The conclusion proves the superiority and
applicability of the algorithm [10]. Ning et al. constructed a
three-layer offloading framework in the Intelligent Internet
of Vehicles (IoV) to minimize the overall energy consump-
tion of the energy supply system and satisfy the user delay
constraints, and combined it with a population intelligence
algorithm to decompose it into two parts. The effectiveness
of the suggested approach was demonstrated by experimental
results, which showed that the performance evaluation based
on the real trajectories of taxis in Shanghai, China, and that
the average energy consumption was decreased by almost
60% when compared with the baseline algorithm [11]. Ning
et al. proposed a three-objective gate allocation model based
on improved quantum evolutionary algorithm (QEA) and
PSO to address the problem of tight gate resources due to the
continuous growth of air traffic demand. The method shown
great optimization ability and practical utility for airport man-
agers’ decision-making. Experimental results showed that the
system can effectively solve the passenger walking distance,
robustness, and cost problems in airport management [12].
Srinivasan et al. proposed a static synchronous compen-
sator (STATCOM) controller for effective management of
low-frequency electrochemical oscillation damping problems
in power systems, using a hybrid algorithm based on the
Dragonfly Algorithm (DA) and WOA. By comparing the
major performance analysis of the suggested DWOA model
with the state-of-the-art model at the moment, the experi-
mental results demonstrated that the efficacy of the model
had been significantly enhanced [13]. For the No-Wait Flow
Shop Scheduling Problem (NWFSSP), Zhang et al. proposed
a Discrete Whale Optimization Algorithm (DWOA) with the
goal of minimizing the completion time as the optimiza-
tion objective. The algorithm was combined with Nearest
Neighbor (NN) and Standard Deviation Heuristic (SDH) to
obtain the initial population solution, and a dynamic trans-
formation mechanism was added to balance the algorithm’s
exploration and exploitation capabilities. According to the
experimental data, DWOA performs better than other algo-
rithms and the improvement process is effective [14]. Li et al.
proposed a hybrid intelligent algorithm called DWOA, which
combines the benefits of WOA and differential evolution
and balances exploration and exploitation in order to find
the global optimal solution, in order to address the issue
of the high complexity of inter-regional power plant energy
supply planning. The findings showed that the successive
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reconfiguration model is simpler to solve and that, in com-
parison to WOA, DE, and DE-WOA, DWOA obtains a
satisfactory solution with better accuracy and stability, devi-
ating from the theoretical results by only 1.61% [15]. This
is anticipated to encourage the thorough optimization of
compressor stations.

In summary, H-CRA techniques and population optimiza-
tion algorithms have a wide range of application prospects
in the field of MREHS optimization, and the further devel-
opment of energy mixing supply provides an important
theoretical foundation. However, few studies have been con-
ducted to combine population intelligence algorithms with
H-CRA techniques for energy mixing energy supply opti-
mization (ESO). Therefore, the study aims to investigate an
ESO model based on combining group intelligence algorithm
with H-CRA technology for more efficient and reliable

energy supply.

Ill. COMBINING ENERGY SUPPLY OPTIMIZATION
MODEL BASED ON HETEROGENEOUS CLOUD RADIO
ACCESS WITH POPULATION OPTIMIZATION ALGORITHM
There are three primary subsections in this chapter. The first
one deals with modeling the use of H-CRA modeling in the
energy supply industry. The initial creation of algorithms
like KCA and Group Intelligence Algorithm is the subject
of the second subsection. The third subsection is to integrate
H-CRA with KCA and group intelligence algorithms and
make a series of improvements.

A. HETEROGENEOUS CLOUD RADIO ACCESS MODELING

In the modeling process of heterogeneous cloud wireless
access networks, it is crucial to conduct detailed analysis and
optimization of multi-mode renewable energy hybrid supply
systems. The core of this work lies in identifying and defining
key decision variables that affect system performance, and
improving overall operational efficiency and energy supply
stability through reasonable configuration and management.
When defining decision variables, the first thing to consider
is the quantity, scale, and configuration of various types
of renewable energy equipment; The type and capacity of
energy storage equipment, each with its specific capacity
efficiency and environmental adaptability. In addition to the
energy equipment itself, the type and capacity of energy
storage equipment are also important components of deci-
sion variables. For example, battery energy storage systems,
pumped storage, or compressed air storage. The selection of
energy conversion equipment and its parameter settings are
also important decision-making points that cannot be ignored.
Through intelligent scheduling and network optimization,
energy loss can be effectively reduced and energy utiliza-
tion efficiency can be improved. With the above basis, it is
necessary to establish constraint conditions next. These con-
straints come from multiple aspects, such as the uncertainty
and time-varying nature of renewable energy supply; Tech-
nical and cost limitations of equipment; The volatility and
prediction errors of energy demand; And requirements for
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environmental protection and sustainable development. From
this, energy supply constraints and technological constraints
can be obtained as shown in equation (1).

(D
Pmin = Pi(t) =< Pmax

{ S() = D) + 8

In equation (1), S(#) represents the total energy supply at
time tt, D(¢) represents the energy demand at time tt, § is
a positive threshold representing the minimum reserve of
the system. P;(¢) represents the production capacity of the
second type of energy equipment at time #, Ppin And Ppax
Represent the minimum and maximum production capacity
of the device, respectively. Firstly, from the perspective of
optimization algorithms, mixed optimization analysis may
involve the combination of multiple algorithms, such as
linear programming, nonlinear programming, dynamic pro-
gramming, heuristic algorithms, etc. These algorithms each
have their own advantages and disadvantages, and need to
be selected and adjusted according to the specific char-
acteristics of the problem. Secondly, from the perspective
of system modeling, hybrid optimization analysis needs to
consider multiple aspects such as the overall architecture,
energy flow, and information transmission of the system,
which involves knowledge from multiple disciplines such as
systems engineering, control theory, and information science.
Therefore, the H-CRA technique was used, in the H-CRA-
based MREHS optimization model, the role of H-CRA is
reflected in several key aspects [16], [17]. Compared to cloud
services such as Google Cloud and Amazon SageMaker, the
characteristics of H-CRAN are mainly reflected in its pow-
erful data processing and transmission capabilities. It pro-
vides computing and storage resources for the base stations
in different geographical locations through cloud resource
pools, realizing efficient communication and flexible network
management. In addition, H-CRAN enables a distributed
architecture and multimodal access capabilities for multi-
ple wireless communication standards and frequency bands,
enhancing network compatibility and diversity. At the same
time, H-CRAN can dynamically manage network resources,
optimize energy utilization and reduce the dependence on
the traditional power grid through intelligent scheduling and
prediction technology. Finally, H-CRAN combines artificial
intelligence and machine learning technologies to realize
intelligent and autonomous energy management, and ensure
the stable and efficient operation of the network under chang-
ing environments and energy conditions. First, its distributed
architecture provides strong support for flexible deployment
of base stations and integration of RE sources. This archi-
tecture not only adapts to different environments and energy
conditions, but is also easily scalable to meet growing com-
munication demands. Second, H-CRA is able to dynamically
manage network resources. By monitoring energy changes
and network demand in real time, as well as predicting the
availability of RE, resource allocation is adaptively adjusted
to ensure efficient network operation [18], [19]. In addition,
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its multimodal access capability enhances the compatibility
and diversity of the network, supporting a wide range of wire-
less communication standards and frequency bands, while
providing greater flexibility for hybrid energy supply strate-
gies with multimodal RE sources. Through load balancing
technology, H-CRA effectively disperses network traffic and
optimizes energy consumption in conjunction with RE strate-
gies, thereby reducing dependence on the traditional power
grid. The optimization of backhaul links further improves
the data transmission efficiency and energy management
effectiveness, which helps to enhance the performance of
the entire RE power supply system [20], [21]. Finally, with
the help of artificial intelligence and machine learning tech-
nologies, H-CRA realizes intelligent and autonomous energy
management, enabling the network to make intelligent deci-
sions based on real-time data and historical information,
and to adapt itself to changing environmental and energy
conditions to ensure stable and efficient network operation.
Together, these features reflect the central role of H-CRA in
the MREHS-based optimization model, as shown in Fig. 1.

MREHS refers to the utilization of many different types
of RE sources, which together provide the required energy
for a system or application through rational configuration and
management [22], [23]. The goal of this hybrid energy supply
is to achieve efficient, steady, and sustainable energy use
by combining the benefits of many RE sources. Renewable
energy sources that are multimodal include biomass, geother-
mal, hydro, sun, and wind [24], [25]. These energy sources
have different characteristics and applicable conditions, for
example, solar and wind energy are affected by geographic
location and climatic conditions, while hydroelectric energy
depends on water resources, and geothermal energy is related
to underground heat sources. By combining and configuring
these energy sources in a reasonable way, the deficiency of
a single energy source can be compensated and the stability
and reliability of energy supply can be improved. Hybrid
energy supply systems usually include components such as
energy conversion equipment, storage equipment, and con-
trol systems. Energy conversion equipment converts RE into
electricity or other forms of energy, storage equipment is used
to balance the difference between energy supply and demand,
and the control system monitors and schedules the entire
system to ensure the efficient use of energy, the structure of
which is shown in Fig. 2.

In this system there is a Cloud Resource Pool which pro-
vides resources such as storage, computation and network
for supporting data storage and processing. Below the Cloud
Resource Pool are multiple Base Stations, which are dis-
tributed in different geographical locations and communicate
with the nodes through different wireless communication
technologies (Wi-Fi, 4G, 5G, etc.). The Base Station is
responsible for transmitting the data from the nodes to the
Cloud Resource Pool and getting the processed data from
the Cloud Resource Pool back to the nodes. Below the base
station are multiple nodes (Nodes), which are the core nodes
in the energy supply system, e.g., energy generators, energy
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consuming devices, etc. Every node connects wirelessly to
the matching base station and uploads the data it has gath-
ered to the cloud resource pool so it may be processed and
analyzed. Below the nodes are multiple Sensor Nodes, which
are responsible for collecting environmental data, energy
data, etc. and transmitting the data to the nodes. Below the
nodes are multiple Actuator Nodes, which are responsible for
executing corresponding operations, such as controlling the
output of energy generating devices, controlling the switch of
energy consuming devices, etc., according to the commands
received from the cloud resource pool. The whole system
realizes flexible communication support between nodes and
efficient data transmission capability through H-CRA, so that
the nodes, sensor nodes and Actuator Nodes in the energy
supply system can realize data transmission, communica-
tion and control, thus realizing intelligent management and
optimization of the energy supply system. Through the inte-
gration of H-CRA, K-clustering (K-means clustering), and
PSO algorithms, the MREHS system may be optimized to
enhance energy use efficiency and sustainability.

B. DESIGN OF MODEL-ASSISTED ALGORITHMS FOR
ENERGY SUPPLY OPTIMIZATION

1) THE BASIC FLOW OF THE KCA CLUSTERING

The K-clustering algorithm is a popular unsupervised learn-
ing technique that groups n items into k clusters (k < n)
with the goal of maximizing object similarity within a cluster
and maximizing object difference between clusters. In energy
supply systems, K-clustering can group nodes based on their
energy output, energy consumption, and other characteris-
tics [26], [27]. The energy heating feature clustering model
based on K-clustering is an effective method for analyzing
and understanding the underlying structure and characteris-
tics of energy heating data. The model reveals the intrinsic
laws of the data by gathering similar data points together in
a series of steps to form clusters with similar characteristics.
And Fig. 3 depicts the clustering process.

First, careful data preparation is required to ensure the
accuracy and effectiveness of clustering. This includes select-
ing those features that best reflect the energy characteristics of
the nodes, such as output volume, consumption volume, and
duration of use, and normalizing the data of these features
to eliminate the effects due to differences in the quantiles.
Next, selecting the appropriate k-value and initializing the
center of mass are the key steps. k-value selection should
be based on the understanding of the heating system and
actual needs. For example, if it is desired to identify several
major energy usage patterns, then the k-value can be set
to a value similar to the expected number of patterns. And
although the selection of the initial center of mass has some
influence on the final result, the K-means algorithm can usu-
ally converge to a better solution through several iterations.
During the clustering process, each node is assigned to the
cluster where its nearest center of mass is located. This step
reflects the similarity between the nodes and the different
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FIGURE 1. The multifaceted effects of heterogeneous cloud wireless access.
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FIGURE 2. Schematic diagram of heterogeneous cloud wireless access technology institutions.

FIGURE 3. Schematic diagram of K-means clustering algorithm clustering
process.

energy usage patterns. As the iteration proceeds, the nodes
within the clusters become more and more similar, while
the differences between the clusters become more and more
obvious, as shown in Fig. 4.
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The next step is the initialization step, which includes
selecting an appropriate number of clusters (k values) and
randomly selecting k objects as the centroids of the initial
clusters. The selection of k value should be based on practical
needs or experience, and the selection of initial centroids
has a certain impact on clustering results, but usually better
results can be obtained through multiple iterations. During
the clustering and grouping process, the KCA algorithm is
used to cluster the previously extracted feature data, with
the aim of reasonably dividing the nodes in the network into
K clustering sets. Choose cosine similarity as the standard
to measure the similarity between data points, ensuring that
nodes within the same cluster have a high degree of simi-
larity in energy output and consumption characteristics. The
K value, as the core parameter of clustering, plays a crucial
role in the clustering effect. In order to find the optimal
K value, the contour coefficient is introduced as an evaluation
index, which can effectively reflect the compactness and
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FIGURE 4. Schematic diagram of the clustering model structure for
energy heating characteristics based on K-clustering.

separation of clustering. After determining the optimal
K value, execute the clustering algorithm and analyze the
obtained clustering results. For example, certain clusters may
represent high-energy consuming devices within an organi-
zation due to their high energy consumption characteristics.
And other clusters may be identified as high energy efficiency
devices due to efficient energy conversion. This analysis
helps to gain a deeper understanding of the energy consump-
tion patterns of devices or nodes, providing data support
for subsequent optimization measures. Iterative optimization
refers to the process of assigning objects and repeatedly
updating the centroid step size until specific termination
conditions are met, such as when the maximum number of
iterations is reached or the change in centroid is less than a
threshold. This process is the core of clustering algorithms,
which improves the accuracy of clustering by constantly
changing the centroid and object attribution. The process
terminates and reports the cluster label of each object once
the termination conditions are met. In addition, tools such
as scatter plots can be used to visualize the distribution of
various clusters, providing a more intuitive representation of
clustering results. KCA is also useful for clustering nodes
with similar energy characteristics together, which is very
helpful for optimizing MREHS systems. Its coefficient of
variation is shown in equation (1).

/21 | G — Tt
Zl lxll’

Sp
CVp = 2
{2 IApl | (2)
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In equation (1), Sp represents the standard deviation,
Ap represents the mean, andp represents the dimension.
Equation (3) provides the formula for determining the impor-
tance coefficient.

wp= W 3)
CVi+CVy+CV3
The choice of the beginning center of mass has a significant
impact on the KMA, and various initial centers of mass may
produce various clustering outcomes. By running the K-mean
algorithm several times, several different clustering results
can be obtained, and then these results are integrated by inte-
gration, which improves the stability of the clustering results.
Integrated learning can reduce the local optimum problem
caused by improper selection of the initial center of mass
and make the clustering results more reliable. Therefore, the
study designs the IK-means algorithm by randomly selecting
the initial center of mass by running the K-means algorithm
several times with different initial centers of mass obtained
by initialization each time, drawing on the implementation
of integrated learning. In order to evaluate the clustering
results of each run, some common metrics for evaluating
the clustering effect can be used, such as contour coefficient
and Davies-Bouldin index. The contour coefficient, which
takes a value between [—1,1] to represent the tightness and
separation of the clusters, indicates how well the clustering
is done. The closer the value is to 1, the better. The tightness
and separation of the clustering results are balanced by the
Davies-Bouldin index; the smaller the value, the better the
clustering.

2) THE BASIC FLOW OF THE PSO ALGORITHM

The PSO algorithm is a heuristic optimization method that
draws inspiration from the foraging habits of birds. Finally
multiple clustering results are selected for integration and
results are fused using voting. The research sets the param-
eter of Particle Swarm Optimization (PSO) as: population
size n = 10, which means that there are 10 particles searching
simultaneously in the solution space. Each particle moves
in a D = 3-dimensional space, indicating that each solution
consists of three variables. The algorithm will perform a
maximum of N = 50 iterations to ensure that particles are
given enough time to find the optimal solution. The inertia
weight w is set to 0.9, which determines the tendency of
particles to maintain their original velocity. The self-learning
factor ¢ and group learning factor ¢ are both set to 1.1,
which affect the speed at which particles approach their own
historical best and global best solutions, respectively.PSO
algorithm is characterized by strong global search capability,
easy implementation and fast convergence speed, and it is
suitable for multi-dimensional continuous optimization prob-
lems, and the basic steps of its algorithm are shown in Fig. 5.

3) THE BASIC FLOW OF THE WOA ALGORITHM

The benefits of WOA include its ease of use, low number of
parameters to tweak, ability to break out of the local optimum,
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FIGURE 5. Algorithm flowchart of PSO.

speed in locating the optimal solution, and effectiveness in
resolving a variety of optimization issues. It also has rel-
atively good convergence and stability for basic problems.
Assuming that in the d-dimensional space, assuming that
X{ denotes the current optimal whale position and r; and
rp are random numbers between [0,1], the formula for its
optimization search is illustrated in equation (4).

[ X+ = X —A x Dy
Dy = [C x X} — X[

JA=2axr —a 4)
622@

2T
a=2-—

Tmax

In equation (4), T denotes the current iteration number,
A and a represent the coefficient vectors, and B denotes the
linear decrease from 2 to O with the increase of iteration
number. Assuming that r denotes the logarithmic spiral shape
parameter, the expression form for simulating the whale spiral
feeding behavior is shown in equation (5).

&)

XkTJrl = Dy x € x cos(2mq) + X}
Dy = |X; — X!

In equation (5), r denotes the logarithmic spiral shape
parameter, g denotes the random number between [—1,1],
and Dy, denotes the distance between the searching individual
and the prey. X, ,i‘H denotes the kth component of the spatial
coordinate X"+ and the specific expression form is shown in
equation (6).

T+1 X;—ZXDk, P <05
Xk = * rc (6)
X, + Dy x e’ xcos(2mwc), P>0.5
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In equation (6), P denotes the probability, and assuming
that X ,:"”d denotes arandom individual whale, the search-and-
prey mathematical model is shown in equation (7).

[XkT“ =X/ _ A x Dy

_ 7
Dy = [€ x xjmd — x] M

The specific algorithm flow of WOA is shown in Fig. 6.

In Fig. 6, the WOA modeling first initializes the parameters
and the position of the whale group, and then calculates and
records the current position of the optimal whale individual.
Then the value of each parameter is calculated, if P < 0.5 and
]Z | < 1, the current whale individual approaches the optimal
whale individual to encircle the prey by spiraling, other-
wise, the current whale enters into the search and predation
behavior. After calculating the values of each parameter, the
algorithm will determine the behavior of individual whales
based on these values. If the current whale is close to the
optimal whale individual, it will gradually surround the prey
in a spiral rotation, simulating the whale’s predatory behavior
to achieve precise search. Otherwise, the current whale will
enter a wider range of search and predation behaviors to
explore other regions in the solution space. After each itera-
tion, the algorithm recalculates the fitness value of each whale
and compares it with the previously recorded best whale posi-
tion. If a better solution is found, update the optimal position.
This process will continue until the maximum number of
iterations N = 50 is reached, or until the optimal solution
that meets the termination condition is found. The parameter
b that controls the spiral shape is set to 1, which affects
the behavior pattern of whale individuals when surrounding
prey, making the search process more flexible and efficient.
Ultimately, the algorithm will output the objective function
value of the optimal individual whale, which is the optimal
solution to the problem. However, WOA exists the problem
of premature convergence and easy to fall into the local opti-
mum, the study improves on the basis of WOA and designs
IWOA. firstly, the chaotic sequences are generated using tent
mapping in the initialization stage in order to make the initial
solution uniformly distributed, the specific method is shown
in equation (8).

X, x; < 0.5
Xyl = (3)

w(d —x), x >0.5
In equation (8), u denotes the chaos parameter and xi
denotes the kth mapping function value. In order to dynami-
cally adjust the whales’ seining behavior, the study introduces
adaptive probability balancing. When the whale approaches
the prey, the adaptive probability increases and the whale
performs a finer local search. When the whale moves away
from the prey, the adaptive probability decreases and the
whale performs a broader global search. This dynamic adjust-
ment helps to improve the search efficiency of the algorithm,

as described in equation (9).

— or
P=1—log;y(1+ T

max

) C))
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FIGURE 6. Specific process of WOA modeling.

C. H-CRAN ENERGY SUPPLY OPTIMIZATION MODEL
COMBINING K-CLUSTERING WITH IWOA PSO

A single PSO algorithm or WOA algorithm may fall into
a local optimum solution in some cases. By combining
the two algorithms, the diversity of the algorithms can be
increased and the risk of falling into local optimality can be
reduced [28]. PSO algorithm and WOA algorithm have some
complementarity in search mechanism.PSO algorithm is
good at global search, while WOA algorithm is good at local
fine search. By combining the two, one may completely take
advantage of each’s benefits and raise the algorithm’s search
efficiency and accuracy. The WOA algorithm’s local search
capability may conduct a detailed search within the region,
speeding up the algorithm’s convergence, while the PSO
algorithm’s global search capability can assist the algorithm
in swiftly locating the possible optimal solution region.
In Figure 7, the IWOA-PSO procedure is displayed.

First set the basic parameters of the particle swarm, such
as size, dimension, velocity range, position range, and so
on. At the same time, the initial position and velocity are
randomly assigned to each particle in the particle swarm.
Each particle is usually encoded as a multidimensional vector
whose dimension corresponds to the number of variables of
the optimization problem. In addition to the particle swarm
size and dimension, PSO parameters such as learning factor
and inertia weights, as well as spiral shape parameters and
step size in the WOA algorithm need to be set. The second
step is data collection, which utilizes H-CRA technology to
collect data from various nodes in the energy supply system,
including key features such as energy output and energy
consumption. The third step is data preprocessing, where
the collected raw data may require preprocessing operations
such as cleaning, normalization, or normalization to eliminate
noise and magnitude differences. Feature selection, from the
preprocessed data, features that are closely related to energy
supply performance are selected to reduce computational
complexity and improve optimization. The third step is fea-
ture extraction, where key features related to energy supply
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FIGURE 7. Schematic diagram of IWOA PSO structure.

are extracted from the collected data to provide inputs for the
subsequent K-clustering and optimization algorithms. In the
fourth step K-clustering grouping, KCA is applied to cluster
the extracted feature data and divide the nodes into K clusters.
Nodes within each cluster have similar energy output and
consumption characteristics. The fifth step allocates particles
and assigns a certain number of particles to each cluster based
on the clusters and the size of the particle population. These
particles will be optimized on behalf of the nodes within that
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cluster. The sixth step evaluates the fitness of the particles
and defines a fitness function for evaluating the performance
of each particle. This function is usually based on the energy
output and consumption of the nodes, as well as other possible
constraints. The enhanced fitness function is displayed in
equation (10). This is the seventh phase in the fitness function
design process. The fitness function should be able to effec-
tively reflect the energy supply system’s performance, which
often involves numerous aspects including energy output,
consumption, efficiency, etc.

Wi+ 1) = % + c1*rand ()* (pBest — x(1))
+ c2*rand()*(gBest — x(t))  (10)

In equation (10), v(¢) represents the velocity at the cur-
rent moment, w is the inertia weight, rand() is the random
function, and pBest represents the individual’s historical
best position, whose position update formula is shown in
equation (10).

x(t+1) = x(t) + v(t+1) an

In equation (10), x(t) denotes the position at the current
moment and v(t+1) denotes the speed at the next moment.
Since there are constraints in the system in energy, such
as energy supply and demand balance, equipment capacity
limitations, etc., they need to be handled accordingly in the
adaptability function. Assuming that the energy gap is E_gap,
the amount of equipment exceeding the limit is C_exceed,
k2 is the coefficient of the penalty function, and the penalty
function is shown in equation (12).

Penalization = k1*E_gap + k2*C_exceed (12)

In equation (4), k1 is the coefficient of the penalty function,
which is used to regulate the degree of punishment of the
penalty function. The fitness value of the person who deviates
from the energy supply and demand balance is decreased
when the energy gap widens and the punishment function’s
value increases. In the eighth phase, each particle updates its
position and velocity based on its own historical best position
as well as the global best position, in accordance with the PSO
algorithm’s basic idea. The PSO algorithm’s update formula,
which often includes guidance in both directions of the indi-
vidual’s historical best and global best, is used to iterate the
particle’s velocity and location. The ninth step introduces the
WOA algorithm, which is based on the PSO and introduces
the WOA strategy. WOA simulates the predatory behavior
of whales and updates the position of particles by moving
spirally around the prey. The tenth step is to perform local and
global search balance, combining the global search capability
of PSO and the local fine search capability of WOA to achieve
balance in the search process and avoid falling into the local
optimal solution. Dynamic parameter adjustment, with the
iteration, the parameters of PSO and WOA, such as learning
factor and inertia weight, can be adjusted dynamically to
realize the balance between global and local search. The
dynamic adjustment formulas of learning factor and inertia
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weights are shown in equation (13), as shown at the bottom
of the next page.

In equation (13), learning_factor_initial is the initial learn-
ing factor and inertia weight value, iteration denotes the
current number of iterations, and max_iterations denotes
the maximum number of iterations. The ability of local and
global search can be balanced to increase the optimization
algorithm’s efficacy by dynamically modifying these param-
eters. Subsequently, the global optimal solution is updated,
taking into account the fitness values of every particle in each
iteration. Lastly, if additional termination circumstances are
met or the predetermined number of iterations is reached,
the process is checked. If satisfied, go to the next step,
otherwise, return to step 7 to continue the iteration. The
PSO-WOA-optimized node energy supply solutions within
each cluster are fused to form the MREHS optimization
solution for the whole energy supply system by considering
the synergistic effect and overall performance among clus-
ters. By fully utilizing WOA’s local fine search capability
and PSO’s global search power, this method successfully
keeps the algorithm from finding local optimal solutions and
enhances the optimization effect. Finally, the system transfers
the IPSO-WOA optimization results to each functional node
efficiently through the H-CRAN framework proposed in the
study, and realizes the overall optimization of the system
through the actuators of each node, and the overall scheme of
the MREHS optimization model based on H-CRA is shown
in Fig. 8.

Effective optimization of MREHS can be achieved by
integrating H-CRA, K-clustering and population group opti-
mization algorithms. First, the flexible communication and
efficient data transmission capabilities of H-CRA technol-
ogy are utilized to connect the nodes in the energy supply
system to ensure smooth data transmission and communi-
cation. Next, KCA is used to process the collected node
data, cluster the nodes according to their energy output,
energy consumption and other characteristics, and divide the
nodes into different clusters, with nodes within each cluster
possessing similar characteristics. Then, the PSO-WOA opti-
mization algorithm is applied to optimize the nodes in each
cluster, and the energy supply in each cluster is optimized
by adjusting the nodes’ energy output, energy consumption
and other parameters. Finally, the optimized node energy
supply schemes in each cluster are fused to form the MREHS
optimization scheme for the whole energy supply system.
This fusion method makes full use of the advantages of
each algorithm, improves the energy utilization efficiency
and energy supply quality, and realizes the intelligence and
efficiency of the energy supply system. In order to implement
the above framework, we will study the use of IoT communi-
cation protocol libraries such as MQTT and CoAP to achieve
efficient communication of H-CRA. Scikit learn in Python is
used to implement KCA clustering analysis, while Pyswarm
optimization algorithm library is used to optimize PSO and
WOA processes. When implementing the above architecture,
microservices architecture may be used to ensure system
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scalability and maintainability. Various services can com-
municate through the message queue RabbitMQ to achieve
real-time data transmission and processing. In addition, uti-
lizing containerization technology Docker and to deploy and
manage the entire system. During the process, tools such as
Prometheus and Grafana were used for real-time monitoring
and data analysis of the system.

IV. PERFORMANCE TESTING AND APPLICABILITY
ANALYSIS OF MREHS OPTIMIZATION MODELS

This chapter is organized into two main subsections. The first
subsection focuses on the performance testing and compari-
son experiments of each component as well as the ablation
experiments of the study’s proposed K-WOA-PSO model.
The second subsection applies the algorithm to a real MREHS
system for applicability analysis

A. TESTING OF MODEL PERFORMANCE AND
COMPARATIVE EXPERIMENTS

Aiming at the problem that traditional ESO methods rely on
heuristic rules or fixed search strategies, which are unable
to comprehensively explore the solution space of the prob-
lem, the study designs a heterogeneous cloud access-driven
hybrid optimization algorithm of K-WOA-PSO based on the
heterogeneous cloud access, which combines the KCA with
the WOA-PSO. To verify the applicability of the algorithm
in the ESO problem, the study first conducts model ablation
experiments. The experiments are conducted for the missing
K-clustering module, the missing WOA module, and the PSO
module, respectively. The convergence curves of the four
models are computed by the Alike function and the general-
ized penalty function of the second kind, and the experimental
results are shown in Fig. 9.

The convergence of the K-WOA-PSO hybrid optimiza-
tion algorithm and its three variants (lack of WOA module,
lack of K-clustering module, and lack of PSO module) in
the second generalized penalty function can be clearly seen
through an in-depth interpretation of Fig. 9(a). Among them,
the K-WOA-PSO algorithm achieves convergence at about
the 160th iteration, showing a relatively fast convergence rate.
In contrast, the other three variants of the algorithm con-
verged relatively slowly, reaching convergence at the 80th,
90th and 390th iterations, respectively. In terms of adaptation,
the K-WOA-PSO algorithm reaches the lowest —15.1, which
is significantly better than the other three variants, which
all stay around —8.Turning to the Alic function analysis in
Fig. 9(b), the K-WOA-PSO algorithm reaches convergence
at the 71st iteration, again proving its efficient convergence
performance. The other three variants of the algorithm,
on the other hand, converge relatively slowly, at the 392nd,
190th and 20th iterations, respectively. In terms of fitness

performance, the K-WOA-PSO algorithm achieves the low-
est —12.5, while the fitness of the other three algorithms
converges at —11.3, —11.6 and 1.3, respectively. This result
shows that the K-WOA-PSO algorithm also demonstrates
superior performance in algebras. In addition, Whale Opti-
mization Algorithm-Genetic Algorithm (WOA-GA), Parti-
cle Swarm Optimization-Genetic Algorithm (PSO-GA) and
Whale Optimization Algorithm-Ant Colony Optimization
(WOA-ACO) for comparison experiments, the Breast Can-
cer dataset and the Iris dataset were used to train the four
algorithms for 600 iterations respectively, and the results are
shown in Fig. 10.

According to the results in Fig. 10(a), the WOA-PSO
model shows excellent performance. After only 150 itera-
tions, the model achieves 95.1% accuracy in problem solving,
exceeding the performance of other models. In Fig. 10(b),
the accuracy of all algorithmic models varies when using
the Breast Cancer dataset. However, the WOA-PSO model
has a relatively stable change in accuracy, showing only
a slight 0.5% decrease. In contrast, the WOA-ACO model
had the largest change in accuracy, with a significant 14.8%
increase in accuracy at convergence, eventually converging
to 90.9% accuracy. These findings demonstrate the high
problem-solving performance of the WOA-PSO model and
the critical importance of selecting the right algorithmic
model for the Breast Cancer dataset in order to maintain
accuracy and convergence. In order to build an experimental
environment to implement KCA to process the node data and
perform the clustering analysis of energy output and con-
sumption characteristics, the experiments are simulated using
the scikit-learn library in Python. The experiment results
are displayed in Fig. 11. Scikit-learn is a potent machine
learning toolkit that offers a range of widely used clustering
techniques, including K-means clustering algorithms.

In Fig. 11(a), the traditional KCA produces seven cat-
egories when processing the data, which are relatively
centralized, showing that the algorithm is able to capture
the intrinsic structure of the data to a certain extent. How-
ever, due to things like the intricacy of the data distribution
and the choice of the starting clustering center, using this
conventional clustering method might also result in unstable
clustering outcomes. In Fig. 11(b), the improved integrated
KCA produces 10 clusters when processing the same data.
Compared with the traditional KCA, the integrated KCA
obtains a more detailed and accurate clustering delineation
by integrating the results of multiple runs. This means that
integrated KCA is better able to capture the subtle differences
and local structure of the data, providing more comprehen-
sive and accurate clustering information. To fully verify the
algorithm’s superiority, the experiment compares the three
algorithms to process the data with varying numbers of

[ learning_factor = learning_factor_initial*(1 - iteration / max_iterations)

(13)

inertia_weight = inertia_weight_initial*(1 - iteration / max_iterations)
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FIGURE 9. Performance of four algorithms in two functions.

In the Fig.12, the throughput of the three algorithms varies

energy-supplying base stations for the throughput compar- but converges at a similar rate. The throughput of the three
isons, introducing the improved K++ clustering algorithm algorithms converges after the number of energy-supplying
proposed in the literature [29] for comparative experiments. base stations reaches 230. Among them, the proposed
The experimental results are displayed in Fig. 12. IK-means has the best performance with the throughput
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FIGURE 12. Throughput statistics of three clustering algorithms.

converging at 340 Mbps, while the IK++ algorithm con-
verges at 265 Mbps, and the standard KCA has the worst
performance with the throughput of 180 Mbps. In summary,
by comparing and analyzing the throughput and conver-
gence speed of the three algorithms, the proposed IK-means
algorithm has a superiority in the field of MREHS opti-
mization. superiority. The algorithm is not only able to
achieve high throughput, but also maintains good perfor-
mance after the number of energy-supplying base stations
reaches a certain scale. This provides a strong technical sup-
port and theoretical basis for improving energy utilization
efficiency and optimizing the energy supply system in practi-
cal applications. The study selected the optimal fitness value,
convergence speed, algorithm stability, and computation time
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FIGURE 13. System resource consumption during the operation of two
algorithms.

as evaluation indicators. The rationality of selecting these
indicators lies in their comprehensive consideration of the
performance and practicality of the algorithm. The optimal
fitness value ensures the quality of the algorithm solution,
convergence speed and computation time focus on the effi-
ciency of the algorithm, while algorithm stability ensures the
reliability of the algorithm.

B. APPLICATION ANALYSIS OF THE MODEL

The study fully demonstrates the superiority of the proposed
algorithm in the field of MREHS optimization, and in order to
further verify that the algorithm has the same excellent per-
formance in practical applications, the study introduces the
Improved Ant Colony Optimization (IACO) model proposed
in the literature [30] to compare with the proposed heteroge-
neous cloud access-driven hybrid K-WOA-PSO optimization
algorithm to compare the two algorithms and apply them
to real ESO. The study first recorded the system resource
consumption of the two algorithms during operation, and the
results are shown in Fig. 13.
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In Fig. 13(b), the K-WOA-PSO algorithm shows obvious
advantages in terms of system resource consumption. Specif-
ically, the algorithm has a relatively low CPU demand of
only 26% during the training process, which means that it
is able to guarantee the performance while fully considering
the reasonable utilization of computational resources and
avoiding unnecessary waste. In addition, the K-WOA-PSO
algorithm also performs well in terms of physical memory
usage, consuming only 6135MB of memory space, which
is very important for large-scale data processing tasks, as it
can effectively reduce the memory pressure of the system
and improve the overall operational stability. Finally, from
the perspective of time efficiency, the training time of the
K-WOA-PSO algorithm is relatively short at 21 minutes and
27 seconds, which means faster response time and higher
work efficiency in practical applications. In contrast, the
TACO algorithm illustrated in Fig. 13(a) is more massive in
terms of system resource consumption. During the training
process, the algorithm has a very high demand on CPU
resources, reaching a staggering 81%. This means that it
almost takes up most of the system’s computational power
during operation, which may lead to performance degradation
of other parallel tasks. Meanwhile, the IACO algorithm is
also relatively high in physical memory usage, consuming
8564MB of memory space. This is a relatively large bur-
den on system resource utilization, especially when dealing
with complex tasks or multi-task parallel processing, which
may lead to memory resource strain or even exhaustion.
In addition, in terms of training time, the IACO algorithm
takes 34 minutes and 47 seconds to complete the training,
which is a relatively long time that not only affects the user
experience, but also may lead to inefficiency and waste of
resources in practical applications. In addition the experiment
also recorded the energy efficiency of the two algorithms
during operation, as shown in Fig. 14.

Fig. 14 presents the dynamics of the integrated energy effi-
ciency of the two different algorithms in the real application
environment. First, it is worth noting that the ESO system
based on the IACO algorithm only achieves an average value
of 31.3% in terms of integrated energy efficiency over the
observation period of up to 420 days. This data suggests
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that although the IACO algorithm may have advantages in
some aspects, it does not perform well in the key metric
of integrated energy efficiency. Prolonged periods of low
energy efficiency may not only lead to wasted energy, but
also increase the operating costs of the system, thus affect-
ing its sustainability in real-world applications. In contrast,
the hybrid K-WOA-PSO optimization algorithm driven by
heterogeneous cloud access proposed in the study exhibits
significantly higher integrated energy efficiency over the
same observation period. Specifically, the algorithm achieves
an average combined energy efficiency of 42.1%, far exceed-
ing the performance of the IACO algorithm. This significant
improvement not only proves the advanced nature of the
K-WOA-PSO hybrid optimization algorithm in energy man-
agement, but also highlights the potential of heterogeneous
cloud access in improving system energy efficiency. By effi-
ciently and intelligently deploying and managing various
energy resources, the algorithm successfully improves energy
utilization efficiency while reducing energy waste, thus pro-
viding higher economic value and social significance in
practical applications. The experiment recruited 20 power
supply system experts to score the system in four aspects:
cost-benefit ratio, reliability index, robustness, and user satis-
faction. Based on their professional knowledge and practical
experience, 20 experts have set a rating standard of 100 points
for each indicator in the four dimensions. After using the
designed hybrid optimization model, they have scored from
various aspects based on their intuitive experience during use.
And the results of the system’s scores in each aspect are
shown in Fig. 15.

From the data presented in Fig. 15, it can be clearly seen
that the research-proposed hybrid optimization algorithm
for heterogeneous cloud access-driven K-WOA-PSO obtains
excellent performance in several evaluation dimensions.
First, in terms of cost-benefit ratio, the algorithm scores an
average of 95.1 points, which indicates that in practical appli-
cations, it can effectively balance investment and return to
maximize economic benefits. Second, in terms of reliability
index, the algorithm scored an average of 96.4 points, high-
lighting its high stability and availability in actual operation.
This means that the system optimized with this algorithm is
able to maintain stable performance output in various com-
plex environments and provide users with continuous and
reliable services. In addition, the average robustness score of
the model is 95.6, which indicates that the algorithm has a
strong resistance to uncertainties and external disturbances,
and is able to maintain stable performance under complex
and changing conditions. Finally, the user satisfaction score
is 96.2, and this high score not only reflects the user’s recog-
nition of the algorithm, but also proves its significant effect
in improving user experience. In summary, the hybrid K-
WOA-PSO optimization algorithm driven by heterogeneous
cloud access proposed in the study demonstrates excellent
performance and utility in several key evaluation dimen-
sions. In addition, a comprehensive experimental study was
designed to determine the optimal combination of population
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cloud wireless access in all aspects.

size (n), inertia weight (w), and individual/global learn-
ing factors (c, ¢ ) in Particle Swarm Optimization (PSO)
algorithm. The experiment aims to evaluate the impact of
these parameters on PSO performance by systematically
adjusting them and using the best fitness value, convergence
speed, algorithm stability, and computation time as evaluation
criteria. The experimental results are shown in Table 2.

By analyzing the experimental results of particle swarm
optimization (PSO) algorithm parameter settings, some key
conclusions can be drawn. Firstly, the population size (n) has
a significant impact on algorithm performance. In smaller
populations (such as 10), although the algorithm can con-
verge quickly, it has high stability, with the best fitness
values of —14.8 and —15.1, and relatively short computa-
tion times of 36.2 seconds and 29.8 seconds, respectively.
This indicates that when solving optimization problems,
a smaller population can reduce the consumption of com-
puting resources while ensuring solution quality. Secondly,
the inertia weight (w) has a significant impact on the conver-
gence speed and stability of the algorithm. The experimental
data shows that as the inertia weight increases, the opti-
mal fitness value slightly decreases, from —14.8 to —15.5,
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while the convergence speed slows down, from fast to slow.
This may be because higher inertia weights increase the
tendency of particles to maintain their original direction,
which helps to explore the solution space. However, they play
an important role in regulating the exploration and devel-
opment capabilities of algorithms. In the experiment, the
different combinations of ¢; and ¢, resulted in different con-
vergence rates and stability. For example, the combination of
c1=1.1and c = 1.2 provides the fastest convergence speed
and moderate stability at a population size of 10, while the
combination of ¢ | = 1.3 and ¢ » = 1.4 results in the slowest
convergence speed and higher stability at a population size
of 10. By analyzing the data in the table above, it can be seen
that the sample size (i.e. population size n) has a significant
impact on the experimental results. Under the same inertia
weight and learning factor settings, smaller population sizes
often converge faster, but may sacrifice some optimal fitness.
As the population size increases, although better solutions can
be found, the calculation time will also increase accordingly.
Finally, with the PSO and WOA algorithms as the baseline,
the cross-validation study proposed the model performance
of MREHS, and the three models respectively optimized the
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TABLE 2. Results of the algorithm parameter tuning.

Inertia Individua Globa

Best

PR e Lamn  Lamne s )OI Ammo oo
(W) Factor (cl) Factor (c2) Value P vy
10 4 1.0 1.1 -14.8 Fast High 36.2
10 0.6 1.1 1.2 -15.1 Faster Medium 29.8
10 0.8 1.2 1.3 -15.3 Moderate Low 26.5
10 1.0 1.3 1.4 -15.5 Slow High 33.1
20 0.4 1.0 1.1 -14.6 Fast High 45.6
40 1.0 1.3 1.4 -15.7 Slow ow 429
7000 V. CONCLUSION
6000 L MREHS WOA  mPSO To solve the problem that traditional ESO methods are eas-
_ ily trapped in local optimal solutions and cannot find the
L5000 b global optimal solution, the study establishes the MREHS
& optimization model of the heterogeneous cloud access-driven
_oz) 4000 Hb- e b K-WOA-PSO hybrid optimization algorithm. In the sec-
2 ond generalized penalty function, the convergence of the
S a000 WL Ml b Bl K-WOA-PSO hybrid optimization algorithm and its three
E variants (lack of WOA module, lack of K-clustering module,
PYPPSRTIEN U T | (1 | I and lack of PSO module) are different. Among them, the
| | | I K-WOA-PSO algorithm achieved convergence at about the
1000 I I 1 1 1 1 I 160th iteration, showing a relatively fast convergence rate.
1 2 3 4 5 6 7 In contrast, the other three variants of the algorithm converged

Experimental group number

FIGURE 16. Comparison of economic benefits of various algorithms.

power supply system of seven power stations in the UK for
one month. The systems based on three algorithms were run
for one month each, with economic benefits as the evaluation
criterion. The experimental results are shown in Figure 16.

Based on the data shown in Figure 16, we can clearly
see that the MREHS model proposed by the research team
has brought significant economic benefits to each power
station, averaging over $4000. This number not only rep-
resents the efficiency of the model, but also highlights the
potential for optimizing power supply strategies. In con-
trast, although the power supply system based on Whale
Optimization Algorithm (WOA) performs well, its economic
benefits remain stable at around $3000, slightly inferior to the
MREHS model. The power supply system based on Particle
Swarm Optimization (PSO) has the lowest economic benefits
in this comparison. This data comparison not only provides
us with directions for optimizing power supply systems, but
also further validates the advantages and value of the MREHS
model in practical applications, demonstrating its outstanding
ability in improving power supply economic benefits.
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relatively slowly, reaching convergence at the 80th, 90th, and
390th iterations, respectively. The K-WOA-PSO algorithm
outperformed the other three algorithm versions, which all
hovered around —8, in terms of fitness, reaching a minimum
of —15.1. The accuracy of all algorithm models varied when
using the Breast Cancer dataset. However, the change in accu-
racy of the WOA-PSO model was relatively stable, showing
only a slight decrease of 0.5%. In contrast, the WOA-ACO
model had the largest change in accuracy, with a signifi-
cant 14.8% increase in accuracy at convergence, eventually
converging to 90.9% accuracy. These results indicated that
the WOA-PSO model has excellent performance in problem
solving and that the selection of an appropriate algorithmic
model for the Breast Cancer dataset is also very important for
accuracy stability and convergence. In summary, the model
effectively addresses the issue of the traditional ESO method
being prone to local optimal solutions. It achieves this by
utilizing the hybrid K-WOA-PSO optimization algorithm,
which enables exploration and identification of the global
optimal solution, thereby enhancing the effectiveness of ESO.
However, while the model has several advantages, there
are still areas that require attention and improvement. For
instance, the model’s complexity may be relatively high, and
in the future, methods such as parameter pruning and network
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compression can be used to reduce the complexity of the
model and further optimize it.
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